1 /* 2 * QEMU RISC-V VirtIO Board 3 * 4 * Copyright (c) 2017 SiFive, Inc. 5 * 6 * RISC-V machine with 16550a UART and VirtIO MMIO 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms and conditions of the GNU General Public License, 10 * version 2 or later, as published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * You should have received a copy of the GNU General Public License along with 18 * this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/units.h" 23 #include "qemu/error-report.h" 24 #include "qapi/error.h" 25 #include "hw/boards.h" 26 #include "hw/loader.h" 27 #include "hw/sysbus.h" 28 #include "hw/qdev-properties.h" 29 #include "hw/char/serial.h" 30 #include "target/riscv/cpu.h" 31 #include "hw/riscv/riscv_hart.h" 32 #include "hw/riscv/virt.h" 33 #include "hw/riscv/boot.h" 34 #include "hw/riscv/numa.h" 35 #include "hw/intc/sifive_clint.h" 36 #include "hw/intc/sifive_plic.h" 37 #include "hw/misc/sifive_test.h" 38 #include "chardev/char.h" 39 #include "sysemu/arch_init.h" 40 #include "sysemu/device_tree.h" 41 #include "sysemu/sysemu.h" 42 #include "hw/pci/pci.h" 43 #include "hw/pci-host/gpex.h" 44 #include "hw/display/ramfb.h" 45 46 static const MemMapEntry virt_memmap[] = { 47 [VIRT_DEBUG] = { 0x0, 0x100 }, 48 [VIRT_MROM] = { 0x1000, 0xf000 }, 49 [VIRT_TEST] = { 0x100000, 0x1000 }, 50 [VIRT_RTC] = { 0x101000, 0x1000 }, 51 [VIRT_CLINT] = { 0x2000000, 0x10000 }, 52 [VIRT_PCIE_PIO] = { 0x3000000, 0x10000 }, 53 [VIRT_PLIC] = { 0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) }, 54 [VIRT_UART0] = { 0x10000000, 0x100 }, 55 [VIRT_VIRTIO] = { 0x10001000, 0x1000 }, 56 [VIRT_FW_CFG] = { 0x10100000, 0x18 }, 57 [VIRT_FLASH] = { 0x20000000, 0x4000000 }, 58 [VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 }, 59 [VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 }, 60 [VIRT_DRAM] = { 0x80000000, 0x0 }, 61 }; 62 63 /* PCIe high mmio is fixed for RV32 */ 64 #define VIRT32_HIGH_PCIE_MMIO_BASE 0x300000000ULL 65 #define VIRT32_HIGH_PCIE_MMIO_SIZE (4 * GiB) 66 67 /* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */ 68 #define VIRT64_HIGH_PCIE_MMIO_SIZE (16 * GiB) 69 70 static MemMapEntry virt_high_pcie_memmap; 71 72 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 73 74 static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s, 75 const char *name, 76 const char *alias_prop_name) 77 { 78 /* 79 * Create a single flash device. We use the same parameters as 80 * the flash devices on the ARM virt board. 81 */ 82 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 83 84 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 85 qdev_prop_set_uint8(dev, "width", 4); 86 qdev_prop_set_uint8(dev, "device-width", 2); 87 qdev_prop_set_bit(dev, "big-endian", false); 88 qdev_prop_set_uint16(dev, "id0", 0x89); 89 qdev_prop_set_uint16(dev, "id1", 0x18); 90 qdev_prop_set_uint16(dev, "id2", 0x00); 91 qdev_prop_set_uint16(dev, "id3", 0x00); 92 qdev_prop_set_string(dev, "name", name); 93 94 object_property_add_child(OBJECT(s), name, OBJECT(dev)); 95 object_property_add_alias(OBJECT(s), alias_prop_name, 96 OBJECT(dev), "drive"); 97 98 return PFLASH_CFI01(dev); 99 } 100 101 static void virt_flash_create(RISCVVirtState *s) 102 { 103 s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0"); 104 s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1"); 105 } 106 107 static void virt_flash_map1(PFlashCFI01 *flash, 108 hwaddr base, hwaddr size, 109 MemoryRegion *sysmem) 110 { 111 DeviceState *dev = DEVICE(flash); 112 113 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 114 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 115 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 116 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 117 118 memory_region_add_subregion(sysmem, base, 119 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 120 0)); 121 } 122 123 static void virt_flash_map(RISCVVirtState *s, 124 MemoryRegion *sysmem) 125 { 126 hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2; 127 hwaddr flashbase = virt_memmap[VIRT_FLASH].base; 128 129 virt_flash_map1(s->flash[0], flashbase, flashsize, 130 sysmem); 131 virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize, 132 sysmem); 133 } 134 135 static void create_pcie_irq_map(void *fdt, char *nodename, 136 uint32_t plic_phandle) 137 { 138 int pin, dev; 139 uint32_t 140 full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {}; 141 uint32_t *irq_map = full_irq_map; 142 143 /* This code creates a standard swizzle of interrupts such that 144 * each device's first interrupt is based on it's PCI_SLOT number. 145 * (See pci_swizzle_map_irq_fn()) 146 * 147 * We only need one entry per interrupt in the table (not one per 148 * possible slot) seeing the interrupt-map-mask will allow the table 149 * to wrap to any number of devices. 150 */ 151 for (dev = 0; dev < GPEX_NUM_IRQS; dev++) { 152 int devfn = dev * 0x8; 153 154 for (pin = 0; pin < GPEX_NUM_IRQS; pin++) { 155 int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS); 156 int i = 0; 157 158 irq_map[i] = cpu_to_be32(devfn << 8); 159 160 i += FDT_PCI_ADDR_CELLS; 161 irq_map[i] = cpu_to_be32(pin + 1); 162 163 i += FDT_PCI_INT_CELLS; 164 irq_map[i++] = cpu_to_be32(plic_phandle); 165 166 i += FDT_PLIC_ADDR_CELLS; 167 irq_map[i] = cpu_to_be32(irq_nr); 168 169 irq_map += FDT_INT_MAP_WIDTH; 170 } 171 } 172 173 qemu_fdt_setprop(fdt, nodename, "interrupt-map", 174 full_irq_map, sizeof(full_irq_map)); 175 176 qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask", 177 0x1800, 0, 0, 0x7); 178 } 179 180 static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap, 181 uint64_t mem_size, const char *cmdline, bool is_32_bit) 182 { 183 void *fdt; 184 int i, cpu, socket; 185 MachineState *mc = MACHINE(s); 186 uint64_t addr, size; 187 uint32_t *clint_cells, *plic_cells; 188 unsigned long clint_addr, plic_addr; 189 uint32_t plic_phandle[MAX_NODES]; 190 uint32_t cpu_phandle, intc_phandle, test_phandle; 191 uint32_t phandle = 1, plic_mmio_phandle = 1; 192 uint32_t plic_pcie_phandle = 1, plic_virtio_phandle = 1; 193 char *mem_name, *cpu_name, *core_name, *intc_name; 194 char *name, *clint_name, *plic_name, *clust_name; 195 hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2; 196 hwaddr flashbase = virt_memmap[VIRT_FLASH].base; 197 198 if (mc->dtb) { 199 fdt = mc->fdt = load_device_tree(mc->dtb, &s->fdt_size); 200 if (!fdt) { 201 error_report("load_device_tree() failed"); 202 exit(1); 203 } 204 goto update_bootargs; 205 } else { 206 fdt = mc->fdt = create_device_tree(&s->fdt_size); 207 if (!fdt) { 208 error_report("create_device_tree() failed"); 209 exit(1); 210 } 211 } 212 213 qemu_fdt_setprop_string(fdt, "/", "model", "riscv-virtio,qemu"); 214 qemu_fdt_setprop_string(fdt, "/", "compatible", "riscv-virtio"); 215 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 216 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 217 218 qemu_fdt_add_subnode(fdt, "/soc"); 219 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0); 220 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus"); 221 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2); 222 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2); 223 224 qemu_fdt_add_subnode(fdt, "/cpus"); 225 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency", 226 SIFIVE_CLINT_TIMEBASE_FREQ); 227 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0); 228 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1); 229 qemu_fdt_add_subnode(fdt, "/cpus/cpu-map"); 230 231 for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) { 232 clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket); 233 qemu_fdt_add_subnode(fdt, clust_name); 234 235 plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4); 236 clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4); 237 238 for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) { 239 cpu_phandle = phandle++; 240 241 cpu_name = g_strdup_printf("/cpus/cpu@%d", 242 s->soc[socket].hartid_base + cpu); 243 qemu_fdt_add_subnode(fdt, cpu_name); 244 if (is_32_bit) { 245 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32"); 246 } else { 247 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48"); 248 } 249 name = riscv_isa_string(&s->soc[socket].harts[cpu]); 250 qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name); 251 g_free(name); 252 qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv"); 253 qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay"); 254 qemu_fdt_setprop_cell(fdt, cpu_name, "reg", 255 s->soc[socket].hartid_base + cpu); 256 qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu"); 257 riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket); 258 qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle); 259 260 intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name); 261 qemu_fdt_add_subnode(fdt, intc_name); 262 intc_phandle = phandle++; 263 qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle); 264 qemu_fdt_setprop_string(fdt, intc_name, "compatible", 265 "riscv,cpu-intc"); 266 qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0); 267 qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1); 268 269 clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); 270 clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT); 271 clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); 272 clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER); 273 274 plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); 275 plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT); 276 plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); 277 plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT); 278 279 core_name = g_strdup_printf("%s/core%d", clust_name, cpu); 280 qemu_fdt_add_subnode(fdt, core_name); 281 qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle); 282 283 g_free(core_name); 284 g_free(intc_name); 285 g_free(cpu_name); 286 } 287 288 addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket); 289 size = riscv_socket_mem_size(mc, socket); 290 mem_name = g_strdup_printf("/memory@%lx", (long)addr); 291 qemu_fdt_add_subnode(fdt, mem_name); 292 qemu_fdt_setprop_cells(fdt, mem_name, "reg", 293 addr >> 32, addr, size >> 32, size); 294 qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory"); 295 riscv_socket_fdt_write_id(mc, fdt, mem_name, socket); 296 g_free(mem_name); 297 298 clint_addr = memmap[VIRT_CLINT].base + 299 (memmap[VIRT_CLINT].size * socket); 300 clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr); 301 qemu_fdt_add_subnode(fdt, clint_name); 302 qemu_fdt_setprop_string(fdt, clint_name, "compatible", "riscv,clint0"); 303 qemu_fdt_setprop_cells(fdt, clint_name, "reg", 304 0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size); 305 qemu_fdt_setprop(fdt, clint_name, "interrupts-extended", 306 clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4); 307 riscv_socket_fdt_write_id(mc, fdt, clint_name, socket); 308 g_free(clint_name); 309 310 plic_phandle[socket] = phandle++; 311 plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket); 312 plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr); 313 qemu_fdt_add_subnode(fdt, plic_name); 314 qemu_fdt_setprop_cell(fdt, plic_name, 315 "#address-cells", FDT_PLIC_ADDR_CELLS); 316 qemu_fdt_setprop_cell(fdt, plic_name, 317 "#interrupt-cells", FDT_PLIC_INT_CELLS); 318 qemu_fdt_setprop_string(fdt, plic_name, "compatible", "riscv,plic0"); 319 qemu_fdt_setprop(fdt, plic_name, "interrupt-controller", NULL, 0); 320 qemu_fdt_setprop(fdt, plic_name, "interrupts-extended", 321 plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4); 322 qemu_fdt_setprop_cells(fdt, plic_name, "reg", 323 0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size); 324 qemu_fdt_setprop_cell(fdt, plic_name, "riscv,ndev", VIRTIO_NDEV); 325 riscv_socket_fdt_write_id(mc, fdt, plic_name, socket); 326 qemu_fdt_setprop_cell(fdt, plic_name, "phandle", plic_phandle[socket]); 327 g_free(plic_name); 328 329 g_free(clint_cells); 330 g_free(plic_cells); 331 g_free(clust_name); 332 } 333 334 for (socket = 0; socket < riscv_socket_count(mc); socket++) { 335 if (socket == 0) { 336 plic_mmio_phandle = plic_phandle[socket]; 337 plic_virtio_phandle = plic_phandle[socket]; 338 plic_pcie_phandle = plic_phandle[socket]; 339 } 340 if (socket == 1) { 341 plic_virtio_phandle = plic_phandle[socket]; 342 plic_pcie_phandle = plic_phandle[socket]; 343 } 344 if (socket == 2) { 345 plic_pcie_phandle = plic_phandle[socket]; 346 } 347 } 348 349 riscv_socket_fdt_write_distance_matrix(mc, fdt); 350 351 for (i = 0; i < VIRTIO_COUNT; i++) { 352 name = g_strdup_printf("/soc/virtio_mmio@%lx", 353 (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size)); 354 qemu_fdt_add_subnode(fdt, name); 355 qemu_fdt_setprop_string(fdt, name, "compatible", "virtio,mmio"); 356 qemu_fdt_setprop_cells(fdt, name, "reg", 357 0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size, 358 0x0, memmap[VIRT_VIRTIO].size); 359 qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", 360 plic_virtio_phandle); 361 qemu_fdt_setprop_cell(fdt, name, "interrupts", VIRTIO_IRQ + i); 362 g_free(name); 363 } 364 365 name = g_strdup_printf("/soc/pci@%lx", 366 (long) memmap[VIRT_PCIE_ECAM].base); 367 qemu_fdt_add_subnode(fdt, name); 368 qemu_fdt_setprop_cell(fdt, name, "#address-cells", FDT_PCI_ADDR_CELLS); 369 qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", FDT_PCI_INT_CELLS); 370 qemu_fdt_setprop_cell(fdt, name, "#size-cells", 0x2); 371 qemu_fdt_setprop_string(fdt, name, "compatible", "pci-host-ecam-generic"); 372 qemu_fdt_setprop_string(fdt, name, "device_type", "pci"); 373 qemu_fdt_setprop_cell(fdt, name, "linux,pci-domain", 0); 374 qemu_fdt_setprop_cells(fdt, name, "bus-range", 0, 375 memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1); 376 qemu_fdt_setprop(fdt, name, "dma-coherent", NULL, 0); 377 qemu_fdt_setprop_cells(fdt, name, "reg", 0, 378 memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size); 379 qemu_fdt_setprop_sized_cells(fdt, name, "ranges", 380 1, FDT_PCI_RANGE_IOPORT, 2, 0, 381 2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size, 382 1, FDT_PCI_RANGE_MMIO, 383 2, memmap[VIRT_PCIE_MMIO].base, 384 2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size, 385 1, FDT_PCI_RANGE_MMIO_64BIT, 386 2, virt_high_pcie_memmap.base, 387 2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size); 388 389 create_pcie_irq_map(fdt, name, plic_pcie_phandle); 390 g_free(name); 391 392 test_phandle = phandle++; 393 name = g_strdup_printf("/soc/test@%lx", 394 (long)memmap[VIRT_TEST].base); 395 qemu_fdt_add_subnode(fdt, name); 396 { 397 static const char * const compat[3] = { 398 "sifive,test1", "sifive,test0", "syscon" 399 }; 400 qemu_fdt_setprop_string_array(fdt, name, "compatible", (char **)&compat, 401 ARRAY_SIZE(compat)); 402 } 403 qemu_fdt_setprop_cells(fdt, name, "reg", 404 0x0, memmap[VIRT_TEST].base, 405 0x0, memmap[VIRT_TEST].size); 406 qemu_fdt_setprop_cell(fdt, name, "phandle", test_phandle); 407 test_phandle = qemu_fdt_get_phandle(fdt, name); 408 g_free(name); 409 410 name = g_strdup_printf("/soc/reboot"); 411 qemu_fdt_add_subnode(fdt, name); 412 qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot"); 413 qemu_fdt_setprop_cell(fdt, name, "regmap", test_phandle); 414 qemu_fdt_setprop_cell(fdt, name, "offset", 0x0); 415 qemu_fdt_setprop_cell(fdt, name, "value", FINISHER_RESET); 416 g_free(name); 417 418 name = g_strdup_printf("/soc/poweroff"); 419 qemu_fdt_add_subnode(fdt, name); 420 qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-poweroff"); 421 qemu_fdt_setprop_cell(fdt, name, "regmap", test_phandle); 422 qemu_fdt_setprop_cell(fdt, name, "offset", 0x0); 423 qemu_fdt_setprop_cell(fdt, name, "value", FINISHER_PASS); 424 g_free(name); 425 426 name = g_strdup_printf("/soc/uart@%lx", (long)memmap[VIRT_UART0].base); 427 qemu_fdt_add_subnode(fdt, name); 428 qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a"); 429 qemu_fdt_setprop_cells(fdt, name, "reg", 430 0x0, memmap[VIRT_UART0].base, 431 0x0, memmap[VIRT_UART0].size); 432 qemu_fdt_setprop_cell(fdt, name, "clock-frequency", 3686400); 433 qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", plic_mmio_phandle); 434 qemu_fdt_setprop_cell(fdt, name, "interrupts", UART0_IRQ); 435 436 qemu_fdt_add_subnode(fdt, "/chosen"); 437 qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", name); 438 g_free(name); 439 440 name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base); 441 qemu_fdt_add_subnode(fdt, name); 442 qemu_fdt_setprop_string(fdt, name, "compatible", "google,goldfish-rtc"); 443 qemu_fdt_setprop_cells(fdt, name, "reg", 444 0x0, memmap[VIRT_RTC].base, 445 0x0, memmap[VIRT_RTC].size); 446 qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", plic_mmio_phandle); 447 qemu_fdt_setprop_cell(fdt, name, "interrupts", RTC_IRQ); 448 g_free(name); 449 450 name = g_strdup_printf("/soc/flash@%" PRIx64, flashbase); 451 qemu_fdt_add_subnode(mc->fdt, name); 452 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "cfi-flash"); 453 qemu_fdt_setprop_sized_cells(mc->fdt, name, "reg", 454 2, flashbase, 2, flashsize, 455 2, flashbase + flashsize, 2, flashsize); 456 qemu_fdt_setprop_cell(mc->fdt, name, "bank-width", 4); 457 g_free(name); 458 459 update_bootargs: 460 if (cmdline) { 461 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline); 462 } 463 } 464 465 static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem, 466 hwaddr ecam_base, hwaddr ecam_size, 467 hwaddr mmio_base, hwaddr mmio_size, 468 hwaddr high_mmio_base, 469 hwaddr high_mmio_size, 470 hwaddr pio_base, 471 DeviceState *plic) 472 { 473 DeviceState *dev; 474 MemoryRegion *ecam_alias, *ecam_reg; 475 MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg; 476 qemu_irq irq; 477 int i; 478 479 dev = qdev_new(TYPE_GPEX_HOST); 480 481 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 482 483 ecam_alias = g_new0(MemoryRegion, 1); 484 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 485 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 486 ecam_reg, 0, ecam_size); 487 memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias); 488 489 mmio_alias = g_new0(MemoryRegion, 1); 490 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 491 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 492 mmio_reg, mmio_base, mmio_size); 493 memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias); 494 495 /* Map high MMIO space */ 496 high_mmio_alias = g_new0(MemoryRegion, 1); 497 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 498 mmio_reg, high_mmio_base, high_mmio_size); 499 memory_region_add_subregion(get_system_memory(), high_mmio_base, 500 high_mmio_alias); 501 502 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base); 503 504 for (i = 0; i < GPEX_NUM_IRQS; i++) { 505 irq = qdev_get_gpio_in(plic, PCIE_IRQ + i); 506 507 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq); 508 gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i); 509 } 510 511 return dev; 512 } 513 514 static FWCfgState *create_fw_cfg(const MachineState *mc) 515 { 516 hwaddr base = virt_memmap[VIRT_FW_CFG].base; 517 hwaddr size = virt_memmap[VIRT_FW_CFG].size; 518 FWCfgState *fw_cfg; 519 char *nodename; 520 521 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, 522 &address_space_memory); 523 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)mc->smp.cpus); 524 525 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 526 qemu_fdt_add_subnode(mc->fdt, nodename); 527 qemu_fdt_setprop_string(mc->fdt, nodename, 528 "compatible", "qemu,fw-cfg-mmio"); 529 qemu_fdt_setprop_sized_cells(mc->fdt, nodename, "reg", 530 2, base, 2, size); 531 qemu_fdt_setprop(mc->fdt, nodename, "dma-coherent", NULL, 0); 532 g_free(nodename); 533 return fw_cfg; 534 } 535 536 static void virt_machine_init(MachineState *machine) 537 { 538 const MemMapEntry *memmap = virt_memmap; 539 RISCVVirtState *s = RISCV_VIRT_MACHINE(machine); 540 MemoryRegion *system_memory = get_system_memory(); 541 MemoryRegion *main_mem = g_new(MemoryRegion, 1); 542 MemoryRegion *mask_rom = g_new(MemoryRegion, 1); 543 char *plic_hart_config, *soc_name; 544 size_t plic_hart_config_len; 545 target_ulong start_addr = memmap[VIRT_DRAM].base; 546 target_ulong firmware_end_addr, kernel_start_addr; 547 uint32_t fdt_load_addr; 548 uint64_t kernel_entry; 549 DeviceState *mmio_plic, *virtio_plic, *pcie_plic; 550 int i, j, base_hartid, hart_count; 551 552 /* Check socket count limit */ 553 if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) { 554 error_report("number of sockets/nodes should be less than %d", 555 VIRT_SOCKETS_MAX); 556 exit(1); 557 } 558 559 /* Initialize sockets */ 560 mmio_plic = virtio_plic = pcie_plic = NULL; 561 for (i = 0; i < riscv_socket_count(machine); i++) { 562 if (!riscv_socket_check_hartids(machine, i)) { 563 error_report("discontinuous hartids in socket%d", i); 564 exit(1); 565 } 566 567 base_hartid = riscv_socket_first_hartid(machine, i); 568 if (base_hartid < 0) { 569 error_report("can't find hartid base for socket%d", i); 570 exit(1); 571 } 572 573 hart_count = riscv_socket_hart_count(machine, i); 574 if (hart_count < 0) { 575 error_report("can't find hart count for socket%d", i); 576 exit(1); 577 } 578 579 soc_name = g_strdup_printf("soc%d", i); 580 object_initialize_child(OBJECT(machine), soc_name, &s->soc[i], 581 TYPE_RISCV_HART_ARRAY); 582 g_free(soc_name); 583 object_property_set_str(OBJECT(&s->soc[i]), "cpu-type", 584 machine->cpu_type, &error_abort); 585 object_property_set_int(OBJECT(&s->soc[i]), "hartid-base", 586 base_hartid, &error_abort); 587 object_property_set_int(OBJECT(&s->soc[i]), "num-harts", 588 hart_count, &error_abort); 589 sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort); 590 591 /* Per-socket CLINT */ 592 sifive_clint_create( 593 memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size, 594 memmap[VIRT_CLINT].size, base_hartid, hart_count, 595 SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE, 596 SIFIVE_CLINT_TIMEBASE_FREQ, true); 597 598 /* Per-socket PLIC hart topology configuration string */ 599 plic_hart_config_len = 600 (strlen(VIRT_PLIC_HART_CONFIG) + 1) * hart_count; 601 plic_hart_config = g_malloc0(plic_hart_config_len); 602 for (j = 0; j < hart_count; j++) { 603 if (j != 0) { 604 strncat(plic_hart_config, ",", plic_hart_config_len); 605 } 606 strncat(plic_hart_config, VIRT_PLIC_HART_CONFIG, 607 plic_hart_config_len); 608 plic_hart_config_len -= (strlen(VIRT_PLIC_HART_CONFIG) + 1); 609 } 610 611 /* Per-socket PLIC */ 612 s->plic[i] = sifive_plic_create( 613 memmap[VIRT_PLIC].base + i * memmap[VIRT_PLIC].size, 614 plic_hart_config, base_hartid, 615 VIRT_PLIC_NUM_SOURCES, 616 VIRT_PLIC_NUM_PRIORITIES, 617 VIRT_PLIC_PRIORITY_BASE, 618 VIRT_PLIC_PENDING_BASE, 619 VIRT_PLIC_ENABLE_BASE, 620 VIRT_PLIC_ENABLE_STRIDE, 621 VIRT_PLIC_CONTEXT_BASE, 622 VIRT_PLIC_CONTEXT_STRIDE, 623 memmap[VIRT_PLIC].size); 624 g_free(plic_hart_config); 625 626 /* Try to use different PLIC instance based device type */ 627 if (i == 0) { 628 mmio_plic = s->plic[i]; 629 virtio_plic = s->plic[i]; 630 pcie_plic = s->plic[i]; 631 } 632 if (i == 1) { 633 virtio_plic = s->plic[i]; 634 pcie_plic = s->plic[i]; 635 } 636 if (i == 2) { 637 pcie_plic = s->plic[i]; 638 } 639 } 640 641 if (riscv_is_32bit(&s->soc[0])) { 642 #if HOST_LONG_BITS == 64 643 /* limit RAM size in a 32-bit system */ 644 if (machine->ram_size > 10 * GiB) { 645 machine->ram_size = 10 * GiB; 646 error_report("Limiting RAM size to 10 GiB"); 647 } 648 #endif 649 virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE; 650 virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE; 651 } else { 652 virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE; 653 virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size; 654 virt_high_pcie_memmap.base = 655 ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size); 656 } 657 658 /* register system main memory (actual RAM) */ 659 memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram", 660 machine->ram_size, &error_fatal); 661 memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base, 662 main_mem); 663 664 /* create device tree */ 665 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline, 666 riscv_is_32bit(&s->soc[0])); 667 668 /* boot rom */ 669 memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom", 670 memmap[VIRT_MROM].size, &error_fatal); 671 memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base, 672 mask_rom); 673 674 if (riscv_is_32bit(&s->soc[0])) { 675 firmware_end_addr = riscv_find_and_load_firmware(machine, 676 "opensbi-riscv32-generic-fw_dynamic.bin", 677 start_addr, NULL); 678 } else { 679 firmware_end_addr = riscv_find_and_load_firmware(machine, 680 "opensbi-riscv64-generic-fw_dynamic.bin", 681 start_addr, NULL); 682 } 683 684 if (machine->kernel_filename) { 685 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0], 686 firmware_end_addr); 687 688 kernel_entry = riscv_load_kernel(machine->kernel_filename, 689 kernel_start_addr, NULL); 690 691 if (machine->initrd_filename) { 692 hwaddr start; 693 hwaddr end = riscv_load_initrd(machine->initrd_filename, 694 machine->ram_size, kernel_entry, 695 &start); 696 qemu_fdt_setprop_cell(machine->fdt, "/chosen", 697 "linux,initrd-start", start); 698 qemu_fdt_setprop_cell(machine->fdt, "/chosen", "linux,initrd-end", 699 end); 700 } 701 } else { 702 /* 703 * If dynamic firmware is used, it doesn't know where is the next mode 704 * if kernel argument is not set. 705 */ 706 kernel_entry = 0; 707 } 708 709 if (drive_get(IF_PFLASH, 0, 0)) { 710 /* 711 * Pflash was supplied, let's overwrite the address we jump to after 712 * reset to the base of the flash. 713 */ 714 start_addr = virt_memmap[VIRT_FLASH].base; 715 } 716 717 /* 718 * Init fw_cfg. Must be done before riscv_load_fdt, otherwise the device 719 * tree cannot be altered and we get FDT_ERR_NOSPACE. 720 */ 721 s->fw_cfg = create_fw_cfg(machine); 722 rom_set_fw(s->fw_cfg); 723 724 /* Compute the fdt load address in dram */ 725 fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base, 726 machine->ram_size, machine->fdt); 727 /* load the reset vector */ 728 riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr, 729 virt_memmap[VIRT_MROM].base, 730 virt_memmap[VIRT_MROM].size, kernel_entry, 731 fdt_load_addr, machine->fdt); 732 733 /* SiFive Test MMIO device */ 734 sifive_test_create(memmap[VIRT_TEST].base); 735 736 /* VirtIO MMIO devices */ 737 for (i = 0; i < VIRTIO_COUNT; i++) { 738 sysbus_create_simple("virtio-mmio", 739 memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size, 740 qdev_get_gpio_in(DEVICE(virtio_plic), VIRTIO_IRQ + i)); 741 } 742 743 gpex_pcie_init(system_memory, 744 memmap[VIRT_PCIE_ECAM].base, 745 memmap[VIRT_PCIE_ECAM].size, 746 memmap[VIRT_PCIE_MMIO].base, 747 memmap[VIRT_PCIE_MMIO].size, 748 virt_high_pcie_memmap.base, 749 virt_high_pcie_memmap.size, 750 memmap[VIRT_PCIE_PIO].base, 751 DEVICE(pcie_plic)); 752 753 serial_mm_init(system_memory, memmap[VIRT_UART0].base, 754 0, qdev_get_gpio_in(DEVICE(mmio_plic), UART0_IRQ), 399193, 755 serial_hd(0), DEVICE_LITTLE_ENDIAN); 756 757 sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base, 758 qdev_get_gpio_in(DEVICE(mmio_plic), RTC_IRQ)); 759 760 virt_flash_create(s); 761 762 for (i = 0; i < ARRAY_SIZE(s->flash); i++) { 763 /* Map legacy -drive if=pflash to machine properties */ 764 pflash_cfi01_legacy_drive(s->flash[i], 765 drive_get(IF_PFLASH, 0, i)); 766 } 767 virt_flash_map(s, system_memory); 768 } 769 770 static void virt_machine_instance_init(Object *obj) 771 { 772 } 773 774 static void virt_machine_class_init(ObjectClass *oc, void *data) 775 { 776 MachineClass *mc = MACHINE_CLASS(oc); 777 778 mc->desc = "RISC-V VirtIO board"; 779 mc->init = virt_machine_init; 780 mc->max_cpus = VIRT_CPUS_MAX; 781 mc->default_cpu_type = TYPE_RISCV_CPU_BASE; 782 mc->pci_allow_0_address = true; 783 mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids; 784 mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props; 785 mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id; 786 mc->numa_mem_supported = true; 787 788 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 789 } 790 791 static const TypeInfo virt_machine_typeinfo = { 792 .name = MACHINE_TYPE_NAME("virt"), 793 .parent = TYPE_MACHINE, 794 .class_init = virt_machine_class_init, 795 .instance_init = virt_machine_instance_init, 796 .instance_size = sizeof(RISCVVirtState), 797 }; 798 799 static void virt_machine_init_register_types(void) 800 { 801 type_register_static(&virt_machine_typeinfo); 802 } 803 804 type_init(virt_machine_init_register_types) 805