xref: /qemu/util/bufferiszero.c (revision f28e0bbefa41fe643cce2f107e868abff312ced9)
1 /*
2  * Simple C functions to supplement the C library
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qemu/cutils.h"
26 #include "qemu/bswap.h"
27 #include "host/cpuinfo.h"
28 
29 static bool (*buffer_is_zero_accel)(const void *, size_t);
30 
31 static bool buffer_is_zero_integer(const void *buf, size_t len)
32 {
33     if (unlikely(len < 8)) {
34         /* For a very small buffer, simply accumulate all the bytes.  */
35         const unsigned char *p = buf;
36         const unsigned char *e = buf + len;
37         unsigned char t = 0;
38 
39         do {
40             t |= *p++;
41         } while (p < e);
42 
43         return t == 0;
44     } else {
45         /* Otherwise, use the unaligned memory access functions to
46            handle the beginning and end of the buffer, with a couple
47            of loops handling the middle aligned section.  */
48         uint64_t t = ldq_he_p(buf);
49         const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8);
50         const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8);
51 
52         for (; p + 8 <= e; p += 8) {
53             if (t) {
54                 return false;
55             }
56             t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
57         }
58         while (p < e) {
59             t |= *p++;
60         }
61         t |= ldq_he_p(buf + len - 8);
62 
63         return t == 0;
64     }
65 }
66 
67 #if defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
68 #include <immintrin.h>
69 
70 /* Helper for preventing the compiler from reassociating
71    chains of binary vector operations.  */
72 #define SSE_REASSOC_BARRIER(vec0, vec1) asm("" : "+x"(vec0), "+x"(vec1))
73 
74 /* Note that these vectorized functions may assume len >= 256.  */
75 
76 static bool __attribute__((target("sse2")))
77 buffer_zero_sse2(const void *buf, size_t len)
78 {
79     /* Unaligned loads at head/tail.  */
80     __m128i v = *(__m128i_u *)(buf);
81     __m128i w = *(__m128i_u *)(buf + len - 16);
82     /* Align head/tail to 16-byte boundaries.  */
83     const __m128i *p = QEMU_ALIGN_PTR_DOWN(buf + 16, 16);
84     const __m128i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 16);
85     __m128i zero = { 0 };
86 
87     /* Collect a partial block at tail end.  */
88     v |= e[-1]; w |= e[-2];
89     SSE_REASSOC_BARRIER(v, w);
90     v |= e[-3]; w |= e[-4];
91     SSE_REASSOC_BARRIER(v, w);
92     v |= e[-5]; w |= e[-6];
93     SSE_REASSOC_BARRIER(v, w);
94     v |= e[-7]; v |= w;
95 
96     /*
97      * Loop over complete 128-byte blocks.
98      * With the head and tail removed, e - p >= 14, so the loop
99      * must iterate at least once.
100      */
101     do {
102         v = _mm_cmpeq_epi8(v, zero);
103         if (unlikely(_mm_movemask_epi8(v) != 0xFFFF)) {
104             return false;
105         }
106         v = p[0]; w = p[1];
107         SSE_REASSOC_BARRIER(v, w);
108         v |= p[2]; w |= p[3];
109         SSE_REASSOC_BARRIER(v, w);
110         v |= p[4]; w |= p[5];
111         SSE_REASSOC_BARRIER(v, w);
112         v |= p[6]; w |= p[7];
113         SSE_REASSOC_BARRIER(v, w);
114         v |= w;
115         p += 8;
116     } while (p < e - 7);
117 
118     return _mm_movemask_epi8(_mm_cmpeq_epi8(v, zero)) == 0xFFFF;
119 }
120 
121 #ifdef CONFIG_AVX2_OPT
122 static bool __attribute__((target("avx2")))
123 buffer_zero_avx2(const void *buf, size_t len)
124 {
125     /* Unaligned loads at head/tail.  */
126     __m256i v = *(__m256i_u *)(buf);
127     __m256i w = *(__m256i_u *)(buf + len - 32);
128     /* Align head/tail to 32-byte boundaries.  */
129     const __m256i *p = QEMU_ALIGN_PTR_DOWN(buf + 32, 32);
130     const __m256i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 32);
131     __m256i zero = { 0 };
132 
133     /* Collect a partial block at tail end.  */
134     v |= e[-1]; w |= e[-2];
135     SSE_REASSOC_BARRIER(v, w);
136     v |= e[-3]; w |= e[-4];
137     SSE_REASSOC_BARRIER(v, w);
138     v |= e[-5]; w |= e[-6];
139     SSE_REASSOC_BARRIER(v, w);
140     v |= e[-7]; v |= w;
141 
142     /* Loop over complete 256-byte blocks.  */
143     for (; p < e - 7; p += 8) {
144         /* PTEST is not profitable here.  */
145         v = _mm256_cmpeq_epi8(v, zero);
146         if (unlikely(_mm256_movemask_epi8(v) != 0xFFFFFFFF)) {
147             return false;
148         }
149         v = p[0]; w = p[1];
150         SSE_REASSOC_BARRIER(v, w);
151         v |= p[2]; w |= p[3];
152         SSE_REASSOC_BARRIER(v, w);
153         v |= p[4]; w |= p[5];
154         SSE_REASSOC_BARRIER(v, w);
155         v |= p[6]; w |= p[7];
156         SSE_REASSOC_BARRIER(v, w);
157         v |= w;
158     }
159 
160     return _mm256_movemask_epi8(_mm256_cmpeq_epi8(v, zero)) == 0xFFFFFFFF;
161 }
162 #endif /* CONFIG_AVX2_OPT */
163 
164 static unsigned __attribute__((noinline))
165 select_accel_cpuinfo(unsigned info)
166 {
167     /* Array is sorted in order of algorithm preference. */
168     static const struct {
169         unsigned bit;
170         bool (*fn)(const void *, size_t);
171     } all[] = {
172 #ifdef CONFIG_AVX2_OPT
173         { CPUINFO_AVX2,    buffer_zero_avx2 },
174 #endif
175         { CPUINFO_SSE2,    buffer_zero_sse2 },
176         { CPUINFO_ALWAYS,  buffer_is_zero_integer },
177     };
178 
179     for (unsigned i = 0; i < ARRAY_SIZE(all); ++i) {
180         if (info & all[i].bit) {
181             buffer_is_zero_accel = all[i].fn;
182             return all[i].bit;
183         }
184     }
185     return 0;
186 }
187 
188 static unsigned used_accel;
189 
190 static void __attribute__((constructor)) init_accel(void)
191 {
192     used_accel = select_accel_cpuinfo(cpuinfo_init());
193 }
194 
195 #define INIT_ACCEL NULL
196 
197 bool test_buffer_is_zero_next_accel(void)
198 {
199     /*
200      * Accumulate the accelerators that we've already tested, and
201      * remove them from the set to test this round.  We'll get back
202      * a zero from select_accel_cpuinfo when there are no more.
203      */
204     unsigned used = select_accel_cpuinfo(cpuinfo & ~used_accel);
205     used_accel |= used;
206     return used;
207 }
208 #else
209 bool test_buffer_is_zero_next_accel(void)
210 {
211     return false;
212 }
213 
214 #define INIT_ACCEL buffer_is_zero_integer
215 #endif
216 
217 static bool (*buffer_is_zero_accel)(const void *, size_t) = INIT_ACCEL;
218 
219 bool buffer_is_zero_ool(const void *buf, size_t len)
220 {
221     if (unlikely(len == 0)) {
222         return true;
223     }
224     if (!buffer_is_zero_sample3(buf, len)) {
225         return false;
226     }
227     /* All bytes are covered for any len <= 3.  */
228     if (unlikely(len <= 3)) {
229         return true;
230     }
231 
232     if (likely(len >= 256)) {
233         return buffer_is_zero_accel(buf, len);
234     }
235     return buffer_is_zero_integer(buf, len);
236 }
237 
238 bool buffer_is_zero_ge256(const void *buf, size_t len)
239 {
240     return buffer_is_zero_accel(buf, len);
241 }
242