/* * Simple C functions to supplement the C library * * Copyright (c) 2006 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/cutils.h" #include "qemu/bswap.h" #include "host/cpuinfo.h" static bool (*buffer_is_zero_accel)(const void *, size_t); static bool buffer_is_zero_integer(const void *buf, size_t len) { if (unlikely(len < 8)) { /* For a very small buffer, simply accumulate all the bytes. */ const unsigned char *p = buf; const unsigned char *e = buf + len; unsigned char t = 0; do { t |= *p++; } while (p < e); return t == 0; } else { /* Otherwise, use the unaligned memory access functions to handle the beginning and end of the buffer, with a couple of loops handling the middle aligned section. */ uint64_t t = ldq_he_p(buf); const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8); const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8); for (; p + 8 <= e; p += 8) { if (t) { return false; } t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7]; } while (p < e) { t |= *p++; } t |= ldq_he_p(buf + len - 8); return t == 0; } } #if defined(CONFIG_AVX2_OPT) || defined(__SSE2__) #include /* Helper for preventing the compiler from reassociating chains of binary vector operations. */ #define SSE_REASSOC_BARRIER(vec0, vec1) asm("" : "+x"(vec0), "+x"(vec1)) /* Note that these vectorized functions may assume len >= 256. */ static bool __attribute__((target("sse2"))) buffer_zero_sse2(const void *buf, size_t len) { /* Unaligned loads at head/tail. */ __m128i v = *(__m128i_u *)(buf); __m128i w = *(__m128i_u *)(buf + len - 16); /* Align head/tail to 16-byte boundaries. */ const __m128i *p = QEMU_ALIGN_PTR_DOWN(buf + 16, 16); const __m128i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 16); __m128i zero = { 0 }; /* Collect a partial block at tail end. */ v |= e[-1]; w |= e[-2]; SSE_REASSOC_BARRIER(v, w); v |= e[-3]; w |= e[-4]; SSE_REASSOC_BARRIER(v, w); v |= e[-5]; w |= e[-6]; SSE_REASSOC_BARRIER(v, w); v |= e[-7]; v |= w; /* * Loop over complete 128-byte blocks. * With the head and tail removed, e - p >= 14, so the loop * must iterate at least once. */ do { v = _mm_cmpeq_epi8(v, zero); if (unlikely(_mm_movemask_epi8(v) != 0xFFFF)) { return false; } v = p[0]; w = p[1]; SSE_REASSOC_BARRIER(v, w); v |= p[2]; w |= p[3]; SSE_REASSOC_BARRIER(v, w); v |= p[4]; w |= p[5]; SSE_REASSOC_BARRIER(v, w); v |= p[6]; w |= p[7]; SSE_REASSOC_BARRIER(v, w); v |= w; p += 8; } while (p < e - 7); return _mm_movemask_epi8(_mm_cmpeq_epi8(v, zero)) == 0xFFFF; } #ifdef CONFIG_AVX2_OPT static bool __attribute__((target("avx2"))) buffer_zero_avx2(const void *buf, size_t len) { /* Unaligned loads at head/tail. */ __m256i v = *(__m256i_u *)(buf); __m256i w = *(__m256i_u *)(buf + len - 32); /* Align head/tail to 32-byte boundaries. */ const __m256i *p = QEMU_ALIGN_PTR_DOWN(buf + 32, 32); const __m256i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 32); __m256i zero = { 0 }; /* Collect a partial block at tail end. */ v |= e[-1]; w |= e[-2]; SSE_REASSOC_BARRIER(v, w); v |= e[-3]; w |= e[-4]; SSE_REASSOC_BARRIER(v, w); v |= e[-5]; w |= e[-6]; SSE_REASSOC_BARRIER(v, w); v |= e[-7]; v |= w; /* Loop over complete 256-byte blocks. */ for (; p < e - 7; p += 8) { /* PTEST is not profitable here. */ v = _mm256_cmpeq_epi8(v, zero); if (unlikely(_mm256_movemask_epi8(v) != 0xFFFFFFFF)) { return false; } v = p[0]; w = p[1]; SSE_REASSOC_BARRIER(v, w); v |= p[2]; w |= p[3]; SSE_REASSOC_BARRIER(v, w); v |= p[4]; w |= p[5]; SSE_REASSOC_BARRIER(v, w); v |= p[6]; w |= p[7]; SSE_REASSOC_BARRIER(v, w); v |= w; } return _mm256_movemask_epi8(_mm256_cmpeq_epi8(v, zero)) == 0xFFFFFFFF; } #endif /* CONFIG_AVX2_OPT */ static unsigned __attribute__((noinline)) select_accel_cpuinfo(unsigned info) { /* Array is sorted in order of algorithm preference. */ static const struct { unsigned bit; bool (*fn)(const void *, size_t); } all[] = { #ifdef CONFIG_AVX2_OPT { CPUINFO_AVX2, buffer_zero_avx2 }, #endif { CPUINFO_SSE2, buffer_zero_sse2 }, { CPUINFO_ALWAYS, buffer_is_zero_integer }, }; for (unsigned i = 0; i < ARRAY_SIZE(all); ++i) { if (info & all[i].bit) { buffer_is_zero_accel = all[i].fn; return all[i].bit; } } return 0; } static unsigned used_accel; static void __attribute__((constructor)) init_accel(void) { used_accel = select_accel_cpuinfo(cpuinfo_init()); } #define INIT_ACCEL NULL bool test_buffer_is_zero_next_accel(void) { /* * Accumulate the accelerators that we've already tested, and * remove them from the set to test this round. We'll get back * a zero from select_accel_cpuinfo when there are no more. */ unsigned used = select_accel_cpuinfo(cpuinfo & ~used_accel); used_accel |= used; return used; } #else bool test_buffer_is_zero_next_accel(void) { return false; } #define INIT_ACCEL buffer_is_zero_integer #endif static bool (*buffer_is_zero_accel)(const void *, size_t) = INIT_ACCEL; bool buffer_is_zero_ool(const void *buf, size_t len) { if (unlikely(len == 0)) { return true; } if (!buffer_is_zero_sample3(buf, len)) { return false; } /* All bytes are covered for any len <= 3. */ if (unlikely(len <= 3)) { return true; } if (likely(len >= 256)) { return buffer_is_zero_accel(buf, len); } return buffer_is_zero_integer(buf, len); } bool buffer_is_zero_ge256(const void *buf, size_t len) { return buffer_is_zero_accel(buf, len); }