xref: /qemu/target/ppc/kvm.c (revision a019e15edfd62beae1e2f6adc0fa7415ba20b14c)
1 /*
2  * PowerPC implementation of KVM hooks
3  *
4  * Copyright IBM Corp. 2007
5  * Copyright (C) 2011 Freescale Semiconductor, Inc.
6  *
7  * Authors:
8  *  Jerone Young <jyoung5@us.ibm.com>
9  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10  *  Hollis Blanchard <hollisb@us.ibm.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or later.
13  * See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21 
22 #include <linux/kvm.h>
23 
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
26 #include "cpu.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "system/hw_accel.h"
30 #include "kvm_ppc.h"
31 #include "system/cpus.h"
32 #include "system/device_tree.h"
33 #include "mmu-hash64.h"
34 
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_cpu_core.h"
37 #include "hw/hw.h"
38 #include "hw/ppc/ppc.h"
39 #include "migration/qemu-file-types.h"
40 #include "system/watchdog.h"
41 #include "trace.h"
42 #include "gdbstub/enums.h"
43 #include "exec/memattrs.h"
44 #include "exec/ram_addr.h"
45 #include "system/hostmem.h"
46 #include "qemu/cutils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/mmap-alloc.h"
49 #include "elf.h"
50 #include "system/kvm_int.h"
51 #include "system/kvm.h"
52 #include "accel/accel-cpu-target.h"
53 
54 #include CONFIG_DEVICES
55 
56 #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
57 
58 #define DEBUG_RETURN_GUEST 0
59 #define DEBUG_RETURN_GDB   1
60 
61 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
62     KVM_CAP_LAST_INFO
63 };
64 
65 static int cap_interrupt_unset;
66 static int cap_segstate;
67 static int cap_booke_sregs;
68 static int cap_ppc_smt;
69 static int cap_ppc_smt_possible;
70 static int cap_spapr_tce;
71 static int cap_spapr_tce_64;
72 static int cap_spapr_multitce;
73 static int cap_spapr_vfio;
74 static int cap_hior;
75 static int cap_one_reg;
76 static int cap_epr;
77 static int cap_ppc_watchdog;
78 static int cap_htab_fd;
79 static int cap_fixup_hcalls;
80 static int cap_htm;             /* Hardware transactional memory support */
81 static int cap_mmu_radix;
82 static int cap_mmu_hash_v3;
83 static int cap_xive;
84 static int cap_resize_hpt;
85 static int cap_ppc_pvr_compat;
86 static int cap_ppc_safe_cache;
87 static int cap_ppc_safe_bounds_check;
88 static int cap_ppc_safe_indirect_branch;
89 static int cap_ppc_count_cache_flush_assist;
90 static int cap_ppc_nested_kvm_hv;
91 static int cap_large_decr;
92 static int cap_fwnmi;
93 static int cap_rpt_invalidate;
94 static int cap_ail_mode_3;
95 static int cap_dawr1;
96 
97 #ifdef CONFIG_PSERIES
98 static int cap_papr;
99 #else
100 #define cap_papr (0)
101 #endif
102 
103 static uint32_t debug_inst_opcode;
104 
105 /*
106  * Check whether we are running with KVM-PR (instead of KVM-HV).  This
107  * should only be used for fallback tests - generally we should use
108  * explicit capabilities for the features we want, rather than
109  * assuming what is/isn't available depending on the KVM variant.
110  */
111 static bool kvmppc_is_pr(KVMState *ks)
112 {
113     /* Assume KVM-PR if the GET_PVINFO capability is available */
114     return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
115 }
116 
117 static int kvm_ppc_register_host_cpu_type(void);
118 static void kvmppc_get_cpu_characteristics(KVMState *s);
119 static int kvmppc_get_dec_bits(void);
120 
121 int kvm_arch_get_default_type(MachineState *ms)
122 {
123     return 0;
124 }
125 
126 int kvm_arch_init(MachineState *ms, KVMState *s)
127 {
128     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
129     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
130     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
131     cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
132     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
133     cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
134     cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
135     cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
136     cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
137     cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
138     cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
139     cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
140     /*
141      * Note: we don't set cap_papr here, because this capability is
142      * only activated after this by kvmppc_set_papr()
143      */
144     cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
145     cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
146     cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
147     cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
148     cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
149     cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
150     cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
151     cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
152     kvmppc_get_cpu_characteristics(s);
153     cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
154     cap_large_decr = kvmppc_get_dec_bits();
155     cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
156     cap_dawr1 = kvm_vm_check_extension(s, KVM_CAP_PPC_DAWR1);
157     /*
158      * Note: setting it to false because there is not such capability
159      * in KVM at this moment.
160      *
161      * TODO: call kvm_vm_check_extension() with the right capability
162      * after the kernel starts implementing it.
163      */
164     cap_ppc_pvr_compat = false;
165 
166     if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
167         error_report("KVM: Host kernel doesn't have level irq capability");
168         exit(1);
169     }
170 
171     cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
172     cap_ail_mode_3 = kvm_vm_check_extension(s, KVM_CAP_PPC_AIL_MODE_3);
173     kvm_ppc_register_host_cpu_type();
174 
175     return 0;
176 }
177 
178 int kvm_arch_irqchip_create(KVMState *s)
179 {
180     return 0;
181 }
182 
183 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
184 {
185     CPUPPCState *cenv = &cpu->env;
186     CPUState *cs = CPU(cpu);
187     struct kvm_sregs sregs;
188     int ret;
189 
190     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
191         /*
192          * What we're really trying to say is "if we're on BookE, we
193          * use the native PVR for now". This is the only sane way to
194          * check it though, so we potentially confuse users that they
195          * can run BookE guests on BookS. Let's hope nobody dares
196          * enough :)
197          */
198         return 0;
199     } else {
200         if (!cap_segstate) {
201             fprintf(stderr, "kvm error: missing PVR setting capability\n");
202             return -ENOSYS;
203         }
204     }
205 
206     ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
207     if (ret) {
208         return ret;
209     }
210 
211     sregs.pvr = cenv->spr[SPR_PVR];
212     return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
213 }
214 
215 /* Set up a shared TLB array with KVM */
216 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
217 {
218     CPUPPCState *env = &cpu->env;
219     CPUState *cs = CPU(cpu);
220     struct kvm_book3e_206_tlb_params params = {};
221     struct kvm_config_tlb cfg = {};
222     unsigned int entries = 0;
223     int ret, i;
224 
225     if (!kvm_enabled() ||
226         !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
227         return 0;
228     }
229 
230     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
231 
232     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
233         params.tlb_sizes[i] = booke206_tlb_size(env, i);
234         params.tlb_ways[i] = booke206_tlb_ways(env, i);
235         entries += params.tlb_sizes[i];
236     }
237 
238     assert(entries == env->nb_tlb);
239     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
240 
241     env->tlb_dirty = true;
242 
243     cfg.array = (uintptr_t)env->tlb.tlbm;
244     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
245     cfg.params = (uintptr_t)&params;
246     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
247 
248     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
249     if (ret < 0) {
250         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
251                 __func__, strerror(-ret));
252         return ret;
253     }
254 
255     env->kvm_sw_tlb = true;
256     return 0;
257 }
258 
259 
260 #if defined(TARGET_PPC64)
261 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
262 {
263     int ret;
264 
265     assert(kvm_state != NULL);
266 
267     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
268         error_setg(errp, "KVM doesn't expose the MMU features it supports");
269         error_append_hint(errp, "Consider switching to a newer KVM\n");
270         return;
271     }
272 
273     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
274     if (ret == 0) {
275         return;
276     }
277 
278     error_setg_errno(errp, -ret,
279                      "KVM failed to provide the MMU features it supports");
280 }
281 
282 static struct ppc_radix_page_info *kvmppc_get_radix_page_info(void)
283 {
284     KVMState *s = KVM_STATE(current_accel());
285     struct ppc_radix_page_info *radix_page_info;
286     struct kvm_ppc_rmmu_info rmmu_info = { };
287     int i;
288 
289     if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
290         return NULL;
291     }
292     if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
293         return NULL;
294     }
295     radix_page_info = g_malloc0(sizeof(*radix_page_info));
296     radix_page_info->count = 0;
297     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
298         if (rmmu_info.ap_encodings[i]) {
299             radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
300             radix_page_info->count++;
301         }
302     }
303     return radix_page_info;
304 }
305 
306 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
307                                      bool radix, bool gtse,
308                                      uint64_t proc_tbl)
309 {
310     CPUState *cs = CPU(cpu);
311     int ret;
312     uint64_t flags = 0;
313     struct kvm_ppc_mmuv3_cfg cfg = {
314         .process_table = proc_tbl,
315     };
316 
317     if (radix) {
318         flags |= KVM_PPC_MMUV3_RADIX;
319     }
320     if (gtse) {
321         flags |= KVM_PPC_MMUV3_GTSE;
322     }
323     cfg.flags = flags;
324     ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
325     switch (ret) {
326     case 0:
327         return H_SUCCESS;
328     case -EINVAL:
329         return H_PARAMETER;
330     case -ENODEV:
331         return H_NOT_AVAILABLE;
332     default:
333         return H_HARDWARE;
334     }
335 }
336 
337 bool kvmppc_hpt_needs_host_contiguous_pages(void)
338 {
339     static struct kvm_ppc_smmu_info smmu_info;
340 
341     if (!kvm_enabled()) {
342         return false;
343     }
344 
345     kvm_get_smmu_info(&smmu_info, &error_fatal);
346     return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
347 }
348 
349 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
350 {
351     struct kvm_ppc_smmu_info smmu_info;
352     int iq, ik, jq, jk;
353     Error *local_err = NULL;
354 
355     /* For now, we only have anything to check on hash64 MMUs */
356     if (!cpu->hash64_opts || !kvm_enabled()) {
357         return;
358     }
359 
360     kvm_get_smmu_info(&smmu_info, &local_err);
361     if (local_err) {
362         error_propagate(errp, local_err);
363         return;
364     }
365 
366     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
367         && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
368         error_setg(errp,
369                    "KVM does not support 1TiB segments which guest expects");
370         return;
371     }
372 
373     if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
374         error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
375                    smmu_info.slb_size, cpu->hash64_opts->slb_size);
376         return;
377     }
378 
379     /*
380      * Verify that every pagesize supported by the cpu model is
381      * supported by KVM with the same encodings
382      */
383     for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
384         PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
385         struct kvm_ppc_one_seg_page_size *ksps;
386 
387         for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
388             if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
389                 break;
390             }
391         }
392         if (ik >= ARRAY_SIZE(smmu_info.sps)) {
393             error_setg(errp, "KVM doesn't support for base page shift %u",
394                        qsps->page_shift);
395             return;
396         }
397 
398         ksps = &smmu_info.sps[ik];
399         if (ksps->slb_enc != qsps->slb_enc) {
400             error_setg(errp,
401 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
402                        ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
403             return;
404         }
405 
406         for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
407             for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
408                 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
409                     break;
410                 }
411             }
412 
413             if (jk >= ARRAY_SIZE(ksps->enc)) {
414                 error_setg(errp, "KVM doesn't support page shift %u/%u",
415                            qsps->enc[jq].page_shift, qsps->page_shift);
416                 return;
417             }
418             if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
419                 error_setg(errp,
420 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
421                            ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
422                            qsps->page_shift, qsps->enc[jq].pte_enc);
423                 return;
424             }
425         }
426     }
427 
428     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
429         /*
430          * Mostly what guest pagesizes we can use are related to the
431          * host pages used to map guest RAM, which is handled in the
432          * platform code. Cache-Inhibited largepages (64k) however are
433          * used for I/O, so if they're mapped to the host at all it
434          * will be a normal mapping, not a special hugepage one used
435          * for RAM.
436          */
437         if (qemu_real_host_page_size() < 0x10000) {
438             error_setg(errp,
439                        "KVM can't supply 64kiB CI pages, which guest expects");
440         }
441     }
442 }
443 #endif /* !defined (TARGET_PPC64) */
444 
445 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
446 {
447     return POWERPC_CPU(cpu)->vcpu_id;
448 }
449 
450 /*
451  * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
452  * only 1 watchpoint, so array size of 4 is sufficient for now.
453  */
454 #define MAX_HW_BKPTS 4
455 
456 static struct HWBreakpoint {
457     target_ulong addr;
458     int type;
459 } hw_debug_points[MAX_HW_BKPTS];
460 
461 static CPUWatchpoint hw_watchpoint;
462 
463 /* Default there is no breakpoint and watchpoint supported */
464 static int max_hw_breakpoint;
465 static int max_hw_watchpoint;
466 static int nb_hw_breakpoint;
467 static int nb_hw_watchpoint;
468 
469 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
470 {
471     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
472         max_hw_breakpoint = 2;
473         max_hw_watchpoint = 2;
474     }
475 
476     if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
477         fprintf(stderr, "Error initializing h/w breakpoints\n");
478         return;
479     }
480 }
481 
482 int kvm_arch_init_vcpu(CPUState *cs)
483 {
484     PowerPCCPU *cpu = POWERPC_CPU(cs);
485     CPUPPCState *cenv = &cpu->env;
486     int ret;
487 
488     /* Synchronize sregs with kvm */
489     ret = kvm_arch_sync_sregs(cpu);
490     if (ret) {
491         if (ret == -EINVAL) {
492             error_report("Register sync failed... If you're using kvm-hv.ko,"
493                          " only \"-cpu host\" is possible");
494         }
495         return ret;
496     }
497 
498     switch (cenv->mmu_model) {
499     case POWERPC_MMU_BOOKE206:
500         /* This target supports access to KVM's guest TLB */
501         ret = kvm_booke206_tlb_init(cpu);
502         break;
503     case POWERPC_MMU_2_07:
504         if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
505             /*
506              * KVM-HV has transactional memory on POWER8 also without
507              * the KVM_CAP_PPC_HTM extension, so enable it here
508              * instead as long as it's available to userspace on the
509              * host.
510              */
511             if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
512                 cap_htm = true;
513             }
514         }
515         break;
516     default:
517         break;
518     }
519 
520     kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
521     kvmppc_hw_debug_points_init(cenv);
522 
523     return ret;
524 }
525 
526 int kvm_arch_destroy_vcpu(CPUState *cs)
527 {
528     return 0;
529 }
530 
531 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
532 {
533     CPUPPCState *env = &cpu->env;
534     CPUState *cs = CPU(cpu);
535     struct kvm_dirty_tlb dirty_tlb;
536     unsigned char *bitmap;
537     int ret;
538 
539     if (!env->kvm_sw_tlb) {
540         return;
541     }
542 
543     bitmap = g_malloc((env->nb_tlb + 7) / 8);
544     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
545 
546     dirty_tlb.bitmap = (uintptr_t)bitmap;
547     dirty_tlb.num_dirty = env->nb_tlb;
548 
549     ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
550     if (ret) {
551         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
552                 __func__, strerror(-ret));
553     }
554 
555     g_free(bitmap);
556 }
557 
558 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
559 {
560     CPUPPCState *env = cpu_env(cs);
561     /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
562     union {
563         uint32_t u32;
564         uint64_t u64;
565     } val = { };
566     struct kvm_one_reg reg = {
567         .id = id,
568         .addr = (uintptr_t) &val,
569     };
570     int ret;
571 
572     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
573     if (ret != 0) {
574         trace_kvm_failed_spr_get(spr, strerror(errno));
575     } else {
576         switch (id & KVM_REG_SIZE_MASK) {
577         case KVM_REG_SIZE_U32:
578             env->spr[spr] = val.u32;
579             break;
580 
581         case KVM_REG_SIZE_U64:
582             env->spr[spr] = val.u64;
583             break;
584 
585         default:
586             /* Don't handle this size yet */
587             abort();
588         }
589     }
590 }
591 
592 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
593 {
594     CPUPPCState *env = cpu_env(cs);
595     union {
596         uint32_t u32;
597         uint64_t u64;
598     } val;
599     struct kvm_one_reg reg = {
600         .id = id,
601         .addr = (uintptr_t) &val,
602     };
603     int ret;
604 
605     switch (id & KVM_REG_SIZE_MASK) {
606     case KVM_REG_SIZE_U32:
607         val.u32 = env->spr[spr];
608         break;
609 
610     case KVM_REG_SIZE_U64:
611         val.u64 = env->spr[spr];
612         break;
613 
614     default:
615         /* Don't handle this size yet */
616         abort();
617     }
618 
619     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
620     if (ret != 0) {
621         trace_kvm_failed_spr_set(spr, strerror(errno));
622     }
623 }
624 
625 static int kvm_put_fp(CPUState *cs)
626 {
627     CPUPPCState *env = cpu_env(cs);
628     struct kvm_one_reg reg;
629     int i;
630     int ret;
631 
632     if (env->insns_flags & PPC_FLOAT) {
633         uint64_t fpscr = env->fpscr;
634         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
635 
636         reg.id = KVM_REG_PPC_FPSCR;
637         reg.addr = (uintptr_t)&fpscr;
638         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
639         if (ret < 0) {
640             trace_kvm_failed_fpscr_set(strerror(errno));
641             return ret;
642         }
643 
644         for (i = 0; i < 32; i++) {
645             uint64_t vsr[2];
646             uint64_t *fpr = cpu_fpr_ptr(env, i);
647             uint64_t *vsrl = cpu_vsrl_ptr(env, i);
648 
649 #if HOST_BIG_ENDIAN
650             vsr[0] = float64_val(*fpr);
651             vsr[1] = *vsrl;
652 #else
653             vsr[0] = *vsrl;
654             vsr[1] = float64_val(*fpr);
655 #endif
656             reg.addr = (uintptr_t) &vsr;
657             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
658 
659             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
660             if (ret < 0) {
661                 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
662                                         strerror(errno));
663                 return ret;
664             }
665         }
666     }
667 
668     if (env->insns_flags & PPC_ALTIVEC) {
669         reg.id = KVM_REG_PPC_VSCR;
670         reg.addr = (uintptr_t)&env->vscr;
671         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
672         if (ret < 0) {
673             trace_kvm_failed_vscr_set(strerror(errno));
674             return ret;
675         }
676 
677         for (i = 0; i < 32; i++) {
678             reg.id = KVM_REG_PPC_VR(i);
679             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
680             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
681             if (ret < 0) {
682                 trace_kvm_failed_vr_set(i, strerror(errno));
683                 return ret;
684             }
685         }
686     }
687 
688     return 0;
689 }
690 
691 static int kvm_get_fp(CPUState *cs)
692 {
693     CPUPPCState *env = cpu_env(cs);
694     struct kvm_one_reg reg;
695     int i;
696     int ret;
697 
698     if (env->insns_flags & PPC_FLOAT) {
699         uint64_t fpscr;
700         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
701 
702         reg.id = KVM_REG_PPC_FPSCR;
703         reg.addr = (uintptr_t)&fpscr;
704         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
705         if (ret < 0) {
706             trace_kvm_failed_fpscr_get(strerror(errno));
707             return ret;
708         } else {
709             env->fpscr = fpscr;
710         }
711 
712         for (i = 0; i < 32; i++) {
713             uint64_t vsr[2];
714             uint64_t *fpr = cpu_fpr_ptr(env, i);
715             uint64_t *vsrl = cpu_vsrl_ptr(env, i);
716 
717             reg.addr = (uintptr_t) &vsr;
718             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
719 
720             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
721             if (ret < 0) {
722                 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
723                                         strerror(errno));
724                 return ret;
725             } else {
726 #if HOST_BIG_ENDIAN
727                 *fpr = vsr[0];
728                 if (vsx) {
729                     *vsrl = vsr[1];
730                 }
731 #else
732                 *fpr = vsr[1];
733                 if (vsx) {
734                     *vsrl = vsr[0];
735                 }
736 #endif
737             }
738         }
739     }
740 
741     if (env->insns_flags & PPC_ALTIVEC) {
742         reg.id = KVM_REG_PPC_VSCR;
743         reg.addr = (uintptr_t)&env->vscr;
744         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
745         if (ret < 0) {
746             trace_kvm_failed_vscr_get(strerror(errno));
747             return ret;
748         }
749 
750         for (i = 0; i < 32; i++) {
751             reg.id = KVM_REG_PPC_VR(i);
752             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
753             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
754             if (ret < 0) {
755                 trace_kvm_failed_vr_get(i, strerror(errno));
756                 return ret;
757             }
758         }
759     }
760 
761     return 0;
762 }
763 
764 #if defined(TARGET_PPC64)
765 static int kvm_get_vpa(CPUState *cs)
766 {
767     PowerPCCPU *cpu = POWERPC_CPU(cs);
768     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
769     struct kvm_one_reg reg;
770     int ret;
771 
772     reg.id = KVM_REG_PPC_VPA_ADDR;
773     reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
774     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
775     if (ret < 0) {
776         trace_kvm_failed_vpa_addr_get(strerror(errno));
777         return ret;
778     }
779 
780     assert((uintptr_t)&spapr_cpu->slb_shadow_size
781            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
782     reg.id = KVM_REG_PPC_VPA_SLB;
783     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
784     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
785     if (ret < 0) {
786         trace_kvm_failed_slb_get(strerror(errno));
787         return ret;
788     }
789 
790     assert((uintptr_t)&spapr_cpu->dtl_size
791            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
792     reg.id = KVM_REG_PPC_VPA_DTL;
793     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
794     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
795     if (ret < 0) {
796         trace_kvm_failed_dtl_get(strerror(errno));
797         return ret;
798     }
799 
800     return 0;
801 }
802 
803 static int kvm_put_vpa(CPUState *cs)
804 {
805     PowerPCCPU *cpu = POWERPC_CPU(cs);
806     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
807     struct kvm_one_reg reg;
808     int ret;
809 
810     /*
811      * SLB shadow or DTL can't be registered unless a master VPA is
812      * registered.  That means when restoring state, if a VPA *is*
813      * registered, we need to set that up first.  If not, we need to
814      * deregister the others before deregistering the master VPA
815      */
816     assert(spapr_cpu->vpa_addr
817            || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
818 
819     if (spapr_cpu->vpa_addr) {
820         reg.id = KVM_REG_PPC_VPA_ADDR;
821         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
822         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
823         if (ret < 0) {
824             trace_kvm_failed_vpa_addr_set(strerror(errno));
825             return ret;
826         }
827     }
828 
829     assert((uintptr_t)&spapr_cpu->slb_shadow_size
830            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
831     reg.id = KVM_REG_PPC_VPA_SLB;
832     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
833     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
834     if (ret < 0) {
835         trace_kvm_failed_slb_set(strerror(errno));
836         return ret;
837     }
838 
839     assert((uintptr_t)&spapr_cpu->dtl_size
840            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
841     reg.id = KVM_REG_PPC_VPA_DTL;
842     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
843     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
844     if (ret < 0) {
845         trace_kvm_failed_dtl_set(strerror(errno));
846         return ret;
847     }
848 
849     if (!spapr_cpu->vpa_addr) {
850         reg.id = KVM_REG_PPC_VPA_ADDR;
851         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
852         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
853         if (ret < 0) {
854             trace_kvm_failed_null_vpa_addr_set(strerror(errno));
855             return ret;
856         }
857     }
858 
859     return 0;
860 }
861 #endif /* TARGET_PPC64 */
862 
863 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
864 {
865     CPUPPCState *env = &cpu->env;
866     struct kvm_sregs sregs = { };
867     int i;
868 
869     sregs.pvr = env->spr[SPR_PVR];
870 
871     if (cpu->vhyp) {
872         sregs.u.s.sdr1 = cpu->vhyp_class->encode_hpt_for_kvm_pr(cpu->vhyp);
873     } else {
874         sregs.u.s.sdr1 = env->spr[SPR_SDR1];
875     }
876 
877     /* Sync SLB */
878 #ifdef TARGET_PPC64
879     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
880         sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
881         if (env->slb[i].esid & SLB_ESID_V) {
882             sregs.u.s.ppc64.slb[i].slbe |= i;
883         }
884         sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
885     }
886 #endif
887 
888     /* Sync SRs */
889     for (i = 0; i < 16; i++) {
890         sregs.u.s.ppc32.sr[i] = env->sr[i];
891     }
892 
893     /* Sync BATs */
894     for (i = 0; i < 8; i++) {
895         /* Beware. We have to swap upper and lower bits here */
896         sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
897             | env->DBAT[1][i];
898         sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
899             | env->IBAT[1][i];
900     }
901 
902     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
903 }
904 
905 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
906 {
907     PowerPCCPU *cpu = POWERPC_CPU(cs);
908     CPUPPCState *env = &cpu->env;
909     struct kvm_regs regs;
910     int ret;
911     int i;
912 
913     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
914     if (ret < 0) {
915         return ret;
916     }
917 
918     regs.ctr = env->ctr;
919     regs.lr  = env->lr;
920     regs.xer = cpu_read_xer(env);
921     regs.msr = env->msr;
922     regs.pc = env->nip;
923 
924     regs.srr0 = env->spr[SPR_SRR0];
925     regs.srr1 = env->spr[SPR_SRR1];
926 
927     regs.sprg0 = env->spr[SPR_SPRG0];
928     regs.sprg1 = env->spr[SPR_SPRG1];
929     regs.sprg2 = env->spr[SPR_SPRG2];
930     regs.sprg3 = env->spr[SPR_SPRG3];
931     regs.sprg4 = env->spr[SPR_SPRG4];
932     regs.sprg5 = env->spr[SPR_SPRG5];
933     regs.sprg6 = env->spr[SPR_SPRG6];
934     regs.sprg7 = env->spr[SPR_SPRG7];
935 
936     regs.pid = env->spr[SPR_BOOKE_PID];
937 
938     for (i = 0; i < 32; i++) {
939         regs.gpr[i] = env->gpr[i];
940     }
941 
942     regs.cr = ppc_get_cr(env);
943 
944     ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
945     if (ret < 0) {
946         return ret;
947     }
948 
949     kvm_put_fp(cs);
950 
951     if (env->tlb_dirty) {
952         kvm_sw_tlb_put(cpu);
953         env->tlb_dirty = false;
954     }
955 
956     if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
957         ret = kvmppc_put_books_sregs(cpu);
958         if (ret < 0) {
959             return ret;
960         }
961     }
962 
963     if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
964         kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
965     }
966 
967     if (cap_one_reg) {
968         /*
969          * We deliberately ignore errors here, for kernels which have
970          * the ONE_REG calls, but don't support the specific
971          * registers, there's a reasonable chance things will still
972          * work, at least until we try to migrate.
973          */
974         for (i = 0; i < 1024; i++) {
975             uint64_t id = env->spr_cb[i].one_reg_id;
976 
977             if (id != 0) {
978                 kvm_put_one_spr(cs, id, i);
979             }
980         }
981 
982 #ifdef TARGET_PPC64
983         if (FIELD_EX64(env->msr, MSR, TS)) {
984             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
985                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
986             }
987             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
988                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
989             }
990             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
991             kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
992             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
993             kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
994             kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
995             kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
996             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
997             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
998             kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
999             kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1000         }
1001 
1002         if (cap_papr) {
1003             if (kvm_put_vpa(cs) < 0) {
1004                 trace_kvm_failed_put_vpa();
1005             }
1006         }
1007 
1008         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1009 
1010         if (level > KVM_PUT_RUNTIME_STATE) {
1011             kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1012         }
1013 #endif /* TARGET_PPC64 */
1014     }
1015 
1016     return ret;
1017 }
1018 
1019 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1020 {
1021      env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1022 }
1023 
1024 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1025 {
1026     CPUPPCState *env = &cpu->env;
1027     struct kvm_sregs sregs;
1028     int ret;
1029 
1030     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1031     if (ret < 0) {
1032         return ret;
1033     }
1034 
1035     if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1036         env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1037         env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1038         env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1039         env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1040         env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1041         env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1042         env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1043         env->spr[SPR_DECR] = sregs.u.e.dec;
1044         env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1045         env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1046         env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1047     }
1048 
1049     if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1050         env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1051         env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1052         env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1053         env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1054         env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1055     }
1056 
1057     if (sregs.u.e.features & KVM_SREGS_E_64) {
1058         env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1059     }
1060 
1061     if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1062         env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1063     }
1064 
1065     if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1066         env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1067         kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1068         env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1069         kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1070         env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1071         kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1072         env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1073         kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1074         env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1075         kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1076         env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1077         kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1078         env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1079         kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1080         env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1081         kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1082         env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1083         kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1084         env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1085         kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1086         env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1087         kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1088         env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1089         kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1090         env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1091         kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1092         env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1093         kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1094         env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1095         kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1096         env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1097         kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1098 
1099         if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1100             env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1101             kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1102             env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1103             kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1104             env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1105             kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1106         }
1107 
1108         if (sregs.u.e.features & KVM_SREGS_E_PM) {
1109             env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1110             kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1111         }
1112 
1113         if (sregs.u.e.features & KVM_SREGS_E_PC) {
1114             env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1115             kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1116             env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1117             kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1118         }
1119     }
1120 
1121     if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1122         env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1123         env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1124         env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1125         env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1126         env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1127         env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1128         env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1129         env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1130         env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1131         env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1132     }
1133 
1134     if (sregs.u.e.features & KVM_SREGS_EXP) {
1135         env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1136     }
1137 
1138     if (sregs.u.e.features & KVM_SREGS_E_PD) {
1139         env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1140         env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1141     }
1142 
1143     if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1144         env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1145         env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1146         env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1147 
1148         if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1149             env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1150             env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1151         }
1152     }
1153 
1154     return 0;
1155 }
1156 
1157 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1158 {
1159     CPUPPCState *env = &cpu->env;
1160     struct kvm_sregs sregs;
1161     int ret;
1162     int i;
1163 
1164     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1165     if (ret < 0) {
1166         return ret;
1167     }
1168 
1169     if (!cpu->vhyp) {
1170         ppc_store_sdr1(env, sregs.u.s.sdr1);
1171     }
1172 
1173     /* Sync SLB */
1174 #ifdef TARGET_PPC64
1175     /*
1176      * The packed SLB array we get from KVM_GET_SREGS only contains
1177      * information about valid entries. So we flush our internal copy
1178      * to get rid of stale ones, then put all valid SLB entries back
1179      * in.
1180      */
1181     memset(env->slb, 0, sizeof(env->slb));
1182     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1183         target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1184         target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1185         /*
1186          * Only restore valid entries
1187          */
1188         if (rb & SLB_ESID_V) {
1189             ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1190         }
1191     }
1192 #endif
1193 
1194     /* Sync SRs */
1195     for (i = 0; i < 16; i++) {
1196         env->sr[i] = sregs.u.s.ppc32.sr[i];
1197     }
1198 
1199     /* Sync BATs */
1200     for (i = 0; i < 8; i++) {
1201         env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1202         env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1203         env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1204         env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1205     }
1206 
1207     return 0;
1208 }
1209 
1210 int kvm_arch_get_registers(CPUState *cs, Error **errp)
1211 {
1212     PowerPCCPU *cpu = POWERPC_CPU(cs);
1213     CPUPPCState *env = &cpu->env;
1214     struct kvm_regs regs;
1215     int i, ret;
1216 
1217     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1218     if (ret < 0) {
1219         return ret;
1220     }
1221 
1222     ppc_set_cr(env, regs.cr);
1223     env->ctr = regs.ctr;
1224     env->lr = regs.lr;
1225     cpu_write_xer(env, regs.xer);
1226     env->msr = regs.msr;
1227     env->nip = regs.pc;
1228 
1229     env->spr[SPR_SRR0] = regs.srr0;
1230     env->spr[SPR_SRR1] = regs.srr1;
1231 
1232     env->spr[SPR_SPRG0] = regs.sprg0;
1233     env->spr[SPR_SPRG1] = regs.sprg1;
1234     env->spr[SPR_SPRG2] = regs.sprg2;
1235     env->spr[SPR_SPRG3] = regs.sprg3;
1236     env->spr[SPR_SPRG4] = regs.sprg4;
1237     env->spr[SPR_SPRG5] = regs.sprg5;
1238     env->spr[SPR_SPRG6] = regs.sprg6;
1239     env->spr[SPR_SPRG7] = regs.sprg7;
1240 
1241     env->spr[SPR_BOOKE_PID] = regs.pid;
1242 
1243     for (i = 0; i < 32; i++) {
1244         env->gpr[i] = regs.gpr[i];
1245     }
1246 
1247     kvm_get_fp(cs);
1248 
1249     if (cap_booke_sregs) {
1250         ret = kvmppc_get_booke_sregs(cpu);
1251         if (ret < 0) {
1252             return ret;
1253         }
1254     }
1255 
1256     if (cap_segstate) {
1257         ret = kvmppc_get_books_sregs(cpu);
1258         if (ret < 0) {
1259             return ret;
1260         }
1261     }
1262 
1263     if (cap_hior) {
1264         kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1265     }
1266 
1267     if (cap_one_reg) {
1268         /*
1269          * We deliberately ignore errors here, for kernels which have
1270          * the ONE_REG calls, but don't support the specific
1271          * registers, there's a reasonable chance things will still
1272          * work, at least until we try to migrate.
1273          */
1274         for (i = 0; i < 1024; i++) {
1275             uint64_t id = env->spr_cb[i].one_reg_id;
1276 
1277             if (id != 0) {
1278                 kvm_get_one_spr(cs, id, i);
1279             }
1280         }
1281 
1282 #ifdef TARGET_PPC64
1283         if (FIELD_EX64(env->msr, MSR, TS)) {
1284             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1285                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1286             }
1287             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1288                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1289             }
1290             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1291             kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1292             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1293             kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1294             kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1295             kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1296             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1297             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1298             kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1299             kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1300         }
1301 
1302         if (cap_papr) {
1303             if (kvm_get_vpa(cs) < 0) {
1304                 trace_kvm_failed_get_vpa();
1305             }
1306         }
1307 
1308         kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1309         kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1310 #endif
1311     }
1312 
1313     return 0;
1314 }
1315 
1316 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1317 {
1318     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1319 
1320     if (irq != PPC_INTERRUPT_EXT) {
1321         return 0;
1322     }
1323 
1324     if (!cap_interrupt_unset) {
1325         return 0;
1326     }
1327 
1328     kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1329 
1330     return 0;
1331 }
1332 
1333 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1334 {
1335     return;
1336 }
1337 
1338 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1339 {
1340     return MEMTXATTRS_UNSPECIFIED;
1341 }
1342 
1343 int kvm_arch_process_async_events(CPUState *cs)
1344 {
1345     return cs->halted;
1346 }
1347 
1348 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1349 {
1350     CPUState *cs = CPU(cpu);
1351     CPUPPCState *env = &cpu->env;
1352 
1353     if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1354         FIELD_EX64(env->msr, MSR, EE)) {
1355         cs->halted = 1;
1356         cs->exception_index = EXCP_HLT;
1357     }
1358 
1359     return 0;
1360 }
1361 
1362 /* map dcr access to existing qemu dcr emulation */
1363 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1364                                   uint32_t dcrn, uint32_t *data)
1365 {
1366     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1367         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1368     }
1369 
1370     return 0;
1371 }
1372 
1373 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1374                                    uint32_t dcrn, uint32_t data)
1375 {
1376     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1377         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1378     }
1379 
1380     return 0;
1381 }
1382 
1383 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1384 {
1385     /* Mixed endian case is not handled */
1386     uint32_t sc = debug_inst_opcode;
1387 
1388     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1389                             sizeof(sc), 0) ||
1390         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1391         return -EINVAL;
1392     }
1393 
1394     return 0;
1395 }
1396 
1397 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1398 {
1399     uint32_t sc;
1400 
1401     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1402         sc != debug_inst_opcode ||
1403         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1404                             sizeof(sc), 1)) {
1405         return -EINVAL;
1406     }
1407 
1408     return 0;
1409 }
1410 
1411 static int find_hw_breakpoint(target_ulong addr, int type)
1412 {
1413     int n;
1414 
1415     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1416            <= ARRAY_SIZE(hw_debug_points));
1417 
1418     for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1419         if (hw_debug_points[n].addr == addr &&
1420              hw_debug_points[n].type == type) {
1421             return n;
1422         }
1423     }
1424 
1425     return -1;
1426 }
1427 
1428 static int find_hw_watchpoint(target_ulong addr, int *flag)
1429 {
1430     int n;
1431 
1432     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1433     if (n >= 0) {
1434         *flag = BP_MEM_ACCESS;
1435         return n;
1436     }
1437 
1438     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1439     if (n >= 0) {
1440         *flag = BP_MEM_WRITE;
1441         return n;
1442     }
1443 
1444     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1445     if (n >= 0) {
1446         *flag = BP_MEM_READ;
1447         return n;
1448     }
1449 
1450     return -1;
1451 }
1452 
1453 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1454 {
1455     const unsigned breakpoint_index = nb_hw_breakpoint + nb_hw_watchpoint;
1456     if (breakpoint_index >= ARRAY_SIZE(hw_debug_points)) {
1457         return -ENOBUFS;
1458     }
1459 
1460     hw_debug_points[breakpoint_index].addr = addr;
1461     hw_debug_points[breakpoint_index].type = type;
1462 
1463     switch (type) {
1464     case GDB_BREAKPOINT_HW:
1465         if (nb_hw_breakpoint >= max_hw_breakpoint) {
1466             return -ENOBUFS;
1467         }
1468 
1469         if (find_hw_breakpoint(addr, type) >= 0) {
1470             return -EEXIST;
1471         }
1472 
1473         nb_hw_breakpoint++;
1474         break;
1475 
1476     case GDB_WATCHPOINT_WRITE:
1477     case GDB_WATCHPOINT_READ:
1478     case GDB_WATCHPOINT_ACCESS:
1479         if (nb_hw_watchpoint >= max_hw_watchpoint) {
1480             return -ENOBUFS;
1481         }
1482 
1483         if (find_hw_breakpoint(addr, type) >= 0) {
1484             return -EEXIST;
1485         }
1486 
1487         nb_hw_watchpoint++;
1488         break;
1489 
1490     default:
1491         return -ENOSYS;
1492     }
1493 
1494     return 0;
1495 }
1496 
1497 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1498 {
1499     int n;
1500 
1501     n = find_hw_breakpoint(addr, type);
1502     if (n < 0) {
1503         return -ENOENT;
1504     }
1505 
1506     switch (type) {
1507     case GDB_BREAKPOINT_HW:
1508         nb_hw_breakpoint--;
1509         break;
1510 
1511     case GDB_WATCHPOINT_WRITE:
1512     case GDB_WATCHPOINT_READ:
1513     case GDB_WATCHPOINT_ACCESS:
1514         nb_hw_watchpoint--;
1515         break;
1516 
1517     default:
1518         return -ENOSYS;
1519     }
1520     hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1521 
1522     return 0;
1523 }
1524 
1525 void kvm_arch_remove_all_hw_breakpoints(void)
1526 {
1527     nb_hw_breakpoint = nb_hw_watchpoint = 0;
1528 }
1529 
1530 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1531 {
1532     int n;
1533 
1534     /* Software Breakpoint updates */
1535     if (kvm_sw_breakpoints_active(cs)) {
1536         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1537     }
1538 
1539     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1540            <= ARRAY_SIZE(hw_debug_points));
1541     assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1542 
1543     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1544         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1545         memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1546         for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1547             switch (hw_debug_points[n].type) {
1548             case GDB_BREAKPOINT_HW:
1549                 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1550                 break;
1551             case GDB_WATCHPOINT_WRITE:
1552                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1553                 break;
1554             case GDB_WATCHPOINT_READ:
1555                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1556                 break;
1557             case GDB_WATCHPOINT_ACCESS:
1558                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1559                                         KVMPPC_DEBUG_WATCH_READ;
1560                 break;
1561             default:
1562                 cpu_abort(cs, "Unsupported breakpoint type\n");
1563             }
1564             dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1565         }
1566     }
1567 }
1568 
1569 static int kvm_handle_hw_breakpoint(CPUState *cs,
1570                                     struct kvm_debug_exit_arch *arch_info)
1571 {
1572     int handle = DEBUG_RETURN_GUEST;
1573     int n;
1574     int flag = 0;
1575 
1576     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1577         if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1578             n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1579             if (n >= 0) {
1580                 handle = DEBUG_RETURN_GDB;
1581             }
1582         } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1583                                         KVMPPC_DEBUG_WATCH_WRITE)) {
1584             n = find_hw_watchpoint(arch_info->address,  &flag);
1585             if (n >= 0) {
1586                 handle = DEBUG_RETURN_GDB;
1587                 cs->watchpoint_hit = &hw_watchpoint;
1588                 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1589                 hw_watchpoint.flags = flag;
1590             }
1591         }
1592     }
1593     return handle;
1594 }
1595 
1596 static int kvm_handle_singlestep(void)
1597 {
1598     return DEBUG_RETURN_GDB;
1599 }
1600 
1601 static int kvm_handle_sw_breakpoint(void)
1602 {
1603     return DEBUG_RETURN_GDB;
1604 }
1605 
1606 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1607 {
1608     CPUState *cs = CPU(cpu);
1609     CPUPPCState *env = &cpu->env;
1610     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1611 
1612     if (cs->singlestep_enabled) {
1613         return kvm_handle_singlestep();
1614     }
1615 
1616     if (arch_info->status) {
1617         return kvm_handle_hw_breakpoint(cs, arch_info);
1618     }
1619 
1620     if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1621         return kvm_handle_sw_breakpoint();
1622     }
1623 
1624     /*
1625      * QEMU is not able to handle debug exception, so inject
1626      * program exception to guest;
1627      * Yes program exception NOT debug exception !!
1628      * When QEMU is using debug resources then debug exception must
1629      * be always set. To achieve this we set MSR_DE and also set
1630      * MSRP_DEP so guest cannot change MSR_DE.
1631      * When emulating debug resource for guest we want guest
1632      * to control MSR_DE (enable/disable debug interrupt on need).
1633      * Supporting both configurations are NOT possible.
1634      * So the result is that we cannot share debug resources
1635      * between QEMU and Guest on BOOKE architecture.
1636      * In the current design QEMU gets the priority over guest,
1637      * this means that if QEMU is using debug resources then guest
1638      * cannot use them;
1639      * For software breakpoint QEMU uses a privileged instruction;
1640      * So there cannot be any reason that we are here for guest
1641      * set debug exception, only possibility is guest executed a
1642      * privileged / illegal instruction and that's why we are
1643      * injecting a program interrupt.
1644      */
1645     cpu_synchronize_state(cs);
1646     /*
1647      * env->nip is PC, so increment this by 4 to use
1648      * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1649      */
1650     env->nip += 4;
1651     cs->exception_index = POWERPC_EXCP_PROGRAM;
1652     env->error_code = POWERPC_EXCP_INVAL;
1653     ppc_cpu_do_interrupt(cs);
1654 
1655     return DEBUG_RETURN_GUEST;
1656 }
1657 
1658 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1659 {
1660     PowerPCCPU *cpu = POWERPC_CPU(cs);
1661     CPUPPCState *env = &cpu->env;
1662     int ret;
1663 
1664     bql_lock();
1665 
1666     switch (run->exit_reason) {
1667     case KVM_EXIT_DCR:
1668         if (run->dcr.is_write) {
1669             trace_kvm_handle_dcr_write();
1670             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1671         } else {
1672             trace_kvm_handle_dcr_read();
1673             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1674         }
1675         break;
1676     case KVM_EXIT_HLT:
1677         trace_kvm_handle_halt();
1678         ret = kvmppc_handle_halt(cpu);
1679         break;
1680 #if defined(CONFIG_PSERIES)
1681     case KVM_EXIT_PAPR_HCALL:
1682         trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1683         run->papr_hcall.ret = spapr_hypercall(cpu,
1684                                               run->papr_hcall.nr,
1685                                               run->papr_hcall.args);
1686         ret = 0;
1687         break;
1688 #endif
1689     case KVM_EXIT_EPR:
1690         trace_kvm_handle_epr();
1691         run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1692         ret = 0;
1693         break;
1694     case KVM_EXIT_WATCHDOG:
1695         trace_kvm_handle_watchdog_expiry();
1696         watchdog_perform_action();
1697         ret = 0;
1698         break;
1699 
1700     case KVM_EXIT_DEBUG:
1701         trace_kvm_handle_debug_exception();
1702         if (kvm_handle_debug(cpu, run)) {
1703             ret = EXCP_DEBUG;
1704             break;
1705         }
1706         /* re-enter, this exception was guest-internal */
1707         ret = 0;
1708         break;
1709 
1710 #if defined(CONFIG_PSERIES)
1711     case KVM_EXIT_NMI:
1712         trace_kvm_handle_nmi_exception();
1713         ret = kvm_handle_nmi(cpu, run);
1714         break;
1715 #endif
1716 
1717     default:
1718         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1719         ret = -1;
1720         break;
1721     }
1722 
1723     bql_unlock();
1724     return ret;
1725 }
1726 
1727 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1728 {
1729     CPUState *cs = CPU(cpu);
1730     uint32_t bits = tsr_bits;
1731     struct kvm_one_reg reg = {
1732         .id = KVM_REG_PPC_OR_TSR,
1733         .addr = (uintptr_t) &bits,
1734     };
1735 
1736     if (!kvm_enabled()) {
1737         return 0;
1738     }
1739 
1740     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1741 }
1742 
1743 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1744 {
1745 
1746     CPUState *cs = CPU(cpu);
1747     uint32_t bits = tsr_bits;
1748     struct kvm_one_reg reg = {
1749         .id = KVM_REG_PPC_CLEAR_TSR,
1750         .addr = (uintptr_t) &bits,
1751     };
1752 
1753     if (!kvm_enabled()) {
1754         return 0;
1755     }
1756 
1757     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1758 }
1759 
1760 int kvmppc_set_tcr(PowerPCCPU *cpu)
1761 {
1762     CPUState *cs = CPU(cpu);
1763     CPUPPCState *env = &cpu->env;
1764     uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1765 
1766     struct kvm_one_reg reg = {
1767         .id = KVM_REG_PPC_TCR,
1768         .addr = (uintptr_t) &tcr,
1769     };
1770 
1771     if (!kvm_enabled()) {
1772         return 0;
1773     }
1774 
1775     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1776 }
1777 
1778 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1779 {
1780     CPUState *cs = CPU(cpu);
1781     int ret;
1782 
1783     if (!kvm_enabled()) {
1784         return -1;
1785     }
1786 
1787     if (!cap_ppc_watchdog) {
1788         printf("warning: KVM does not support watchdog");
1789         return -1;
1790     }
1791 
1792     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1793     if (ret < 0) {
1794         fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1795                 __func__, strerror(-ret));
1796         return ret;
1797     }
1798 
1799     return ret;
1800 }
1801 
1802 static int read_cpuinfo(const char *field, char *value, int len)
1803 {
1804     FILE *f;
1805     int ret = -1;
1806     int field_len = strlen(field);
1807     char line[512];
1808 
1809     f = fopen("/proc/cpuinfo", "r");
1810     if (!f) {
1811         return -1;
1812     }
1813 
1814     do {
1815         if (!fgets(line, sizeof(line), f)) {
1816             break;
1817         }
1818         if (!strncmp(line, field, field_len)) {
1819             pstrcpy(value, len, line);
1820             ret = 0;
1821             break;
1822         }
1823     } while (*line);
1824 
1825     fclose(f);
1826 
1827     return ret;
1828 }
1829 
1830 static uint32_t kvmppc_get_tbfreq_procfs(void)
1831 {
1832     char line[512];
1833     char *ns;
1834     uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1835     uint32_t tbfreq_procfs;
1836 
1837     if (read_cpuinfo("timebase", line, sizeof(line))) {
1838         return tbfreq_fallback;
1839     }
1840 
1841     ns = strchr(line, ':');
1842     if (!ns) {
1843         return tbfreq_fallback;
1844     }
1845 
1846     tbfreq_procfs = atoi(++ns);
1847 
1848     /* 0 is certainly not acceptable by the guest, return fallback value */
1849     return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1850 }
1851 
1852 uint32_t kvmppc_get_tbfreq(void)
1853 {
1854     static uint32_t cached_tbfreq;
1855 
1856     if (!cached_tbfreq) {
1857         cached_tbfreq = kvmppc_get_tbfreq_procfs();
1858     }
1859 
1860     return cached_tbfreq;
1861 }
1862 
1863 bool kvmppc_get_host_serial(char **value)
1864 {
1865     return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1866                                NULL);
1867 }
1868 
1869 bool kvmppc_get_host_model(char **value)
1870 {
1871     return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1872 }
1873 
1874 /* Try to find a device tree node for a CPU with clock-frequency property */
1875 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1876 {
1877     struct dirent *dirp;
1878     DIR *dp;
1879 
1880     dp = opendir(PROC_DEVTREE_CPU);
1881     if (!dp) {
1882         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1883         return -1;
1884     }
1885 
1886     buf[0] = '\0';
1887     while ((dirp = readdir(dp)) != NULL) {
1888         FILE *f;
1889 
1890         /* Don't accidentally read from the current and parent directories */
1891         if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
1892             continue;
1893         }
1894 
1895         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1896                  dirp->d_name);
1897         f = fopen(buf, "r");
1898         if (f) {
1899             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1900             fclose(f);
1901             break;
1902         }
1903         buf[0] = '\0';
1904     }
1905     closedir(dp);
1906     if (buf[0] == '\0') {
1907         printf("Unknown host!\n");
1908         return -1;
1909     }
1910 
1911     return 0;
1912 }
1913 
1914 static uint64_t kvmppc_read_int_dt(const char *filename)
1915 {
1916     union {
1917         uint32_t v32;
1918         uint64_t v64;
1919     } u;
1920     FILE *f;
1921     int len;
1922 
1923     f = fopen(filename, "rb");
1924     if (!f) {
1925         return -1;
1926     }
1927 
1928     len = fread(&u, 1, sizeof(u), f);
1929     fclose(f);
1930     switch (len) {
1931     case 4:
1932         /* property is a 32-bit quantity */
1933         return be32_to_cpu(u.v32);
1934     case 8:
1935         return be64_to_cpu(u.v64);
1936     }
1937 
1938     return 0;
1939 }
1940 
1941 /*
1942  * Read a CPU node property from the host device tree that's a single
1943  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1944  * (can't find or open the property, or doesn't understand the format)
1945  */
1946 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1947 {
1948     char buf[PATH_MAX], *tmp;
1949     uint64_t val;
1950 
1951     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1952         return -1;
1953     }
1954 
1955     tmp = g_strdup_printf("%s/%s", buf, propname);
1956     val = kvmppc_read_int_dt(tmp);
1957     g_free(tmp);
1958 
1959     return val;
1960 }
1961 
1962 uint64_t kvmppc_get_clockfreq(void)
1963 {
1964     return kvmppc_read_int_cpu_dt("clock-frequency");
1965 }
1966 
1967 static int kvmppc_get_dec_bits(void)
1968 {
1969     int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1970 
1971     if (nr_bits > 0) {
1972         return nr_bits;
1973     }
1974     return 0;
1975 }
1976 
1977 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1978 {
1979     CPUState *cs = env_cpu(env);
1980 
1981     if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1982         !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1983         return 0;
1984     }
1985 
1986     return 1;
1987 }
1988 
1989 int kvmppc_get_hasidle(CPUPPCState *env)
1990 {
1991     struct kvm_ppc_pvinfo pvinfo;
1992 
1993     if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1994         (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1995         return 1;
1996     }
1997 
1998     return 0;
1999 }
2000 
2001 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
2002 {
2003     uint32_t *hc = (uint32_t *)buf;
2004     struct kvm_ppc_pvinfo pvinfo;
2005 
2006     if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2007         memcpy(buf, pvinfo.hcall, buf_len);
2008         return 0;
2009     }
2010 
2011     /*
2012      * Fallback to always fail hypercalls regardless of endianness:
2013      *
2014      *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2015      *     li r3, -1
2016      *     b .+8       (becomes nop in wrong endian)
2017      *     bswap32(li r3, -1)
2018      */
2019 
2020     hc[0] = cpu_to_be32(0x08000048);
2021     hc[1] = cpu_to_be32(0x3860ffff);
2022     hc[2] = cpu_to_be32(0x48000008);
2023     hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2024 
2025     return 1;
2026 }
2027 
2028 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2029 {
2030     return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2031 }
2032 
2033 void kvmppc_enable_logical_ci_hcalls(void)
2034 {
2035     /*
2036      * FIXME: it would be nice if we could detect the cases where
2037      * we're using a device which requires the in kernel
2038      * implementation of these hcalls, but the kernel lacks them and
2039      * produce a warning.
2040      */
2041     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2042     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2043 }
2044 
2045 void kvmppc_enable_set_mode_hcall(void)
2046 {
2047     kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2048 }
2049 
2050 void kvmppc_enable_clear_ref_mod_hcalls(void)
2051 {
2052     kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2053     kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2054 }
2055 
2056 void kvmppc_enable_h_page_init(void)
2057 {
2058     kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2059 }
2060 
2061 void kvmppc_enable_h_rpt_invalidate(void)
2062 {
2063     kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2064 }
2065 
2066 #ifdef CONFIG_PSERIES
2067 void kvmppc_set_papr(PowerPCCPU *cpu)
2068 {
2069     CPUState *cs = CPU(cpu);
2070     int ret;
2071 
2072     if (!kvm_enabled()) {
2073         return;
2074     }
2075 
2076     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2077     if (ret) {
2078         error_report("This vCPU type or KVM version does not support PAPR");
2079         exit(1);
2080     }
2081 
2082     /*
2083      * Update the capability flag so we sync the right information
2084      * with kvm
2085      */
2086     cap_papr = 1;
2087 }
2088 #endif
2089 
2090 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2091 {
2092     return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2093 }
2094 
2095 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2096 {
2097     CPUState *cs = CPU(cpu);
2098     int ret;
2099 
2100     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2101     if (ret && mpic_proxy) {
2102         error_report("This KVM version does not support EPR");
2103         exit(1);
2104     }
2105 }
2106 
2107 bool kvmppc_get_fwnmi(void)
2108 {
2109     return cap_fwnmi;
2110 }
2111 
2112 int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2113 {
2114     CPUState *cs = CPU(cpu);
2115 
2116     return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2117 }
2118 
2119 bool kvmppc_has_cap_dawr1(void)
2120 {
2121     return !!cap_dawr1;
2122 }
2123 
2124 int kvmppc_set_cap_dawr1(int enable)
2125 {
2126     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_DAWR1, 0, enable);
2127 }
2128 
2129 int kvmppc_smt_threads(void)
2130 {
2131     return cap_ppc_smt ? cap_ppc_smt : 1;
2132 }
2133 
2134 int kvmppc_set_smt_threads(int smt)
2135 {
2136     int ret;
2137 
2138     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2139     if (!ret) {
2140         cap_ppc_smt = smt;
2141     }
2142     return ret;
2143 }
2144 
2145 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2146 {
2147     int i;
2148     GString *g;
2149     char *s;
2150 
2151     assert(kvm_enabled());
2152     if (cap_ppc_smt_possible) {
2153         g = g_string_new("Available VSMT modes:");
2154         for (i = 63; i >= 0; i--) {
2155             if ((1UL << i) & cap_ppc_smt_possible) {
2156                 g_string_append_printf(g, " %lu", (1UL << i));
2157             }
2158         }
2159         s = g_string_free(g, false);
2160         error_append_hint(errp, "%s.\n", s);
2161         g_free(s);
2162     } else {
2163         error_append_hint(errp,
2164                           "This KVM seems to be too old to support VSMT.\n");
2165     }
2166 }
2167 
2168 
2169 #ifdef TARGET_PPC64
2170 uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2171 {
2172     struct kvm_ppc_smmu_info info;
2173     long rampagesize, best_page_shift;
2174     int i;
2175 
2176     /*
2177      * Find the largest hardware supported page size that's less than
2178      * or equal to the (logical) backing page size of guest RAM
2179      */
2180     kvm_get_smmu_info(&info, &error_fatal);
2181     rampagesize = qemu_minrampagesize();
2182     best_page_shift = 0;
2183 
2184     for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2185         struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2186 
2187         if (!sps->page_shift) {
2188             continue;
2189         }
2190 
2191         if ((sps->page_shift > best_page_shift)
2192             && ((1UL << sps->page_shift) <= rampagesize)) {
2193             best_page_shift = sps->page_shift;
2194         }
2195     }
2196 
2197     return 1ULL << (best_page_shift + hash_shift - 7);
2198 }
2199 #endif
2200 
2201 bool kvmppc_spapr_use_multitce(void)
2202 {
2203     return cap_spapr_multitce;
2204 }
2205 
2206 int kvmppc_spapr_enable_inkernel_multitce(void)
2207 {
2208     int ret;
2209 
2210     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2211                             H_PUT_TCE_INDIRECT, 1);
2212     if (!ret) {
2213         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2214                                 H_STUFF_TCE, 1);
2215     }
2216 
2217     return ret;
2218 }
2219 
2220 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2221                               uint64_t bus_offset, uint32_t nb_table,
2222                               int *pfd, bool need_vfio)
2223 {
2224     long len;
2225     int fd;
2226     void *table;
2227 
2228     /*
2229      * Must set fd to -1 so we don't try to munmap when called for
2230      * destroying the table, which the upper layers -will- do
2231      */
2232     *pfd = -1;
2233     if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2234         return NULL;
2235     }
2236 
2237     if (cap_spapr_tce_64) {
2238         struct kvm_create_spapr_tce_64 args = {
2239             .liobn = liobn,
2240             .page_shift = page_shift,
2241             .offset = bus_offset >> page_shift,
2242             .size = nb_table,
2243             .flags = 0
2244         };
2245         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2246         if (fd < 0) {
2247             fprintf(stderr,
2248                     "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2249                     liobn);
2250             return NULL;
2251         }
2252     } else if (cap_spapr_tce) {
2253         uint64_t window_size = (uint64_t) nb_table << page_shift;
2254         struct kvm_create_spapr_tce args = {
2255             .liobn = liobn,
2256             .window_size = window_size,
2257         };
2258         if ((window_size != args.window_size) || bus_offset) {
2259             return NULL;
2260         }
2261         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2262         if (fd < 0) {
2263             fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2264                     liobn);
2265             return NULL;
2266         }
2267     } else {
2268         return NULL;
2269     }
2270 
2271     len = nb_table * sizeof(uint64_t);
2272     /* FIXME: round this up to page size */
2273 
2274     table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2275     if (table == MAP_FAILED) {
2276         fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2277                 liobn);
2278         close(fd);
2279         return NULL;
2280     }
2281 
2282     *pfd = fd;
2283     return table;
2284 }
2285 
2286 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2287 {
2288     long len;
2289 
2290     if (fd < 0) {
2291         return -1;
2292     }
2293 
2294     len = nb_table * sizeof(uint64_t);
2295     if ((munmap(table, len) < 0) ||
2296         (close(fd) < 0)) {
2297         fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2298                 strerror(errno));
2299         /* Leak the table */
2300     }
2301 
2302     return 0;
2303 }
2304 
2305 int kvmppc_reset_htab(int shift_hint)
2306 {
2307     uint32_t shift = shift_hint;
2308 
2309     if (!kvm_enabled()) {
2310         /* Full emulation, tell caller to allocate htab itself */
2311         return 0;
2312     }
2313     if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2314         int ret;
2315         ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2316         if (ret == -ENOTTY) {
2317             /*
2318              * At least some versions of PR KVM advertise the
2319              * capability, but don't implement the ioctl().  Oops.
2320              * Return 0 so that we allocate the htab in qemu, as is
2321              * correct for PR.
2322              */
2323             return 0;
2324         } else if (ret < 0) {
2325             return ret;
2326         }
2327         return shift;
2328     }
2329 
2330     /*
2331      * We have a kernel that predates the htab reset calls.  For PR
2332      * KVM, we need to allocate the htab ourselves, for an HV KVM of
2333      * this era, it has allocated a 16MB fixed size hash table
2334      * already.
2335      */
2336     if (kvmppc_is_pr(kvm_state)) {
2337         /* PR - tell caller to allocate htab */
2338         return 0;
2339     } else {
2340         /* HV - assume 16MB kernel allocated htab */
2341         return 24;
2342     }
2343 }
2344 
2345 static inline uint32_t mfpvr(void)
2346 {
2347     uint32_t pvr;
2348 
2349     asm ("mfpvr %0"
2350          : "=r"(pvr));
2351     return pvr;
2352 }
2353 
2354 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2355 {
2356     if (on) {
2357         *word |= flags;
2358     } else {
2359         *word &= ~flags;
2360     }
2361 }
2362 
2363 static bool kvmppc_cpu_realize(CPUState *cs, Error **errp)
2364 {
2365     int ret;
2366     const char *vcpu_str = (cs->parent_obj.hotplugged == true) ?
2367                            "hotplug" : "create";
2368     cs->cpu_index = cpu_get_free_index();
2369 
2370     POWERPC_CPU(cs)->vcpu_id = cs->cpu_index;
2371 
2372     /* create and park to fail gracefully in case vcpu hotplug fails */
2373     ret = kvm_create_and_park_vcpu(cs);
2374     if (ret) {
2375         /*
2376          * This causes QEMU to terminate if initial CPU creation
2377          * fails, and only CPU hotplug failure if the error happens
2378          * there.
2379          */
2380         error_setg(errp, "%s: vcpu %s failed with %d",
2381                          __func__, vcpu_str, ret);
2382         return false;
2383     }
2384     return true;
2385 }
2386 
2387 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2388 {
2389     PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2390     uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2391     uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2392 
2393     /* Now fix up the class with information we can query from the host */
2394     pcc->pvr = mfpvr();
2395 
2396     alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2397                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2398     alter_insns(&pcc->insns_flags2, PPC2_VSX,
2399                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2400     alter_insns(&pcc->insns_flags2, PPC2_DFP,
2401                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2402 
2403     if (dcache_size != -1) {
2404         pcc->l1_dcache_size = dcache_size;
2405     }
2406 
2407     if (icache_size != -1) {
2408         pcc->l1_icache_size = icache_size;
2409     }
2410 
2411 #if defined(TARGET_PPC64)
2412     pcc->radix_page_info = kvmppc_get_radix_page_info();
2413 #endif /* defined(TARGET_PPC64) */
2414 }
2415 
2416 bool kvmppc_has_cap_epr(void)
2417 {
2418     return cap_epr;
2419 }
2420 
2421 bool kvmppc_has_cap_fixup_hcalls(void)
2422 {
2423     return cap_fixup_hcalls;
2424 }
2425 
2426 bool kvmppc_has_cap_htm(void)
2427 {
2428     return cap_htm;
2429 }
2430 
2431 bool kvmppc_has_cap_mmu_radix(void)
2432 {
2433     return cap_mmu_radix;
2434 }
2435 
2436 bool kvmppc_has_cap_mmu_hash_v3(void)
2437 {
2438     return cap_mmu_hash_v3;
2439 }
2440 
2441 static bool kvmppc_power8_host(void)
2442 {
2443     bool ret = false;
2444 #ifdef TARGET_PPC64
2445     {
2446         uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2447         ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2448               (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2449               (base_pvr == CPU_POWERPC_POWER8_BASE);
2450     }
2451 #endif /* TARGET_PPC64 */
2452     return ret;
2453 }
2454 
2455 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2456 {
2457     bool l1d_thread_priv_req = !kvmppc_power8_host();
2458 
2459     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2460         return 2;
2461     } else if ((!l1d_thread_priv_req ||
2462                 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2463                (c.character & c.character_mask
2464                 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2465         return 1;
2466     }
2467 
2468     return 0;
2469 }
2470 
2471 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2472 {
2473     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2474         return 2;
2475     } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2476         return 1;
2477     }
2478 
2479     return 0;
2480 }
2481 
2482 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2483 {
2484     if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2485         (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2486         (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2487         return SPAPR_CAP_FIXED_NA;
2488     } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2489         return SPAPR_CAP_WORKAROUND;
2490     } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2491         return  SPAPR_CAP_FIXED_CCD;
2492     } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2493         return SPAPR_CAP_FIXED_IBS;
2494     }
2495 
2496     return 0;
2497 }
2498 
2499 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2500 {
2501     if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2502         return 1;
2503     }
2504     return 0;
2505 }
2506 
2507 bool kvmppc_has_cap_xive(void)
2508 {
2509     return cap_xive;
2510 }
2511 
2512 static void kvmppc_get_cpu_characteristics(KVMState *s)
2513 {
2514     struct kvm_ppc_cpu_char c;
2515     int ret;
2516 
2517     /* Assume broken */
2518     cap_ppc_safe_cache = 0;
2519     cap_ppc_safe_bounds_check = 0;
2520     cap_ppc_safe_indirect_branch = 0;
2521 
2522     ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2523     if (!ret) {
2524         return;
2525     }
2526     ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2527     if (ret < 0) {
2528         return;
2529     }
2530 
2531     cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2532     cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2533     cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2534     cap_ppc_count_cache_flush_assist =
2535         parse_cap_ppc_count_cache_flush_assist(c);
2536 }
2537 
2538 int kvmppc_get_cap_safe_cache(void)
2539 {
2540     return cap_ppc_safe_cache;
2541 }
2542 
2543 int kvmppc_get_cap_safe_bounds_check(void)
2544 {
2545     return cap_ppc_safe_bounds_check;
2546 }
2547 
2548 int kvmppc_get_cap_safe_indirect_branch(void)
2549 {
2550     return cap_ppc_safe_indirect_branch;
2551 }
2552 
2553 int kvmppc_get_cap_count_cache_flush_assist(void)
2554 {
2555     return cap_ppc_count_cache_flush_assist;
2556 }
2557 
2558 bool kvmppc_has_cap_nested_kvm_hv(void)
2559 {
2560     return !!cap_ppc_nested_kvm_hv;
2561 }
2562 
2563 int kvmppc_set_cap_nested_kvm_hv(int enable)
2564 {
2565     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2566 }
2567 
2568 bool kvmppc_has_cap_spapr_vfio(void)
2569 {
2570     return cap_spapr_vfio;
2571 }
2572 
2573 int kvmppc_get_cap_large_decr(void)
2574 {
2575     return cap_large_decr;
2576 }
2577 
2578 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2579 {
2580     CPUState *cs = CPU(cpu);
2581     uint64_t lpcr = 0;
2582 
2583     kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2584     /* Do we need to modify the LPCR? */
2585     if (!!(lpcr & LPCR_LD) != !!enable) {
2586         if (enable) {
2587             lpcr |= LPCR_LD;
2588         } else {
2589             lpcr &= ~LPCR_LD;
2590         }
2591         kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2592         kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2593 
2594         if (!!(lpcr & LPCR_LD) != !!enable) {
2595             return -1;
2596         }
2597     }
2598 
2599     return 0;
2600 }
2601 
2602 int kvmppc_has_cap_rpt_invalidate(void)
2603 {
2604     return cap_rpt_invalidate;
2605 }
2606 
2607 bool kvmppc_supports_ail_3(void)
2608 {
2609     return cap_ail_mode_3;
2610 }
2611 
2612 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2613 {
2614     uint32_t host_pvr = mfpvr();
2615     PowerPCCPUClass *pvr_pcc;
2616 
2617     pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2618     if (pvr_pcc == NULL) {
2619         pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2620     }
2621 
2622     return pvr_pcc;
2623 }
2624 
2625 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2626 {
2627     MachineClass *mc = MACHINE_CLASS(oc);
2628 
2629     mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2630 }
2631 
2632 static int kvm_ppc_register_host_cpu_type(void)
2633 {
2634     TypeInfo type_info = {
2635         .name = TYPE_HOST_POWERPC_CPU,
2636         .class_init = kvmppc_host_cpu_class_init,
2637     };
2638     PowerPCCPUClass *pvr_pcc;
2639     ObjectClass *oc;
2640     DeviceClass *dc;
2641     int i;
2642 
2643     pvr_pcc = kvm_ppc_get_host_cpu_class();
2644     if (pvr_pcc == NULL) {
2645         return -1;
2646     }
2647     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2648     type_register_static(&type_info);
2649     /* override TCG default cpu type with 'host' cpu model */
2650     object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2651                          false, NULL);
2652 
2653     oc = object_class_by_name(type_info.name);
2654     g_assert(oc);
2655 
2656     /*
2657      * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2658      * we want "POWER8" to be a "family" alias that points to the current
2659      * host CPU type, too)
2660      */
2661     dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2662     for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2663         if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2664             char *suffix;
2665 
2666             ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2667             suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2668             if (suffix) {
2669                 *suffix = 0;
2670             }
2671             break;
2672         }
2673     }
2674 
2675     return 0;
2676 }
2677 
2678 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2679 {
2680     struct kvm_rtas_token_args args = {
2681         .token = token,
2682     };
2683 
2684     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2685         return -ENOENT;
2686     }
2687 
2688     strncpy(args.name, function, sizeof(args.name) - 1);
2689 
2690     return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2691 }
2692 
2693 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2694 {
2695     struct kvm_get_htab_fd s = {
2696         .flags = write ? KVM_GET_HTAB_WRITE : 0,
2697         .start_index = index,
2698     };
2699     int ret;
2700 
2701     if (!cap_htab_fd) {
2702         error_setg(errp, "KVM version doesn't support %s the HPT",
2703                    write ? "writing" : "reading");
2704         return -ENOTSUP;
2705     }
2706 
2707     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2708     if (ret < 0) {
2709         error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2710                    write ? "writing" : "reading", write ? "to" : "from",
2711                    strerror(errno));
2712         return -errno;
2713     }
2714 
2715     return ret;
2716 }
2717 
2718 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2719 {
2720     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2721     g_autofree uint8_t *buf = g_malloc(bufsize);
2722     ssize_t rc;
2723 
2724     do {
2725         rc = read(fd, buf, bufsize);
2726         if (rc < 0) {
2727             fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2728                     strerror(errno));
2729             return rc;
2730         } else if (rc) {
2731             uint8_t *buffer = buf;
2732             ssize_t n = rc;
2733             while (n) {
2734                 struct kvm_get_htab_header *head =
2735                     (struct kvm_get_htab_header *) buffer;
2736                 size_t chunksize = sizeof(*head) +
2737                      HASH_PTE_SIZE_64 * head->n_valid;
2738 
2739                 qemu_put_be32(f, head->index);
2740                 qemu_put_be16(f, head->n_valid);
2741                 qemu_put_be16(f, head->n_invalid);
2742                 qemu_put_buffer(f, (void *)(head + 1),
2743                                 HASH_PTE_SIZE_64 * head->n_valid);
2744 
2745                 buffer += chunksize;
2746                 n -= chunksize;
2747             }
2748         }
2749     } while ((rc != 0)
2750              && ((max_ns < 0) ||
2751                  ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2752 
2753     return (rc == 0) ? 1 : 0;
2754 }
2755 
2756 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2757                            uint16_t n_valid, uint16_t n_invalid, Error **errp)
2758 {
2759     struct kvm_get_htab_header *buf;
2760     size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2761     ssize_t rc;
2762 
2763     buf = alloca(chunksize);
2764     buf->index = index;
2765     buf->n_valid = n_valid;
2766     buf->n_invalid = n_invalid;
2767 
2768     qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2769 
2770     rc = write(fd, buf, chunksize);
2771     if (rc < 0) {
2772         error_setg_errno(errp, errno, "Error writing the KVM hash table");
2773         return -errno;
2774     }
2775     if (rc != chunksize) {
2776         /* We should never get a short write on a single chunk */
2777         error_setg(errp, "Short write while restoring the KVM hash table");
2778         return -ENOSPC;
2779     }
2780     return 0;
2781 }
2782 
2783 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2784 {
2785     return true;
2786 }
2787 
2788 void kvm_arch_init_irq_routing(KVMState *s)
2789 {
2790 }
2791 
2792 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2793 {
2794     int fd, rc;
2795     int i;
2796 
2797     fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2798 
2799     i = 0;
2800     while (i < n) {
2801         struct kvm_get_htab_header *hdr;
2802         int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2803         char buf[sizeof(*hdr) + HPTES_PER_GROUP * HASH_PTE_SIZE_64];
2804 
2805         rc = read(fd, buf, sizeof(*hdr) + m * HASH_PTE_SIZE_64);
2806         if (rc < 0) {
2807             hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2808         }
2809 
2810         hdr = (struct kvm_get_htab_header *)buf;
2811         while ((i < n) && ((char *)hdr < (buf + rc))) {
2812             int invalid = hdr->n_invalid, valid = hdr->n_valid;
2813 
2814             if (hdr->index != (ptex + i)) {
2815                 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2816                          " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2817             }
2818 
2819             if (n - i < valid) {
2820                 valid = n - i;
2821             }
2822             memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2823             i += valid;
2824 
2825             if ((n - i) < invalid) {
2826                 invalid = n - i;
2827             }
2828             memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2829             i += invalid;
2830 
2831             hdr = (struct kvm_get_htab_header *)
2832                 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2833         }
2834     }
2835 
2836     close(fd);
2837 }
2838 
2839 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2840 {
2841     int fd, rc;
2842     struct {
2843         struct kvm_get_htab_header hdr;
2844         uint64_t pte0;
2845         uint64_t pte1;
2846     } buf;
2847 
2848     fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2849 
2850     buf.hdr.n_valid = 1;
2851     buf.hdr.n_invalid = 0;
2852     buf.hdr.index = ptex;
2853     buf.pte0 = cpu_to_be64(pte0);
2854     buf.pte1 = cpu_to_be64(pte1);
2855 
2856     rc = write(fd, &buf, sizeof(buf));
2857     if (rc != sizeof(buf)) {
2858         hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2859     }
2860     close(fd);
2861 }
2862 
2863 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2864                              uint64_t address, uint32_t data, PCIDevice *dev)
2865 {
2866     return 0;
2867 }
2868 
2869 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2870                                 int vector, PCIDevice *dev)
2871 {
2872     return 0;
2873 }
2874 
2875 int kvm_arch_release_virq_post(int virq)
2876 {
2877     return 0;
2878 }
2879 
2880 int kvm_arch_msi_data_to_gsi(uint32_t data)
2881 {
2882     return data & 0xffff;
2883 }
2884 
2885 #if defined(CONFIG_PSERIES)
2886 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2887 {
2888     uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2889 
2890     cpu_synchronize_state(CPU(cpu));
2891 
2892     spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2893 
2894     return 0;
2895 }
2896 #endif
2897 
2898 int kvmppc_enable_hwrng(void)
2899 {
2900     if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2901         return -1;
2902     }
2903 
2904     return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2905 }
2906 
2907 void kvmppc_check_papr_resize_hpt(Error **errp)
2908 {
2909     if (!kvm_enabled()) {
2910         return; /* No KVM, we're good */
2911     }
2912 
2913     if (cap_resize_hpt) {
2914         return; /* Kernel has explicit support, we're good */
2915     }
2916 
2917     /* Otherwise fallback on looking for PR KVM */
2918     if (kvmppc_is_pr(kvm_state)) {
2919         return;
2920     }
2921 
2922     error_setg(errp,
2923                "Hash page table resizing not available with this KVM version");
2924 }
2925 
2926 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2927 {
2928     CPUState *cs = CPU(cpu);
2929     struct kvm_ppc_resize_hpt rhpt = {
2930         .flags = flags,
2931         .shift = shift,
2932     };
2933 
2934     if (!cap_resize_hpt) {
2935         return -ENOSYS;
2936     }
2937 
2938     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2939 }
2940 
2941 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2942 {
2943     CPUState *cs = CPU(cpu);
2944     struct kvm_ppc_resize_hpt rhpt = {
2945         .flags = flags,
2946         .shift = shift,
2947     };
2948 
2949     if (!cap_resize_hpt) {
2950         return -ENOSYS;
2951     }
2952 
2953     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2954 }
2955 
2956 /*
2957  * This is a helper function to detect a post migration scenario
2958  * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2959  * the guest kernel can't handle a PVR value other than the actual host
2960  * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2961  *
2962  * If we don't have cap_ppc_pvr_compat and we're not running in PR
2963  * (so, we're HV), return true. The workaround itself is done in
2964  * cpu_post_load.
2965  *
2966  * The order here is important: we'll only check for KVM PR as a
2967  * fallback if the guest kernel can't handle the situation itself.
2968  * We need to avoid as much as possible querying the running KVM type
2969  * in QEMU level.
2970  */
2971 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2972 {
2973     CPUState *cs = CPU(cpu);
2974 
2975     if (!kvm_enabled()) {
2976         return false;
2977     }
2978 
2979     if (cap_ppc_pvr_compat) {
2980         return false;
2981     }
2982 
2983     return !kvmppc_is_pr(cs->kvm_state);
2984 }
2985 
2986 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2987 {
2988     CPUState *cs = CPU(cpu);
2989 
2990     if (kvm_enabled()) {
2991         kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2992     }
2993 }
2994 
2995 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2996 {
2997     CPUState *cs = CPU(cpu);
2998 
2999     if (kvm_enabled()) {
3000         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
3001     }
3002 }
3003 
3004 void kvm_arch_accel_class_init(ObjectClass *oc)
3005 {
3006 }
3007 
3008 static void kvm_cpu_accel_class_init(ObjectClass *oc, void *data)
3009 {
3010     AccelCPUClass *acc = ACCEL_CPU_CLASS(oc);
3011 
3012     acc->cpu_target_realize = kvmppc_cpu_realize;
3013 }
3014 
3015 static const TypeInfo kvm_cpu_accel_type_info = {
3016     .name = ACCEL_CPU_NAME("kvm"),
3017 
3018     .parent = TYPE_ACCEL_CPU,
3019     .class_init = kvm_cpu_accel_class_init,
3020     .abstract = true,
3021 };
3022 static void kvm_cpu_accel_register_types(void)
3023 {
3024     type_register_static(&kvm_cpu_accel_type_info);
3025 }
3026 type_init(kvm_cpu_accel_register_types);
3027