xref: /qemu/target/ppc/kvm.c (revision 98721058d6d50ef218e0c26e4f67c8ef96965859)
1 /*
2  * PowerPC implementation of KVM hooks
3  *
4  * Copyright IBM Corp. 2007
5  * Copyright (C) 2011 Freescale Semiconductor, Inc.
6  *
7  * Authors:
8  *  Jerone Young <jyoung5@us.ibm.com>
9  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10  *  Hollis Blanchard <hollisb@us.ibm.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or later.
13  * See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21 
22 #include <linux/kvm.h>
23 
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
26 #include "cpu.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "system/hw_accel.h"
30 #include "kvm_ppc.h"
31 #include "system/cpus.h"
32 #include "system/device_tree.h"
33 #include "mmu-hash64.h"
34 
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_cpu_core.h"
37 #include "hw/hw.h"
38 #include "hw/ppc/ppc.h"
39 #include "migration/qemu-file-types.h"
40 #include "system/watchdog.h"
41 #include "trace.h"
42 #include "gdbstub/enums.h"
43 #include "exec/memattrs.h"
44 #include "system/ram_addr.h"
45 #include "system/hostmem.h"
46 #include "qemu/cutils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/mmap-alloc.h"
49 #include "elf.h"
50 #include "system/kvm_int.h"
51 #include "system/kvm.h"
52 #include "accel/accel-cpu-target.h"
53 
54 #include CONFIG_DEVICES
55 
56 #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
57 
58 #define DEBUG_RETURN_GUEST 0
59 #define DEBUG_RETURN_GDB   1
60 
61 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
62     KVM_CAP_LAST_INFO
63 };
64 
65 static int cap_interrupt_unset;
66 static int cap_segstate;
67 static int cap_booke_sregs;
68 static int cap_ppc_smt;
69 static int cap_ppc_smt_possible;
70 static int cap_spapr_tce;
71 static int cap_spapr_tce_64;
72 static int cap_spapr_multitce;
73 static int cap_spapr_vfio;
74 static int cap_hior;
75 static int cap_one_reg;
76 static int cap_epr;
77 static int cap_ppc_watchdog;
78 static int cap_htab_fd;
79 static int cap_fixup_hcalls;
80 static int cap_htm;             /* Hardware transactional memory support */
81 static int cap_mmu_radix;
82 static int cap_mmu_hash_v3;
83 static int cap_xive;
84 static int cap_resize_hpt;
85 static int cap_ppc_pvr_compat;
86 static int cap_ppc_safe_cache;
87 static int cap_ppc_safe_bounds_check;
88 static int cap_ppc_safe_indirect_branch;
89 static int cap_ppc_count_cache_flush_assist;
90 static int cap_ppc_nested_kvm_hv;
91 static int cap_large_decr;
92 static int cap_fwnmi;
93 static int cap_rpt_invalidate;
94 static int cap_ail_mode_3;
95 static int cap_dawr1;
96 
97 #ifdef CONFIG_PSERIES
98 static int cap_papr;
99 #else
100 #define cap_papr (0)
101 #endif
102 
103 static uint32_t debug_inst_opcode;
104 
105 /*
106  * Check whether we are running with KVM-PR (instead of KVM-HV).  This
107  * should only be used for fallback tests - generally we should use
108  * explicit capabilities for the features we want, rather than
109  * assuming what is/isn't available depending on the KVM variant.
110  */
kvmppc_is_pr(KVMState * ks)111 static bool kvmppc_is_pr(KVMState *ks)
112 {
113     /* Assume KVM-PR if the GET_PVINFO capability is available */
114     return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
115 }
116 
117 static int kvm_ppc_register_host_cpu_type(void);
118 static void kvmppc_get_cpu_characteristics(KVMState *s);
119 static int kvmppc_get_dec_bits(void);
120 
kvm_arch_get_default_type(MachineState * ms)121 int kvm_arch_get_default_type(MachineState *ms)
122 {
123     return 0;
124 }
125 
kvm_arch_init(MachineState * ms,KVMState * s)126 int kvm_arch_init(MachineState *ms, KVMState *s)
127 {
128     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
129     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
130     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
131     cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
132     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
133     cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
134     cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
135     cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
136     cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
137     cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
138     cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
139     cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
140     /*
141      * Note: we don't set cap_papr here, because this capability is
142      * only activated after this by kvmppc_set_papr()
143      */
144     cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
145     cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
146     cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
147     cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
148     cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
149     cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
150     cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
151     cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
152     kvmppc_get_cpu_characteristics(s);
153     cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
154     cap_large_decr = kvmppc_get_dec_bits();
155     cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
156     cap_dawr1 = kvm_vm_check_extension(s, KVM_CAP_PPC_DAWR1);
157     /*
158      * Note: setting it to false because there is not such capability
159      * in KVM at this moment.
160      *
161      * TODO: call kvm_vm_check_extension() with the right capability
162      * after the kernel starts implementing it.
163      */
164     cap_ppc_pvr_compat = false;
165 
166     if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
167         error_report("KVM: Host kernel doesn't have level irq capability");
168         exit(1);
169     }
170 
171     cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
172     cap_ail_mode_3 = kvm_vm_check_extension(s, KVM_CAP_PPC_AIL_MODE_3);
173     kvm_ppc_register_host_cpu_type();
174 
175     return 0;
176 }
177 
kvm_arch_irqchip_create(KVMState * s)178 int kvm_arch_irqchip_create(KVMState *s)
179 {
180     return 0;
181 }
182 
kvm_arch_sync_sregs(PowerPCCPU * cpu)183 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
184 {
185     CPUPPCState *cenv = &cpu->env;
186     CPUState *cs = CPU(cpu);
187     struct kvm_sregs sregs;
188     int ret;
189 
190     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
191         /*
192          * What we're really trying to say is "if we're on BookE, we
193          * use the native PVR for now". This is the only sane way to
194          * check it though, so we potentially confuse users that they
195          * can run BookE guests on BookS. Let's hope nobody dares
196          * enough :)
197          */
198         return 0;
199     } else {
200         if (!cap_segstate) {
201             fprintf(stderr, "kvm error: missing PVR setting capability\n");
202             return -ENOSYS;
203         }
204     }
205 
206     ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
207     if (ret) {
208         return ret;
209     }
210 
211     sregs.pvr = cenv->spr[SPR_PVR];
212     return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
213 }
214 
215 /* Set up a shared TLB array with KVM */
kvm_booke206_tlb_init(PowerPCCPU * cpu)216 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
217 {
218     CPUPPCState *env = &cpu->env;
219     CPUState *cs = CPU(cpu);
220     struct kvm_book3e_206_tlb_params params = {};
221     struct kvm_config_tlb cfg = {};
222     unsigned int entries = 0;
223     int ret, i;
224 
225     if (!kvm_enabled() ||
226         !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
227         return 0;
228     }
229 
230     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
231 
232     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
233         params.tlb_sizes[i] = booke206_tlb_size(env, i);
234         params.tlb_ways[i] = booke206_tlb_ways(env, i);
235         entries += params.tlb_sizes[i];
236     }
237 
238     assert(entries == env->nb_tlb);
239     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
240 
241     env->tlb_dirty = true;
242 
243     cfg.array = (uintptr_t)env->tlb.tlbm;
244     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
245     cfg.params = (uintptr_t)&params;
246     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
247 
248     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
249     if (ret < 0) {
250         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
251                 __func__, strerror(-ret));
252         return ret;
253     }
254 
255     env->kvm_sw_tlb = true;
256     return 0;
257 }
258 
259 
260 #if defined(TARGET_PPC64)
kvm_get_smmu_info(struct kvm_ppc_smmu_info * info,Error ** errp)261 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
262 {
263     int ret;
264 
265     assert(kvm_state != NULL);
266 
267     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
268         error_setg(errp, "KVM doesn't expose the MMU features it supports");
269         error_append_hint(errp, "Consider switching to a newer KVM\n");
270         return;
271     }
272 
273     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
274     if (ret == 0) {
275         return;
276     }
277 
278     error_setg_errno(errp, -ret,
279                      "KVM failed to provide the MMU features it supports");
280 }
281 
kvmppc_get_radix_page_info(void)282 static struct ppc_radix_page_info *kvmppc_get_radix_page_info(void)
283 {
284     KVMState *s = KVM_STATE(current_accel());
285     struct ppc_radix_page_info *radix_page_info;
286     struct kvm_ppc_rmmu_info rmmu_info = { };
287     int i;
288 
289     if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
290         return NULL;
291     }
292     if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
293         return NULL;
294     }
295     radix_page_info = g_malloc0(sizeof(*radix_page_info));
296     radix_page_info->count = 0;
297     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
298         if (rmmu_info.ap_encodings[i]) {
299             radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
300             radix_page_info->count++;
301         }
302     }
303     return radix_page_info;
304 }
305 
kvmppc_configure_v3_mmu(PowerPCCPU * cpu,bool radix,bool gtse,uint64_t proc_tbl)306 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
307                                      bool radix, bool gtse,
308                                      uint64_t proc_tbl)
309 {
310     CPUState *cs = CPU(cpu);
311     int ret;
312     uint64_t flags = 0;
313     struct kvm_ppc_mmuv3_cfg cfg = {
314         .process_table = proc_tbl,
315     };
316 
317     if (radix) {
318         flags |= KVM_PPC_MMUV3_RADIX;
319     }
320     if (gtse) {
321         flags |= KVM_PPC_MMUV3_GTSE;
322     }
323     cfg.flags = flags;
324     ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
325     switch (ret) {
326     case 0:
327         return H_SUCCESS;
328     case -EINVAL:
329         return H_PARAMETER;
330     case -ENODEV:
331         return H_NOT_AVAILABLE;
332     default:
333         return H_HARDWARE;
334     }
335 }
336 
kvmppc_hpt_needs_host_contiguous_pages(void)337 bool kvmppc_hpt_needs_host_contiguous_pages(void)
338 {
339     static struct kvm_ppc_smmu_info smmu_info;
340 
341     if (!kvm_enabled()) {
342         return false;
343     }
344 
345     kvm_get_smmu_info(&smmu_info, &error_fatal);
346     return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
347 }
348 
kvm_check_mmu(PowerPCCPU * cpu,Error ** errp)349 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
350 {
351     struct kvm_ppc_smmu_info smmu_info;
352     int iq, ik, jq, jk;
353     Error *local_err = NULL;
354 
355     /* For now, we only have anything to check on hash64 MMUs */
356     if (!cpu->hash64_opts || !kvm_enabled()) {
357         return;
358     }
359 
360     kvm_get_smmu_info(&smmu_info, &local_err);
361     if (local_err) {
362         error_propagate(errp, local_err);
363         return;
364     }
365 
366     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
367         && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
368         error_setg(errp,
369                    "KVM does not support 1TiB segments which guest expects");
370         return;
371     }
372 
373     if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
374         error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
375                    smmu_info.slb_size, cpu->hash64_opts->slb_size);
376         return;
377     }
378 
379     /*
380      * Verify that every pagesize supported by the cpu model is
381      * supported by KVM with the same encodings
382      */
383     for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
384         PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
385         struct kvm_ppc_one_seg_page_size *ksps;
386 
387         for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
388             if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
389                 break;
390             }
391         }
392         if (ik >= ARRAY_SIZE(smmu_info.sps)) {
393             error_setg(errp, "KVM doesn't support for base page shift %u",
394                        qsps->page_shift);
395             return;
396         }
397 
398         ksps = &smmu_info.sps[ik];
399         if (ksps->slb_enc != qsps->slb_enc) {
400             error_setg(errp,
401 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
402                        ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
403             return;
404         }
405 
406         for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
407             for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
408                 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
409                     break;
410                 }
411             }
412 
413             if (jk >= ARRAY_SIZE(ksps->enc)) {
414                 error_setg(errp, "KVM doesn't support page shift %u/%u",
415                            qsps->enc[jq].page_shift, qsps->page_shift);
416                 return;
417             }
418             if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
419                 error_setg(errp,
420 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
421                            ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
422                            qsps->page_shift, qsps->enc[jq].pte_enc);
423                 return;
424             }
425         }
426     }
427 
428     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
429         /*
430          * Mostly what guest pagesizes we can use are related to the
431          * host pages used to map guest RAM, which is handled in the
432          * platform code. Cache-Inhibited largepages (64k) however are
433          * used for I/O, so if they're mapped to the host at all it
434          * will be a normal mapping, not a special hugepage one used
435          * for RAM.
436          */
437         if (qemu_real_host_page_size() < 0x10000) {
438             error_setg(errp,
439                        "KVM can't supply 64kiB CI pages, which guest expects");
440         }
441     }
442 }
443 #endif /* !defined (TARGET_PPC64) */
444 
kvm_arch_vcpu_id(CPUState * cpu)445 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
446 {
447     return POWERPC_CPU(cpu)->vcpu_id;
448 }
449 
450 /*
451  * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
452  * only 1 watchpoint, so array size of 4 is sufficient for now.
453  */
454 #define MAX_HW_BKPTS 4
455 
456 static struct HWBreakpoint {
457     target_ulong addr;
458     int type;
459 } hw_debug_points[MAX_HW_BKPTS];
460 
461 static CPUWatchpoint hw_watchpoint;
462 
463 /* Default there is no breakpoint and watchpoint supported */
464 static int max_hw_breakpoint;
465 static int max_hw_watchpoint;
466 static int nb_hw_breakpoint;
467 static int nb_hw_watchpoint;
468 
kvmppc_hw_debug_points_init(CPUPPCState * cenv)469 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
470 {
471     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
472         max_hw_breakpoint = 2;
473         max_hw_watchpoint = 2;
474     }
475 
476     if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
477         fprintf(stderr, "Error initializing h/w breakpoints\n");
478         return;
479     }
480 }
481 
kvm_arch_pre_create_vcpu(CPUState * cpu,Error ** errp)482 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp)
483 {
484     return 0;
485 }
486 
kvm_arch_init_vcpu(CPUState * cs)487 int kvm_arch_init_vcpu(CPUState *cs)
488 {
489     PowerPCCPU *cpu = POWERPC_CPU(cs);
490     CPUPPCState *cenv = &cpu->env;
491     int ret;
492 
493     /* Synchronize sregs with kvm */
494     ret = kvm_arch_sync_sregs(cpu);
495     if (ret) {
496         if (ret == -EINVAL) {
497             error_report("Register sync failed... If you're using kvm-hv.ko,"
498                          " only \"-cpu host\" is possible");
499         }
500         return ret;
501     }
502 
503     switch (cenv->mmu_model) {
504     case POWERPC_MMU_BOOKE206:
505         /* This target supports access to KVM's guest TLB */
506         ret = kvm_booke206_tlb_init(cpu);
507         break;
508     case POWERPC_MMU_2_07:
509         if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
510             /*
511              * KVM-HV has transactional memory on POWER8 also without
512              * the KVM_CAP_PPC_HTM extension, so enable it here
513              * instead as long as it's available to userspace on the
514              * host.
515              */
516             if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
517                 cap_htm = true;
518             }
519         }
520         break;
521     default:
522         break;
523     }
524 
525     kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
526     kvmppc_hw_debug_points_init(cenv);
527 
528     return ret;
529 }
530 
kvm_arch_destroy_vcpu(CPUState * cs)531 int kvm_arch_destroy_vcpu(CPUState *cs)
532 {
533     return 0;
534 }
535 
kvm_sw_tlb_put(PowerPCCPU * cpu)536 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
537 {
538     CPUPPCState *env = &cpu->env;
539     CPUState *cs = CPU(cpu);
540     struct kvm_dirty_tlb dirty_tlb;
541     unsigned char *bitmap;
542     int ret;
543 
544     if (!env->kvm_sw_tlb) {
545         return;
546     }
547 
548     bitmap = g_malloc((env->nb_tlb + 7) / 8);
549     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
550 
551     dirty_tlb.bitmap = (uintptr_t)bitmap;
552     dirty_tlb.num_dirty = env->nb_tlb;
553 
554     ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
555     if (ret) {
556         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
557                 __func__, strerror(-ret));
558     }
559 
560     g_free(bitmap);
561 }
562 
kvm_get_one_spr(CPUState * cs,uint64_t id,int spr)563 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
564 {
565     CPUPPCState *env = cpu_env(cs);
566     /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
567     union {
568         uint32_t u32;
569         uint64_t u64;
570     } val = { };
571     struct kvm_one_reg reg = {
572         .id = id,
573         .addr = (uintptr_t) &val,
574     };
575     int ret;
576 
577     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
578     if (ret != 0) {
579         trace_kvm_failed_spr_get(spr, strerror(errno));
580     } else {
581         switch (id & KVM_REG_SIZE_MASK) {
582         case KVM_REG_SIZE_U32:
583             env->spr[spr] = val.u32;
584             break;
585 
586         case KVM_REG_SIZE_U64:
587             env->spr[spr] = val.u64;
588             break;
589 
590         default:
591             /* Don't handle this size yet */
592             abort();
593         }
594     }
595 }
596 
kvm_put_one_spr(CPUState * cs,uint64_t id,int spr)597 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
598 {
599     CPUPPCState *env = cpu_env(cs);
600     union {
601         uint32_t u32;
602         uint64_t u64;
603     } val;
604     struct kvm_one_reg reg = {
605         .id = id,
606         .addr = (uintptr_t) &val,
607     };
608     int ret;
609 
610     switch (id & KVM_REG_SIZE_MASK) {
611     case KVM_REG_SIZE_U32:
612         val.u32 = env->spr[spr];
613         break;
614 
615     case KVM_REG_SIZE_U64:
616         val.u64 = env->spr[spr];
617         break;
618 
619     default:
620         /* Don't handle this size yet */
621         abort();
622     }
623 
624     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
625     if (ret != 0) {
626         trace_kvm_failed_spr_set(spr, strerror(errno));
627     }
628 }
629 
kvm_put_fp(CPUState * cs)630 static int kvm_put_fp(CPUState *cs)
631 {
632     CPUPPCState *env = cpu_env(cs);
633     struct kvm_one_reg reg;
634     int i;
635     int ret;
636 
637     if (env->insns_flags & PPC_FLOAT) {
638         uint64_t fpscr = env->fpscr;
639         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
640 
641         reg.id = KVM_REG_PPC_FPSCR;
642         reg.addr = (uintptr_t)&fpscr;
643         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
644         if (ret < 0) {
645             trace_kvm_failed_fpscr_set(strerror(errno));
646             return ret;
647         }
648 
649         for (i = 0; i < 32; i++) {
650             uint64_t vsr[2];
651             uint64_t *fpr = cpu_fpr_ptr(env, i);
652             uint64_t *vsrl = cpu_vsrl_ptr(env, i);
653 
654 #if HOST_BIG_ENDIAN
655             vsr[0] = float64_val(*fpr);
656             vsr[1] = *vsrl;
657 #else
658             vsr[0] = *vsrl;
659             vsr[1] = float64_val(*fpr);
660 #endif
661             reg.addr = (uintptr_t) &vsr;
662             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
663 
664             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
665             if (ret < 0) {
666                 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
667                                         strerror(errno));
668                 return ret;
669             }
670         }
671     }
672 
673     if (env->insns_flags & PPC_ALTIVEC) {
674         reg.id = KVM_REG_PPC_VSCR;
675         reg.addr = (uintptr_t)&env->vscr;
676         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
677         if (ret < 0) {
678             trace_kvm_failed_vscr_set(strerror(errno));
679             return ret;
680         }
681 
682         for (i = 0; i < 32; i++) {
683             reg.id = KVM_REG_PPC_VR(i);
684             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
685             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
686             if (ret < 0) {
687                 trace_kvm_failed_vr_set(i, strerror(errno));
688                 return ret;
689             }
690         }
691     }
692 
693     return 0;
694 }
695 
kvm_get_fp(CPUState * cs)696 static int kvm_get_fp(CPUState *cs)
697 {
698     CPUPPCState *env = cpu_env(cs);
699     struct kvm_one_reg reg;
700     int i;
701     int ret;
702 
703     if (env->insns_flags & PPC_FLOAT) {
704         uint64_t fpscr;
705         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
706 
707         reg.id = KVM_REG_PPC_FPSCR;
708         reg.addr = (uintptr_t)&fpscr;
709         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
710         if (ret < 0) {
711             trace_kvm_failed_fpscr_get(strerror(errno));
712             return ret;
713         } else {
714             env->fpscr = fpscr;
715         }
716 
717         for (i = 0; i < 32; i++) {
718             uint64_t vsr[2];
719             uint64_t *fpr = cpu_fpr_ptr(env, i);
720             uint64_t *vsrl = cpu_vsrl_ptr(env, i);
721 
722             reg.addr = (uintptr_t) &vsr;
723             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
724 
725             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
726             if (ret < 0) {
727                 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
728                                         strerror(errno));
729                 return ret;
730             } else {
731 #if HOST_BIG_ENDIAN
732                 *fpr = vsr[0];
733                 if (vsx) {
734                     *vsrl = vsr[1];
735                 }
736 #else
737                 *fpr = vsr[1];
738                 if (vsx) {
739                     *vsrl = vsr[0];
740                 }
741 #endif
742             }
743         }
744     }
745 
746     if (env->insns_flags & PPC_ALTIVEC) {
747         reg.id = KVM_REG_PPC_VSCR;
748         reg.addr = (uintptr_t)&env->vscr;
749         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
750         if (ret < 0) {
751             trace_kvm_failed_vscr_get(strerror(errno));
752             return ret;
753         }
754 
755         for (i = 0; i < 32; i++) {
756             reg.id = KVM_REG_PPC_VR(i);
757             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
758             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
759             if (ret < 0) {
760                 trace_kvm_failed_vr_get(i, strerror(errno));
761                 return ret;
762             }
763         }
764     }
765 
766     return 0;
767 }
768 
769 #if defined(TARGET_PPC64)
kvm_get_vpa(CPUState * cs)770 static int kvm_get_vpa(CPUState *cs)
771 {
772     PowerPCCPU *cpu = POWERPC_CPU(cs);
773     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
774     struct kvm_one_reg reg;
775     int ret;
776 
777     reg.id = KVM_REG_PPC_VPA_ADDR;
778     reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
779     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
780     if (ret < 0) {
781         trace_kvm_failed_vpa_addr_get(strerror(errno));
782         return ret;
783     }
784 
785     assert((uintptr_t)&spapr_cpu->slb_shadow_size
786            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
787     reg.id = KVM_REG_PPC_VPA_SLB;
788     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
789     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
790     if (ret < 0) {
791         trace_kvm_failed_slb_get(strerror(errno));
792         return ret;
793     }
794 
795     assert((uintptr_t)&spapr_cpu->dtl_size
796            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
797     reg.id = KVM_REG_PPC_VPA_DTL;
798     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
799     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
800     if (ret < 0) {
801         trace_kvm_failed_dtl_get(strerror(errno));
802         return ret;
803     }
804 
805     return 0;
806 }
807 
kvm_put_vpa(CPUState * cs)808 static int kvm_put_vpa(CPUState *cs)
809 {
810     PowerPCCPU *cpu = POWERPC_CPU(cs);
811     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
812     struct kvm_one_reg reg;
813     int ret;
814 
815     /*
816      * SLB shadow or DTL can't be registered unless a master VPA is
817      * registered.  That means when restoring state, if a VPA *is*
818      * registered, we need to set that up first.  If not, we need to
819      * deregister the others before deregistering the master VPA
820      */
821     assert(spapr_cpu->vpa_addr
822            || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
823 
824     if (spapr_cpu->vpa_addr) {
825         reg.id = KVM_REG_PPC_VPA_ADDR;
826         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
827         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
828         if (ret < 0) {
829             trace_kvm_failed_vpa_addr_set(strerror(errno));
830             return ret;
831         }
832     }
833 
834     assert((uintptr_t)&spapr_cpu->slb_shadow_size
835            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
836     reg.id = KVM_REG_PPC_VPA_SLB;
837     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
838     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
839     if (ret < 0) {
840         trace_kvm_failed_slb_set(strerror(errno));
841         return ret;
842     }
843 
844     assert((uintptr_t)&spapr_cpu->dtl_size
845            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
846     reg.id = KVM_REG_PPC_VPA_DTL;
847     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
848     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
849     if (ret < 0) {
850         trace_kvm_failed_dtl_set(strerror(errno));
851         return ret;
852     }
853 
854     if (!spapr_cpu->vpa_addr) {
855         reg.id = KVM_REG_PPC_VPA_ADDR;
856         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
857         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
858         if (ret < 0) {
859             trace_kvm_failed_null_vpa_addr_set(strerror(errno));
860             return ret;
861         }
862     }
863 
864     return 0;
865 }
866 #endif /* TARGET_PPC64 */
867 
kvmppc_put_books_sregs(PowerPCCPU * cpu)868 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
869 {
870     CPUPPCState *env = &cpu->env;
871     struct kvm_sregs sregs = { };
872     int i;
873 
874     sregs.pvr = env->spr[SPR_PVR];
875 
876     if (cpu->vhyp) {
877         sregs.u.s.sdr1 = cpu->vhyp_class->encode_hpt_for_kvm_pr(cpu->vhyp);
878     } else {
879         sregs.u.s.sdr1 = env->spr[SPR_SDR1];
880     }
881 
882     /* Sync SLB */
883 #ifdef TARGET_PPC64
884     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
885         sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
886         if (env->slb[i].esid & SLB_ESID_V) {
887             sregs.u.s.ppc64.slb[i].slbe |= i;
888         }
889         sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
890     }
891 #endif
892 
893     /* Sync SRs */
894     for (i = 0; i < 16; i++) {
895         sregs.u.s.ppc32.sr[i] = env->sr[i];
896     }
897 
898     /* Sync BATs */
899     for (i = 0; i < 8; i++) {
900         /* Beware. We have to swap upper and lower bits here */
901         sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
902             | env->DBAT[1][i];
903         sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
904             | env->IBAT[1][i];
905     }
906 
907     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
908 }
909 
kvm_arch_put_registers(CPUState * cs,int level,Error ** errp)910 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
911 {
912     PowerPCCPU *cpu = POWERPC_CPU(cs);
913     CPUPPCState *env = &cpu->env;
914     struct kvm_regs regs;
915     int ret;
916     int i;
917 
918     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
919     if (ret < 0) {
920         return ret;
921     }
922 
923     regs.ctr = env->ctr;
924     regs.lr  = env->lr;
925     regs.xer = cpu_read_xer(env);
926     regs.msr = env->msr;
927     regs.pc = env->nip;
928 
929     regs.srr0 = env->spr[SPR_SRR0];
930     regs.srr1 = env->spr[SPR_SRR1];
931 
932     regs.sprg0 = env->spr[SPR_SPRG0];
933     regs.sprg1 = env->spr[SPR_SPRG1];
934     regs.sprg2 = env->spr[SPR_SPRG2];
935     regs.sprg3 = env->spr[SPR_SPRG3];
936     regs.sprg4 = env->spr[SPR_SPRG4];
937     regs.sprg5 = env->spr[SPR_SPRG5];
938     regs.sprg6 = env->spr[SPR_SPRG6];
939     regs.sprg7 = env->spr[SPR_SPRG7];
940 
941     regs.pid = env->spr[SPR_BOOKE_PID];
942 
943     for (i = 0; i < 32; i++) {
944         regs.gpr[i] = env->gpr[i];
945     }
946 
947     regs.cr = ppc_get_cr(env);
948 
949     ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
950     if (ret < 0) {
951         return ret;
952     }
953 
954     kvm_put_fp(cs);
955 
956     if (env->tlb_dirty) {
957         kvm_sw_tlb_put(cpu);
958         env->tlb_dirty = false;
959     }
960 
961     if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
962         ret = kvmppc_put_books_sregs(cpu);
963         if (ret < 0) {
964             return ret;
965         }
966     }
967 
968     if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
969         kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
970     }
971 
972     if (cap_one_reg) {
973         /*
974          * We deliberately ignore errors here, for kernels which have
975          * the ONE_REG calls, but don't support the specific
976          * registers, there's a reasonable chance things will still
977          * work, at least until we try to migrate.
978          */
979         for (i = 0; i < 1024; i++) {
980             uint64_t id = env->spr_cb[i].one_reg_id;
981 
982             if (id != 0) {
983                 kvm_put_one_spr(cs, id, i);
984             }
985         }
986 
987 #ifdef TARGET_PPC64
988         if (FIELD_EX64(env->msr, MSR, TS)) {
989             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
990                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
991             }
992             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
993                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
994             }
995             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
996             kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
997             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
998             kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
999             kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1000             kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1001             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1002             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1003             kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1004             kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1005         }
1006 
1007         if (cap_papr) {
1008             if (kvm_put_vpa(cs) < 0) {
1009                 trace_kvm_failed_put_vpa();
1010             }
1011         }
1012 
1013         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1014 
1015         if (level > KVM_PUT_RUNTIME_STATE) {
1016             kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1017         }
1018 #endif /* TARGET_PPC64 */
1019     }
1020 
1021     return ret;
1022 }
1023 
kvm_sync_excp(CPUPPCState * env,int vector,int ivor)1024 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1025 {
1026      env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1027 }
1028 
kvmppc_get_booke_sregs(PowerPCCPU * cpu)1029 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1030 {
1031     CPUPPCState *env = &cpu->env;
1032     struct kvm_sregs sregs;
1033     int ret;
1034 
1035     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1036     if (ret < 0) {
1037         return ret;
1038     }
1039 
1040     if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1041         env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1042         env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1043         env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1044         env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1045         env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1046         env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1047         env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1048         env->spr[SPR_DECR] = sregs.u.e.dec;
1049         env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1050         env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1051         env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1052     }
1053 
1054     if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1055         env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1056         env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1057         env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1058         env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1059         env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1060     }
1061 
1062     if (sregs.u.e.features & KVM_SREGS_E_64) {
1063         env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1064     }
1065 
1066     if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1067         env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1068     }
1069 
1070     if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1071         env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1072         kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1073         env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1074         kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1075         env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1076         kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1077         env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1078         kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1079         env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1080         kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1081         env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1082         kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1083         env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1084         kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1085         env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1086         kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1087         env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1088         kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1089         env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1090         kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1091         env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1092         kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1093         env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1094         kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1095         env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1096         kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1097         env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1098         kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1099         env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1100         kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1101         env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1102         kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1103 
1104         if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1105             env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1106             kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1107             env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1108             kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1109             env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1110             kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1111         }
1112 
1113         if (sregs.u.e.features & KVM_SREGS_E_PM) {
1114             env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1115             kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1116         }
1117 
1118         if (sregs.u.e.features & KVM_SREGS_E_PC) {
1119             env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1120             kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1121             env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1122             kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1123         }
1124     }
1125 
1126     if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1127         env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1128         env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1129         env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1130         env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1131         env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1132         env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1133         env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1134         env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1135         env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1136         env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1137     }
1138 
1139     if (sregs.u.e.features & KVM_SREGS_EXP) {
1140         env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1141     }
1142 
1143     if (sregs.u.e.features & KVM_SREGS_E_PD) {
1144         env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1145         env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1146     }
1147 
1148     if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1149         env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1150         env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1151         env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1152 
1153         if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1154             env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1155             env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1156         }
1157     }
1158 
1159     return 0;
1160 }
1161 
kvmppc_get_books_sregs(PowerPCCPU * cpu)1162 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1163 {
1164     CPUPPCState *env = &cpu->env;
1165     struct kvm_sregs sregs;
1166     int ret;
1167     int i;
1168 
1169     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1170     if (ret < 0) {
1171         return ret;
1172     }
1173 
1174     if (!cpu->vhyp) {
1175         ppc_store_sdr1(env, sregs.u.s.sdr1);
1176     }
1177 
1178     /* Sync SLB */
1179 #ifdef TARGET_PPC64
1180     /*
1181      * The packed SLB array we get from KVM_GET_SREGS only contains
1182      * information about valid entries. So we flush our internal copy
1183      * to get rid of stale ones, then put all valid SLB entries back
1184      * in.
1185      */
1186     memset(env->slb, 0, sizeof(env->slb));
1187     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1188         target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1189         target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1190         /*
1191          * Only restore valid entries
1192          */
1193         if (rb & SLB_ESID_V) {
1194             ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1195         }
1196     }
1197 #endif
1198 
1199     /* Sync SRs */
1200     for (i = 0; i < 16; i++) {
1201         env->sr[i] = sregs.u.s.ppc32.sr[i];
1202     }
1203 
1204     /* Sync BATs */
1205     for (i = 0; i < 8; i++) {
1206         env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1207         env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1208         env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1209         env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1210     }
1211 
1212     return 0;
1213 }
1214 
kvm_arch_get_registers(CPUState * cs,Error ** errp)1215 int kvm_arch_get_registers(CPUState *cs, Error **errp)
1216 {
1217     PowerPCCPU *cpu = POWERPC_CPU(cs);
1218     CPUPPCState *env = &cpu->env;
1219     struct kvm_regs regs;
1220     int i, ret;
1221 
1222     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1223     if (ret < 0) {
1224         return ret;
1225     }
1226 
1227     ppc_set_cr(env, regs.cr);
1228     env->ctr = regs.ctr;
1229     env->lr = regs.lr;
1230     cpu_write_xer(env, regs.xer);
1231     env->msr = regs.msr;
1232     env->nip = regs.pc;
1233 
1234     env->spr[SPR_SRR0] = regs.srr0;
1235     env->spr[SPR_SRR1] = regs.srr1;
1236 
1237     env->spr[SPR_SPRG0] = regs.sprg0;
1238     env->spr[SPR_SPRG1] = regs.sprg1;
1239     env->spr[SPR_SPRG2] = regs.sprg2;
1240     env->spr[SPR_SPRG3] = regs.sprg3;
1241     env->spr[SPR_SPRG4] = regs.sprg4;
1242     env->spr[SPR_SPRG5] = regs.sprg5;
1243     env->spr[SPR_SPRG6] = regs.sprg6;
1244     env->spr[SPR_SPRG7] = regs.sprg7;
1245 
1246     env->spr[SPR_BOOKE_PID] = regs.pid;
1247 
1248     for (i = 0; i < 32; i++) {
1249         env->gpr[i] = regs.gpr[i];
1250     }
1251 
1252     kvm_get_fp(cs);
1253 
1254     if (cap_booke_sregs) {
1255         ret = kvmppc_get_booke_sregs(cpu);
1256         if (ret < 0) {
1257             return ret;
1258         }
1259     }
1260 
1261     if (cap_segstate) {
1262         ret = kvmppc_get_books_sregs(cpu);
1263         if (ret < 0) {
1264             return ret;
1265         }
1266     }
1267 
1268     if (cap_hior) {
1269         kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1270     }
1271 
1272     if (cap_one_reg) {
1273         /*
1274          * We deliberately ignore errors here, for kernels which have
1275          * the ONE_REG calls, but don't support the specific
1276          * registers, there's a reasonable chance things will still
1277          * work, at least until we try to migrate.
1278          */
1279         for (i = 0; i < 1024; i++) {
1280             uint64_t id = env->spr_cb[i].one_reg_id;
1281 
1282             if (id != 0) {
1283                 kvm_get_one_spr(cs, id, i);
1284             }
1285         }
1286 
1287 #ifdef TARGET_PPC64
1288         if (FIELD_EX64(env->msr, MSR, TS)) {
1289             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1290                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1291             }
1292             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1293                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1294             }
1295             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1296             kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1297             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1298             kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1299             kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1300             kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1301             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1302             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1303             kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1304             kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1305         }
1306 
1307         if (cap_papr) {
1308             if (kvm_get_vpa(cs) < 0) {
1309                 trace_kvm_failed_get_vpa();
1310             }
1311         }
1312 
1313         kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1314         kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1315 #endif
1316     }
1317 
1318     return 0;
1319 }
1320 
kvmppc_set_interrupt(PowerPCCPU * cpu,int irq,int level)1321 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1322 {
1323     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1324 
1325     if (irq != PPC_INTERRUPT_EXT) {
1326         return 0;
1327     }
1328 
1329     if (!cap_interrupt_unset) {
1330         return 0;
1331     }
1332 
1333     kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1334 
1335     return 0;
1336 }
1337 
kvm_arch_pre_run(CPUState * cs,struct kvm_run * run)1338 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1339 {
1340 }
1341 
kvm_arch_post_run(CPUState * cs,struct kvm_run * run)1342 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1343 {
1344     return MEMTXATTRS_UNSPECIFIED;
1345 }
1346 
kvm_arch_process_async_events(CPUState * cs)1347 int kvm_arch_process_async_events(CPUState *cs)
1348 {
1349     return cs->halted;
1350 }
1351 
kvmppc_handle_halt(PowerPCCPU * cpu)1352 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1353 {
1354     CPUState *cs = CPU(cpu);
1355     CPUPPCState *env = &cpu->env;
1356 
1357     if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1358         FIELD_EX64(env->msr, MSR, EE)) {
1359         cs->halted = 1;
1360         cs->exception_index = EXCP_HLT;
1361     }
1362 
1363     return 0;
1364 }
1365 
1366 /* map dcr access to existing qemu dcr emulation */
kvmppc_handle_dcr_read(CPUPPCState * env,uint32_t dcrn,uint32_t * data)1367 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1368                                   uint32_t dcrn, uint32_t *data)
1369 {
1370     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1371         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1372     }
1373 
1374     return 0;
1375 }
1376 
kvmppc_handle_dcr_write(CPUPPCState * env,uint32_t dcrn,uint32_t data)1377 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1378                                    uint32_t dcrn, uint32_t data)
1379 {
1380     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1381         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1382     }
1383 
1384     return 0;
1385 }
1386 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)1387 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1388 {
1389     /* Mixed endian case is not handled */
1390     uint32_t sc = debug_inst_opcode;
1391 
1392     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1393                             sizeof(sc), 0) ||
1394         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1395         return -EINVAL;
1396     }
1397 
1398     return 0;
1399 }
1400 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)1401 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1402 {
1403     uint32_t sc;
1404 
1405     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1406         sc != debug_inst_opcode ||
1407         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1408                             sizeof(sc), 1)) {
1409         return -EINVAL;
1410     }
1411 
1412     return 0;
1413 }
1414 
find_hw_breakpoint(target_ulong addr,int type)1415 static int find_hw_breakpoint(target_ulong addr, int type)
1416 {
1417     int n;
1418 
1419     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1420            <= ARRAY_SIZE(hw_debug_points));
1421 
1422     for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1423         if (hw_debug_points[n].addr == addr &&
1424              hw_debug_points[n].type == type) {
1425             return n;
1426         }
1427     }
1428 
1429     return -1;
1430 }
1431 
find_hw_watchpoint(target_ulong addr,int * flag)1432 static int find_hw_watchpoint(target_ulong addr, int *flag)
1433 {
1434     int n;
1435 
1436     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1437     if (n >= 0) {
1438         *flag = BP_MEM_ACCESS;
1439         return n;
1440     }
1441 
1442     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1443     if (n >= 0) {
1444         *flag = BP_MEM_WRITE;
1445         return n;
1446     }
1447 
1448     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1449     if (n >= 0) {
1450         *flag = BP_MEM_READ;
1451         return n;
1452     }
1453 
1454     return -1;
1455 }
1456 
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)1457 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1458 {
1459     const unsigned breakpoint_index = nb_hw_breakpoint + nb_hw_watchpoint;
1460     if (breakpoint_index >= ARRAY_SIZE(hw_debug_points)) {
1461         return -ENOBUFS;
1462     }
1463 
1464     hw_debug_points[breakpoint_index].addr = addr;
1465     hw_debug_points[breakpoint_index].type = type;
1466 
1467     switch (type) {
1468     case GDB_BREAKPOINT_HW:
1469         if (nb_hw_breakpoint >= max_hw_breakpoint) {
1470             return -ENOBUFS;
1471         }
1472 
1473         if (find_hw_breakpoint(addr, type) >= 0) {
1474             return -EEXIST;
1475         }
1476 
1477         nb_hw_breakpoint++;
1478         break;
1479 
1480     case GDB_WATCHPOINT_WRITE:
1481     case GDB_WATCHPOINT_READ:
1482     case GDB_WATCHPOINT_ACCESS:
1483         if (nb_hw_watchpoint >= max_hw_watchpoint) {
1484             return -ENOBUFS;
1485         }
1486 
1487         if (find_hw_breakpoint(addr, type) >= 0) {
1488             return -EEXIST;
1489         }
1490 
1491         nb_hw_watchpoint++;
1492         break;
1493 
1494     default:
1495         return -ENOSYS;
1496     }
1497 
1498     return 0;
1499 }
1500 
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)1501 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1502 {
1503     int n;
1504 
1505     n = find_hw_breakpoint(addr, type);
1506     if (n < 0) {
1507         return -ENOENT;
1508     }
1509 
1510     switch (type) {
1511     case GDB_BREAKPOINT_HW:
1512         nb_hw_breakpoint--;
1513         break;
1514 
1515     case GDB_WATCHPOINT_WRITE:
1516     case GDB_WATCHPOINT_READ:
1517     case GDB_WATCHPOINT_ACCESS:
1518         nb_hw_watchpoint--;
1519         break;
1520 
1521     default:
1522         return -ENOSYS;
1523     }
1524     hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1525 
1526     return 0;
1527 }
1528 
kvm_arch_remove_all_hw_breakpoints(void)1529 void kvm_arch_remove_all_hw_breakpoints(void)
1530 {
1531     nb_hw_breakpoint = nb_hw_watchpoint = 0;
1532 }
1533 
kvm_arch_update_guest_debug(CPUState * cs,struct kvm_guest_debug * dbg)1534 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1535 {
1536     int n;
1537 
1538     /* Software Breakpoint updates */
1539     if (kvm_sw_breakpoints_active(cs)) {
1540         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1541     }
1542 
1543     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1544            <= ARRAY_SIZE(hw_debug_points));
1545     assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1546 
1547     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1548         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1549         memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1550         for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1551             switch (hw_debug_points[n].type) {
1552             case GDB_BREAKPOINT_HW:
1553                 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1554                 break;
1555             case GDB_WATCHPOINT_WRITE:
1556                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1557                 break;
1558             case GDB_WATCHPOINT_READ:
1559                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1560                 break;
1561             case GDB_WATCHPOINT_ACCESS:
1562                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1563                                         KVMPPC_DEBUG_WATCH_READ;
1564                 break;
1565             default:
1566                 cpu_abort(cs, "Unsupported breakpoint type\n");
1567             }
1568             dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1569         }
1570     }
1571 }
1572 
kvm_handle_hw_breakpoint(CPUState * cs,struct kvm_debug_exit_arch * arch_info)1573 static int kvm_handle_hw_breakpoint(CPUState *cs,
1574                                     struct kvm_debug_exit_arch *arch_info)
1575 {
1576     int handle = DEBUG_RETURN_GUEST;
1577     int n;
1578     int flag = 0;
1579 
1580     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1581         if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1582             n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1583             if (n >= 0) {
1584                 handle = DEBUG_RETURN_GDB;
1585             }
1586         } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1587                                         KVMPPC_DEBUG_WATCH_WRITE)) {
1588             n = find_hw_watchpoint(arch_info->address,  &flag);
1589             if (n >= 0) {
1590                 handle = DEBUG_RETURN_GDB;
1591                 cs->watchpoint_hit = &hw_watchpoint;
1592                 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1593                 hw_watchpoint.flags = flag;
1594             }
1595         }
1596     }
1597     return handle;
1598 }
1599 
kvm_handle_singlestep(void)1600 static int kvm_handle_singlestep(void)
1601 {
1602     return DEBUG_RETURN_GDB;
1603 }
1604 
kvm_handle_sw_breakpoint(void)1605 static int kvm_handle_sw_breakpoint(void)
1606 {
1607     return DEBUG_RETURN_GDB;
1608 }
1609 
kvm_handle_debug(PowerPCCPU * cpu,struct kvm_run * run)1610 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1611 {
1612     CPUState *cs = CPU(cpu);
1613     CPUPPCState *env = &cpu->env;
1614     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1615 
1616     if (cs->singlestep_enabled) {
1617         return kvm_handle_singlestep();
1618     }
1619 
1620     if (arch_info->status) {
1621         return kvm_handle_hw_breakpoint(cs, arch_info);
1622     }
1623 
1624     if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1625         return kvm_handle_sw_breakpoint();
1626     }
1627 
1628     /*
1629      * QEMU is not able to handle debug exception, so inject
1630      * program exception to guest;
1631      * Yes program exception NOT debug exception !!
1632      * When QEMU is using debug resources then debug exception must
1633      * be always set. To achieve this we set MSR_DE and also set
1634      * MSRP_DEP so guest cannot change MSR_DE.
1635      * When emulating debug resource for guest we want guest
1636      * to control MSR_DE (enable/disable debug interrupt on need).
1637      * Supporting both configurations are NOT possible.
1638      * So the result is that we cannot share debug resources
1639      * between QEMU and Guest on BOOKE architecture.
1640      * In the current design QEMU gets the priority over guest,
1641      * this means that if QEMU is using debug resources then guest
1642      * cannot use them;
1643      * For software breakpoint QEMU uses a privileged instruction;
1644      * So there cannot be any reason that we are here for guest
1645      * set debug exception, only possibility is guest executed a
1646      * privileged / illegal instruction and that's why we are
1647      * injecting a program interrupt.
1648      */
1649     cpu_synchronize_state(cs);
1650     /*
1651      * env->nip is PC, so increment this by 4 to use
1652      * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1653      */
1654     env->nip += 4;
1655     cs->exception_index = POWERPC_EXCP_PROGRAM;
1656     env->error_code = POWERPC_EXCP_INVAL;
1657     ppc_cpu_do_interrupt(cs);
1658 
1659     return DEBUG_RETURN_GUEST;
1660 }
1661 
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)1662 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1663 {
1664     PowerPCCPU *cpu = POWERPC_CPU(cs);
1665     CPUPPCState *env = &cpu->env;
1666     int ret;
1667 
1668     bql_lock();
1669 
1670     switch (run->exit_reason) {
1671     case KVM_EXIT_DCR:
1672         if (run->dcr.is_write) {
1673             trace_kvm_handle_dcr_write();
1674             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1675         } else {
1676             trace_kvm_handle_dcr_read();
1677             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1678         }
1679         break;
1680     case KVM_EXIT_HLT:
1681         trace_kvm_handle_halt();
1682         ret = kvmppc_handle_halt(cpu);
1683         break;
1684 #if defined(CONFIG_PSERIES)
1685     case KVM_EXIT_PAPR_HCALL:
1686         trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1687         run->papr_hcall.ret = spapr_hypercall(cpu,
1688                                               run->papr_hcall.nr,
1689                                               run->papr_hcall.args);
1690         ret = 0;
1691         break;
1692 #endif
1693     case KVM_EXIT_EPR:
1694         trace_kvm_handle_epr();
1695         run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1696         ret = 0;
1697         break;
1698     case KVM_EXIT_WATCHDOG:
1699         trace_kvm_handle_watchdog_expiry();
1700         watchdog_perform_action();
1701         ret = 0;
1702         break;
1703 
1704     case KVM_EXIT_DEBUG:
1705         trace_kvm_handle_debug_exception();
1706         if (kvm_handle_debug(cpu, run)) {
1707             ret = EXCP_DEBUG;
1708             break;
1709         }
1710         /* re-enter, this exception was guest-internal */
1711         ret = 0;
1712         break;
1713 
1714 #if defined(CONFIG_PSERIES)
1715     case KVM_EXIT_NMI:
1716         trace_kvm_handle_nmi_exception();
1717         ret = kvm_handle_nmi(cpu, run);
1718         break;
1719 #endif
1720 
1721     default:
1722         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1723         ret = -1;
1724         break;
1725     }
1726 
1727     bql_unlock();
1728     return ret;
1729 }
1730 
kvmppc_or_tsr_bits(PowerPCCPU * cpu,uint32_t tsr_bits)1731 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1732 {
1733     CPUState *cs = CPU(cpu);
1734     uint32_t bits = tsr_bits;
1735     struct kvm_one_reg reg = {
1736         .id = KVM_REG_PPC_OR_TSR,
1737         .addr = (uintptr_t) &bits,
1738     };
1739 
1740     if (!kvm_enabled()) {
1741         return 0;
1742     }
1743 
1744     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1745 }
1746 
kvmppc_clear_tsr_bits(PowerPCCPU * cpu,uint32_t tsr_bits)1747 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1748 {
1749 
1750     CPUState *cs = CPU(cpu);
1751     uint32_t bits = tsr_bits;
1752     struct kvm_one_reg reg = {
1753         .id = KVM_REG_PPC_CLEAR_TSR,
1754         .addr = (uintptr_t) &bits,
1755     };
1756 
1757     if (!kvm_enabled()) {
1758         return 0;
1759     }
1760 
1761     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1762 }
1763 
kvmppc_set_tcr(PowerPCCPU * cpu)1764 int kvmppc_set_tcr(PowerPCCPU *cpu)
1765 {
1766     CPUState *cs = CPU(cpu);
1767     CPUPPCState *env = &cpu->env;
1768     uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1769 
1770     struct kvm_one_reg reg = {
1771         .id = KVM_REG_PPC_TCR,
1772         .addr = (uintptr_t) &tcr,
1773     };
1774 
1775     if (!kvm_enabled()) {
1776         return 0;
1777     }
1778 
1779     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1780 }
1781 
kvmppc_booke_watchdog_enable(PowerPCCPU * cpu)1782 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1783 {
1784     CPUState *cs = CPU(cpu);
1785     int ret;
1786 
1787     if (!kvm_enabled()) {
1788         return -1;
1789     }
1790 
1791     if (!cap_ppc_watchdog) {
1792         printf("warning: KVM does not support watchdog");
1793         return -1;
1794     }
1795 
1796     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1797     if (ret < 0) {
1798         fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1799                 __func__, strerror(-ret));
1800         return ret;
1801     }
1802 
1803     return ret;
1804 }
1805 
read_cpuinfo(const char * field,char * value,int len)1806 static int read_cpuinfo(const char *field, char *value, int len)
1807 {
1808     FILE *f;
1809     int ret = -1;
1810     int field_len = strlen(field);
1811     char line[512];
1812 
1813     f = fopen("/proc/cpuinfo", "r");
1814     if (!f) {
1815         return -1;
1816     }
1817 
1818     do {
1819         if (!fgets(line, sizeof(line), f)) {
1820             break;
1821         }
1822         if (!strncmp(line, field, field_len)) {
1823             pstrcpy(value, len, line);
1824             ret = 0;
1825             break;
1826         }
1827     } while (*line);
1828 
1829     fclose(f);
1830 
1831     return ret;
1832 }
1833 
kvmppc_get_tbfreq_procfs(void)1834 static uint32_t kvmppc_get_tbfreq_procfs(void)
1835 {
1836     char line[512];
1837     char *ns;
1838     uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1839     uint32_t tbfreq_procfs;
1840 
1841     if (read_cpuinfo("timebase", line, sizeof(line))) {
1842         return tbfreq_fallback;
1843     }
1844 
1845     ns = strchr(line, ':');
1846     if (!ns) {
1847         return tbfreq_fallback;
1848     }
1849 
1850     tbfreq_procfs = atoi(++ns);
1851 
1852     /* 0 is certainly not acceptable by the guest, return fallback value */
1853     return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1854 }
1855 
kvmppc_get_tbfreq(void)1856 uint32_t kvmppc_get_tbfreq(void)
1857 {
1858     static uint32_t cached_tbfreq;
1859 
1860     if (!cached_tbfreq) {
1861         cached_tbfreq = kvmppc_get_tbfreq_procfs();
1862     }
1863 
1864     return cached_tbfreq;
1865 }
1866 
kvmppc_get_host_serial(char ** value)1867 bool kvmppc_get_host_serial(char **value)
1868 {
1869     return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1870                                NULL);
1871 }
1872 
kvmppc_get_host_model(char ** value)1873 bool kvmppc_get_host_model(char **value)
1874 {
1875     return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1876 }
1877 
1878 /* Try to find a device tree node for a CPU with clock-frequency property */
kvmppc_find_cpu_dt(char * buf,int buf_len)1879 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1880 {
1881     struct dirent *dirp;
1882     DIR *dp;
1883 
1884     dp = opendir(PROC_DEVTREE_CPU);
1885     if (!dp) {
1886         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1887         return -1;
1888     }
1889 
1890     buf[0] = '\0';
1891     while ((dirp = readdir(dp)) != NULL) {
1892         FILE *f;
1893 
1894         /* Don't accidentally read from the current and parent directories */
1895         if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
1896             continue;
1897         }
1898 
1899         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1900                  dirp->d_name);
1901         f = fopen(buf, "r");
1902         if (f) {
1903             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1904             fclose(f);
1905             break;
1906         }
1907         buf[0] = '\0';
1908     }
1909     closedir(dp);
1910     if (buf[0] == '\0') {
1911         printf("Unknown host!\n");
1912         return -1;
1913     }
1914 
1915     return 0;
1916 }
1917 
kvmppc_read_int_dt(const char * filename)1918 static uint64_t kvmppc_read_int_dt(const char *filename)
1919 {
1920     union {
1921         uint32_t v32;
1922         uint64_t v64;
1923     } u;
1924     FILE *f;
1925     int len;
1926 
1927     f = fopen(filename, "rb");
1928     if (!f) {
1929         return -1;
1930     }
1931 
1932     len = fread(&u, 1, sizeof(u), f);
1933     fclose(f);
1934     switch (len) {
1935     case 4:
1936         /* property is a 32-bit quantity */
1937         return be32_to_cpu(u.v32);
1938     case 8:
1939         return be64_to_cpu(u.v64);
1940     }
1941 
1942     return 0;
1943 }
1944 
1945 /*
1946  * Read a CPU node property from the host device tree that's a single
1947  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1948  * (can't find or open the property, or doesn't understand the format)
1949  */
kvmppc_read_int_cpu_dt(const char * propname)1950 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1951 {
1952     char buf[PATH_MAX], *tmp;
1953     uint64_t val;
1954 
1955     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1956         return -1;
1957     }
1958 
1959     tmp = g_strdup_printf("%s/%s", buf, propname);
1960     val = kvmppc_read_int_dt(tmp);
1961     g_free(tmp);
1962 
1963     return val;
1964 }
1965 
kvmppc_get_clockfreq(void)1966 uint64_t kvmppc_get_clockfreq(void)
1967 {
1968     return kvmppc_read_int_cpu_dt("clock-frequency");
1969 }
1970 
kvmppc_get_dec_bits(void)1971 static int kvmppc_get_dec_bits(void)
1972 {
1973     int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1974 
1975     if (nr_bits > 0) {
1976         return nr_bits;
1977     }
1978     return 0;
1979 }
1980 
kvmppc_get_pvinfo(CPUPPCState * env,struct kvm_ppc_pvinfo * pvinfo)1981 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1982 {
1983     CPUState *cs = env_cpu(env);
1984 
1985     if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1986         !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1987         return 0;
1988     }
1989 
1990     return 1;
1991 }
1992 
kvmppc_get_hasidle(CPUPPCState * env)1993 int kvmppc_get_hasidle(CPUPPCState *env)
1994 {
1995     struct kvm_ppc_pvinfo pvinfo;
1996 
1997     if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1998         (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1999         return 1;
2000     }
2001 
2002     return 0;
2003 }
2004 
kvmppc_get_hypercall(CPUPPCState * env,uint8_t * buf,int buf_len)2005 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
2006 {
2007     uint32_t *hc = (uint32_t *)buf;
2008     struct kvm_ppc_pvinfo pvinfo;
2009 
2010     if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2011         memcpy(buf, pvinfo.hcall, buf_len);
2012         return 0;
2013     }
2014 
2015     /*
2016      * Fallback to always fail hypercalls regardless of endianness:
2017      *
2018      *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2019      *     li r3, -1
2020      *     b .+8       (becomes nop in wrong endian)
2021      *     bswap32(li r3, -1)
2022      */
2023 
2024     hc[0] = cpu_to_be32(0x08000048);
2025     hc[1] = cpu_to_be32(0x3860ffff);
2026     hc[2] = cpu_to_be32(0x48000008);
2027     hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2028 
2029     return 1;
2030 }
2031 
kvmppc_enable_hcall(KVMState * s,target_ulong hcall)2032 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2033 {
2034     return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2035 }
2036 
kvmppc_enable_logical_ci_hcalls(void)2037 void kvmppc_enable_logical_ci_hcalls(void)
2038 {
2039     /*
2040      * FIXME: it would be nice if we could detect the cases where
2041      * we're using a device which requires the in kernel
2042      * implementation of these hcalls, but the kernel lacks them and
2043      * produce a warning.
2044      */
2045     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2046     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2047 }
2048 
kvmppc_enable_set_mode_hcall(void)2049 void kvmppc_enable_set_mode_hcall(void)
2050 {
2051     kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2052 }
2053 
kvmppc_enable_clear_ref_mod_hcalls(void)2054 void kvmppc_enable_clear_ref_mod_hcalls(void)
2055 {
2056     kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2057     kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2058 }
2059 
kvmppc_enable_h_page_init(void)2060 void kvmppc_enable_h_page_init(void)
2061 {
2062     kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2063 }
2064 
kvmppc_enable_h_rpt_invalidate(void)2065 void kvmppc_enable_h_rpt_invalidate(void)
2066 {
2067     kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2068 }
2069 
2070 #ifdef CONFIG_PSERIES
kvmppc_set_papr(PowerPCCPU * cpu)2071 void kvmppc_set_papr(PowerPCCPU *cpu)
2072 {
2073     CPUState *cs = CPU(cpu);
2074     int ret;
2075 
2076     if (!kvm_enabled()) {
2077         return;
2078     }
2079 
2080     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2081     if (ret) {
2082         error_report("This vCPU type or KVM version does not support PAPR");
2083         exit(1);
2084     }
2085 
2086     /*
2087      * Update the capability flag so we sync the right information
2088      * with kvm
2089      */
2090     cap_papr = 1;
2091 }
2092 #endif
2093 
kvmppc_set_compat(PowerPCCPU * cpu,uint32_t compat_pvr)2094 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2095 {
2096     return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2097 }
2098 
kvmppc_set_mpic_proxy(PowerPCCPU * cpu,int mpic_proxy)2099 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2100 {
2101     CPUState *cs = CPU(cpu);
2102     int ret;
2103 
2104     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2105     if (ret && mpic_proxy) {
2106         error_report("This KVM version does not support EPR");
2107         exit(1);
2108     }
2109 }
2110 
kvmppc_get_fwnmi(void)2111 bool kvmppc_get_fwnmi(void)
2112 {
2113     return cap_fwnmi;
2114 }
2115 
kvmppc_set_fwnmi(PowerPCCPU * cpu)2116 int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2117 {
2118     CPUState *cs = CPU(cpu);
2119 
2120     return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2121 }
2122 
kvmppc_has_cap_dawr1(void)2123 bool kvmppc_has_cap_dawr1(void)
2124 {
2125     return !!cap_dawr1;
2126 }
2127 
kvmppc_set_cap_dawr1(int enable)2128 int kvmppc_set_cap_dawr1(int enable)
2129 {
2130     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_DAWR1, 0, enable);
2131 }
2132 
kvmppc_smt_threads(void)2133 int kvmppc_smt_threads(void)
2134 {
2135     return cap_ppc_smt ? cap_ppc_smt : 1;
2136 }
2137 
kvmppc_set_smt_threads(int smt)2138 int kvmppc_set_smt_threads(int smt)
2139 {
2140     int ret;
2141 
2142     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2143     if (!ret) {
2144         cap_ppc_smt = smt;
2145     }
2146     return ret;
2147 }
2148 
kvmppc_error_append_smt_possible_hint(Error * const * errp)2149 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2150 {
2151     int i;
2152     GString *g;
2153     char *s;
2154 
2155     assert(kvm_enabled());
2156     if (cap_ppc_smt_possible) {
2157         g = g_string_new("Available VSMT modes:");
2158         for (i = 63; i >= 0; i--) {
2159             if ((1UL << i) & cap_ppc_smt_possible) {
2160                 g_string_append_printf(g, " %lu", (1UL << i));
2161             }
2162         }
2163         s = g_string_free(g, false);
2164         error_append_hint(errp, "%s.\n", s);
2165         g_free(s);
2166     } else {
2167         error_append_hint(errp,
2168                           "This KVM seems to be too old to support VSMT.\n");
2169     }
2170 }
2171 
2172 
2173 #ifdef TARGET_PPC64
kvmppc_vrma_limit(unsigned int hash_shift)2174 uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2175 {
2176     struct kvm_ppc_smmu_info info;
2177     long rampagesize, best_page_shift;
2178     int i;
2179 
2180     /*
2181      * Find the largest hardware supported page size that's less than
2182      * or equal to the (logical) backing page size of guest RAM
2183      */
2184     kvm_get_smmu_info(&info, &error_fatal);
2185     rampagesize = qemu_minrampagesize();
2186     best_page_shift = 0;
2187 
2188     for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2189         struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2190 
2191         if (!sps->page_shift) {
2192             continue;
2193         }
2194 
2195         if ((sps->page_shift > best_page_shift)
2196             && ((1UL << sps->page_shift) <= rampagesize)) {
2197             best_page_shift = sps->page_shift;
2198         }
2199     }
2200 
2201     return 1ULL << (best_page_shift + hash_shift - 7);
2202 }
2203 #endif
2204 
kvmppc_spapr_use_multitce(void)2205 bool kvmppc_spapr_use_multitce(void)
2206 {
2207     return cap_spapr_multitce;
2208 }
2209 
kvmppc_spapr_enable_inkernel_multitce(void)2210 int kvmppc_spapr_enable_inkernel_multitce(void)
2211 {
2212     int ret;
2213 
2214     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2215                             H_PUT_TCE_INDIRECT, 1);
2216     if (!ret) {
2217         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2218                                 H_STUFF_TCE, 1);
2219     }
2220 
2221     return ret;
2222 }
2223 
kvmppc_create_spapr_tce(uint32_t liobn,uint32_t page_shift,uint64_t bus_offset,uint32_t nb_table,int * pfd,bool need_vfio)2224 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2225                               uint64_t bus_offset, uint32_t nb_table,
2226                               int *pfd, bool need_vfio)
2227 {
2228     long len;
2229     int fd;
2230     void *table;
2231 
2232     /*
2233      * Must set fd to -1 so we don't try to munmap when called for
2234      * destroying the table, which the upper layers -will- do
2235      */
2236     *pfd = -1;
2237     if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2238         return NULL;
2239     }
2240 
2241     if (cap_spapr_tce_64) {
2242         struct kvm_create_spapr_tce_64 args = {
2243             .liobn = liobn,
2244             .page_shift = page_shift,
2245             .offset = bus_offset >> page_shift,
2246             .size = nb_table,
2247             .flags = 0
2248         };
2249         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2250         if (fd < 0) {
2251             fprintf(stderr,
2252                     "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2253                     liobn);
2254             return NULL;
2255         }
2256     } else if (cap_spapr_tce) {
2257         uint64_t window_size = (uint64_t) nb_table << page_shift;
2258         struct kvm_create_spapr_tce args = {
2259             .liobn = liobn,
2260             .window_size = window_size,
2261         };
2262         if ((window_size != args.window_size) || bus_offset) {
2263             return NULL;
2264         }
2265         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2266         if (fd < 0) {
2267             fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2268                     liobn);
2269             return NULL;
2270         }
2271     } else {
2272         return NULL;
2273     }
2274 
2275     len = nb_table * sizeof(uint64_t);
2276     /* FIXME: round this up to page size */
2277 
2278     table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2279     if (table == MAP_FAILED) {
2280         fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2281                 liobn);
2282         close(fd);
2283         return NULL;
2284     }
2285 
2286     *pfd = fd;
2287     return table;
2288 }
2289 
kvmppc_remove_spapr_tce(void * table,int fd,uint32_t nb_table)2290 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2291 {
2292     long len;
2293 
2294     if (fd < 0) {
2295         return -1;
2296     }
2297 
2298     len = nb_table * sizeof(uint64_t);
2299     if ((munmap(table, len) < 0) ||
2300         (close(fd) < 0)) {
2301         fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2302                 strerror(errno));
2303         /* Leak the table */
2304     }
2305 
2306     return 0;
2307 }
2308 
kvmppc_reset_htab(int shift_hint)2309 int kvmppc_reset_htab(int shift_hint)
2310 {
2311     uint32_t shift = shift_hint;
2312 
2313     if (!kvm_enabled()) {
2314         /* Full emulation, tell caller to allocate htab itself */
2315         return 0;
2316     }
2317     if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2318         int ret;
2319         ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2320         if (ret == -ENOTTY) {
2321             /*
2322              * At least some versions of PR KVM advertise the
2323              * capability, but don't implement the ioctl().  Oops.
2324              * Return 0 so that we allocate the htab in qemu, as is
2325              * correct for PR.
2326              */
2327             return 0;
2328         } else if (ret < 0) {
2329             return ret;
2330         }
2331         return shift;
2332     }
2333 
2334     /*
2335      * We have a kernel that predates the htab reset calls.  For PR
2336      * KVM, we need to allocate the htab ourselves, for an HV KVM of
2337      * this era, it has allocated a 16MB fixed size hash table
2338      * already.
2339      */
2340     if (kvmppc_is_pr(kvm_state)) {
2341         /* PR - tell caller to allocate htab */
2342         return 0;
2343     } else {
2344         /* HV - assume 16MB kernel allocated htab */
2345         return 24;
2346     }
2347 }
2348 
mfpvr(void)2349 static inline uint32_t mfpvr(void)
2350 {
2351     uint32_t pvr;
2352 
2353     asm ("mfpvr %0"
2354          : "=r"(pvr));
2355     return pvr;
2356 }
2357 
alter_insns(uint64_t * word,uint64_t flags,bool on)2358 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2359 {
2360     if (on) {
2361         *word |= flags;
2362     } else {
2363         *word &= ~flags;
2364     }
2365 }
2366 
kvmppc_cpu_realize(CPUState * cs,Error ** errp)2367 static bool kvmppc_cpu_realize(CPUState *cs, Error **errp)
2368 {
2369     int ret;
2370     const char *vcpu_str = (cs->parent_obj.hotplugged == true) ?
2371                            "hotplug" : "create";
2372     cs->cpu_index = cpu_get_free_index();
2373 
2374     POWERPC_CPU(cs)->vcpu_id = cs->cpu_index;
2375 
2376     /* create and park to fail gracefully in case vcpu hotplug fails */
2377     ret = kvm_create_and_park_vcpu(cs);
2378     if (ret) {
2379         /*
2380          * This causes QEMU to terminate if initial CPU creation
2381          * fails, and only CPU hotplug failure if the error happens
2382          * there.
2383          */
2384         error_setg(errp, "%s: vcpu %s failed with %d",
2385                          __func__, vcpu_str, ret);
2386         return false;
2387     }
2388     return true;
2389 }
2390 
kvmppc_host_cpu_class_init(ObjectClass * oc,const void * data)2391 static void kvmppc_host_cpu_class_init(ObjectClass *oc, const void *data)
2392 {
2393     PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2394     uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2395     uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2396 
2397     /* Now fix up the class with information we can query from the host */
2398     pcc->pvr = mfpvr();
2399 
2400     alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2401                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2402     alter_insns(&pcc->insns_flags2, PPC2_VSX,
2403                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2404     alter_insns(&pcc->insns_flags2, PPC2_DFP,
2405                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2406 
2407     if (dcache_size != -1) {
2408         pcc->l1_dcache_size = dcache_size;
2409     }
2410 
2411     if (icache_size != -1) {
2412         pcc->l1_icache_size = icache_size;
2413     }
2414 
2415 #if defined(TARGET_PPC64)
2416     pcc->radix_page_info = kvmppc_get_radix_page_info();
2417 #endif /* defined(TARGET_PPC64) */
2418 }
2419 
kvmppc_has_cap_epr(void)2420 bool kvmppc_has_cap_epr(void)
2421 {
2422     return cap_epr;
2423 }
2424 
kvmppc_has_cap_fixup_hcalls(void)2425 bool kvmppc_has_cap_fixup_hcalls(void)
2426 {
2427     return cap_fixup_hcalls;
2428 }
2429 
kvmppc_has_cap_htm(void)2430 bool kvmppc_has_cap_htm(void)
2431 {
2432     return cap_htm;
2433 }
2434 
kvmppc_has_cap_mmu_radix(void)2435 bool kvmppc_has_cap_mmu_radix(void)
2436 {
2437     return cap_mmu_radix;
2438 }
2439 
kvmppc_has_cap_mmu_hash_v3(void)2440 bool kvmppc_has_cap_mmu_hash_v3(void)
2441 {
2442     return cap_mmu_hash_v3;
2443 }
2444 
kvmppc_power8_host(void)2445 static bool kvmppc_power8_host(void)
2446 {
2447     bool ret = false;
2448 #ifdef TARGET_PPC64
2449     {
2450         uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2451         ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2452               (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2453               (base_pvr == CPU_POWERPC_POWER8_BASE);
2454     }
2455 #endif /* TARGET_PPC64 */
2456     return ret;
2457 }
2458 
parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)2459 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2460 {
2461     bool l1d_thread_priv_req = !kvmppc_power8_host();
2462 
2463     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2464         return 2;
2465     } else if ((!l1d_thread_priv_req ||
2466                 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2467                (c.character & c.character_mask
2468                 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2469         return 1;
2470     }
2471 
2472     return 0;
2473 }
2474 
parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)2475 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2476 {
2477     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2478         return 2;
2479     } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2480         return 1;
2481     }
2482 
2483     return 0;
2484 }
2485 
parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)2486 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2487 {
2488     if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2489         (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2490         (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2491         return SPAPR_CAP_FIXED_NA;
2492     } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2493         return SPAPR_CAP_WORKAROUND;
2494     } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2495         return  SPAPR_CAP_FIXED_CCD;
2496     } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2497         return SPAPR_CAP_FIXED_IBS;
2498     }
2499 
2500     return 0;
2501 }
2502 
parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)2503 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2504 {
2505     if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2506         return 1;
2507     }
2508     return 0;
2509 }
2510 
kvmppc_has_cap_xive(void)2511 bool kvmppc_has_cap_xive(void)
2512 {
2513     return cap_xive;
2514 }
2515 
kvmppc_get_cpu_characteristics(KVMState * s)2516 static void kvmppc_get_cpu_characteristics(KVMState *s)
2517 {
2518     struct kvm_ppc_cpu_char c;
2519     int ret;
2520 
2521     /* Assume broken */
2522     cap_ppc_safe_cache = 0;
2523     cap_ppc_safe_bounds_check = 0;
2524     cap_ppc_safe_indirect_branch = 0;
2525 
2526     ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2527     if (!ret) {
2528         return;
2529     }
2530     ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2531     if (ret < 0) {
2532         return;
2533     }
2534 
2535     cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2536     cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2537     cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2538     cap_ppc_count_cache_flush_assist =
2539         parse_cap_ppc_count_cache_flush_assist(c);
2540 }
2541 
kvmppc_get_cap_safe_cache(void)2542 int kvmppc_get_cap_safe_cache(void)
2543 {
2544     return cap_ppc_safe_cache;
2545 }
2546 
kvmppc_get_cap_safe_bounds_check(void)2547 int kvmppc_get_cap_safe_bounds_check(void)
2548 {
2549     return cap_ppc_safe_bounds_check;
2550 }
2551 
kvmppc_get_cap_safe_indirect_branch(void)2552 int kvmppc_get_cap_safe_indirect_branch(void)
2553 {
2554     return cap_ppc_safe_indirect_branch;
2555 }
2556 
kvmppc_get_cap_count_cache_flush_assist(void)2557 int kvmppc_get_cap_count_cache_flush_assist(void)
2558 {
2559     return cap_ppc_count_cache_flush_assist;
2560 }
2561 
kvmppc_has_cap_nested_kvm_hv(void)2562 bool kvmppc_has_cap_nested_kvm_hv(void)
2563 {
2564     return !!cap_ppc_nested_kvm_hv;
2565 }
2566 
kvmppc_set_cap_nested_kvm_hv(int enable)2567 int kvmppc_set_cap_nested_kvm_hv(int enable)
2568 {
2569     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2570 }
2571 
kvmppc_has_cap_spapr_vfio(void)2572 bool kvmppc_has_cap_spapr_vfio(void)
2573 {
2574     return cap_spapr_vfio;
2575 }
2576 
kvmppc_get_cap_large_decr(void)2577 int kvmppc_get_cap_large_decr(void)
2578 {
2579     return cap_large_decr;
2580 }
2581 
kvmppc_enable_cap_large_decr(PowerPCCPU * cpu,int enable)2582 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2583 {
2584     CPUState *cs = CPU(cpu);
2585     uint64_t lpcr = 0;
2586 
2587     kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2588     /* Do we need to modify the LPCR? */
2589     if (!!(lpcr & LPCR_LD) != !!enable) {
2590         if (enable) {
2591             lpcr |= LPCR_LD;
2592         } else {
2593             lpcr &= ~LPCR_LD;
2594         }
2595         kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2596         kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2597 
2598         if (!!(lpcr & LPCR_LD) != !!enable) {
2599             return -1;
2600         }
2601     }
2602 
2603     return 0;
2604 }
2605 
kvmppc_has_cap_rpt_invalidate(void)2606 int kvmppc_has_cap_rpt_invalidate(void)
2607 {
2608     return cap_rpt_invalidate;
2609 }
2610 
kvmppc_supports_ail_3(void)2611 bool kvmppc_supports_ail_3(void)
2612 {
2613     return cap_ail_mode_3;
2614 }
2615 
kvm_ppc_get_host_cpu_class(void)2616 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2617 {
2618     uint32_t host_pvr = mfpvr();
2619     PowerPCCPUClass *pvr_pcc;
2620 
2621     pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2622     if (pvr_pcc == NULL) {
2623         pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2624     }
2625 
2626     return pvr_pcc;
2627 }
2628 
pseries_machine_class_fixup(ObjectClass * oc,void * opaque)2629 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2630 {
2631     MachineClass *mc = MACHINE_CLASS(oc);
2632 
2633     mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2634 }
2635 
kvm_ppc_register_host_cpu_type(void)2636 static int kvm_ppc_register_host_cpu_type(void)
2637 {
2638     TypeInfo type_info = {
2639         .name = TYPE_HOST_POWERPC_CPU,
2640         .class_init = kvmppc_host_cpu_class_init,
2641     };
2642     PowerPCCPUClass *pvr_pcc;
2643     ObjectClass *oc;
2644     DeviceClass *dc;
2645     int i;
2646 
2647     pvr_pcc = kvm_ppc_get_host_cpu_class();
2648     if (pvr_pcc == NULL) {
2649         return -1;
2650     }
2651     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2652     type_register_static(&type_info);
2653     /* override TCG default cpu type with 'host' cpu model */
2654     object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2655                          false, NULL);
2656 
2657     oc = object_class_by_name(type_info.name);
2658     g_assert(oc);
2659 
2660     /*
2661      * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2662      * we want "POWER8" to be a "family" alias that points to the current
2663      * host CPU type, too)
2664      */
2665     dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2666     for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2667         if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2668             char *suffix;
2669 
2670             ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2671             suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2672             if (suffix) {
2673                 *suffix = 0;
2674             }
2675             break;
2676         }
2677     }
2678 
2679     return 0;
2680 }
2681 
kvmppc_define_rtas_kernel_token(uint32_t token,const char * function)2682 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2683 {
2684     struct kvm_rtas_token_args args = {
2685         .token = token,
2686     };
2687 
2688     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2689         return -ENOENT;
2690     }
2691 
2692     strncpy(args.name, function, sizeof(args.name) - 1);
2693 
2694     return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2695 }
2696 
kvmppc_get_htab_fd(bool write,uint64_t index,Error ** errp)2697 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2698 {
2699     struct kvm_get_htab_fd s = {
2700         .flags = write ? KVM_GET_HTAB_WRITE : 0,
2701         .start_index = index,
2702     };
2703     int ret;
2704 
2705     if (!cap_htab_fd) {
2706         error_setg(errp, "KVM version doesn't support %s the HPT",
2707                    write ? "writing" : "reading");
2708         return -ENOTSUP;
2709     }
2710 
2711     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2712     if (ret < 0) {
2713         error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2714                    write ? "writing" : "reading", write ? "to" : "from",
2715                    strerror(errno));
2716         return -errno;
2717     }
2718 
2719     return ret;
2720 }
2721 
kvmppc_save_htab(QEMUFile * f,int fd,size_t bufsize,int64_t max_ns)2722 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2723 {
2724     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2725     g_autofree uint8_t *buf = g_malloc(bufsize);
2726     ssize_t rc;
2727 
2728     do {
2729         rc = read(fd, buf, bufsize);
2730         if (rc < 0) {
2731             fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2732                     strerror(errno));
2733             return rc;
2734         } else if (rc) {
2735             uint8_t *buffer = buf;
2736             ssize_t n = rc;
2737             while (n) {
2738                 struct kvm_get_htab_header *head =
2739                     (struct kvm_get_htab_header *) buffer;
2740                 size_t chunksize = sizeof(*head) +
2741                      HASH_PTE_SIZE_64 * head->n_valid;
2742 
2743                 qemu_put_be32(f, head->index);
2744                 qemu_put_be16(f, head->n_valid);
2745                 qemu_put_be16(f, head->n_invalid);
2746                 qemu_put_buffer(f, (void *)(head + 1),
2747                                 HASH_PTE_SIZE_64 * head->n_valid);
2748 
2749                 buffer += chunksize;
2750                 n -= chunksize;
2751             }
2752         }
2753     } while ((rc != 0)
2754              && ((max_ns < 0) ||
2755                  ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2756 
2757     return (rc == 0) ? 1 : 0;
2758 }
2759 
kvmppc_load_htab_chunk(QEMUFile * f,int fd,uint32_t index,uint16_t n_valid,uint16_t n_invalid,Error ** errp)2760 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2761                            uint16_t n_valid, uint16_t n_invalid, Error **errp)
2762 {
2763     struct kvm_get_htab_header *buf;
2764     size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2765     ssize_t rc;
2766 
2767     buf = alloca(chunksize);
2768     buf->index = index;
2769     buf->n_valid = n_valid;
2770     buf->n_invalid = n_invalid;
2771 
2772     qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2773 
2774     rc = write(fd, buf, chunksize);
2775     if (rc < 0) {
2776         error_setg_errno(errp, errno, "Error writing the KVM hash table");
2777         return -errno;
2778     }
2779     if (rc != chunksize) {
2780         /* We should never get a short write on a single chunk */
2781         error_setg(errp, "Short write while restoring the KVM hash table");
2782         return -ENOSPC;
2783     }
2784     return 0;
2785 }
2786 
kvm_arch_stop_on_emulation_error(CPUState * cpu)2787 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2788 {
2789     return true;
2790 }
2791 
kvm_arch_init_irq_routing(KVMState * s)2792 void kvm_arch_init_irq_routing(KVMState *s)
2793 {
2794 }
2795 
kvmppc_read_hptes(ppc_hash_pte64_t * hptes,hwaddr ptex,int n)2796 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2797 {
2798     int fd, rc;
2799     int i;
2800 
2801     fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2802 
2803     i = 0;
2804     while (i < n) {
2805         struct kvm_get_htab_header *hdr;
2806         int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2807         char buf[sizeof(*hdr) + HPTES_PER_GROUP * HASH_PTE_SIZE_64];
2808 
2809         rc = read(fd, buf, sizeof(*hdr) + m * HASH_PTE_SIZE_64);
2810         if (rc < 0) {
2811             hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2812         }
2813 
2814         hdr = (struct kvm_get_htab_header *)buf;
2815         while ((i < n) && ((char *)hdr < (buf + rc))) {
2816             int invalid = hdr->n_invalid, valid = hdr->n_valid;
2817 
2818             if (hdr->index != (ptex + i)) {
2819                 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2820                          " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2821             }
2822 
2823             if (n - i < valid) {
2824                 valid = n - i;
2825             }
2826             memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2827             i += valid;
2828 
2829             if ((n - i) < invalid) {
2830                 invalid = n - i;
2831             }
2832             memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2833             i += invalid;
2834 
2835             hdr = (struct kvm_get_htab_header *)
2836                 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2837         }
2838     }
2839 
2840     close(fd);
2841 }
2842 
kvmppc_write_hpte(hwaddr ptex,uint64_t pte0,uint64_t pte1)2843 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2844 {
2845     int fd, rc;
2846     struct {
2847         struct kvm_get_htab_header hdr;
2848         uint64_t pte0;
2849         uint64_t pte1;
2850     } buf;
2851 
2852     fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2853 
2854     buf.hdr.n_valid = 1;
2855     buf.hdr.n_invalid = 0;
2856     buf.hdr.index = ptex;
2857     buf.pte0 = cpu_to_be64(pte0);
2858     buf.pte1 = cpu_to_be64(pte1);
2859 
2860     rc = write(fd, &buf, sizeof(buf));
2861     if (rc != sizeof(buf)) {
2862         hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2863     }
2864     close(fd);
2865 }
2866 
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)2867 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2868                              uint64_t address, uint32_t data, PCIDevice *dev)
2869 {
2870     return 0;
2871 }
2872 
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)2873 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2874                                 int vector, PCIDevice *dev)
2875 {
2876     return 0;
2877 }
2878 
kvm_arch_release_virq_post(int virq)2879 int kvm_arch_release_virq_post(int virq)
2880 {
2881     return 0;
2882 }
2883 
kvm_arch_msi_data_to_gsi(uint32_t data)2884 int kvm_arch_msi_data_to_gsi(uint32_t data)
2885 {
2886     return data & 0xffff;
2887 }
2888 
2889 #if defined(CONFIG_PSERIES)
kvm_handle_nmi(PowerPCCPU * cpu,struct kvm_run * run)2890 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2891 {
2892     uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2893 
2894     cpu_synchronize_state(CPU(cpu));
2895 
2896     spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2897 
2898     return 0;
2899 }
2900 #endif
2901 
kvmppc_enable_hwrng(void)2902 int kvmppc_enable_hwrng(void)
2903 {
2904     if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2905         return -1;
2906     }
2907 
2908     return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2909 }
2910 
kvmppc_check_papr_resize_hpt(Error ** errp)2911 void kvmppc_check_papr_resize_hpt(Error **errp)
2912 {
2913     if (!kvm_enabled()) {
2914         return; /* No KVM, we're good */
2915     }
2916 
2917     if (cap_resize_hpt) {
2918         return; /* Kernel has explicit support, we're good */
2919     }
2920 
2921     /* Otherwise fallback on looking for PR KVM */
2922     if (kvmppc_is_pr(kvm_state)) {
2923         return;
2924     }
2925 
2926     error_setg(errp,
2927                "Hash page table resizing not available with this KVM version");
2928 }
2929 
kvmppc_resize_hpt_prepare(PowerPCCPU * cpu,target_ulong flags,int shift)2930 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2931 {
2932     CPUState *cs = CPU(cpu);
2933     struct kvm_ppc_resize_hpt rhpt = {
2934         .flags = flags,
2935         .shift = shift,
2936     };
2937 
2938     if (!cap_resize_hpt) {
2939         return -ENOSYS;
2940     }
2941 
2942     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2943 }
2944 
kvmppc_resize_hpt_commit(PowerPCCPU * cpu,target_ulong flags,int shift)2945 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2946 {
2947     CPUState *cs = CPU(cpu);
2948     struct kvm_ppc_resize_hpt rhpt = {
2949         .flags = flags,
2950         .shift = shift,
2951     };
2952 
2953     if (!cap_resize_hpt) {
2954         return -ENOSYS;
2955     }
2956 
2957     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2958 }
2959 
2960 /*
2961  * This is a helper function to detect a post migration scenario
2962  * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2963  * the guest kernel can't handle a PVR value other than the actual host
2964  * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2965  *
2966  * If we don't have cap_ppc_pvr_compat and we're not running in PR
2967  * (so, we're HV), return true. The workaround itself is done in
2968  * cpu_post_load.
2969  *
2970  * The order here is important: we'll only check for KVM PR as a
2971  * fallback if the guest kernel can't handle the situation itself.
2972  * We need to avoid as much as possible querying the running KVM type
2973  * in QEMU level.
2974  */
kvmppc_pvr_workaround_required(PowerPCCPU * cpu)2975 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2976 {
2977     CPUState *cs = CPU(cpu);
2978 
2979     if (!kvm_enabled()) {
2980         return false;
2981     }
2982 
2983     if (cap_ppc_pvr_compat) {
2984         return false;
2985     }
2986 
2987     return !kvmppc_is_pr(cs->kvm_state);
2988 }
2989 
kvmppc_set_reg_ppc_online(PowerPCCPU * cpu,unsigned int online)2990 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2991 {
2992     CPUState *cs = CPU(cpu);
2993 
2994     if (kvm_enabled()) {
2995         kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2996     }
2997 }
2998 
kvmppc_set_reg_tb_offset(PowerPCCPU * cpu,int64_t tb_offset)2999 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
3000 {
3001     CPUState *cs = CPU(cpu);
3002 
3003     if (kvm_enabled()) {
3004         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
3005     }
3006 }
3007 
kvm_arch_accel_class_init(ObjectClass * oc)3008 void kvm_arch_accel_class_init(ObjectClass *oc)
3009 {
3010 }
3011 
kvm_cpu_accel_class_init(ObjectClass * oc,const void * data)3012 static void kvm_cpu_accel_class_init(ObjectClass *oc, const void *data)
3013 {
3014     AccelCPUClass *acc = ACCEL_CPU_CLASS(oc);
3015 
3016     acc->cpu_target_realize = kvmppc_cpu_realize;
3017 }
3018 
3019 static const TypeInfo kvm_cpu_accel_type_info = {
3020     .name = ACCEL_CPU_NAME("kvm"),
3021 
3022     .parent = TYPE_ACCEL_CPU,
3023     .class_init = kvm_cpu_accel_class_init,
3024     .abstract = true,
3025 };
kvm_cpu_accel_register_types(void)3026 static void kvm_cpu_accel_register_types(void)
3027 {
3028     type_register_static(&kvm_cpu_accel_type_info);
3029 }
3030 type_init(kvm_cpu_accel_register_types);
3031