xref: /qemu/target/ppc/kvm.c (revision 12d1a768bdfea6e27a3a829228840d72507613a1)
1 /*
2  * PowerPC implementation of KVM hooks
3  *
4  * Copyright IBM Corp. 2007
5  * Copyright (C) 2011 Freescale Semiconductor, Inc.
6  *
7  * Authors:
8  *  Jerone Young <jyoung5@us.ibm.com>
9  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10  *  Hollis Blanchard <hollisb@us.ibm.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or later.
13  * See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21 
22 #include <linux/kvm.h>
23 
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
26 #include "cpu.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "system/hw_accel.h"
30 #include "kvm_ppc.h"
31 #include "system/cpus.h"
32 #include "system/device_tree.h"
33 #include "mmu-hash64.h"
34 
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_cpu_core.h"
37 #include "hw/hw.h"
38 #include "hw/ppc/ppc.h"
39 #include "migration/qemu-file-types.h"
40 #include "system/watchdog.h"
41 #include "trace.h"
42 #include "gdbstub/enums.h"
43 #include "exec/memattrs.h"
44 #include "system/ram_addr.h"
45 #include "system/hostmem.h"
46 #include "qemu/cutils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/mmap-alloc.h"
49 #include "elf.h"
50 #include "system/kvm_int.h"
51 #include "system/kvm.h"
52 #include "accel/accel-cpu-target.h"
53 
54 #include CONFIG_DEVICES
55 
56 #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
57 
58 #define DEBUG_RETURN_GUEST 0
59 #define DEBUG_RETURN_GDB   1
60 
61 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
62     KVM_CAP_LAST_INFO
63 };
64 
65 static int cap_interrupt_unset;
66 static int cap_segstate;
67 static int cap_booke_sregs;
68 static int cap_ppc_smt;
69 static int cap_ppc_smt_possible;
70 static int cap_spapr_tce;
71 static int cap_spapr_tce_64;
72 static int cap_spapr_multitce;
73 static int cap_spapr_vfio;
74 static int cap_hior;
75 static int cap_one_reg;
76 static int cap_epr;
77 static int cap_ppc_watchdog;
78 static int cap_htab_fd;
79 static int cap_fixup_hcalls;
80 static int cap_htm;             /* Hardware transactional memory support */
81 static int cap_mmu_radix;
82 static int cap_mmu_hash_v3;
83 static int cap_xive;
84 static int cap_resize_hpt;
85 static int cap_ppc_pvr_compat;
86 static int cap_ppc_safe_cache;
87 static int cap_ppc_safe_bounds_check;
88 static int cap_ppc_safe_indirect_branch;
89 static int cap_ppc_count_cache_flush_assist;
90 static int cap_ppc_nested_kvm_hv;
91 static int cap_large_decr;
92 static int cap_fwnmi;
93 static int cap_rpt_invalidate;
94 static int cap_ail_mode_3;
95 static int cap_dawr1;
96 
97 #ifdef CONFIG_PSERIES
98 static int cap_papr;
99 #else
100 #define cap_papr (0)
101 #endif
102 
103 static uint32_t debug_inst_opcode;
104 
105 /*
106  * Check whether we are running with KVM-PR (instead of KVM-HV).  This
107  * should only be used for fallback tests - generally we should use
108  * explicit capabilities for the features we want, rather than
109  * assuming what is/isn't available depending on the KVM variant.
110  */
111 static bool kvmppc_is_pr(KVMState *ks)
112 {
113     /* Assume KVM-PR if the GET_PVINFO capability is available */
114     return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
115 }
116 
117 static int kvm_ppc_register_host_cpu_type(void);
118 static void kvmppc_get_cpu_characteristics(KVMState *s);
119 static int kvmppc_get_dec_bits(void);
120 
121 int kvm_arch_get_default_type(MachineState *ms)
122 {
123     return 0;
124 }
125 
126 int kvm_arch_init(MachineState *ms, KVMState *s)
127 {
128     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
129     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
130     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
131     cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
132     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
133     cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
134     cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
135     cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
136     cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
137     cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
138     cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
139     cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
140     /*
141      * Note: we don't set cap_papr here, because this capability is
142      * only activated after this by kvmppc_set_papr()
143      */
144     cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
145     cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
146     cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
147     cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
148     cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
149     cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
150     cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
151     cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
152     kvmppc_get_cpu_characteristics(s);
153     cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
154     cap_large_decr = kvmppc_get_dec_bits();
155     cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
156     cap_dawr1 = kvm_vm_check_extension(s, KVM_CAP_PPC_DAWR1);
157     /*
158      * Note: setting it to false because there is not such capability
159      * in KVM at this moment.
160      *
161      * TODO: call kvm_vm_check_extension() with the right capability
162      * after the kernel starts implementing it.
163      */
164     cap_ppc_pvr_compat = false;
165 
166     if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
167         error_report("KVM: Host kernel doesn't have level irq capability");
168         exit(1);
169     }
170 
171     cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
172     cap_ail_mode_3 = kvm_vm_check_extension(s, KVM_CAP_PPC_AIL_MODE_3);
173     kvm_ppc_register_host_cpu_type();
174 
175     return 0;
176 }
177 
178 int kvm_arch_irqchip_create(KVMState *s)
179 {
180     return 0;
181 }
182 
183 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
184 {
185     CPUPPCState *cenv = &cpu->env;
186     CPUState *cs = CPU(cpu);
187     struct kvm_sregs sregs;
188     int ret;
189 
190     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
191         /*
192          * What we're really trying to say is "if we're on BookE, we
193          * use the native PVR for now". This is the only sane way to
194          * check it though, so we potentially confuse users that they
195          * can run BookE guests on BookS. Let's hope nobody dares
196          * enough :)
197          */
198         return 0;
199     } else {
200         if (!cap_segstate) {
201             fprintf(stderr, "kvm error: missing PVR setting capability\n");
202             return -ENOSYS;
203         }
204     }
205 
206     ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
207     if (ret) {
208         return ret;
209     }
210 
211     sregs.pvr = cenv->spr[SPR_PVR];
212     return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
213 }
214 
215 /* Set up a shared TLB array with KVM */
216 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
217 {
218     CPUPPCState *env = &cpu->env;
219     CPUState *cs = CPU(cpu);
220     struct kvm_book3e_206_tlb_params params = {};
221     struct kvm_config_tlb cfg = {};
222     unsigned int entries = 0;
223     int ret, i;
224 
225     if (!kvm_enabled() ||
226         !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
227         return 0;
228     }
229 
230     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
231 
232     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
233         params.tlb_sizes[i] = booke206_tlb_size(env, i);
234         params.tlb_ways[i] = booke206_tlb_ways(env, i);
235         entries += params.tlb_sizes[i];
236     }
237 
238     assert(entries == env->nb_tlb);
239     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
240 
241     env->tlb_dirty = true;
242 
243     cfg.array = (uintptr_t)env->tlb.tlbm;
244     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
245     cfg.params = (uintptr_t)&params;
246     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
247 
248     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
249     if (ret < 0) {
250         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
251                 __func__, strerror(-ret));
252         return ret;
253     }
254 
255     env->kvm_sw_tlb = true;
256     return 0;
257 }
258 
259 
260 #if defined(TARGET_PPC64)
261 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
262 {
263     int ret;
264 
265     assert(kvm_state != NULL);
266 
267     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
268         error_setg(errp, "KVM doesn't expose the MMU features it supports");
269         error_append_hint(errp, "Consider switching to a newer KVM\n");
270         return;
271     }
272 
273     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
274     if (ret == 0) {
275         return;
276     }
277 
278     error_setg_errno(errp, -ret,
279                      "KVM failed to provide the MMU features it supports");
280 }
281 
282 static struct ppc_radix_page_info *kvmppc_get_radix_page_info(void)
283 {
284     KVMState *s = KVM_STATE(current_accel());
285     struct ppc_radix_page_info *radix_page_info;
286     struct kvm_ppc_rmmu_info rmmu_info = { };
287     int i;
288 
289     if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
290         return NULL;
291     }
292     if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
293         return NULL;
294     }
295     radix_page_info = g_malloc0(sizeof(*radix_page_info));
296     radix_page_info->count = 0;
297     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
298         if (rmmu_info.ap_encodings[i]) {
299             radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
300             radix_page_info->count++;
301         }
302     }
303     return radix_page_info;
304 }
305 
306 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
307                                      bool radix, bool gtse,
308                                      uint64_t proc_tbl)
309 {
310     CPUState *cs = CPU(cpu);
311     int ret;
312     uint64_t flags = 0;
313     struct kvm_ppc_mmuv3_cfg cfg = {
314         .process_table = proc_tbl,
315     };
316 
317     if (radix) {
318         flags |= KVM_PPC_MMUV3_RADIX;
319     }
320     if (gtse) {
321         flags |= KVM_PPC_MMUV3_GTSE;
322     }
323     cfg.flags = flags;
324     ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
325     switch (ret) {
326     case 0:
327         return H_SUCCESS;
328     case -EINVAL:
329         return H_PARAMETER;
330     case -ENODEV:
331         return H_NOT_AVAILABLE;
332     default:
333         return H_HARDWARE;
334     }
335 }
336 
337 bool kvmppc_hpt_needs_host_contiguous_pages(void)
338 {
339     static struct kvm_ppc_smmu_info smmu_info;
340 
341     if (!kvm_enabled()) {
342         return false;
343     }
344 
345     kvm_get_smmu_info(&smmu_info, &error_fatal);
346     return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
347 }
348 
349 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
350 {
351     struct kvm_ppc_smmu_info smmu_info;
352     int iq, ik, jq, jk;
353     Error *local_err = NULL;
354 
355     /* For now, we only have anything to check on hash64 MMUs */
356     if (!cpu->hash64_opts || !kvm_enabled()) {
357         return;
358     }
359 
360     kvm_get_smmu_info(&smmu_info, &local_err);
361     if (local_err) {
362         error_propagate(errp, local_err);
363         return;
364     }
365 
366     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
367         && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
368         error_setg(errp,
369                    "KVM does not support 1TiB segments which guest expects");
370         return;
371     }
372 
373     if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
374         error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
375                    smmu_info.slb_size, cpu->hash64_opts->slb_size);
376         return;
377     }
378 
379     /*
380      * Verify that every pagesize supported by the cpu model is
381      * supported by KVM with the same encodings
382      */
383     for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
384         PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
385         struct kvm_ppc_one_seg_page_size *ksps;
386 
387         for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
388             if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
389                 break;
390             }
391         }
392         if (ik >= ARRAY_SIZE(smmu_info.sps)) {
393             error_setg(errp, "KVM doesn't support for base page shift %u",
394                        qsps->page_shift);
395             return;
396         }
397 
398         ksps = &smmu_info.sps[ik];
399         if (ksps->slb_enc != qsps->slb_enc) {
400             error_setg(errp,
401 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
402                        ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
403             return;
404         }
405 
406         for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
407             for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
408                 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
409                     break;
410                 }
411             }
412 
413             if (jk >= ARRAY_SIZE(ksps->enc)) {
414                 error_setg(errp, "KVM doesn't support page shift %u/%u",
415                            qsps->enc[jq].page_shift, qsps->page_shift);
416                 return;
417             }
418             if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
419                 error_setg(errp,
420 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
421                            ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
422                            qsps->page_shift, qsps->enc[jq].pte_enc);
423                 return;
424             }
425         }
426     }
427 
428     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
429         /*
430          * Mostly what guest pagesizes we can use are related to the
431          * host pages used to map guest RAM, which is handled in the
432          * platform code. Cache-Inhibited largepages (64k) however are
433          * used for I/O, so if they're mapped to the host at all it
434          * will be a normal mapping, not a special hugepage one used
435          * for RAM.
436          */
437         if (qemu_real_host_page_size() < 0x10000) {
438             error_setg(errp,
439                        "KVM can't supply 64kiB CI pages, which guest expects");
440         }
441     }
442 }
443 #endif /* !defined (TARGET_PPC64) */
444 
445 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
446 {
447     return POWERPC_CPU(cpu)->vcpu_id;
448 }
449 
450 /*
451  * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
452  * only 1 watchpoint, so array size of 4 is sufficient for now.
453  */
454 #define MAX_HW_BKPTS 4
455 
456 static struct HWBreakpoint {
457     target_ulong addr;
458     int type;
459 } hw_debug_points[MAX_HW_BKPTS];
460 
461 static CPUWatchpoint hw_watchpoint;
462 
463 /* Default there is no breakpoint and watchpoint supported */
464 static int max_hw_breakpoint;
465 static int max_hw_watchpoint;
466 static int nb_hw_breakpoint;
467 static int nb_hw_watchpoint;
468 
469 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
470 {
471     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
472         max_hw_breakpoint = 2;
473         max_hw_watchpoint = 2;
474     }
475 
476     if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
477         fprintf(stderr, "Error initializing h/w breakpoints\n");
478         return;
479     }
480 }
481 
482 int kvm_arch_init_vcpu(CPUState *cs)
483 {
484     PowerPCCPU *cpu = POWERPC_CPU(cs);
485     CPUPPCState *cenv = &cpu->env;
486     int ret;
487 
488     /* Synchronize sregs with kvm */
489     ret = kvm_arch_sync_sregs(cpu);
490     if (ret) {
491         if (ret == -EINVAL) {
492             error_report("Register sync failed... If you're using kvm-hv.ko,"
493                          " only \"-cpu host\" is possible");
494         }
495         return ret;
496     }
497 
498     switch (cenv->mmu_model) {
499     case POWERPC_MMU_BOOKE206:
500         /* This target supports access to KVM's guest TLB */
501         ret = kvm_booke206_tlb_init(cpu);
502         break;
503     case POWERPC_MMU_2_07:
504         if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
505             /*
506              * KVM-HV has transactional memory on POWER8 also without
507              * the KVM_CAP_PPC_HTM extension, so enable it here
508              * instead as long as it's available to userspace on the
509              * host.
510              */
511             if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
512                 cap_htm = true;
513             }
514         }
515         break;
516     default:
517         break;
518     }
519 
520     kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
521     kvmppc_hw_debug_points_init(cenv);
522 
523     return ret;
524 }
525 
526 int kvm_arch_destroy_vcpu(CPUState *cs)
527 {
528     return 0;
529 }
530 
531 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
532 {
533     CPUPPCState *env = &cpu->env;
534     CPUState *cs = CPU(cpu);
535     struct kvm_dirty_tlb dirty_tlb;
536     unsigned char *bitmap;
537     int ret;
538 
539     if (!env->kvm_sw_tlb) {
540         return;
541     }
542 
543     bitmap = g_malloc((env->nb_tlb + 7) / 8);
544     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
545 
546     dirty_tlb.bitmap = (uintptr_t)bitmap;
547     dirty_tlb.num_dirty = env->nb_tlb;
548 
549     ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
550     if (ret) {
551         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
552                 __func__, strerror(-ret));
553     }
554 
555     g_free(bitmap);
556 }
557 
558 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
559 {
560     CPUPPCState *env = cpu_env(cs);
561     /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
562     union {
563         uint32_t u32;
564         uint64_t u64;
565     } val = { };
566     struct kvm_one_reg reg = {
567         .id = id,
568         .addr = (uintptr_t) &val,
569     };
570     int ret;
571 
572     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
573     if (ret != 0) {
574         trace_kvm_failed_spr_get(spr, strerror(errno));
575     } else {
576         switch (id & KVM_REG_SIZE_MASK) {
577         case KVM_REG_SIZE_U32:
578             env->spr[spr] = val.u32;
579             break;
580 
581         case KVM_REG_SIZE_U64:
582             env->spr[spr] = val.u64;
583             break;
584 
585         default:
586             /* Don't handle this size yet */
587             abort();
588         }
589     }
590 }
591 
592 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
593 {
594     CPUPPCState *env = cpu_env(cs);
595     union {
596         uint32_t u32;
597         uint64_t u64;
598     } val;
599     struct kvm_one_reg reg = {
600         .id = id,
601         .addr = (uintptr_t) &val,
602     };
603     int ret;
604 
605     switch (id & KVM_REG_SIZE_MASK) {
606     case KVM_REG_SIZE_U32:
607         val.u32 = env->spr[spr];
608         break;
609 
610     case KVM_REG_SIZE_U64:
611         val.u64 = env->spr[spr];
612         break;
613 
614     default:
615         /* Don't handle this size yet */
616         abort();
617     }
618 
619     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
620     if (ret != 0) {
621         trace_kvm_failed_spr_set(spr, strerror(errno));
622     }
623 }
624 
625 static int kvm_put_fp(CPUState *cs)
626 {
627     CPUPPCState *env = cpu_env(cs);
628     struct kvm_one_reg reg;
629     int i;
630     int ret;
631 
632     if (env->insns_flags & PPC_FLOAT) {
633         uint64_t fpscr = env->fpscr;
634         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
635 
636         reg.id = KVM_REG_PPC_FPSCR;
637         reg.addr = (uintptr_t)&fpscr;
638         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
639         if (ret < 0) {
640             trace_kvm_failed_fpscr_set(strerror(errno));
641             return ret;
642         }
643 
644         for (i = 0; i < 32; i++) {
645             uint64_t vsr[2];
646             uint64_t *fpr = cpu_fpr_ptr(env, i);
647             uint64_t *vsrl = cpu_vsrl_ptr(env, i);
648 
649 #if HOST_BIG_ENDIAN
650             vsr[0] = float64_val(*fpr);
651             vsr[1] = *vsrl;
652 #else
653             vsr[0] = *vsrl;
654             vsr[1] = float64_val(*fpr);
655 #endif
656             reg.addr = (uintptr_t) &vsr;
657             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
658 
659             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
660             if (ret < 0) {
661                 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
662                                         strerror(errno));
663                 return ret;
664             }
665         }
666     }
667 
668     if (env->insns_flags & PPC_ALTIVEC) {
669         reg.id = KVM_REG_PPC_VSCR;
670         reg.addr = (uintptr_t)&env->vscr;
671         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
672         if (ret < 0) {
673             trace_kvm_failed_vscr_set(strerror(errno));
674             return ret;
675         }
676 
677         for (i = 0; i < 32; i++) {
678             reg.id = KVM_REG_PPC_VR(i);
679             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
680             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
681             if (ret < 0) {
682                 trace_kvm_failed_vr_set(i, strerror(errno));
683                 return ret;
684             }
685         }
686     }
687 
688     return 0;
689 }
690 
691 static int kvm_get_fp(CPUState *cs)
692 {
693     CPUPPCState *env = cpu_env(cs);
694     struct kvm_one_reg reg;
695     int i;
696     int ret;
697 
698     if (env->insns_flags & PPC_FLOAT) {
699         uint64_t fpscr;
700         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
701 
702         reg.id = KVM_REG_PPC_FPSCR;
703         reg.addr = (uintptr_t)&fpscr;
704         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
705         if (ret < 0) {
706             trace_kvm_failed_fpscr_get(strerror(errno));
707             return ret;
708         } else {
709             env->fpscr = fpscr;
710         }
711 
712         for (i = 0; i < 32; i++) {
713             uint64_t vsr[2];
714             uint64_t *fpr = cpu_fpr_ptr(env, i);
715             uint64_t *vsrl = cpu_vsrl_ptr(env, i);
716 
717             reg.addr = (uintptr_t) &vsr;
718             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
719 
720             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
721             if (ret < 0) {
722                 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
723                                         strerror(errno));
724                 return ret;
725             } else {
726 #if HOST_BIG_ENDIAN
727                 *fpr = vsr[0];
728                 if (vsx) {
729                     *vsrl = vsr[1];
730                 }
731 #else
732                 *fpr = vsr[1];
733                 if (vsx) {
734                     *vsrl = vsr[0];
735                 }
736 #endif
737             }
738         }
739     }
740 
741     if (env->insns_flags & PPC_ALTIVEC) {
742         reg.id = KVM_REG_PPC_VSCR;
743         reg.addr = (uintptr_t)&env->vscr;
744         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
745         if (ret < 0) {
746             trace_kvm_failed_vscr_get(strerror(errno));
747             return ret;
748         }
749 
750         for (i = 0; i < 32; i++) {
751             reg.id = KVM_REG_PPC_VR(i);
752             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
753             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
754             if (ret < 0) {
755                 trace_kvm_failed_vr_get(i, strerror(errno));
756                 return ret;
757             }
758         }
759     }
760 
761     return 0;
762 }
763 
764 #if defined(TARGET_PPC64)
765 static int kvm_get_vpa(CPUState *cs)
766 {
767     PowerPCCPU *cpu = POWERPC_CPU(cs);
768     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
769     struct kvm_one_reg reg;
770     int ret;
771 
772     reg.id = KVM_REG_PPC_VPA_ADDR;
773     reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
774     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
775     if (ret < 0) {
776         trace_kvm_failed_vpa_addr_get(strerror(errno));
777         return ret;
778     }
779 
780     assert((uintptr_t)&spapr_cpu->slb_shadow_size
781            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
782     reg.id = KVM_REG_PPC_VPA_SLB;
783     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
784     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
785     if (ret < 0) {
786         trace_kvm_failed_slb_get(strerror(errno));
787         return ret;
788     }
789 
790     assert((uintptr_t)&spapr_cpu->dtl_size
791            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
792     reg.id = KVM_REG_PPC_VPA_DTL;
793     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
794     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
795     if (ret < 0) {
796         trace_kvm_failed_dtl_get(strerror(errno));
797         return ret;
798     }
799 
800     return 0;
801 }
802 
803 static int kvm_put_vpa(CPUState *cs)
804 {
805     PowerPCCPU *cpu = POWERPC_CPU(cs);
806     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
807     struct kvm_one_reg reg;
808     int ret;
809 
810     /*
811      * SLB shadow or DTL can't be registered unless a master VPA is
812      * registered.  That means when restoring state, if a VPA *is*
813      * registered, we need to set that up first.  If not, we need to
814      * deregister the others before deregistering the master VPA
815      */
816     assert(spapr_cpu->vpa_addr
817            || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
818 
819     if (spapr_cpu->vpa_addr) {
820         reg.id = KVM_REG_PPC_VPA_ADDR;
821         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
822         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
823         if (ret < 0) {
824             trace_kvm_failed_vpa_addr_set(strerror(errno));
825             return ret;
826         }
827     }
828 
829     assert((uintptr_t)&spapr_cpu->slb_shadow_size
830            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
831     reg.id = KVM_REG_PPC_VPA_SLB;
832     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
833     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
834     if (ret < 0) {
835         trace_kvm_failed_slb_set(strerror(errno));
836         return ret;
837     }
838 
839     assert((uintptr_t)&spapr_cpu->dtl_size
840            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
841     reg.id = KVM_REG_PPC_VPA_DTL;
842     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
843     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
844     if (ret < 0) {
845         trace_kvm_failed_dtl_set(strerror(errno));
846         return ret;
847     }
848 
849     if (!spapr_cpu->vpa_addr) {
850         reg.id = KVM_REG_PPC_VPA_ADDR;
851         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
852         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
853         if (ret < 0) {
854             trace_kvm_failed_null_vpa_addr_set(strerror(errno));
855             return ret;
856         }
857     }
858 
859     return 0;
860 }
861 #endif /* TARGET_PPC64 */
862 
863 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
864 {
865     CPUPPCState *env = &cpu->env;
866     struct kvm_sregs sregs = { };
867     int i;
868 
869     sregs.pvr = env->spr[SPR_PVR];
870 
871     if (cpu->vhyp) {
872         sregs.u.s.sdr1 = cpu->vhyp_class->encode_hpt_for_kvm_pr(cpu->vhyp);
873     } else {
874         sregs.u.s.sdr1 = env->spr[SPR_SDR1];
875     }
876 
877     /* Sync SLB */
878 #ifdef TARGET_PPC64
879     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
880         sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
881         if (env->slb[i].esid & SLB_ESID_V) {
882             sregs.u.s.ppc64.slb[i].slbe |= i;
883         }
884         sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
885     }
886 #endif
887 
888     /* Sync SRs */
889     for (i = 0; i < 16; i++) {
890         sregs.u.s.ppc32.sr[i] = env->sr[i];
891     }
892 
893     /* Sync BATs */
894     for (i = 0; i < 8; i++) {
895         /* Beware. We have to swap upper and lower bits here */
896         sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
897             | env->DBAT[1][i];
898         sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
899             | env->IBAT[1][i];
900     }
901 
902     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
903 }
904 
905 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
906 {
907     PowerPCCPU *cpu = POWERPC_CPU(cs);
908     CPUPPCState *env = &cpu->env;
909     struct kvm_regs regs;
910     int ret;
911     int i;
912 
913     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
914     if (ret < 0) {
915         return ret;
916     }
917 
918     regs.ctr = env->ctr;
919     regs.lr  = env->lr;
920     regs.xer = cpu_read_xer(env);
921     regs.msr = env->msr;
922     regs.pc = env->nip;
923 
924     regs.srr0 = env->spr[SPR_SRR0];
925     regs.srr1 = env->spr[SPR_SRR1];
926 
927     regs.sprg0 = env->spr[SPR_SPRG0];
928     regs.sprg1 = env->spr[SPR_SPRG1];
929     regs.sprg2 = env->spr[SPR_SPRG2];
930     regs.sprg3 = env->spr[SPR_SPRG3];
931     regs.sprg4 = env->spr[SPR_SPRG4];
932     regs.sprg5 = env->spr[SPR_SPRG5];
933     regs.sprg6 = env->spr[SPR_SPRG6];
934     regs.sprg7 = env->spr[SPR_SPRG7];
935 
936     regs.pid = env->spr[SPR_BOOKE_PID];
937 
938     for (i = 0; i < 32; i++) {
939         regs.gpr[i] = env->gpr[i];
940     }
941 
942     regs.cr = ppc_get_cr(env);
943 
944     ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
945     if (ret < 0) {
946         return ret;
947     }
948 
949     kvm_put_fp(cs);
950 
951     if (env->tlb_dirty) {
952         kvm_sw_tlb_put(cpu);
953         env->tlb_dirty = false;
954     }
955 
956     if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
957         ret = kvmppc_put_books_sregs(cpu);
958         if (ret < 0) {
959             return ret;
960         }
961     }
962 
963     if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
964         kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
965     }
966 
967     if (cap_one_reg) {
968         /*
969          * We deliberately ignore errors here, for kernels which have
970          * the ONE_REG calls, but don't support the specific
971          * registers, there's a reasonable chance things will still
972          * work, at least until we try to migrate.
973          */
974         for (i = 0; i < 1024; i++) {
975             uint64_t id = env->spr_cb[i].one_reg_id;
976 
977             if (id != 0) {
978                 kvm_put_one_spr(cs, id, i);
979             }
980         }
981 
982 #ifdef TARGET_PPC64
983         if (FIELD_EX64(env->msr, MSR, TS)) {
984             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
985                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
986             }
987             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
988                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
989             }
990             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
991             kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
992             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
993             kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
994             kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
995             kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
996             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
997             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
998             kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
999             kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1000         }
1001 
1002         if (cap_papr) {
1003             if (kvm_put_vpa(cs) < 0) {
1004                 trace_kvm_failed_put_vpa();
1005             }
1006         }
1007 
1008         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1009 
1010         if (level > KVM_PUT_RUNTIME_STATE) {
1011             kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1012         }
1013 #endif /* TARGET_PPC64 */
1014     }
1015 
1016     return ret;
1017 }
1018 
1019 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1020 {
1021      env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1022 }
1023 
1024 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1025 {
1026     CPUPPCState *env = &cpu->env;
1027     struct kvm_sregs sregs;
1028     int ret;
1029 
1030     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1031     if (ret < 0) {
1032         return ret;
1033     }
1034 
1035     if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1036         env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1037         env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1038         env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1039         env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1040         env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1041         env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1042         env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1043         env->spr[SPR_DECR] = sregs.u.e.dec;
1044         env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1045         env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1046         env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1047     }
1048 
1049     if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1050         env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1051         env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1052         env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1053         env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1054         env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1055     }
1056 
1057     if (sregs.u.e.features & KVM_SREGS_E_64) {
1058         env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1059     }
1060 
1061     if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1062         env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1063     }
1064 
1065     if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1066         env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1067         kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1068         env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1069         kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1070         env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1071         kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1072         env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1073         kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1074         env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1075         kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1076         env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1077         kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1078         env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1079         kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1080         env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1081         kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1082         env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1083         kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1084         env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1085         kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1086         env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1087         kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1088         env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1089         kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1090         env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1091         kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1092         env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1093         kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1094         env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1095         kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1096         env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1097         kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1098 
1099         if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1100             env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1101             kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1102             env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1103             kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1104             env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1105             kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1106         }
1107 
1108         if (sregs.u.e.features & KVM_SREGS_E_PM) {
1109             env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1110             kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1111         }
1112 
1113         if (sregs.u.e.features & KVM_SREGS_E_PC) {
1114             env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1115             kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1116             env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1117             kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1118         }
1119     }
1120 
1121     if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1122         env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1123         env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1124         env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1125         env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1126         env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1127         env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1128         env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1129         env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1130         env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1131         env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1132     }
1133 
1134     if (sregs.u.e.features & KVM_SREGS_EXP) {
1135         env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1136     }
1137 
1138     if (sregs.u.e.features & KVM_SREGS_E_PD) {
1139         env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1140         env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1141     }
1142 
1143     if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1144         env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1145         env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1146         env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1147 
1148         if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1149             env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1150             env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1151         }
1152     }
1153 
1154     return 0;
1155 }
1156 
1157 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1158 {
1159     CPUPPCState *env = &cpu->env;
1160     struct kvm_sregs sregs;
1161     int ret;
1162     int i;
1163 
1164     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1165     if (ret < 0) {
1166         return ret;
1167     }
1168 
1169     if (!cpu->vhyp) {
1170         ppc_store_sdr1(env, sregs.u.s.sdr1);
1171     }
1172 
1173     /* Sync SLB */
1174 #ifdef TARGET_PPC64
1175     /*
1176      * The packed SLB array we get from KVM_GET_SREGS only contains
1177      * information about valid entries. So we flush our internal copy
1178      * to get rid of stale ones, then put all valid SLB entries back
1179      * in.
1180      */
1181     memset(env->slb, 0, sizeof(env->slb));
1182     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1183         target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1184         target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1185         /*
1186          * Only restore valid entries
1187          */
1188         if (rb & SLB_ESID_V) {
1189             ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1190         }
1191     }
1192 #endif
1193 
1194     /* Sync SRs */
1195     for (i = 0; i < 16; i++) {
1196         env->sr[i] = sregs.u.s.ppc32.sr[i];
1197     }
1198 
1199     /* Sync BATs */
1200     for (i = 0; i < 8; i++) {
1201         env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1202         env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1203         env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1204         env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1205     }
1206 
1207     return 0;
1208 }
1209 
1210 int kvm_arch_get_registers(CPUState *cs, Error **errp)
1211 {
1212     PowerPCCPU *cpu = POWERPC_CPU(cs);
1213     CPUPPCState *env = &cpu->env;
1214     struct kvm_regs regs;
1215     int i, ret;
1216 
1217     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1218     if (ret < 0) {
1219         return ret;
1220     }
1221 
1222     ppc_set_cr(env, regs.cr);
1223     env->ctr = regs.ctr;
1224     env->lr = regs.lr;
1225     cpu_write_xer(env, regs.xer);
1226     env->msr = regs.msr;
1227     env->nip = regs.pc;
1228 
1229     env->spr[SPR_SRR0] = regs.srr0;
1230     env->spr[SPR_SRR1] = regs.srr1;
1231 
1232     env->spr[SPR_SPRG0] = regs.sprg0;
1233     env->spr[SPR_SPRG1] = regs.sprg1;
1234     env->spr[SPR_SPRG2] = regs.sprg2;
1235     env->spr[SPR_SPRG3] = regs.sprg3;
1236     env->spr[SPR_SPRG4] = regs.sprg4;
1237     env->spr[SPR_SPRG5] = regs.sprg5;
1238     env->spr[SPR_SPRG6] = regs.sprg6;
1239     env->spr[SPR_SPRG7] = regs.sprg7;
1240 
1241     env->spr[SPR_BOOKE_PID] = regs.pid;
1242 
1243     for (i = 0; i < 32; i++) {
1244         env->gpr[i] = regs.gpr[i];
1245     }
1246 
1247     kvm_get_fp(cs);
1248 
1249     if (cap_booke_sregs) {
1250         ret = kvmppc_get_booke_sregs(cpu);
1251         if (ret < 0) {
1252             return ret;
1253         }
1254     }
1255 
1256     if (cap_segstate) {
1257         ret = kvmppc_get_books_sregs(cpu);
1258         if (ret < 0) {
1259             return ret;
1260         }
1261     }
1262 
1263     if (cap_hior) {
1264         kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1265     }
1266 
1267     if (cap_one_reg) {
1268         /*
1269          * We deliberately ignore errors here, for kernels which have
1270          * the ONE_REG calls, but don't support the specific
1271          * registers, there's a reasonable chance things will still
1272          * work, at least until we try to migrate.
1273          */
1274         for (i = 0; i < 1024; i++) {
1275             uint64_t id = env->spr_cb[i].one_reg_id;
1276 
1277             if (id != 0) {
1278                 kvm_get_one_spr(cs, id, i);
1279             }
1280         }
1281 
1282 #ifdef TARGET_PPC64
1283         if (FIELD_EX64(env->msr, MSR, TS)) {
1284             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1285                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1286             }
1287             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1288                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1289             }
1290             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1291             kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1292             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1293             kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1294             kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1295             kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1296             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1297             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1298             kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1299             kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1300         }
1301 
1302         if (cap_papr) {
1303             if (kvm_get_vpa(cs) < 0) {
1304                 trace_kvm_failed_get_vpa();
1305             }
1306         }
1307 
1308         kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1309         kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1310 #endif
1311     }
1312 
1313     return 0;
1314 }
1315 
1316 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1317 {
1318     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1319 
1320     if (irq != PPC_INTERRUPT_EXT) {
1321         return 0;
1322     }
1323 
1324     if (!cap_interrupt_unset) {
1325         return 0;
1326     }
1327 
1328     kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1329 
1330     return 0;
1331 }
1332 
1333 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1334 {
1335 }
1336 
1337 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1338 {
1339     return MEMTXATTRS_UNSPECIFIED;
1340 }
1341 
1342 int kvm_arch_process_async_events(CPUState *cs)
1343 {
1344     return cs->halted;
1345 }
1346 
1347 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1348 {
1349     CPUState *cs = CPU(cpu);
1350     CPUPPCState *env = &cpu->env;
1351 
1352     if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1353         FIELD_EX64(env->msr, MSR, EE)) {
1354         cs->halted = 1;
1355         cs->exception_index = EXCP_HLT;
1356     }
1357 
1358     return 0;
1359 }
1360 
1361 /* map dcr access to existing qemu dcr emulation */
1362 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1363                                   uint32_t dcrn, uint32_t *data)
1364 {
1365     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1366         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1367     }
1368 
1369     return 0;
1370 }
1371 
1372 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1373                                    uint32_t dcrn, uint32_t data)
1374 {
1375     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1376         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1377     }
1378 
1379     return 0;
1380 }
1381 
1382 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1383 {
1384     /* Mixed endian case is not handled */
1385     uint32_t sc = debug_inst_opcode;
1386 
1387     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1388                             sizeof(sc), 0) ||
1389         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1390         return -EINVAL;
1391     }
1392 
1393     return 0;
1394 }
1395 
1396 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1397 {
1398     uint32_t sc;
1399 
1400     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1401         sc != debug_inst_opcode ||
1402         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1403                             sizeof(sc), 1)) {
1404         return -EINVAL;
1405     }
1406 
1407     return 0;
1408 }
1409 
1410 static int find_hw_breakpoint(target_ulong addr, int type)
1411 {
1412     int n;
1413 
1414     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1415            <= ARRAY_SIZE(hw_debug_points));
1416 
1417     for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1418         if (hw_debug_points[n].addr == addr &&
1419              hw_debug_points[n].type == type) {
1420             return n;
1421         }
1422     }
1423 
1424     return -1;
1425 }
1426 
1427 static int find_hw_watchpoint(target_ulong addr, int *flag)
1428 {
1429     int n;
1430 
1431     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1432     if (n >= 0) {
1433         *flag = BP_MEM_ACCESS;
1434         return n;
1435     }
1436 
1437     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1438     if (n >= 0) {
1439         *flag = BP_MEM_WRITE;
1440         return n;
1441     }
1442 
1443     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1444     if (n >= 0) {
1445         *flag = BP_MEM_READ;
1446         return n;
1447     }
1448 
1449     return -1;
1450 }
1451 
1452 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1453 {
1454     const unsigned breakpoint_index = nb_hw_breakpoint + nb_hw_watchpoint;
1455     if (breakpoint_index >= ARRAY_SIZE(hw_debug_points)) {
1456         return -ENOBUFS;
1457     }
1458 
1459     hw_debug_points[breakpoint_index].addr = addr;
1460     hw_debug_points[breakpoint_index].type = type;
1461 
1462     switch (type) {
1463     case GDB_BREAKPOINT_HW:
1464         if (nb_hw_breakpoint >= max_hw_breakpoint) {
1465             return -ENOBUFS;
1466         }
1467 
1468         if (find_hw_breakpoint(addr, type) >= 0) {
1469             return -EEXIST;
1470         }
1471 
1472         nb_hw_breakpoint++;
1473         break;
1474 
1475     case GDB_WATCHPOINT_WRITE:
1476     case GDB_WATCHPOINT_READ:
1477     case GDB_WATCHPOINT_ACCESS:
1478         if (nb_hw_watchpoint >= max_hw_watchpoint) {
1479             return -ENOBUFS;
1480         }
1481 
1482         if (find_hw_breakpoint(addr, type) >= 0) {
1483             return -EEXIST;
1484         }
1485 
1486         nb_hw_watchpoint++;
1487         break;
1488 
1489     default:
1490         return -ENOSYS;
1491     }
1492 
1493     return 0;
1494 }
1495 
1496 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1497 {
1498     int n;
1499 
1500     n = find_hw_breakpoint(addr, type);
1501     if (n < 0) {
1502         return -ENOENT;
1503     }
1504 
1505     switch (type) {
1506     case GDB_BREAKPOINT_HW:
1507         nb_hw_breakpoint--;
1508         break;
1509 
1510     case GDB_WATCHPOINT_WRITE:
1511     case GDB_WATCHPOINT_READ:
1512     case GDB_WATCHPOINT_ACCESS:
1513         nb_hw_watchpoint--;
1514         break;
1515 
1516     default:
1517         return -ENOSYS;
1518     }
1519     hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1520 
1521     return 0;
1522 }
1523 
1524 void kvm_arch_remove_all_hw_breakpoints(void)
1525 {
1526     nb_hw_breakpoint = nb_hw_watchpoint = 0;
1527 }
1528 
1529 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1530 {
1531     int n;
1532 
1533     /* Software Breakpoint updates */
1534     if (kvm_sw_breakpoints_active(cs)) {
1535         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1536     }
1537 
1538     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1539            <= ARRAY_SIZE(hw_debug_points));
1540     assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1541 
1542     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1543         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1544         memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1545         for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1546             switch (hw_debug_points[n].type) {
1547             case GDB_BREAKPOINT_HW:
1548                 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1549                 break;
1550             case GDB_WATCHPOINT_WRITE:
1551                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1552                 break;
1553             case GDB_WATCHPOINT_READ:
1554                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1555                 break;
1556             case GDB_WATCHPOINT_ACCESS:
1557                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1558                                         KVMPPC_DEBUG_WATCH_READ;
1559                 break;
1560             default:
1561                 cpu_abort(cs, "Unsupported breakpoint type\n");
1562             }
1563             dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1564         }
1565     }
1566 }
1567 
1568 static int kvm_handle_hw_breakpoint(CPUState *cs,
1569                                     struct kvm_debug_exit_arch *arch_info)
1570 {
1571     int handle = DEBUG_RETURN_GUEST;
1572     int n;
1573     int flag = 0;
1574 
1575     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1576         if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1577             n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1578             if (n >= 0) {
1579                 handle = DEBUG_RETURN_GDB;
1580             }
1581         } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1582                                         KVMPPC_DEBUG_WATCH_WRITE)) {
1583             n = find_hw_watchpoint(arch_info->address,  &flag);
1584             if (n >= 0) {
1585                 handle = DEBUG_RETURN_GDB;
1586                 cs->watchpoint_hit = &hw_watchpoint;
1587                 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1588                 hw_watchpoint.flags = flag;
1589             }
1590         }
1591     }
1592     return handle;
1593 }
1594 
1595 static int kvm_handle_singlestep(void)
1596 {
1597     return DEBUG_RETURN_GDB;
1598 }
1599 
1600 static int kvm_handle_sw_breakpoint(void)
1601 {
1602     return DEBUG_RETURN_GDB;
1603 }
1604 
1605 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1606 {
1607     CPUState *cs = CPU(cpu);
1608     CPUPPCState *env = &cpu->env;
1609     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1610 
1611     if (cs->singlestep_enabled) {
1612         return kvm_handle_singlestep();
1613     }
1614 
1615     if (arch_info->status) {
1616         return kvm_handle_hw_breakpoint(cs, arch_info);
1617     }
1618 
1619     if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1620         return kvm_handle_sw_breakpoint();
1621     }
1622 
1623     /*
1624      * QEMU is not able to handle debug exception, so inject
1625      * program exception to guest;
1626      * Yes program exception NOT debug exception !!
1627      * When QEMU is using debug resources then debug exception must
1628      * be always set. To achieve this we set MSR_DE and also set
1629      * MSRP_DEP so guest cannot change MSR_DE.
1630      * When emulating debug resource for guest we want guest
1631      * to control MSR_DE (enable/disable debug interrupt on need).
1632      * Supporting both configurations are NOT possible.
1633      * So the result is that we cannot share debug resources
1634      * between QEMU and Guest on BOOKE architecture.
1635      * In the current design QEMU gets the priority over guest,
1636      * this means that if QEMU is using debug resources then guest
1637      * cannot use them;
1638      * For software breakpoint QEMU uses a privileged instruction;
1639      * So there cannot be any reason that we are here for guest
1640      * set debug exception, only possibility is guest executed a
1641      * privileged / illegal instruction and that's why we are
1642      * injecting a program interrupt.
1643      */
1644     cpu_synchronize_state(cs);
1645     /*
1646      * env->nip is PC, so increment this by 4 to use
1647      * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1648      */
1649     env->nip += 4;
1650     cs->exception_index = POWERPC_EXCP_PROGRAM;
1651     env->error_code = POWERPC_EXCP_INVAL;
1652     ppc_cpu_do_interrupt(cs);
1653 
1654     return DEBUG_RETURN_GUEST;
1655 }
1656 
1657 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1658 {
1659     PowerPCCPU *cpu = POWERPC_CPU(cs);
1660     CPUPPCState *env = &cpu->env;
1661     int ret;
1662 
1663     bql_lock();
1664 
1665     switch (run->exit_reason) {
1666     case KVM_EXIT_DCR:
1667         if (run->dcr.is_write) {
1668             trace_kvm_handle_dcr_write();
1669             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1670         } else {
1671             trace_kvm_handle_dcr_read();
1672             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1673         }
1674         break;
1675     case KVM_EXIT_HLT:
1676         trace_kvm_handle_halt();
1677         ret = kvmppc_handle_halt(cpu);
1678         break;
1679 #if defined(CONFIG_PSERIES)
1680     case KVM_EXIT_PAPR_HCALL:
1681         trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1682         run->papr_hcall.ret = spapr_hypercall(cpu,
1683                                               run->papr_hcall.nr,
1684                                               run->papr_hcall.args);
1685         ret = 0;
1686         break;
1687 #endif
1688     case KVM_EXIT_EPR:
1689         trace_kvm_handle_epr();
1690         run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1691         ret = 0;
1692         break;
1693     case KVM_EXIT_WATCHDOG:
1694         trace_kvm_handle_watchdog_expiry();
1695         watchdog_perform_action();
1696         ret = 0;
1697         break;
1698 
1699     case KVM_EXIT_DEBUG:
1700         trace_kvm_handle_debug_exception();
1701         if (kvm_handle_debug(cpu, run)) {
1702             ret = EXCP_DEBUG;
1703             break;
1704         }
1705         /* re-enter, this exception was guest-internal */
1706         ret = 0;
1707         break;
1708 
1709 #if defined(CONFIG_PSERIES)
1710     case KVM_EXIT_NMI:
1711         trace_kvm_handle_nmi_exception();
1712         ret = kvm_handle_nmi(cpu, run);
1713         break;
1714 #endif
1715 
1716     default:
1717         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1718         ret = -1;
1719         break;
1720     }
1721 
1722     bql_unlock();
1723     return ret;
1724 }
1725 
1726 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1727 {
1728     CPUState *cs = CPU(cpu);
1729     uint32_t bits = tsr_bits;
1730     struct kvm_one_reg reg = {
1731         .id = KVM_REG_PPC_OR_TSR,
1732         .addr = (uintptr_t) &bits,
1733     };
1734 
1735     if (!kvm_enabled()) {
1736         return 0;
1737     }
1738 
1739     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1740 }
1741 
1742 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1743 {
1744 
1745     CPUState *cs = CPU(cpu);
1746     uint32_t bits = tsr_bits;
1747     struct kvm_one_reg reg = {
1748         .id = KVM_REG_PPC_CLEAR_TSR,
1749         .addr = (uintptr_t) &bits,
1750     };
1751 
1752     if (!kvm_enabled()) {
1753         return 0;
1754     }
1755 
1756     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1757 }
1758 
1759 int kvmppc_set_tcr(PowerPCCPU *cpu)
1760 {
1761     CPUState *cs = CPU(cpu);
1762     CPUPPCState *env = &cpu->env;
1763     uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1764 
1765     struct kvm_one_reg reg = {
1766         .id = KVM_REG_PPC_TCR,
1767         .addr = (uintptr_t) &tcr,
1768     };
1769 
1770     if (!kvm_enabled()) {
1771         return 0;
1772     }
1773 
1774     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1775 }
1776 
1777 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1778 {
1779     CPUState *cs = CPU(cpu);
1780     int ret;
1781 
1782     if (!kvm_enabled()) {
1783         return -1;
1784     }
1785 
1786     if (!cap_ppc_watchdog) {
1787         printf("warning: KVM does not support watchdog");
1788         return -1;
1789     }
1790 
1791     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1792     if (ret < 0) {
1793         fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1794                 __func__, strerror(-ret));
1795         return ret;
1796     }
1797 
1798     return ret;
1799 }
1800 
1801 static int read_cpuinfo(const char *field, char *value, int len)
1802 {
1803     FILE *f;
1804     int ret = -1;
1805     int field_len = strlen(field);
1806     char line[512];
1807 
1808     f = fopen("/proc/cpuinfo", "r");
1809     if (!f) {
1810         return -1;
1811     }
1812 
1813     do {
1814         if (!fgets(line, sizeof(line), f)) {
1815             break;
1816         }
1817         if (!strncmp(line, field, field_len)) {
1818             pstrcpy(value, len, line);
1819             ret = 0;
1820             break;
1821         }
1822     } while (*line);
1823 
1824     fclose(f);
1825 
1826     return ret;
1827 }
1828 
1829 static uint32_t kvmppc_get_tbfreq_procfs(void)
1830 {
1831     char line[512];
1832     char *ns;
1833     uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1834     uint32_t tbfreq_procfs;
1835 
1836     if (read_cpuinfo("timebase", line, sizeof(line))) {
1837         return tbfreq_fallback;
1838     }
1839 
1840     ns = strchr(line, ':');
1841     if (!ns) {
1842         return tbfreq_fallback;
1843     }
1844 
1845     tbfreq_procfs = atoi(++ns);
1846 
1847     /* 0 is certainly not acceptable by the guest, return fallback value */
1848     return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1849 }
1850 
1851 uint32_t kvmppc_get_tbfreq(void)
1852 {
1853     static uint32_t cached_tbfreq;
1854 
1855     if (!cached_tbfreq) {
1856         cached_tbfreq = kvmppc_get_tbfreq_procfs();
1857     }
1858 
1859     return cached_tbfreq;
1860 }
1861 
1862 bool kvmppc_get_host_serial(char **value)
1863 {
1864     return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1865                                NULL);
1866 }
1867 
1868 bool kvmppc_get_host_model(char **value)
1869 {
1870     return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1871 }
1872 
1873 /* Try to find a device tree node for a CPU with clock-frequency property */
1874 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1875 {
1876     struct dirent *dirp;
1877     DIR *dp;
1878 
1879     dp = opendir(PROC_DEVTREE_CPU);
1880     if (!dp) {
1881         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1882         return -1;
1883     }
1884 
1885     buf[0] = '\0';
1886     while ((dirp = readdir(dp)) != NULL) {
1887         FILE *f;
1888 
1889         /* Don't accidentally read from the current and parent directories */
1890         if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
1891             continue;
1892         }
1893 
1894         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1895                  dirp->d_name);
1896         f = fopen(buf, "r");
1897         if (f) {
1898             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1899             fclose(f);
1900             break;
1901         }
1902         buf[0] = '\0';
1903     }
1904     closedir(dp);
1905     if (buf[0] == '\0') {
1906         printf("Unknown host!\n");
1907         return -1;
1908     }
1909 
1910     return 0;
1911 }
1912 
1913 static uint64_t kvmppc_read_int_dt(const char *filename)
1914 {
1915     union {
1916         uint32_t v32;
1917         uint64_t v64;
1918     } u;
1919     FILE *f;
1920     int len;
1921 
1922     f = fopen(filename, "rb");
1923     if (!f) {
1924         return -1;
1925     }
1926 
1927     len = fread(&u, 1, sizeof(u), f);
1928     fclose(f);
1929     switch (len) {
1930     case 4:
1931         /* property is a 32-bit quantity */
1932         return be32_to_cpu(u.v32);
1933     case 8:
1934         return be64_to_cpu(u.v64);
1935     }
1936 
1937     return 0;
1938 }
1939 
1940 /*
1941  * Read a CPU node property from the host device tree that's a single
1942  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1943  * (can't find or open the property, or doesn't understand the format)
1944  */
1945 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1946 {
1947     char buf[PATH_MAX], *tmp;
1948     uint64_t val;
1949 
1950     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1951         return -1;
1952     }
1953 
1954     tmp = g_strdup_printf("%s/%s", buf, propname);
1955     val = kvmppc_read_int_dt(tmp);
1956     g_free(tmp);
1957 
1958     return val;
1959 }
1960 
1961 uint64_t kvmppc_get_clockfreq(void)
1962 {
1963     return kvmppc_read_int_cpu_dt("clock-frequency");
1964 }
1965 
1966 static int kvmppc_get_dec_bits(void)
1967 {
1968     int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1969 
1970     if (nr_bits > 0) {
1971         return nr_bits;
1972     }
1973     return 0;
1974 }
1975 
1976 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1977 {
1978     CPUState *cs = env_cpu(env);
1979 
1980     if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1981         !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1982         return 0;
1983     }
1984 
1985     return 1;
1986 }
1987 
1988 int kvmppc_get_hasidle(CPUPPCState *env)
1989 {
1990     struct kvm_ppc_pvinfo pvinfo;
1991 
1992     if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1993         (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1994         return 1;
1995     }
1996 
1997     return 0;
1998 }
1999 
2000 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
2001 {
2002     uint32_t *hc = (uint32_t *)buf;
2003     struct kvm_ppc_pvinfo pvinfo;
2004 
2005     if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2006         memcpy(buf, pvinfo.hcall, buf_len);
2007         return 0;
2008     }
2009 
2010     /*
2011      * Fallback to always fail hypercalls regardless of endianness:
2012      *
2013      *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2014      *     li r3, -1
2015      *     b .+8       (becomes nop in wrong endian)
2016      *     bswap32(li r3, -1)
2017      */
2018 
2019     hc[0] = cpu_to_be32(0x08000048);
2020     hc[1] = cpu_to_be32(0x3860ffff);
2021     hc[2] = cpu_to_be32(0x48000008);
2022     hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2023 
2024     return 1;
2025 }
2026 
2027 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2028 {
2029     return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2030 }
2031 
2032 void kvmppc_enable_logical_ci_hcalls(void)
2033 {
2034     /*
2035      * FIXME: it would be nice if we could detect the cases where
2036      * we're using a device which requires the in kernel
2037      * implementation of these hcalls, but the kernel lacks them and
2038      * produce a warning.
2039      */
2040     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2041     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2042 }
2043 
2044 void kvmppc_enable_set_mode_hcall(void)
2045 {
2046     kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2047 }
2048 
2049 void kvmppc_enable_clear_ref_mod_hcalls(void)
2050 {
2051     kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2052     kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2053 }
2054 
2055 void kvmppc_enable_h_page_init(void)
2056 {
2057     kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2058 }
2059 
2060 void kvmppc_enable_h_rpt_invalidate(void)
2061 {
2062     kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2063 }
2064 
2065 #ifdef CONFIG_PSERIES
2066 void kvmppc_set_papr(PowerPCCPU *cpu)
2067 {
2068     CPUState *cs = CPU(cpu);
2069     int ret;
2070 
2071     if (!kvm_enabled()) {
2072         return;
2073     }
2074 
2075     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2076     if (ret) {
2077         error_report("This vCPU type or KVM version does not support PAPR");
2078         exit(1);
2079     }
2080 
2081     /*
2082      * Update the capability flag so we sync the right information
2083      * with kvm
2084      */
2085     cap_papr = 1;
2086 }
2087 #endif
2088 
2089 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2090 {
2091     return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2092 }
2093 
2094 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2095 {
2096     CPUState *cs = CPU(cpu);
2097     int ret;
2098 
2099     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2100     if (ret && mpic_proxy) {
2101         error_report("This KVM version does not support EPR");
2102         exit(1);
2103     }
2104 }
2105 
2106 bool kvmppc_get_fwnmi(void)
2107 {
2108     return cap_fwnmi;
2109 }
2110 
2111 int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2112 {
2113     CPUState *cs = CPU(cpu);
2114 
2115     return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2116 }
2117 
2118 bool kvmppc_has_cap_dawr1(void)
2119 {
2120     return !!cap_dawr1;
2121 }
2122 
2123 int kvmppc_set_cap_dawr1(int enable)
2124 {
2125     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_DAWR1, 0, enable);
2126 }
2127 
2128 int kvmppc_smt_threads(void)
2129 {
2130     return cap_ppc_smt ? cap_ppc_smt : 1;
2131 }
2132 
2133 int kvmppc_set_smt_threads(int smt)
2134 {
2135     int ret;
2136 
2137     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2138     if (!ret) {
2139         cap_ppc_smt = smt;
2140     }
2141     return ret;
2142 }
2143 
2144 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2145 {
2146     int i;
2147     GString *g;
2148     char *s;
2149 
2150     assert(kvm_enabled());
2151     if (cap_ppc_smt_possible) {
2152         g = g_string_new("Available VSMT modes:");
2153         for (i = 63; i >= 0; i--) {
2154             if ((1UL << i) & cap_ppc_smt_possible) {
2155                 g_string_append_printf(g, " %lu", (1UL << i));
2156             }
2157         }
2158         s = g_string_free(g, false);
2159         error_append_hint(errp, "%s.\n", s);
2160         g_free(s);
2161     } else {
2162         error_append_hint(errp,
2163                           "This KVM seems to be too old to support VSMT.\n");
2164     }
2165 }
2166 
2167 
2168 #ifdef TARGET_PPC64
2169 uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2170 {
2171     struct kvm_ppc_smmu_info info;
2172     long rampagesize, best_page_shift;
2173     int i;
2174 
2175     /*
2176      * Find the largest hardware supported page size that's less than
2177      * or equal to the (logical) backing page size of guest RAM
2178      */
2179     kvm_get_smmu_info(&info, &error_fatal);
2180     rampagesize = qemu_minrampagesize();
2181     best_page_shift = 0;
2182 
2183     for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2184         struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2185 
2186         if (!sps->page_shift) {
2187             continue;
2188         }
2189 
2190         if ((sps->page_shift > best_page_shift)
2191             && ((1UL << sps->page_shift) <= rampagesize)) {
2192             best_page_shift = sps->page_shift;
2193         }
2194     }
2195 
2196     return 1ULL << (best_page_shift + hash_shift - 7);
2197 }
2198 #endif
2199 
2200 bool kvmppc_spapr_use_multitce(void)
2201 {
2202     return cap_spapr_multitce;
2203 }
2204 
2205 int kvmppc_spapr_enable_inkernel_multitce(void)
2206 {
2207     int ret;
2208 
2209     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2210                             H_PUT_TCE_INDIRECT, 1);
2211     if (!ret) {
2212         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2213                                 H_STUFF_TCE, 1);
2214     }
2215 
2216     return ret;
2217 }
2218 
2219 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2220                               uint64_t bus_offset, uint32_t nb_table,
2221                               int *pfd, bool need_vfio)
2222 {
2223     long len;
2224     int fd;
2225     void *table;
2226 
2227     /*
2228      * Must set fd to -1 so we don't try to munmap when called for
2229      * destroying the table, which the upper layers -will- do
2230      */
2231     *pfd = -1;
2232     if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2233         return NULL;
2234     }
2235 
2236     if (cap_spapr_tce_64) {
2237         struct kvm_create_spapr_tce_64 args = {
2238             .liobn = liobn,
2239             .page_shift = page_shift,
2240             .offset = bus_offset >> page_shift,
2241             .size = nb_table,
2242             .flags = 0
2243         };
2244         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2245         if (fd < 0) {
2246             fprintf(stderr,
2247                     "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2248                     liobn);
2249             return NULL;
2250         }
2251     } else if (cap_spapr_tce) {
2252         uint64_t window_size = (uint64_t) nb_table << page_shift;
2253         struct kvm_create_spapr_tce args = {
2254             .liobn = liobn,
2255             .window_size = window_size,
2256         };
2257         if ((window_size != args.window_size) || bus_offset) {
2258             return NULL;
2259         }
2260         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2261         if (fd < 0) {
2262             fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2263                     liobn);
2264             return NULL;
2265         }
2266     } else {
2267         return NULL;
2268     }
2269 
2270     len = nb_table * sizeof(uint64_t);
2271     /* FIXME: round this up to page size */
2272 
2273     table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2274     if (table == MAP_FAILED) {
2275         fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2276                 liobn);
2277         close(fd);
2278         return NULL;
2279     }
2280 
2281     *pfd = fd;
2282     return table;
2283 }
2284 
2285 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2286 {
2287     long len;
2288 
2289     if (fd < 0) {
2290         return -1;
2291     }
2292 
2293     len = nb_table * sizeof(uint64_t);
2294     if ((munmap(table, len) < 0) ||
2295         (close(fd) < 0)) {
2296         fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2297                 strerror(errno));
2298         /* Leak the table */
2299     }
2300 
2301     return 0;
2302 }
2303 
2304 int kvmppc_reset_htab(int shift_hint)
2305 {
2306     uint32_t shift = shift_hint;
2307 
2308     if (!kvm_enabled()) {
2309         /* Full emulation, tell caller to allocate htab itself */
2310         return 0;
2311     }
2312     if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2313         int ret;
2314         ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2315         if (ret == -ENOTTY) {
2316             /*
2317              * At least some versions of PR KVM advertise the
2318              * capability, but don't implement the ioctl().  Oops.
2319              * Return 0 so that we allocate the htab in qemu, as is
2320              * correct for PR.
2321              */
2322             return 0;
2323         } else if (ret < 0) {
2324             return ret;
2325         }
2326         return shift;
2327     }
2328 
2329     /*
2330      * We have a kernel that predates the htab reset calls.  For PR
2331      * KVM, we need to allocate the htab ourselves, for an HV KVM of
2332      * this era, it has allocated a 16MB fixed size hash table
2333      * already.
2334      */
2335     if (kvmppc_is_pr(kvm_state)) {
2336         /* PR - tell caller to allocate htab */
2337         return 0;
2338     } else {
2339         /* HV - assume 16MB kernel allocated htab */
2340         return 24;
2341     }
2342 }
2343 
2344 static inline uint32_t mfpvr(void)
2345 {
2346     uint32_t pvr;
2347 
2348     asm ("mfpvr %0"
2349          : "=r"(pvr));
2350     return pvr;
2351 }
2352 
2353 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2354 {
2355     if (on) {
2356         *word |= flags;
2357     } else {
2358         *word &= ~flags;
2359     }
2360 }
2361 
2362 static bool kvmppc_cpu_realize(CPUState *cs, Error **errp)
2363 {
2364     int ret;
2365     const char *vcpu_str = (cs->parent_obj.hotplugged == true) ?
2366                            "hotplug" : "create";
2367     cs->cpu_index = cpu_get_free_index();
2368 
2369     POWERPC_CPU(cs)->vcpu_id = cs->cpu_index;
2370 
2371     /* create and park to fail gracefully in case vcpu hotplug fails */
2372     ret = kvm_create_and_park_vcpu(cs);
2373     if (ret) {
2374         /*
2375          * This causes QEMU to terminate if initial CPU creation
2376          * fails, and only CPU hotplug failure if the error happens
2377          * there.
2378          */
2379         error_setg(errp, "%s: vcpu %s failed with %d",
2380                          __func__, vcpu_str, ret);
2381         return false;
2382     }
2383     return true;
2384 }
2385 
2386 static void kvmppc_host_cpu_class_init(ObjectClass *oc, const void *data)
2387 {
2388     PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2389     uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2390     uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2391 
2392     /* Now fix up the class with information we can query from the host */
2393     pcc->pvr = mfpvr();
2394 
2395     alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2396                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2397     alter_insns(&pcc->insns_flags2, PPC2_VSX,
2398                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2399     alter_insns(&pcc->insns_flags2, PPC2_DFP,
2400                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2401 
2402     if (dcache_size != -1) {
2403         pcc->l1_dcache_size = dcache_size;
2404     }
2405 
2406     if (icache_size != -1) {
2407         pcc->l1_icache_size = icache_size;
2408     }
2409 
2410 #if defined(TARGET_PPC64)
2411     pcc->radix_page_info = kvmppc_get_radix_page_info();
2412 #endif /* defined(TARGET_PPC64) */
2413 }
2414 
2415 bool kvmppc_has_cap_epr(void)
2416 {
2417     return cap_epr;
2418 }
2419 
2420 bool kvmppc_has_cap_fixup_hcalls(void)
2421 {
2422     return cap_fixup_hcalls;
2423 }
2424 
2425 bool kvmppc_has_cap_htm(void)
2426 {
2427     return cap_htm;
2428 }
2429 
2430 bool kvmppc_has_cap_mmu_radix(void)
2431 {
2432     return cap_mmu_radix;
2433 }
2434 
2435 bool kvmppc_has_cap_mmu_hash_v3(void)
2436 {
2437     return cap_mmu_hash_v3;
2438 }
2439 
2440 static bool kvmppc_power8_host(void)
2441 {
2442     bool ret = false;
2443 #ifdef TARGET_PPC64
2444     {
2445         uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2446         ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2447               (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2448               (base_pvr == CPU_POWERPC_POWER8_BASE);
2449     }
2450 #endif /* TARGET_PPC64 */
2451     return ret;
2452 }
2453 
2454 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2455 {
2456     bool l1d_thread_priv_req = !kvmppc_power8_host();
2457 
2458     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2459         return 2;
2460     } else if ((!l1d_thread_priv_req ||
2461                 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2462                (c.character & c.character_mask
2463                 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2464         return 1;
2465     }
2466 
2467     return 0;
2468 }
2469 
2470 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2471 {
2472     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2473         return 2;
2474     } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2475         return 1;
2476     }
2477 
2478     return 0;
2479 }
2480 
2481 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2482 {
2483     if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2484         (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2485         (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2486         return SPAPR_CAP_FIXED_NA;
2487     } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2488         return SPAPR_CAP_WORKAROUND;
2489     } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2490         return  SPAPR_CAP_FIXED_CCD;
2491     } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2492         return SPAPR_CAP_FIXED_IBS;
2493     }
2494 
2495     return 0;
2496 }
2497 
2498 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2499 {
2500     if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2501         return 1;
2502     }
2503     return 0;
2504 }
2505 
2506 bool kvmppc_has_cap_xive(void)
2507 {
2508     return cap_xive;
2509 }
2510 
2511 static void kvmppc_get_cpu_characteristics(KVMState *s)
2512 {
2513     struct kvm_ppc_cpu_char c;
2514     int ret;
2515 
2516     /* Assume broken */
2517     cap_ppc_safe_cache = 0;
2518     cap_ppc_safe_bounds_check = 0;
2519     cap_ppc_safe_indirect_branch = 0;
2520 
2521     ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2522     if (!ret) {
2523         return;
2524     }
2525     ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2526     if (ret < 0) {
2527         return;
2528     }
2529 
2530     cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2531     cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2532     cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2533     cap_ppc_count_cache_flush_assist =
2534         parse_cap_ppc_count_cache_flush_assist(c);
2535 }
2536 
2537 int kvmppc_get_cap_safe_cache(void)
2538 {
2539     return cap_ppc_safe_cache;
2540 }
2541 
2542 int kvmppc_get_cap_safe_bounds_check(void)
2543 {
2544     return cap_ppc_safe_bounds_check;
2545 }
2546 
2547 int kvmppc_get_cap_safe_indirect_branch(void)
2548 {
2549     return cap_ppc_safe_indirect_branch;
2550 }
2551 
2552 int kvmppc_get_cap_count_cache_flush_assist(void)
2553 {
2554     return cap_ppc_count_cache_flush_assist;
2555 }
2556 
2557 bool kvmppc_has_cap_nested_kvm_hv(void)
2558 {
2559     return !!cap_ppc_nested_kvm_hv;
2560 }
2561 
2562 int kvmppc_set_cap_nested_kvm_hv(int enable)
2563 {
2564     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2565 }
2566 
2567 bool kvmppc_has_cap_spapr_vfio(void)
2568 {
2569     return cap_spapr_vfio;
2570 }
2571 
2572 int kvmppc_get_cap_large_decr(void)
2573 {
2574     return cap_large_decr;
2575 }
2576 
2577 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2578 {
2579     CPUState *cs = CPU(cpu);
2580     uint64_t lpcr = 0;
2581 
2582     kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2583     /* Do we need to modify the LPCR? */
2584     if (!!(lpcr & LPCR_LD) != !!enable) {
2585         if (enable) {
2586             lpcr |= LPCR_LD;
2587         } else {
2588             lpcr &= ~LPCR_LD;
2589         }
2590         kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2591         kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2592 
2593         if (!!(lpcr & LPCR_LD) != !!enable) {
2594             return -1;
2595         }
2596     }
2597 
2598     return 0;
2599 }
2600 
2601 int kvmppc_has_cap_rpt_invalidate(void)
2602 {
2603     return cap_rpt_invalidate;
2604 }
2605 
2606 bool kvmppc_supports_ail_3(void)
2607 {
2608     return cap_ail_mode_3;
2609 }
2610 
2611 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2612 {
2613     uint32_t host_pvr = mfpvr();
2614     PowerPCCPUClass *pvr_pcc;
2615 
2616     pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2617     if (pvr_pcc == NULL) {
2618         pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2619     }
2620 
2621     return pvr_pcc;
2622 }
2623 
2624 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2625 {
2626     MachineClass *mc = MACHINE_CLASS(oc);
2627 
2628     mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2629 }
2630 
2631 static int kvm_ppc_register_host_cpu_type(void)
2632 {
2633     TypeInfo type_info = {
2634         .name = TYPE_HOST_POWERPC_CPU,
2635         .class_init = kvmppc_host_cpu_class_init,
2636     };
2637     PowerPCCPUClass *pvr_pcc;
2638     ObjectClass *oc;
2639     DeviceClass *dc;
2640     int i;
2641 
2642     pvr_pcc = kvm_ppc_get_host_cpu_class();
2643     if (pvr_pcc == NULL) {
2644         return -1;
2645     }
2646     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2647     type_register_static(&type_info);
2648     /* override TCG default cpu type with 'host' cpu model */
2649     object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2650                          false, NULL);
2651 
2652     oc = object_class_by_name(type_info.name);
2653     g_assert(oc);
2654 
2655     /*
2656      * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2657      * we want "POWER8" to be a "family" alias that points to the current
2658      * host CPU type, too)
2659      */
2660     dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2661     for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2662         if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2663             char *suffix;
2664 
2665             ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2666             suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2667             if (suffix) {
2668                 *suffix = 0;
2669             }
2670             break;
2671         }
2672     }
2673 
2674     return 0;
2675 }
2676 
2677 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2678 {
2679     struct kvm_rtas_token_args args = {
2680         .token = token,
2681     };
2682 
2683     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2684         return -ENOENT;
2685     }
2686 
2687     strncpy(args.name, function, sizeof(args.name) - 1);
2688 
2689     return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2690 }
2691 
2692 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2693 {
2694     struct kvm_get_htab_fd s = {
2695         .flags = write ? KVM_GET_HTAB_WRITE : 0,
2696         .start_index = index,
2697     };
2698     int ret;
2699 
2700     if (!cap_htab_fd) {
2701         error_setg(errp, "KVM version doesn't support %s the HPT",
2702                    write ? "writing" : "reading");
2703         return -ENOTSUP;
2704     }
2705 
2706     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2707     if (ret < 0) {
2708         error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2709                    write ? "writing" : "reading", write ? "to" : "from",
2710                    strerror(errno));
2711         return -errno;
2712     }
2713 
2714     return ret;
2715 }
2716 
2717 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2718 {
2719     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2720     g_autofree uint8_t *buf = g_malloc(bufsize);
2721     ssize_t rc;
2722 
2723     do {
2724         rc = read(fd, buf, bufsize);
2725         if (rc < 0) {
2726             fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2727                     strerror(errno));
2728             return rc;
2729         } else if (rc) {
2730             uint8_t *buffer = buf;
2731             ssize_t n = rc;
2732             while (n) {
2733                 struct kvm_get_htab_header *head =
2734                     (struct kvm_get_htab_header *) buffer;
2735                 size_t chunksize = sizeof(*head) +
2736                      HASH_PTE_SIZE_64 * head->n_valid;
2737 
2738                 qemu_put_be32(f, head->index);
2739                 qemu_put_be16(f, head->n_valid);
2740                 qemu_put_be16(f, head->n_invalid);
2741                 qemu_put_buffer(f, (void *)(head + 1),
2742                                 HASH_PTE_SIZE_64 * head->n_valid);
2743 
2744                 buffer += chunksize;
2745                 n -= chunksize;
2746             }
2747         }
2748     } while ((rc != 0)
2749              && ((max_ns < 0) ||
2750                  ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2751 
2752     return (rc == 0) ? 1 : 0;
2753 }
2754 
2755 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2756                            uint16_t n_valid, uint16_t n_invalid, Error **errp)
2757 {
2758     struct kvm_get_htab_header *buf;
2759     size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2760     ssize_t rc;
2761 
2762     buf = alloca(chunksize);
2763     buf->index = index;
2764     buf->n_valid = n_valid;
2765     buf->n_invalid = n_invalid;
2766 
2767     qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2768 
2769     rc = write(fd, buf, chunksize);
2770     if (rc < 0) {
2771         error_setg_errno(errp, errno, "Error writing the KVM hash table");
2772         return -errno;
2773     }
2774     if (rc != chunksize) {
2775         /* We should never get a short write on a single chunk */
2776         error_setg(errp, "Short write while restoring the KVM hash table");
2777         return -ENOSPC;
2778     }
2779     return 0;
2780 }
2781 
2782 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2783 {
2784     return true;
2785 }
2786 
2787 void kvm_arch_init_irq_routing(KVMState *s)
2788 {
2789 }
2790 
2791 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2792 {
2793     int fd, rc;
2794     int i;
2795 
2796     fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2797 
2798     i = 0;
2799     while (i < n) {
2800         struct kvm_get_htab_header *hdr;
2801         int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2802         char buf[sizeof(*hdr) + HPTES_PER_GROUP * HASH_PTE_SIZE_64];
2803 
2804         rc = read(fd, buf, sizeof(*hdr) + m * HASH_PTE_SIZE_64);
2805         if (rc < 0) {
2806             hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2807         }
2808 
2809         hdr = (struct kvm_get_htab_header *)buf;
2810         while ((i < n) && ((char *)hdr < (buf + rc))) {
2811             int invalid = hdr->n_invalid, valid = hdr->n_valid;
2812 
2813             if (hdr->index != (ptex + i)) {
2814                 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2815                          " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2816             }
2817 
2818             if (n - i < valid) {
2819                 valid = n - i;
2820             }
2821             memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2822             i += valid;
2823 
2824             if ((n - i) < invalid) {
2825                 invalid = n - i;
2826             }
2827             memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2828             i += invalid;
2829 
2830             hdr = (struct kvm_get_htab_header *)
2831                 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2832         }
2833     }
2834 
2835     close(fd);
2836 }
2837 
2838 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2839 {
2840     int fd, rc;
2841     struct {
2842         struct kvm_get_htab_header hdr;
2843         uint64_t pte0;
2844         uint64_t pte1;
2845     } buf;
2846 
2847     fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2848 
2849     buf.hdr.n_valid = 1;
2850     buf.hdr.n_invalid = 0;
2851     buf.hdr.index = ptex;
2852     buf.pte0 = cpu_to_be64(pte0);
2853     buf.pte1 = cpu_to_be64(pte1);
2854 
2855     rc = write(fd, &buf, sizeof(buf));
2856     if (rc != sizeof(buf)) {
2857         hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2858     }
2859     close(fd);
2860 }
2861 
2862 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2863                              uint64_t address, uint32_t data, PCIDevice *dev)
2864 {
2865     return 0;
2866 }
2867 
2868 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2869                                 int vector, PCIDevice *dev)
2870 {
2871     return 0;
2872 }
2873 
2874 int kvm_arch_release_virq_post(int virq)
2875 {
2876     return 0;
2877 }
2878 
2879 int kvm_arch_msi_data_to_gsi(uint32_t data)
2880 {
2881     return data & 0xffff;
2882 }
2883 
2884 #if defined(CONFIG_PSERIES)
2885 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2886 {
2887     uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2888 
2889     cpu_synchronize_state(CPU(cpu));
2890 
2891     spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2892 
2893     return 0;
2894 }
2895 #endif
2896 
2897 int kvmppc_enable_hwrng(void)
2898 {
2899     if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2900         return -1;
2901     }
2902 
2903     return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2904 }
2905 
2906 void kvmppc_check_papr_resize_hpt(Error **errp)
2907 {
2908     if (!kvm_enabled()) {
2909         return; /* No KVM, we're good */
2910     }
2911 
2912     if (cap_resize_hpt) {
2913         return; /* Kernel has explicit support, we're good */
2914     }
2915 
2916     /* Otherwise fallback on looking for PR KVM */
2917     if (kvmppc_is_pr(kvm_state)) {
2918         return;
2919     }
2920 
2921     error_setg(errp,
2922                "Hash page table resizing not available with this KVM version");
2923 }
2924 
2925 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2926 {
2927     CPUState *cs = CPU(cpu);
2928     struct kvm_ppc_resize_hpt rhpt = {
2929         .flags = flags,
2930         .shift = shift,
2931     };
2932 
2933     if (!cap_resize_hpt) {
2934         return -ENOSYS;
2935     }
2936 
2937     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2938 }
2939 
2940 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2941 {
2942     CPUState *cs = CPU(cpu);
2943     struct kvm_ppc_resize_hpt rhpt = {
2944         .flags = flags,
2945         .shift = shift,
2946     };
2947 
2948     if (!cap_resize_hpt) {
2949         return -ENOSYS;
2950     }
2951 
2952     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2953 }
2954 
2955 /*
2956  * This is a helper function to detect a post migration scenario
2957  * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2958  * the guest kernel can't handle a PVR value other than the actual host
2959  * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2960  *
2961  * If we don't have cap_ppc_pvr_compat and we're not running in PR
2962  * (so, we're HV), return true. The workaround itself is done in
2963  * cpu_post_load.
2964  *
2965  * The order here is important: we'll only check for KVM PR as a
2966  * fallback if the guest kernel can't handle the situation itself.
2967  * We need to avoid as much as possible querying the running KVM type
2968  * in QEMU level.
2969  */
2970 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2971 {
2972     CPUState *cs = CPU(cpu);
2973 
2974     if (!kvm_enabled()) {
2975         return false;
2976     }
2977 
2978     if (cap_ppc_pvr_compat) {
2979         return false;
2980     }
2981 
2982     return !kvmppc_is_pr(cs->kvm_state);
2983 }
2984 
2985 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2986 {
2987     CPUState *cs = CPU(cpu);
2988 
2989     if (kvm_enabled()) {
2990         kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2991     }
2992 }
2993 
2994 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2995 {
2996     CPUState *cs = CPU(cpu);
2997 
2998     if (kvm_enabled()) {
2999         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
3000     }
3001 }
3002 
3003 void kvm_arch_accel_class_init(ObjectClass *oc)
3004 {
3005 }
3006 
3007 static void kvm_cpu_accel_class_init(ObjectClass *oc, const void *data)
3008 {
3009     AccelCPUClass *acc = ACCEL_CPU_CLASS(oc);
3010 
3011     acc->cpu_target_realize = kvmppc_cpu_realize;
3012 }
3013 
3014 static const TypeInfo kvm_cpu_accel_type_info = {
3015     .name = ACCEL_CPU_NAME("kvm"),
3016 
3017     .parent = TYPE_ACCEL_CPU,
3018     .class_init = kvm_cpu_accel_class_init,
3019     .abstract = true,
3020 };
3021 static void kvm_cpu_accel_register_types(void)
3022 {
3023     type_register_static(&kvm_cpu_accel_type_info);
3024 }
3025 type_init(kvm_cpu_accel_register_types);
3026