1 /* 2 * i386 TCG cpu class initialization 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "helper-tcg.h" 23 #include "qemu/accel.h" 24 #include "accel/accel-cpu-target.h" 25 #include "exec/translation-block.h" 26 #include "exec/target_page.h" 27 #include "accel/tcg/cpu-ops.h" 28 #include "tcg-cpu.h" 29 30 /* Frob eflags into and out of the CPU temporary format. */ 31 32 static void x86_cpu_exec_enter(CPUState *cs) 33 { 34 X86CPU *cpu = X86_CPU(cs); 35 CPUX86State *env = &cpu->env; 36 37 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); 38 env->df = 1 - (2 * ((env->eflags >> 10) & 1)); 39 CC_OP = CC_OP_EFLAGS; 40 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); 41 } 42 43 static void x86_cpu_exec_exit(CPUState *cs) 44 { 45 X86CPU *cpu = X86_CPU(cs); 46 CPUX86State *env = &cpu->env; 47 48 env->eflags = cpu_compute_eflags(env); 49 } 50 51 static TCGTBCPUState x86_get_tb_cpu_state(CPUState *cs) 52 { 53 CPUX86State *env = cpu_env(cs); 54 uint32_t flags, cs_base; 55 vaddr pc; 56 57 flags = env->hflags | 58 (env->eflags & (IOPL_MASK | TF_MASK | RF_MASK | VM_MASK | AC_MASK)); 59 if (env->hflags & HF_CS64_MASK) { 60 cs_base = 0; 61 pc = env->eip; 62 } else { 63 cs_base = env->segs[R_CS].base; 64 pc = (uint32_t)(cs_base + env->eip); 65 } 66 67 return (TCGTBCPUState){ .pc = pc, .flags = flags, .cs_base = cs_base }; 68 } 69 70 static void x86_cpu_synchronize_from_tb(CPUState *cs, 71 const TranslationBlock *tb) 72 { 73 /* The instruction pointer is always up to date with CF_PCREL. */ 74 if (!(tb_cflags(tb) & CF_PCREL)) { 75 CPUX86State *env = cpu_env(cs); 76 77 if (tb->flags & HF_CS64_MASK) { 78 env->eip = tb->pc; 79 } else { 80 env->eip = (uint32_t)(tb->pc - tb->cs_base); 81 } 82 } 83 } 84 85 static void x86_restore_state_to_opc(CPUState *cs, 86 const TranslationBlock *tb, 87 const uint64_t *data) 88 { 89 X86CPU *cpu = X86_CPU(cs); 90 CPUX86State *env = &cpu->env; 91 int cc_op = data[1]; 92 uint64_t new_pc; 93 94 if (tb_cflags(tb) & CF_PCREL) { 95 /* 96 * data[0] in PC-relative TBs is also a linear address, i.e. an address with 97 * the CS base added, because it is not guaranteed that EIP bits 12 and higher 98 * stay the same across the translation block. Add the CS base back before 99 * replacing the low bits, and subtract it below just like for !CF_PCREL. 100 */ 101 uint64_t pc = env->eip + tb->cs_base; 102 new_pc = (pc & TARGET_PAGE_MASK) | data[0]; 103 } else { 104 new_pc = data[0]; 105 } 106 if (tb->flags & HF_CS64_MASK) { 107 env->eip = new_pc; 108 } else { 109 env->eip = (uint32_t)(new_pc - tb->cs_base); 110 } 111 112 if (cc_op != CC_OP_DYNAMIC) { 113 env->cc_op = cc_op; 114 } 115 } 116 117 int x86_mmu_index_pl(CPUX86State *env, unsigned pl) 118 { 119 int mmu_index_32 = (env->hflags & HF_CS64_MASK) ? 0 : 1; 120 int mmu_index_base = 121 pl == 3 ? MMU_USER64_IDX : 122 !(env->hflags & HF_SMAP_MASK) ? MMU_KNOSMAP64_IDX : 123 (env->eflags & AC_MASK) ? MMU_KNOSMAP64_IDX : MMU_KSMAP64_IDX; 124 125 return mmu_index_base + mmu_index_32; 126 } 127 128 static int x86_cpu_mmu_index(CPUState *cs, bool ifetch) 129 { 130 CPUX86State *env = cpu_env(cs); 131 return x86_mmu_index_pl(env, env->hflags & HF_CPL_MASK); 132 } 133 134 #ifndef CONFIG_USER_ONLY 135 static bool x86_debug_check_breakpoint(CPUState *cs) 136 { 137 X86CPU *cpu = X86_CPU(cs); 138 CPUX86State *env = &cpu->env; 139 140 /* RF disables all architectural breakpoints. */ 141 return !(env->eflags & RF_MASK); 142 } 143 144 static void x86_cpu_exec_reset(CPUState *cs) 145 { 146 CPUArchState *env = cpu_env(cs); 147 148 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 149 do_cpu_init(env_archcpu(env)); 150 cs->exception_index = EXCP_HALTED; 151 } 152 #endif 153 154 const TCGCPUOps x86_tcg_ops = { 155 .mttcg_supported = true, 156 .precise_smc = true, 157 /* 158 * The x86 has a strong memory model with some store-after-load re-ordering 159 */ 160 .guest_default_memory_order = TCG_MO_ALL & ~TCG_MO_ST_LD, 161 .initialize = tcg_x86_init, 162 .translate_code = x86_translate_code, 163 .get_tb_cpu_state = x86_get_tb_cpu_state, 164 .synchronize_from_tb = x86_cpu_synchronize_from_tb, 165 .restore_state_to_opc = x86_restore_state_to_opc, 166 .mmu_index = x86_cpu_mmu_index, 167 .cpu_exec_enter = x86_cpu_exec_enter, 168 .cpu_exec_exit = x86_cpu_exec_exit, 169 #ifdef CONFIG_USER_ONLY 170 .fake_user_interrupt = x86_cpu_do_interrupt, 171 .record_sigsegv = x86_cpu_record_sigsegv, 172 .record_sigbus = x86_cpu_record_sigbus, 173 #else 174 .tlb_fill = x86_cpu_tlb_fill, 175 .do_interrupt = x86_cpu_do_interrupt, 176 .cpu_exec_halt = x86_cpu_exec_halt, 177 .cpu_exec_interrupt = x86_cpu_exec_interrupt, 178 .cpu_exec_reset = x86_cpu_exec_reset, 179 .do_unaligned_access = x86_cpu_do_unaligned_access, 180 .debug_excp_handler = breakpoint_handler, 181 .debug_check_breakpoint = x86_debug_check_breakpoint, 182 .need_replay_interrupt = x86_need_replay_interrupt, 183 #endif /* !CONFIG_USER_ONLY */ 184 }; 185 186 static void x86_tcg_cpu_xsave_init(void) 187 { 188 #define XO(bit, field) \ 189 x86_ext_save_areas[bit].offset = offsetof(X86XSaveArea, field); 190 191 XO(XSTATE_FP_BIT, legacy); 192 XO(XSTATE_SSE_BIT, legacy); 193 XO(XSTATE_YMM_BIT, avx_state); 194 XO(XSTATE_BNDREGS_BIT, bndreg_state); 195 XO(XSTATE_BNDCSR_BIT, bndcsr_state); 196 XO(XSTATE_OPMASK_BIT, opmask_state); 197 XO(XSTATE_ZMM_Hi256_BIT, zmm_hi256_state); 198 XO(XSTATE_Hi16_ZMM_BIT, hi16_zmm_state); 199 XO(XSTATE_PKRU_BIT, pkru_state); 200 201 #undef XO 202 } 203 204 /* 205 * TCG-specific defaults that override cpudef models when using TCG. 206 * Only for builtin_x86_defs models initialized with x86_register_cpudef_types. 207 */ 208 static PropValue x86_tcg_default_props[] = { 209 { "vme", "off" }, 210 { NULL, NULL }, 211 }; 212 213 static void x86_tcg_cpu_instance_init(CPUState *cs) 214 { 215 X86CPU *cpu = X86_CPU(cs); 216 X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu); 217 218 if (xcc->model) { 219 /* Special cases not set in the X86CPUDefinition structs: */ 220 x86_cpu_apply_props(cpu, x86_tcg_default_props); 221 } 222 223 x86_tcg_cpu_xsave_init(); 224 } 225 226 static void x86_tcg_cpu_accel_class_init(ObjectClass *oc, const void *data) 227 { 228 AccelCPUClass *acc = ACCEL_CPU_CLASS(oc); 229 230 #ifndef CONFIG_USER_ONLY 231 acc->cpu_target_realize = tcg_cpu_realizefn; 232 #endif /* CONFIG_USER_ONLY */ 233 234 acc->cpu_instance_init = x86_tcg_cpu_instance_init; 235 } 236 static const TypeInfo x86_tcg_cpu_accel_type_info = { 237 .name = ACCEL_CPU_NAME("tcg"), 238 239 .parent = TYPE_ACCEL_CPU, 240 .class_init = x86_tcg_cpu_accel_class_init, 241 .abstract = true, 242 }; 243 static void x86_tcg_cpu_accel_register_types(void) 244 { 245 type_register_static(&x86_tcg_cpu_accel_type_info); 246 } 247 type_init(x86_tcg_cpu_accel_register_types); 248