1 /*
2 * i386 TCG cpu class initialization
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "helper-tcg.h"
23 #include "qemu/accel.h"
24 #include "accel/accel-cpu-target.h"
25 #include "exec/translation-block.h"
26 #include "exec/target_page.h"
27 #include "accel/tcg/cpu-ops.h"
28 #include "tcg-cpu.h"
29
30 /* Frob eflags into and out of the CPU temporary format. */
31
x86_cpu_exec_enter(CPUState * cs)32 static void x86_cpu_exec_enter(CPUState *cs)
33 {
34 X86CPU *cpu = X86_CPU(cs);
35 CPUX86State *env = &cpu->env;
36
37 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
38 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
39 CC_OP = CC_OP_EFLAGS;
40 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
41 }
42
x86_cpu_exec_exit(CPUState * cs)43 static void x86_cpu_exec_exit(CPUState *cs)
44 {
45 X86CPU *cpu = X86_CPU(cs);
46 CPUX86State *env = &cpu->env;
47
48 env->eflags = cpu_compute_eflags(env);
49 }
50
x86_get_tb_cpu_state(CPUState * cs)51 static TCGTBCPUState x86_get_tb_cpu_state(CPUState *cs)
52 {
53 CPUX86State *env = cpu_env(cs);
54 uint32_t flags, cs_base;
55 vaddr pc;
56
57 flags = env->hflags |
58 (env->eflags & (IOPL_MASK | TF_MASK | RF_MASK | VM_MASK | AC_MASK));
59 if (env->hflags & HF_CS64_MASK) {
60 cs_base = 0;
61 pc = env->eip;
62 } else {
63 cs_base = env->segs[R_CS].base;
64 pc = (uint32_t)(cs_base + env->eip);
65 }
66
67 return (TCGTBCPUState){ .pc = pc, .flags = flags, .cs_base = cs_base };
68 }
69
x86_cpu_synchronize_from_tb(CPUState * cs,const TranslationBlock * tb)70 static void x86_cpu_synchronize_from_tb(CPUState *cs,
71 const TranslationBlock *tb)
72 {
73 /* The instruction pointer is always up to date with CF_PCREL. */
74 if (!(tb_cflags(tb) & CF_PCREL)) {
75 CPUX86State *env = cpu_env(cs);
76
77 if (tb->flags & HF_CS64_MASK) {
78 env->eip = tb->pc;
79 } else {
80 env->eip = (uint32_t)(tb->pc - tb->cs_base);
81 }
82 }
83 }
84
x86_restore_state_to_opc(CPUState * cs,const TranslationBlock * tb,const uint64_t * data)85 static void x86_restore_state_to_opc(CPUState *cs,
86 const TranslationBlock *tb,
87 const uint64_t *data)
88 {
89 X86CPU *cpu = X86_CPU(cs);
90 CPUX86State *env = &cpu->env;
91 int cc_op = data[1];
92 uint64_t new_pc;
93
94 if (tb_cflags(tb) & CF_PCREL) {
95 /*
96 * data[0] in PC-relative TBs is also a linear address, i.e. an address with
97 * the CS base added, because it is not guaranteed that EIP bits 12 and higher
98 * stay the same across the translation block. Add the CS base back before
99 * replacing the low bits, and subtract it below just like for !CF_PCREL.
100 */
101 uint64_t pc = env->eip + tb->cs_base;
102 new_pc = (pc & TARGET_PAGE_MASK) | data[0];
103 } else {
104 new_pc = data[0];
105 }
106 if (tb->flags & HF_CS64_MASK) {
107 env->eip = new_pc;
108 } else {
109 env->eip = (uint32_t)(new_pc - tb->cs_base);
110 }
111
112 if (cc_op != CC_OP_DYNAMIC) {
113 env->cc_op = cc_op;
114 }
115 }
116
x86_mmu_index_pl(CPUX86State * env,unsigned pl)117 int x86_mmu_index_pl(CPUX86State *env, unsigned pl)
118 {
119 int mmu_index_32 = (env->hflags & HF_CS64_MASK) ? 0 : 1;
120 int mmu_index_base =
121 pl == 3 ? MMU_USER64_IDX :
122 !(env->hflags & HF_SMAP_MASK) ? MMU_KNOSMAP64_IDX :
123 (env->eflags & AC_MASK) ? MMU_KNOSMAP64_IDX : MMU_KSMAP64_IDX;
124
125 return mmu_index_base + mmu_index_32;
126 }
127
x86_cpu_mmu_index(CPUState * cs,bool ifetch)128 static int x86_cpu_mmu_index(CPUState *cs, bool ifetch)
129 {
130 CPUX86State *env = cpu_env(cs);
131 return x86_mmu_index_pl(env, env->hflags & HF_CPL_MASK);
132 }
133
134 #ifndef CONFIG_USER_ONLY
x86_debug_check_breakpoint(CPUState * cs)135 static bool x86_debug_check_breakpoint(CPUState *cs)
136 {
137 X86CPU *cpu = X86_CPU(cs);
138 CPUX86State *env = &cpu->env;
139
140 /* RF disables all architectural breakpoints. */
141 return !(env->eflags & RF_MASK);
142 }
143
x86_cpu_exec_reset(CPUState * cs)144 static void x86_cpu_exec_reset(CPUState *cs)
145 {
146 CPUArchState *env = cpu_env(cs);
147
148 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
149 do_cpu_init(env_archcpu(env));
150 cs->exception_index = EXCP_HALTED;
151 }
152
x86_pointer_wrap(CPUState * cs,int mmu_idx,vaddr result,vaddr base)153 static vaddr x86_pointer_wrap(CPUState *cs, int mmu_idx,
154 vaddr result, vaddr base)
155 {
156 return cpu_env(cs)->hflags & HF_CS64_MASK ? result : (uint32_t)result;
157 }
158 #endif
159
160 const TCGCPUOps x86_tcg_ops = {
161 .mttcg_supported = true,
162 .precise_smc = true,
163 /*
164 * The x86 has a strong memory model with some store-after-load re-ordering
165 */
166 .guest_default_memory_order = TCG_MO_ALL & ~TCG_MO_ST_LD,
167 .initialize = tcg_x86_init,
168 .translate_code = x86_translate_code,
169 .get_tb_cpu_state = x86_get_tb_cpu_state,
170 .synchronize_from_tb = x86_cpu_synchronize_from_tb,
171 .restore_state_to_opc = x86_restore_state_to_opc,
172 .mmu_index = x86_cpu_mmu_index,
173 .cpu_exec_enter = x86_cpu_exec_enter,
174 .cpu_exec_exit = x86_cpu_exec_exit,
175 #ifdef CONFIG_USER_ONLY
176 .fake_user_interrupt = x86_cpu_do_interrupt,
177 .record_sigsegv = x86_cpu_record_sigsegv,
178 .record_sigbus = x86_cpu_record_sigbus,
179 #else
180 .tlb_fill = x86_cpu_tlb_fill,
181 .pointer_wrap = x86_pointer_wrap,
182 .do_interrupt = x86_cpu_do_interrupt,
183 .cpu_exec_halt = x86_cpu_exec_halt,
184 .cpu_exec_interrupt = x86_cpu_exec_interrupt,
185 .cpu_exec_reset = x86_cpu_exec_reset,
186 .do_unaligned_access = x86_cpu_do_unaligned_access,
187 .debug_excp_handler = breakpoint_handler,
188 .debug_check_breakpoint = x86_debug_check_breakpoint,
189 .need_replay_interrupt = x86_need_replay_interrupt,
190 #endif /* !CONFIG_USER_ONLY */
191 };
192
x86_tcg_cpu_xsave_init(void)193 static void x86_tcg_cpu_xsave_init(void)
194 {
195 #define XO(bit, field) \
196 x86_ext_save_areas[bit].offset = offsetof(X86XSaveArea, field);
197
198 XO(XSTATE_FP_BIT, legacy);
199 XO(XSTATE_SSE_BIT, legacy);
200 XO(XSTATE_YMM_BIT, avx_state);
201 XO(XSTATE_BNDREGS_BIT, bndreg_state);
202 XO(XSTATE_BNDCSR_BIT, bndcsr_state);
203 XO(XSTATE_OPMASK_BIT, opmask_state);
204 XO(XSTATE_ZMM_Hi256_BIT, zmm_hi256_state);
205 XO(XSTATE_Hi16_ZMM_BIT, hi16_zmm_state);
206 XO(XSTATE_PKRU_BIT, pkru_state);
207
208 #undef XO
209 }
210
211 /*
212 * TCG-specific defaults that override cpudef models when using TCG.
213 * Only for builtin_x86_defs models initialized with x86_register_cpudef_types.
214 */
215 static PropValue x86_tcg_default_props[] = {
216 { "vme", "off" },
217 { NULL, NULL },
218 };
219
x86_tcg_cpu_instance_init(CPUState * cs)220 static void x86_tcg_cpu_instance_init(CPUState *cs)
221 {
222 X86CPU *cpu = X86_CPU(cs);
223 X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu);
224
225 if (xcc->model) {
226 /* Special cases not set in the X86CPUDefinition structs: */
227 x86_cpu_apply_props(cpu, x86_tcg_default_props);
228 }
229
230 x86_tcg_cpu_xsave_init();
231 }
232
x86_tcg_cpu_accel_class_init(ObjectClass * oc,const void * data)233 static void x86_tcg_cpu_accel_class_init(ObjectClass *oc, const void *data)
234 {
235 AccelCPUClass *acc = ACCEL_CPU_CLASS(oc);
236
237 #ifndef CONFIG_USER_ONLY
238 acc->cpu_target_realize = tcg_cpu_realizefn;
239 #endif /* CONFIG_USER_ONLY */
240
241 acc->cpu_instance_init = x86_tcg_cpu_instance_init;
242 }
243 static const TypeInfo x86_tcg_cpu_accel_type_info = {
244 .name = ACCEL_CPU_NAME("tcg"),
245
246 .parent = TYPE_ACCEL_CPU,
247 .class_init = x86_tcg_cpu_accel_class_init,
248 .abstract = true,
249 };
x86_tcg_cpu_accel_register_types(void)250 static void x86_tcg_cpu_accel_register_types(void)
251 {
252 type_register_static(&x86_tcg_cpu_accel_type_info);
253 }
254 type_init(x86_tcg_cpu_accel_register_types);
255