xref: /qemu/subprojects/libvduse/linux-headers/linux/vfio.h (revision 7be29f2f1a3f5b037d27eedbd5df9f441e8c8c16)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * VFIO API definition
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #ifndef VFIO_H
13 #define VFIO_H
14 
15 #include <linux/types.h>
16 #include <linux/ioctl.h>
17 
18 #define VFIO_API_VERSION	0
19 
20 
21 /* Kernel & User level defines for VFIO IOCTLs. */
22 
23 /* Extensions */
24 
25 #define VFIO_TYPE1_IOMMU		1
26 #define VFIO_SPAPR_TCE_IOMMU		2
27 #define VFIO_TYPE1v2_IOMMU		3
28 /*
29  * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
30  * capability is subject to change as groups are added or removed.
31  */
32 #define VFIO_DMA_CC_IOMMU		4
33 
34 /* Check if EEH is supported */
35 #define VFIO_EEH			5
36 
37 /* Two-stage IOMMU */
38 #define __VFIO_RESERVED_TYPE1_NESTING_IOMMU	6	/* Implies v2 */
39 
40 #define VFIO_SPAPR_TCE_v2_IOMMU		7
41 
42 /*
43  * The No-IOMMU IOMMU offers no translation or isolation for devices and
44  * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
45  * code will taint the host kernel and should be used with extreme caution.
46  */
47 #define VFIO_NOIOMMU_IOMMU		8
48 
49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */
50 #define VFIO_UNMAP_ALL			9
51 
52 /*
53  * Supports the vaddr flag for DMA map and unmap.  Not supported for mediated
54  * devices, so this capability is subject to change as groups are added or
55  * removed.
56  */
57 #define VFIO_UPDATE_VADDR		10
58 
59 /*
60  * The IOCTL interface is designed for extensibility by embedding the
61  * structure length (argsz) and flags into structures passed between
62  * kernel and userspace.  We therefore use the _IO() macro for these
63  * defines to avoid implicitly embedding a size into the ioctl request.
64  * As structure fields are added, argsz will increase to match and flag
65  * bits will be defined to indicate additional fields with valid data.
66  * It's *always* the caller's responsibility to indicate the size of
67  * the structure passed by setting argsz appropriately.
68  */
69 
70 #define VFIO_TYPE	(';')
71 #define VFIO_BASE	100
72 
73 /*
74  * For extension of INFO ioctls, VFIO makes use of a capability chain
75  * designed after PCI/e capabilities.  A flag bit indicates whether
76  * this capability chain is supported and a field defined in the fixed
77  * structure defines the offset of the first capability in the chain.
78  * This field is only valid when the corresponding bit in the flags
79  * bitmap is set.  This offset field is relative to the start of the
80  * INFO buffer, as is the next field within each capability header.
81  * The id within the header is a shared address space per INFO ioctl,
82  * while the version field is specific to the capability id.  The
83  * contents following the header are specific to the capability id.
84  */
85 struct vfio_info_cap_header {
86 	__u16	id;		/* Identifies capability */
87 	__u16	version;	/* Version specific to the capability ID */
88 	__u32	next;		/* Offset of next capability */
89 };
90 
91 /*
92  * Callers of INFO ioctls passing insufficiently sized buffers will see
93  * the capability chain flag bit set, a zero value for the first capability
94  * offset (if available within the provided argsz), and argsz will be
95  * updated to report the necessary buffer size.  For compatibility, the
96  * INFO ioctl will not report error in this case, but the capability chain
97  * will not be available.
98  */
99 
100 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
101 
102 /**
103  * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
104  *
105  * Report the version of the VFIO API.  This allows us to bump the entire
106  * API version should we later need to add or change features in incompatible
107  * ways.
108  * Return: VFIO_API_VERSION
109  * Availability: Always
110  */
111 #define VFIO_GET_API_VERSION		_IO(VFIO_TYPE, VFIO_BASE + 0)
112 
113 /**
114  * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
115  *
116  * Check whether an extension is supported.
117  * Return: 0 if not supported, 1 (or some other positive integer) if supported.
118  * Availability: Always
119  */
120 #define VFIO_CHECK_EXTENSION		_IO(VFIO_TYPE, VFIO_BASE + 1)
121 
122 /**
123  * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
124  *
125  * Set the iommu to the given type.  The type must be supported by an
126  * iommu driver as verified by calling CHECK_EXTENSION using the same
127  * type.  A group must be set to this file descriptor before this
128  * ioctl is available.  The IOMMU interfaces enabled by this call are
129  * specific to the value set.
130  * Return: 0 on success, -errno on failure
131  * Availability: When VFIO group attached
132  */
133 #define VFIO_SET_IOMMU			_IO(VFIO_TYPE, VFIO_BASE + 2)
134 
135 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
136 
137 /**
138  * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
139  *						struct vfio_group_status)
140  *
141  * Retrieve information about the group.  Fills in provided
142  * struct vfio_group_info.  Caller sets argsz.
143  * Return: 0 on succes, -errno on failure.
144  * Availability: Always
145  */
146 struct vfio_group_status {
147 	__u32	argsz;
148 	__u32	flags;
149 #define VFIO_GROUP_FLAGS_VIABLE		(1 << 0)
150 #define VFIO_GROUP_FLAGS_CONTAINER_SET	(1 << 1)
151 };
152 #define VFIO_GROUP_GET_STATUS		_IO(VFIO_TYPE, VFIO_BASE + 3)
153 
154 /**
155  * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
156  *
157  * Set the container for the VFIO group to the open VFIO file
158  * descriptor provided.  Groups may only belong to a single
159  * container.  Containers may, at their discretion, support multiple
160  * groups.  Only when a container is set are all of the interfaces
161  * of the VFIO file descriptor and the VFIO group file descriptor
162  * available to the user.
163  * Return: 0 on success, -errno on failure.
164  * Availability: Always
165  */
166 #define VFIO_GROUP_SET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 4)
167 
168 /**
169  * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
170  *
171  * Remove the group from the attached container.  This is the
172  * opposite of the SET_CONTAINER call and returns the group to
173  * an initial state.  All device file descriptors must be released
174  * prior to calling this interface.  When removing the last group
175  * from a container, the IOMMU will be disabled and all state lost,
176  * effectively also returning the VFIO file descriptor to an initial
177  * state.
178  * Return: 0 on success, -errno on failure.
179  * Availability: When attached to container
180  */
181 #define VFIO_GROUP_UNSET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 5)
182 
183 /**
184  * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
185  *
186  * Return a new file descriptor for the device object described by
187  * the provided string.  The string should match a device listed in
188  * the devices subdirectory of the IOMMU group sysfs entry.  The
189  * group containing the device must already be added to this context.
190  * Return: new file descriptor on success, -errno on failure.
191  * Availability: When attached to container
192  */
193 #define VFIO_GROUP_GET_DEVICE_FD	_IO(VFIO_TYPE, VFIO_BASE + 6)
194 
195 /* --------------- IOCTLs for DEVICE file descriptors --------------- */
196 
197 /**
198  * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
199  *						struct vfio_device_info)
200  *
201  * Retrieve information about the device.  Fills in provided
202  * struct vfio_device_info.  Caller sets argsz.
203  * Return: 0 on success, -errno on failure.
204  */
205 struct vfio_device_info {
206 	__u32	argsz;
207 	__u32	flags;
208 #define VFIO_DEVICE_FLAGS_RESET	(1 << 0)	/* Device supports reset */
209 #define VFIO_DEVICE_FLAGS_PCI	(1 << 1)	/* vfio-pci device */
210 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)	/* vfio-platform device */
211 #define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)	/* vfio-amba device */
212 #define VFIO_DEVICE_FLAGS_CCW	(1 << 4)	/* vfio-ccw device */
213 #define VFIO_DEVICE_FLAGS_AP	(1 << 5)	/* vfio-ap device */
214 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6)	/* vfio-fsl-mc device */
215 #define VFIO_DEVICE_FLAGS_CAPS	(1 << 7)	/* Info supports caps */
216 #define VFIO_DEVICE_FLAGS_CDX	(1 << 8)	/* vfio-cdx device */
217 	__u32	num_regions;	/* Max region index + 1 */
218 	__u32	num_irqs;	/* Max IRQ index + 1 */
219 	__u32   cap_offset;	/* Offset within info struct of first cap */
220 	__u32   pad;
221 };
222 #define VFIO_DEVICE_GET_INFO		_IO(VFIO_TYPE, VFIO_BASE + 7)
223 
224 /*
225  * Vendor driver using Mediated device framework should provide device_api
226  * attribute in supported type attribute groups. Device API string should be one
227  * of the following corresponding to device flags in vfio_device_info structure.
228  */
229 
230 #define VFIO_DEVICE_API_PCI_STRING		"vfio-pci"
231 #define VFIO_DEVICE_API_PLATFORM_STRING		"vfio-platform"
232 #define VFIO_DEVICE_API_AMBA_STRING		"vfio-amba"
233 #define VFIO_DEVICE_API_CCW_STRING		"vfio-ccw"
234 #define VFIO_DEVICE_API_AP_STRING		"vfio-ap"
235 
236 /*
237  * The following capabilities are unique to s390 zPCI devices.  Their contents
238  * are further-defined in vfio_zdev.h
239  */
240 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE		1
241 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP		2
242 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL		3
243 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP		4
244 
245 /*
246  * The following VFIO_DEVICE_INFO capability reports support for PCIe AtomicOp
247  * completion to the root bus with supported widths provided via flags.
248  */
249 #define VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP	5
250 struct vfio_device_info_cap_pci_atomic_comp {
251 	struct vfio_info_cap_header header;
252 	__u32 flags;
253 #define VFIO_PCI_ATOMIC_COMP32	(1 << 0)
254 #define VFIO_PCI_ATOMIC_COMP64	(1 << 1)
255 #define VFIO_PCI_ATOMIC_COMP128	(1 << 2)
256 	__u32 reserved;
257 };
258 
259 /**
260  * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
261  *				       struct vfio_region_info)
262  *
263  * Retrieve information about a device region.  Caller provides
264  * struct vfio_region_info with index value set.  Caller sets argsz.
265  * Implementation of region mapping is bus driver specific.  This is
266  * intended to describe MMIO, I/O port, as well as bus specific
267  * regions (ex. PCI config space).  Zero sized regions may be used
268  * to describe unimplemented regions (ex. unimplemented PCI BARs).
269  * Return: 0 on success, -errno on failure.
270  */
271 struct vfio_region_info {
272 	__u32	argsz;
273 	__u32	flags;
274 #define VFIO_REGION_INFO_FLAG_READ	(1 << 0) /* Region supports read */
275 #define VFIO_REGION_INFO_FLAG_WRITE	(1 << 1) /* Region supports write */
276 #define VFIO_REGION_INFO_FLAG_MMAP	(1 << 2) /* Region supports mmap */
277 #define VFIO_REGION_INFO_FLAG_CAPS	(1 << 3) /* Info supports caps */
278 	__u32	index;		/* Region index */
279 	__u32	cap_offset;	/* Offset within info struct of first cap */
280 	__aligned_u64	size;	/* Region size (bytes) */
281 	__aligned_u64	offset;	/* Region offset from start of device fd */
282 };
283 #define VFIO_DEVICE_GET_REGION_INFO	_IO(VFIO_TYPE, VFIO_BASE + 8)
284 
285 /*
286  * The sparse mmap capability allows finer granularity of specifying areas
287  * within a region with mmap support.  When specified, the user should only
288  * mmap the offset ranges specified by the areas array.  mmaps outside of the
289  * areas specified may fail (such as the range covering a PCI MSI-X table) or
290  * may result in improper device behavior.
291  *
292  * The structures below define version 1 of this capability.
293  */
294 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP	1
295 
296 struct vfio_region_sparse_mmap_area {
297 	__aligned_u64	offset;	/* Offset of mmap'able area within region */
298 	__aligned_u64	size;	/* Size of mmap'able area */
299 };
300 
301 struct vfio_region_info_cap_sparse_mmap {
302 	struct vfio_info_cap_header header;
303 	__u32	nr_areas;
304 	__u32	reserved;
305 	struct vfio_region_sparse_mmap_area areas[];
306 };
307 
308 /*
309  * The device specific type capability allows regions unique to a specific
310  * device or class of devices to be exposed.  This helps solve the problem for
311  * vfio bus drivers of defining which region indexes correspond to which region
312  * on the device, without needing to resort to static indexes, as done by
313  * vfio-pci.  For instance, if we were to go back in time, we might remove
314  * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
315  * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
316  * make a "VGA" device specific type to describe the VGA access space.  This
317  * means that non-VGA devices wouldn't need to waste this index, and thus the
318  * address space associated with it due to implementation of device file
319  * descriptor offsets in vfio-pci.
320  *
321  * The current implementation is now part of the user ABI, so we can't use this
322  * for VGA, but there are other upcoming use cases, such as opregions for Intel
323  * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
324  * use this for future additions.
325  *
326  * The structure below defines version 1 of this capability.
327  */
328 #define VFIO_REGION_INFO_CAP_TYPE	2
329 
330 struct vfio_region_info_cap_type {
331 	struct vfio_info_cap_header header;
332 	__u32 type;	/* global per bus driver */
333 	__u32 subtype;	/* type specific */
334 };
335 
336 /*
337  * List of region types, global per bus driver.
338  * If you introduce a new type, please add it here.
339  */
340 
341 /* PCI region type containing a PCI vendor part */
342 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE	(1 << 31)
343 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK	(0xffff)
344 #define VFIO_REGION_TYPE_GFX                    (1)
345 #define VFIO_REGION_TYPE_CCW			(2)
346 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED   (3)
347 
348 /* sub-types for VFIO_REGION_TYPE_PCI_* */
349 
350 /* 8086 vendor PCI sub-types */
351 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION	(1)
352 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG	(2)
353 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG	(3)
354 
355 /* 10de vendor PCI sub-types */
356 /*
357  * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
358  *
359  * Deprecated, region no longer provided
360  */
361 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM	(1)
362 
363 /* 1014 vendor PCI sub-types */
364 /*
365  * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
366  * to do TLB invalidation on a GPU.
367  *
368  * Deprecated, region no longer provided
369  */
370 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD	(1)
371 
372 /* sub-types for VFIO_REGION_TYPE_GFX */
373 #define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
374 
375 /**
376  * struct vfio_region_gfx_edid - EDID region layout.
377  *
378  * Set display link state and EDID blob.
379  *
380  * The EDID blob has monitor information such as brand, name, serial
381  * number, physical size, supported video modes and more.
382  *
383  * This special region allows userspace (typically qemu) set a virtual
384  * EDID for the virtual monitor, which allows a flexible display
385  * configuration.
386  *
387  * For the edid blob spec look here:
388  *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
389  *
390  * On linux systems you can find the EDID blob in sysfs:
391  *    /sys/class/drm/${card}/${connector}/edid
392  *
393  * You can use the edid-decode ulility (comes with xorg-x11-utils) to
394  * decode the EDID blob.
395  *
396  * @edid_offset: location of the edid blob, relative to the
397  *               start of the region (readonly).
398  * @edid_max_size: max size of the edid blob (readonly).
399  * @edid_size: actual edid size (read/write).
400  * @link_state: display link state (read/write).
401  * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
402  * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
403  * @max_xres: max display width (0 == no limitation, readonly).
404  * @max_yres: max display height (0 == no limitation, readonly).
405  *
406  * EDID update protocol:
407  *   (1) set link-state to down.
408  *   (2) update edid blob and size.
409  *   (3) set link-state to up.
410  */
411 struct vfio_region_gfx_edid {
412 	__u32 edid_offset;
413 	__u32 edid_max_size;
414 	__u32 edid_size;
415 	__u32 max_xres;
416 	__u32 max_yres;
417 	__u32 link_state;
418 #define VFIO_DEVICE_GFX_LINK_STATE_UP    1
419 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
420 };
421 
422 /* sub-types for VFIO_REGION_TYPE_CCW */
423 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD	(1)
424 #define VFIO_REGION_SUBTYPE_CCW_SCHIB		(2)
425 #define VFIO_REGION_SUBTYPE_CCW_CRW		(3)
426 
427 /* sub-types for VFIO_REGION_TYPE_MIGRATION */
428 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
429 
430 struct vfio_device_migration_info {
431 	__u32 device_state;         /* VFIO device state */
432 #define VFIO_DEVICE_STATE_V1_STOP      (0)
433 #define VFIO_DEVICE_STATE_V1_RUNNING   (1 << 0)
434 #define VFIO_DEVICE_STATE_V1_SAVING    (1 << 1)
435 #define VFIO_DEVICE_STATE_V1_RESUMING  (1 << 2)
436 #define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_V1_RUNNING | \
437 				     VFIO_DEVICE_STATE_V1_SAVING |  \
438 				     VFIO_DEVICE_STATE_V1_RESUMING)
439 
440 #define VFIO_DEVICE_STATE_VALID(state) \
441 	(state & VFIO_DEVICE_STATE_V1_RESUMING ? \
442 	(state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
443 
444 #define VFIO_DEVICE_STATE_IS_ERROR(state) \
445 	((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
446 					      VFIO_DEVICE_STATE_V1_RESUMING))
447 
448 #define VFIO_DEVICE_STATE_SET_ERROR(state) \
449 	((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
450 					     VFIO_DEVICE_STATE_V1_RESUMING)
451 
452 	__u32 reserved;
453 	__aligned_u64 pending_bytes;
454 	__aligned_u64 data_offset;
455 	__aligned_u64 data_size;
456 };
457 
458 /*
459  * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
460  * which allows direct access to non-MSIX registers which happened to be within
461  * the same system page.
462  *
463  * Even though the userspace gets direct access to the MSIX data, the existing
464  * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
465  */
466 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE	3
467 
468 /*
469  * Capability with compressed real address (aka SSA - small system address)
470  * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
471  * and by the userspace to associate a NVLink bridge with a GPU.
472  *
473  * Deprecated, capability no longer provided
474  */
475 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT	4
476 
477 struct vfio_region_info_cap_nvlink2_ssatgt {
478 	struct vfio_info_cap_header header;
479 	__aligned_u64 tgt;
480 };
481 
482 /*
483  * Capability with an NVLink link speed. The value is read by
484  * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
485  * property in the device tree. The value is fixed in the hardware
486  * and failing to provide the correct value results in the link
487  * not working with no indication from the driver why.
488  *
489  * Deprecated, capability no longer provided
490  */
491 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD	5
492 
493 struct vfio_region_info_cap_nvlink2_lnkspd {
494 	struct vfio_info_cap_header header;
495 	__u32 link_speed;
496 	__u32 __pad;
497 };
498 
499 /**
500  * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
501  *				    struct vfio_irq_info)
502  *
503  * Retrieve information about a device IRQ.  Caller provides
504  * struct vfio_irq_info with index value set.  Caller sets argsz.
505  * Implementation of IRQ mapping is bus driver specific.  Indexes
506  * using multiple IRQs are primarily intended to support MSI-like
507  * interrupt blocks.  Zero count irq blocks may be used to describe
508  * unimplemented interrupt types.
509  *
510  * The EVENTFD flag indicates the interrupt index supports eventfd based
511  * signaling.
512  *
513  * The MASKABLE flags indicates the index supports MASK and UNMASK
514  * actions described below.
515  *
516  * AUTOMASKED indicates that after signaling, the interrupt line is
517  * automatically masked by VFIO and the user needs to unmask the line
518  * to receive new interrupts.  This is primarily intended to distinguish
519  * level triggered interrupts.
520  *
521  * The NORESIZE flag indicates that the interrupt lines within the index
522  * are setup as a set and new subindexes cannot be enabled without first
523  * disabling the entire index.  This is used for interrupts like PCI MSI
524  * and MSI-X where the driver may only use a subset of the available
525  * indexes, but VFIO needs to enable a specific number of vectors
526  * upfront.  In the case of MSI-X, where the user can enable MSI-X and
527  * then add and unmask vectors, it's up to userspace to make the decision
528  * whether to allocate the maximum supported number of vectors or tear
529  * down setup and incrementally increase the vectors as each is enabled.
530  * Absence of the NORESIZE flag indicates that vectors can be enabled
531  * and disabled dynamically without impacting other vectors within the
532  * index.
533  */
534 struct vfio_irq_info {
535 	__u32	argsz;
536 	__u32	flags;
537 #define VFIO_IRQ_INFO_EVENTFD		(1 << 0)
538 #define VFIO_IRQ_INFO_MASKABLE		(1 << 1)
539 #define VFIO_IRQ_INFO_AUTOMASKED	(1 << 2)
540 #define VFIO_IRQ_INFO_NORESIZE		(1 << 3)
541 	__u32	index;		/* IRQ index */
542 	__u32	count;		/* Number of IRQs within this index */
543 };
544 #define VFIO_DEVICE_GET_IRQ_INFO	_IO(VFIO_TYPE, VFIO_BASE + 9)
545 
546 /**
547  * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
548  *
549  * Set signaling, masking, and unmasking of interrupts.  Caller provides
550  * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
551  * the range of subindexes being specified.
552  *
553  * The DATA flags specify the type of data provided.  If DATA_NONE, the
554  * operation performs the specified action immediately on the specified
555  * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
556  * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
557  *
558  * DATA_BOOL allows sparse support for the same on arrays of interrupts.
559  * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
560  * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
561  * data = {1,0,1}
562  *
563  * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
564  * A value of -1 can be used to either de-assign interrupts if already
565  * assigned or skip un-assigned interrupts.  For example, to set an eventfd
566  * to be trigger for interrupts [0,0] and [0,2]:
567  * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
568  * data = {fd1, -1, fd2}
569  * If index [0,1] is previously set, two count = 1 ioctls calls would be
570  * required to set [0,0] and [0,2] without changing [0,1].
571  *
572  * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
573  * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
574  * from userspace (ie. simulate hardware triggering).
575  *
576  * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
577  * enables the interrupt index for the device.  Individual subindex interrupts
578  * can be disabled using the -1 value for DATA_EVENTFD or the index can be
579  * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
580  *
581  * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
582  * ACTION_TRIGGER specifies kernel->user signaling.
583  */
584 struct vfio_irq_set {
585 	__u32	argsz;
586 	__u32	flags;
587 #define VFIO_IRQ_SET_DATA_NONE		(1 << 0) /* Data not present */
588 #define VFIO_IRQ_SET_DATA_BOOL		(1 << 1) /* Data is bool (u8) */
589 #define VFIO_IRQ_SET_DATA_EVENTFD	(1 << 2) /* Data is eventfd (s32) */
590 #define VFIO_IRQ_SET_ACTION_MASK	(1 << 3) /* Mask interrupt */
591 #define VFIO_IRQ_SET_ACTION_UNMASK	(1 << 4) /* Unmask interrupt */
592 #define VFIO_IRQ_SET_ACTION_TRIGGER	(1 << 5) /* Trigger interrupt */
593 	__u32	index;
594 	__u32	start;
595 	__u32	count;
596 	__u8	data[];
597 };
598 #define VFIO_DEVICE_SET_IRQS		_IO(VFIO_TYPE, VFIO_BASE + 10)
599 
600 #define VFIO_IRQ_SET_DATA_TYPE_MASK	(VFIO_IRQ_SET_DATA_NONE | \
601 					 VFIO_IRQ_SET_DATA_BOOL | \
602 					 VFIO_IRQ_SET_DATA_EVENTFD)
603 #define VFIO_IRQ_SET_ACTION_TYPE_MASK	(VFIO_IRQ_SET_ACTION_MASK | \
604 					 VFIO_IRQ_SET_ACTION_UNMASK | \
605 					 VFIO_IRQ_SET_ACTION_TRIGGER)
606 /**
607  * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
608  *
609  * Reset a device.
610  */
611 #define VFIO_DEVICE_RESET		_IO(VFIO_TYPE, VFIO_BASE + 11)
612 
613 /*
614  * The VFIO-PCI bus driver makes use of the following fixed region and
615  * IRQ index mapping.  Unimplemented regions return a size of zero.
616  * Unimplemented IRQ types return a count of zero.
617  */
618 
619 enum {
620 	VFIO_PCI_BAR0_REGION_INDEX,
621 	VFIO_PCI_BAR1_REGION_INDEX,
622 	VFIO_PCI_BAR2_REGION_INDEX,
623 	VFIO_PCI_BAR3_REGION_INDEX,
624 	VFIO_PCI_BAR4_REGION_INDEX,
625 	VFIO_PCI_BAR5_REGION_INDEX,
626 	VFIO_PCI_ROM_REGION_INDEX,
627 	VFIO_PCI_CONFIG_REGION_INDEX,
628 	/*
629 	 * Expose VGA regions defined for PCI base class 03, subclass 00.
630 	 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
631 	 * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
632 	 * range is found at it's identity mapped offset from the region
633 	 * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
634 	 * between described ranges are unimplemented.
635 	 */
636 	VFIO_PCI_VGA_REGION_INDEX,
637 	VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
638 				 /* device specific cap to define content. */
639 };
640 
641 enum {
642 	VFIO_PCI_INTX_IRQ_INDEX,
643 	VFIO_PCI_MSI_IRQ_INDEX,
644 	VFIO_PCI_MSIX_IRQ_INDEX,
645 	VFIO_PCI_ERR_IRQ_INDEX,
646 	VFIO_PCI_REQ_IRQ_INDEX,
647 	VFIO_PCI_NUM_IRQS
648 };
649 
650 /*
651  * The vfio-ccw bus driver makes use of the following fixed region and
652  * IRQ index mapping. Unimplemented regions return a size of zero.
653  * Unimplemented IRQ types return a count of zero.
654  */
655 
656 enum {
657 	VFIO_CCW_CONFIG_REGION_INDEX,
658 	VFIO_CCW_NUM_REGIONS
659 };
660 
661 enum {
662 	VFIO_CCW_IO_IRQ_INDEX,
663 	VFIO_CCW_CRW_IRQ_INDEX,
664 	VFIO_CCW_REQ_IRQ_INDEX,
665 	VFIO_CCW_NUM_IRQS
666 };
667 
668 /*
669  * The vfio-ap bus driver makes use of the following IRQ index mapping.
670  * Unimplemented IRQ types return a count of zero.
671  */
672 enum {
673 	VFIO_AP_REQ_IRQ_INDEX,
674 	VFIO_AP_CFG_CHG_IRQ_INDEX,
675 	VFIO_AP_NUM_IRQS
676 };
677 
678 /**
679  * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12,
680  *					      struct vfio_pci_hot_reset_info)
681  *
682  * This command is used to query the affected devices in the hot reset for
683  * a given device.
684  *
685  * This command always reports the segment, bus, and devfn information for
686  * each affected device, and selectively reports the group_id or devid per
687  * the way how the calling device is opened.
688  *
689  *	- If the calling device is opened via the traditional group/container
690  *	  API, group_id is reported.  User should check if it has owned all
691  *	  the affected devices and provides a set of group fds to prove the
692  *	  ownership in VFIO_DEVICE_PCI_HOT_RESET ioctl.
693  *
694  *	- If the calling device is opened as a cdev, devid is reported.
695  *	  Flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set to indicate this
696  *	  data type.  All the affected devices should be represented in
697  *	  the dev_set, ex. bound to a vfio driver, and also be owned by
698  *	  this interface which is determined by the following conditions:
699  *	  1) Has a valid devid within the iommufd_ctx of the calling device.
700  *	     Ownership cannot be determined across separate iommufd_ctx and
701  *	     the cdev calling conventions do not support a proof-of-ownership
702  *	     model as provided in the legacy group interface.  In this case
703  *	     valid devid with value greater than zero is provided in the return
704  *	     structure.
705  *	  2) Does not have a valid devid within the iommufd_ctx of the calling
706  *	     device, but belongs to the same IOMMU group as the calling device
707  *	     or another opened device that has a valid devid within the
708  *	     iommufd_ctx of the calling device.  This provides implicit ownership
709  *	     for devices within the same DMA isolation context.  In this case
710  *	     the devid value of VFIO_PCI_DEVID_OWNED is provided in the return
711  *	     structure.
712  *
713  *	  A devid value of VFIO_PCI_DEVID_NOT_OWNED is provided in the return
714  *	  structure for affected devices where device is NOT represented in the
715  *	  dev_set or ownership is not available.  Such devices prevent the use
716  *	  of VFIO_DEVICE_PCI_HOT_RESET ioctl outside of the proof-of-ownership
717  *	  calling conventions (ie. via legacy group accessed devices).  Flag
718  *	  VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED would be set when all the
719  *	  affected devices are represented in the dev_set and also owned by
720  *	  the user.  This flag is available only when
721  *	  flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set, otherwise reserved.
722  *	  When set, user could invoke VFIO_DEVICE_PCI_HOT_RESET with a zero
723  *	  length fd array on the calling device as the ownership is validated
724  *	  by iommufd_ctx.
725  *
726  * Return: 0 on success, -errno on failure:
727  *	-enospc = insufficient buffer, -enodev = unsupported for device.
728  */
729 struct vfio_pci_dependent_device {
730 	union {
731 		__u32   group_id;
732 		__u32	devid;
733 #define VFIO_PCI_DEVID_OWNED		0
734 #define VFIO_PCI_DEVID_NOT_OWNED	-1
735 	};
736 	__u16	segment;
737 	__u8	bus;
738 	__u8	devfn; /* Use PCI_SLOT/PCI_FUNC */
739 };
740 
741 struct vfio_pci_hot_reset_info {
742 	__u32	argsz;
743 	__u32	flags;
744 #define VFIO_PCI_HOT_RESET_FLAG_DEV_ID		(1 << 0)
745 #define VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED	(1 << 1)
746 	__u32	count;
747 	struct vfio_pci_dependent_device	devices[];
748 };
749 
750 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
751 
752 /**
753  * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
754  *				    struct vfio_pci_hot_reset)
755  *
756  * A PCI hot reset results in either a bus or slot reset which may affect
757  * other devices sharing the bus/slot.  The calling user must have
758  * ownership of the full set of affected devices as determined by the
759  * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO ioctl.
760  *
761  * When called on a device file descriptor acquired through the vfio
762  * group interface, the user is required to provide proof of ownership
763  * of those affected devices via the group_fds array in struct
764  * vfio_pci_hot_reset.
765  *
766  * When called on a direct cdev opened vfio device, the flags field of
767  * struct vfio_pci_hot_reset_info reports the ownership status of the
768  * affected devices and this ioctl must be called with an empty group_fds
769  * array.  See above INFO ioctl definition for ownership requirements.
770  *
771  * Mixed usage of legacy groups and cdevs across the set of affected
772  * devices is not supported.
773  *
774  * Return: 0 on success, -errno on failure.
775  */
776 struct vfio_pci_hot_reset {
777 	__u32	argsz;
778 	__u32	flags;
779 	__u32	count;
780 	__s32	group_fds[];
781 };
782 
783 #define VFIO_DEVICE_PCI_HOT_RESET	_IO(VFIO_TYPE, VFIO_BASE + 13)
784 
785 /**
786  * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
787  *                                    struct vfio_device_query_gfx_plane)
788  *
789  * Set the drm_plane_type and flags, then retrieve the gfx plane info.
790  *
791  * flags supported:
792  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
793  *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
794  *   support for dma-buf.
795  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
796  *   to ask if the mdev supports region. 0 on support, -EINVAL on no
797  *   support for region.
798  * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
799  *   with each call to query the plane info.
800  * - Others are invalid and return -EINVAL.
801  *
802  * Note:
803  * 1. Plane could be disabled by guest. In that case, success will be
804  *    returned with zero-initialized drm_format, size, width and height
805  *    fields.
806  * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
807  *
808  * Return: 0 on success, -errno on other failure.
809  */
810 struct vfio_device_gfx_plane_info {
811 	__u32 argsz;
812 	__u32 flags;
813 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
814 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
815 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
816 	/* in */
817 	__u32 drm_plane_type;	/* type of plane: DRM_PLANE_TYPE_* */
818 	/* out */
819 	__u32 drm_format;	/* drm format of plane */
820 	__aligned_u64 drm_format_mod;   /* tiled mode */
821 	__u32 width;	/* width of plane */
822 	__u32 height;	/* height of plane */
823 	__u32 stride;	/* stride of plane */
824 	__u32 size;	/* size of plane in bytes, align on page*/
825 	__u32 x_pos;	/* horizontal position of cursor plane */
826 	__u32 y_pos;	/* vertical position of cursor plane*/
827 	__u32 x_hot;    /* horizontal position of cursor hotspot */
828 	__u32 y_hot;    /* vertical position of cursor hotspot */
829 	union {
830 		__u32 region_index;	/* region index */
831 		__u32 dmabuf_id;	/* dma-buf id */
832 	};
833 	__u32 reserved;
834 };
835 
836 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
837 
838 /**
839  * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
840  *
841  * Return a new dma-buf file descriptor for an exposed guest framebuffer
842  * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
843  * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
844  */
845 
846 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
847 
848 /**
849  * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
850  *                              struct vfio_device_ioeventfd)
851  *
852  * Perform a write to the device at the specified device fd offset, with
853  * the specified data and width when the provided eventfd is triggered.
854  * vfio bus drivers may not support this for all regions, for all widths,
855  * or at all.  vfio-pci currently only enables support for BAR regions,
856  * excluding the MSI-X vector table.
857  *
858  * Return: 0 on success, -errno on failure.
859  */
860 struct vfio_device_ioeventfd {
861 	__u32	argsz;
862 	__u32	flags;
863 #define VFIO_DEVICE_IOEVENTFD_8		(1 << 0) /* 1-byte write */
864 #define VFIO_DEVICE_IOEVENTFD_16	(1 << 1) /* 2-byte write */
865 #define VFIO_DEVICE_IOEVENTFD_32	(1 << 2) /* 4-byte write */
866 #define VFIO_DEVICE_IOEVENTFD_64	(1 << 3) /* 8-byte write */
867 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK	(0xf)
868 	__aligned_u64	offset;		/* device fd offset of write */
869 	__aligned_u64	data;		/* data to be written */
870 	__s32	fd;			/* -1 for de-assignment */
871 	__u32	reserved;
872 };
873 
874 #define VFIO_DEVICE_IOEVENTFD		_IO(VFIO_TYPE, VFIO_BASE + 16)
875 
876 /**
877  * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
878  *			       struct vfio_device_feature)
879  *
880  * Get, set, or probe feature data of the device.  The feature is selected
881  * using the FEATURE_MASK portion of the flags field.  Support for a feature
882  * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
883  * may optionally include the GET and/or SET bits to determine read vs write
884  * access of the feature respectively.  Probing a feature will return success
885  * if the feature is supported and all of the optionally indicated GET/SET
886  * methods are supported.  The format of the data portion of the structure is
887  * specific to the given feature.  The data portion is not required for
888  * probing.  GET and SET are mutually exclusive, except for use with PROBE.
889  *
890  * Return 0 on success, -errno on failure.
891  */
892 struct vfio_device_feature {
893 	__u32	argsz;
894 	__u32	flags;
895 #define VFIO_DEVICE_FEATURE_MASK	(0xffff) /* 16-bit feature index */
896 #define VFIO_DEVICE_FEATURE_GET		(1 << 16) /* Get feature into data[] */
897 #define VFIO_DEVICE_FEATURE_SET		(1 << 17) /* Set feature from data[] */
898 #define VFIO_DEVICE_FEATURE_PROBE	(1 << 18) /* Probe feature support */
899 	__u8	data[];
900 };
901 
902 #define VFIO_DEVICE_FEATURE		_IO(VFIO_TYPE, VFIO_BASE + 17)
903 
904 /*
905  * VFIO_DEVICE_BIND_IOMMUFD - _IOR(VFIO_TYPE, VFIO_BASE + 18,
906  *				   struct vfio_device_bind_iommufd)
907  * @argsz:	 User filled size of this data.
908  * @flags:	 Must be 0.
909  * @iommufd:	 iommufd to bind.
910  * @out_devid:	 The device id generated by this bind. devid is a handle for
911  *		 this device/iommufd bond and can be used in IOMMUFD commands.
912  *
913  * Bind a vfio_device to the specified iommufd.
914  *
915  * User is restricted from accessing the device before the binding operation
916  * is completed.  Only allowed on cdev fds.
917  *
918  * Unbind is automatically conducted when device fd is closed.
919  *
920  * Return: 0 on success, -errno on failure.
921  */
922 struct vfio_device_bind_iommufd {
923 	__u32		argsz;
924 	__u32		flags;
925 	__s32		iommufd;
926 	__u32		out_devid;
927 };
928 
929 #define VFIO_DEVICE_BIND_IOMMUFD	_IO(VFIO_TYPE, VFIO_BASE + 18)
930 
931 /*
932  * VFIO_DEVICE_ATTACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 19,
933  *					struct vfio_device_attach_iommufd_pt)
934  * @argsz:	User filled size of this data.
935  * @flags:	Flags for attach.
936  * @pt_id:	Input the target id which can represent an ioas or a hwpt
937  *		allocated via iommufd subsystem.
938  *		Output the input ioas id or the attached hwpt id which could
939  *		be the specified hwpt itself or a hwpt automatically created
940  *		for the specified ioas by kernel during the attachment.
941  * @pasid:	The pasid to be attached, only meaningful when
942  *		VFIO_DEVICE_ATTACH_PASID is set in @flags
943  *
944  * Associate the device with an address space within the bound iommufd.
945  * Undo by VFIO_DEVICE_DETACH_IOMMUFD_PT or device fd close.  This is only
946  * allowed on cdev fds.
947  *
948  * If a vfio device or a pasid of this device is currently attached to a valid
949  * hw_pagetable (hwpt), without doing a VFIO_DEVICE_DETACH_IOMMUFD_PT, a second
950  * VFIO_DEVICE_ATTACH_IOMMUFD_PT ioctl passing in another hwpt id is allowed.
951  * This action, also known as a hw_pagetable replacement, will replace the
952  * currently attached hwpt of the device or the pasid of this device with a new
953  * hwpt corresponding to the given pt_id.
954  *
955  * Return: 0 on success, -errno on failure.
956  */
957 struct vfio_device_attach_iommufd_pt {
958 	__u32	argsz;
959 	__u32	flags;
960 #define VFIO_DEVICE_ATTACH_PASID	(1 << 0)
961 	__u32	pt_id;
962 	__u32	pasid;
963 };
964 
965 #define VFIO_DEVICE_ATTACH_IOMMUFD_PT		_IO(VFIO_TYPE, VFIO_BASE + 19)
966 
967 /*
968  * VFIO_DEVICE_DETACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 20,
969  *					struct vfio_device_detach_iommufd_pt)
970  * @argsz:	User filled size of this data.
971  * @flags:	Flags for detach.
972  * @pasid:	The pasid to be detached, only meaningful when
973  *		VFIO_DEVICE_DETACH_PASID is set in @flags
974  *
975  * Remove the association of the device or a pasid of the device and its current
976  * associated address space.  After it, the device or the pasid should be in a
977  * blocking DMA state.  This is only allowed on cdev fds.
978  *
979  * Return: 0 on success, -errno on failure.
980  */
981 struct vfio_device_detach_iommufd_pt {
982 	__u32	argsz;
983 	__u32	flags;
984 #define VFIO_DEVICE_DETACH_PASID	(1 << 0)
985 	__u32	pasid;
986 };
987 
988 #define VFIO_DEVICE_DETACH_IOMMUFD_PT		_IO(VFIO_TYPE, VFIO_BASE + 20)
989 
990 /*
991  * Provide support for setting a PCI VF Token, which is used as a shared
992  * secret between PF and VF drivers.  This feature may only be set on a
993  * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
994  * open VFs.  Data provided when setting this feature is a 16-byte array
995  * (__u8 b[16]), representing a UUID.
996  */
997 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN	(0)
998 
999 /*
1000  * Indicates the device can support the migration API through
1001  * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
1002  * ERROR states are always supported. Support for additional states is
1003  * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
1004  * set.
1005  *
1006  * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
1007  * RESUMING are supported.
1008  *
1009  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
1010  * is supported in addition to the STOP_COPY states.
1011  *
1012  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that
1013  * PRE_COPY is supported in addition to the STOP_COPY states.
1014  *
1015  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY
1016  * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported
1017  * in addition to the STOP_COPY states.
1018  *
1019  * Other combinations of flags have behavior to be defined in the future.
1020  */
1021 struct vfio_device_feature_migration {
1022 	__aligned_u64 flags;
1023 #define VFIO_MIGRATION_STOP_COPY	(1 << 0)
1024 #define VFIO_MIGRATION_P2P		(1 << 1)
1025 #define VFIO_MIGRATION_PRE_COPY		(1 << 2)
1026 };
1027 #define VFIO_DEVICE_FEATURE_MIGRATION 1
1028 
1029 /*
1030  * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
1031  * device. The new state is supplied in device_state, see enum
1032  * vfio_device_mig_state for details
1033  *
1034  * The kernel migration driver must fully transition the device to the new state
1035  * value before the operation returns to the user.
1036  *
1037  * The kernel migration driver must not generate asynchronous device state
1038  * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
1039  * ioctl as described above.
1040  *
1041  * If this function fails then current device_state may be the original
1042  * operating state or some other state along the combination transition path.
1043  * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
1044  * to return to the original state, or attempt to return to some other state
1045  * such as RUNNING or STOP.
1046  *
1047  * If the new_state starts a new data transfer session then the FD associated
1048  * with that session is returned in data_fd. The user is responsible to close
1049  * this FD when it is finished. The user must consider the migration data stream
1050  * carried over the FD to be opaque and must preserve the byte order of the
1051  * stream. The user is not required to preserve buffer segmentation when writing
1052  * the data stream during the RESUMING operation.
1053  *
1054  * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
1055  * device, data_fd will be -1.
1056  */
1057 struct vfio_device_feature_mig_state {
1058 	__u32 device_state; /* From enum vfio_device_mig_state */
1059 	__s32 data_fd;
1060 };
1061 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
1062 
1063 /*
1064  * The device migration Finite State Machine is described by the enum
1065  * vfio_device_mig_state. Some of the FSM arcs will create a migration data
1066  * transfer session by returning a FD, in this case the migration data will
1067  * flow over the FD using read() and write() as discussed below.
1068  *
1069  * There are 5 states to support VFIO_MIGRATION_STOP_COPY:
1070  *  RUNNING - The device is running normally
1071  *  STOP - The device does not change the internal or external state
1072  *  STOP_COPY - The device internal state can be read out
1073  *  RESUMING - The device is stopped and is loading a new internal state
1074  *  ERROR - The device has failed and must be reset
1075  *
1076  * And optional states to support VFIO_MIGRATION_P2P:
1077  *  RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
1078  * And VFIO_MIGRATION_PRE_COPY:
1079  *  PRE_COPY - The device is running normally but tracking internal state
1080  *             changes
1081  * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY:
1082  *  PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA
1083  *
1084  * The FSM takes actions on the arcs between FSM states. The driver implements
1085  * the following behavior for the FSM arcs:
1086  *
1087  * RUNNING_P2P -> STOP
1088  * STOP_COPY -> STOP
1089  *   While in STOP the device must stop the operation of the device. The device
1090  *   must not generate interrupts, DMA, or any other change to external state.
1091  *   It must not change its internal state. When stopped the device and kernel
1092  *   migration driver must accept and respond to interaction to support external
1093  *   subsystems in the STOP state, for example PCI MSI-X and PCI config space.
1094  *   Failure by the user to restrict device access while in STOP must not result
1095  *   in error conditions outside the user context (ex. host system faults).
1096  *
1097  *   The STOP_COPY arc will terminate a data transfer session.
1098  *
1099  * RESUMING -> STOP
1100  *   Leaving RESUMING terminates a data transfer session and indicates the
1101  *   device should complete processing of the data delivered by write(). The
1102  *   kernel migration driver should complete the incorporation of data written
1103  *   to the data transfer FD into the device internal state and perform
1104  *   final validity and consistency checking of the new device state. If the
1105  *   user provided data is found to be incomplete, inconsistent, or otherwise
1106  *   invalid, the migration driver must fail the SET_STATE ioctl and
1107  *   optionally go to the ERROR state as described below.
1108  *
1109  *   While in STOP the device has the same behavior as other STOP states
1110  *   described above.
1111  *
1112  *   To abort a RESUMING session the device must be reset.
1113  *
1114  * PRE_COPY -> RUNNING
1115  * RUNNING_P2P -> RUNNING
1116  *   While in RUNNING the device is fully operational, the device may generate
1117  *   interrupts, DMA, respond to MMIO, all vfio device regions are functional,
1118  *   and the device may advance its internal state.
1119  *
1120  *   The PRE_COPY arc will terminate a data transfer session.
1121  *
1122  * PRE_COPY_P2P -> RUNNING_P2P
1123  * RUNNING -> RUNNING_P2P
1124  * STOP -> RUNNING_P2P
1125  *   While in RUNNING_P2P the device is partially running in the P2P quiescent
1126  *   state defined below.
1127  *
1128  *   The PRE_COPY_P2P arc will terminate a data transfer session.
1129  *
1130  * RUNNING -> PRE_COPY
1131  * RUNNING_P2P -> PRE_COPY_P2P
1132  * STOP -> STOP_COPY
1133  *   PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states
1134  *   which share a data transfer session. Moving between these states alters
1135  *   what is streamed in session, but does not terminate or otherwise affect
1136  *   the associated fd.
1137  *
1138  *   These arcs begin the process of saving the device state and will return a
1139  *   new data_fd. The migration driver may perform actions such as enabling
1140  *   dirty logging of device state when entering PRE_COPY or PER_COPY_P2P.
1141  *
1142  *   Each arc does not change the device operation, the device remains
1143  *   RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below
1144  *   in PRE_COPY_P2P -> STOP_COPY.
1145  *
1146  * PRE_COPY -> PRE_COPY_P2P
1147  *   Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above.
1148  *   However, while in the PRE_COPY_P2P state, the device is partially running
1149  *   in the P2P quiescent state defined below, like RUNNING_P2P.
1150  *
1151  * PRE_COPY_P2P -> PRE_COPY
1152  *   This arc allows returning the device to a full RUNNING behavior while
1153  *   continuing all the behaviors of PRE_COPY.
1154  *
1155  * PRE_COPY_P2P -> STOP_COPY
1156  *   While in the STOP_COPY state the device has the same behavior as STOP
1157  *   with the addition that the data transfers session continues to stream the
1158  *   migration state. End of stream on the FD indicates the entire device
1159  *   state has been transferred.
1160  *
1161  *   The user should take steps to restrict access to vfio device regions while
1162  *   the device is in STOP_COPY or risk corruption of the device migration data
1163  *   stream.
1164  *
1165  * STOP -> RESUMING
1166  *   Entering the RESUMING state starts a process of restoring the device state
1167  *   and will return a new data_fd. The data stream fed into the data_fd should
1168  *   be taken from the data transfer output of a single FD during saving from
1169  *   a compatible device. The migration driver may alter/reset the internal
1170  *   device state for this arc if required to prepare the device to receive the
1171  *   migration data.
1172  *
1173  * STOP_COPY -> PRE_COPY
1174  * STOP_COPY -> PRE_COPY_P2P
1175  *   These arcs are not permitted and return error if requested. Future
1176  *   revisions of this API may define behaviors for these arcs, in this case
1177  *   support will be discoverable by a new flag in
1178  *   VFIO_DEVICE_FEATURE_MIGRATION.
1179  *
1180  * any -> ERROR
1181  *   ERROR cannot be specified as a device state, however any transition request
1182  *   can be failed with an errno return and may then move the device_state into
1183  *   ERROR. In this case the device was unable to execute the requested arc and
1184  *   was also unable to restore the device to any valid device_state.
1185  *   To recover from ERROR VFIO_DEVICE_RESET must be used to return the
1186  *   device_state back to RUNNING.
1187  *
1188  * The optional peer to peer (P2P) quiescent state is intended to be a quiescent
1189  * state for the device for the purposes of managing multiple devices within a
1190  * user context where peer-to-peer DMA between devices may be active. The
1191  * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating
1192  * any new P2P DMA transactions. If the device can identify P2P transactions
1193  * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
1194  * driver must complete any such outstanding operations prior to completing the
1195  * FSM arc into a P2P state. For the purpose of specification the states
1196  * behave as though the device was fully running if not supported. Like while in
1197  * STOP or STOP_COPY the user must not touch the device, otherwise the state
1198  * can be exited.
1199  *
1200  * The remaining possible transitions are interpreted as combinations of the
1201  * above FSM arcs. As there are multiple paths through the FSM arcs the path
1202  * should be selected based on the following rules:
1203  *   - Select the shortest path.
1204  *   - The path cannot have saving group states as interior arcs, only
1205  *     starting/end states.
1206  * Refer to vfio_mig_get_next_state() for the result of the algorithm.
1207  *
1208  * The automatic transit through the FSM arcs that make up the combination
1209  * transition is invisible to the user. When working with combination arcs the
1210  * user may see any step along the path in the device_state if SET_STATE
1211  * fails. When handling these types of errors users should anticipate future
1212  * revisions of this protocol using new states and those states becoming
1213  * visible in this case.
1214  *
1215  * The optional states cannot be used with SET_STATE if the device does not
1216  * support them. The user can discover if these states are supported by using
1217  * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
1218  * avoid knowing about these optional states if the kernel driver supports them.
1219  *
1220  * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY
1221  * is not present.
1222  */
1223 enum vfio_device_mig_state {
1224 	VFIO_DEVICE_STATE_ERROR = 0,
1225 	VFIO_DEVICE_STATE_STOP = 1,
1226 	VFIO_DEVICE_STATE_RUNNING = 2,
1227 	VFIO_DEVICE_STATE_STOP_COPY = 3,
1228 	VFIO_DEVICE_STATE_RESUMING = 4,
1229 	VFIO_DEVICE_STATE_RUNNING_P2P = 5,
1230 	VFIO_DEVICE_STATE_PRE_COPY = 6,
1231 	VFIO_DEVICE_STATE_PRE_COPY_P2P = 7,
1232 	VFIO_DEVICE_STATE_NR,
1233 };
1234 
1235 /**
1236  * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21)
1237  *
1238  * This ioctl is used on the migration data FD in the precopy phase of the
1239  * migration data transfer. It returns an estimate of the current data sizes
1240  * remaining to be transferred. It allows the user to judge when it is
1241  * appropriate to leave PRE_COPY for STOP_COPY.
1242  *
1243  * This ioctl is valid only in PRE_COPY states and kernel driver should
1244  * return -EINVAL from any other migration state.
1245  *
1246  * The vfio_precopy_info data structure returned by this ioctl provides
1247  * estimates of data available from the device during the PRE_COPY states.
1248  * This estimate is split into two categories, initial_bytes and
1249  * dirty_bytes.
1250  *
1251  * The initial_bytes field indicates the amount of initial precopy
1252  * data available from the device. This field should have a non-zero initial
1253  * value and decrease as migration data is read from the device.
1254  * It is recommended to leave PRE_COPY for STOP_COPY only after this field
1255  * reaches zero. Leaving PRE_COPY earlier might make things slower.
1256  *
1257  * The dirty_bytes field tracks device state changes relative to data
1258  * previously retrieved.  This field starts at zero and may increase as
1259  * the internal device state is modified or decrease as that modified
1260  * state is read from the device.
1261  *
1262  * Userspace may use the combination of these fields to estimate the
1263  * potential data size available during the PRE_COPY phases, as well as
1264  * trends relative to the rate the device is dirtying its internal
1265  * state, but these fields are not required to have any bearing relative
1266  * to the data size available during the STOP_COPY phase.
1267  *
1268  * Drivers have a lot of flexibility in when and what they transfer during the
1269  * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO.
1270  *
1271  * During pre-copy the migration data FD has a temporary "end of stream" that is
1272  * reached when both initial_bytes and dirty_byte are zero. For instance, this
1273  * may indicate that the device is idle and not currently dirtying any internal
1274  * state. When read() is done on this temporary end of stream the kernel driver
1275  * should return ENOMSG from read(). Userspace can wait for more data (which may
1276  * never come) by using poll.
1277  *
1278  * Once in STOP_COPY the migration data FD has a permanent end of stream
1279  * signaled in the usual way by read() always returning 0 and poll always
1280  * returning readable. ENOMSG may not be returned in STOP_COPY.
1281  * Support for this ioctl is mandatory if a driver claims to support
1282  * VFIO_MIGRATION_PRE_COPY.
1283  *
1284  * Return: 0 on success, -1 and errno set on failure.
1285  */
1286 struct vfio_precopy_info {
1287 	__u32 argsz;
1288 	__u32 flags;
1289 	__aligned_u64 initial_bytes;
1290 	__aligned_u64 dirty_bytes;
1291 };
1292 
1293 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21)
1294 
1295 /*
1296  * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power
1297  * state with the platform-based power management.  Device use of lower power
1298  * states depends on factors managed by the runtime power management core,
1299  * including system level support and coordinating support among dependent
1300  * devices.  Enabling device low power entry does not guarantee lower power
1301  * usage by the device, nor is a mechanism provided through this feature to
1302  * know the current power state of the device.  If any device access happens
1303  * (either from the host or through the vfio uAPI) when the device is in the
1304  * low power state, then the host will move the device out of the low power
1305  * state as necessary prior to the access.  Once the access is completed, the
1306  * device may re-enter the low power state.  For single shot low power support
1307  * with wake-up notification, see
1308  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below.  Access to mmap'd
1309  * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after
1310  * calling LOW_POWER_EXIT.
1311  */
1312 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3
1313 
1314 /*
1315  * This device feature has the same behavior as
1316  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user
1317  * provides an eventfd for wake-up notification.  When the device moves out of
1318  * the low power state for the wake-up, the host will not allow the device to
1319  * re-enter a low power state without a subsequent user call to one of the low
1320  * power entry device feature IOCTLs.  Access to mmap'd device regions is
1321  * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the
1322  * low power exit.  The low power exit can happen either through LOW_POWER_EXIT
1323  * or through any other access (where the wake-up notification has been
1324  * generated).  The access to mmap'd device regions will not trigger low power
1325  * exit.
1326  *
1327  * The notification through the provided eventfd will be generated only when
1328  * the device has entered and is resumed from a low power state after
1329  * calling this device feature IOCTL.  A device that has not entered low power
1330  * state, as managed through the runtime power management core, will not
1331  * generate a notification through the provided eventfd on access.  Calling the
1332  * LOW_POWER_EXIT feature is optional in the case where notification has been
1333  * signaled on the provided eventfd that a resume from low power has occurred.
1334  */
1335 struct vfio_device_low_power_entry_with_wakeup {
1336 	__s32 wakeup_eventfd;
1337 	__u32 reserved;
1338 };
1339 
1340 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4
1341 
1342 /*
1343  * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as
1344  * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or
1345  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features.
1346  * This device feature IOCTL may itself generate a wakeup eventfd notification
1347  * in the latter case if the device had previously entered a low power state.
1348  */
1349 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5
1350 
1351 /*
1352  * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging.
1353  * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports
1354  * DMA logging.
1355  *
1356  * DMA logging allows a device to internally record what DMAs the device is
1357  * initiating and report them back to userspace. It is part of the VFIO
1358  * migration infrastructure that allows implementing dirty page tracking
1359  * during the pre copy phase of live migration. Only DMA WRITEs are logged,
1360  * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE.
1361  *
1362  * When DMA logging is started a range of IOVAs to monitor is provided and the
1363  * device can optimize its logging to cover only the IOVA range given. Each
1364  * DMA that the device initiates inside the range will be logged by the device
1365  * for later retrieval.
1366  *
1367  * page_size is an input that hints what tracking granularity the device
1368  * should try to achieve. If the device cannot do the hinted page size then
1369  * it's the driver choice which page size to pick based on its support.
1370  * On output the device will return the page size it selected.
1371  *
1372  * ranges is a pointer to an array of
1373  * struct vfio_device_feature_dma_logging_range.
1374  *
1375  * The core kernel code guarantees to support by minimum num_ranges that fit
1376  * into a single kernel page. User space can try higher values but should give
1377  * up if the above can't be achieved as of some driver limitations.
1378  *
1379  * A single call to start device DMA logging can be issued and a matching stop
1380  * should follow at the end. Another start is not allowed in the meantime.
1381  */
1382 struct vfio_device_feature_dma_logging_control {
1383 	__aligned_u64 page_size;
1384 	__u32 num_ranges;
1385 	__u32 __reserved;
1386 	__aligned_u64 ranges;
1387 };
1388 
1389 struct vfio_device_feature_dma_logging_range {
1390 	__aligned_u64 iova;
1391 	__aligned_u64 length;
1392 };
1393 
1394 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6
1395 
1396 /*
1397  * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started
1398  * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START
1399  */
1400 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7
1401 
1402 /*
1403  * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log
1404  *
1405  * Query the device's DMA log for written pages within the given IOVA range.
1406  * During querying the log is cleared for the IOVA range.
1407  *
1408  * bitmap is a pointer to an array of u64s that will hold the output bitmap
1409  * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits
1410  * is given by:
1411  *  bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64))
1412  *
1413  * The input page_size can be any power of two value and does not have to
1414  * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver
1415  * will format its internal logging to match the reporting page size, possibly
1416  * by replicating bits if the internal page size is lower than requested.
1417  *
1418  * The LOGGING_REPORT will only set bits in the bitmap and never clear or
1419  * perform any initialization of the user provided bitmap.
1420  *
1421  * If any error is returned userspace should assume that the dirty log is
1422  * corrupted. Error recovery is to consider all memory dirty and try to
1423  * restart the dirty tracking, or to abort/restart the whole migration.
1424  *
1425  * If DMA logging is not enabled, an error will be returned.
1426  *
1427  */
1428 struct vfio_device_feature_dma_logging_report {
1429 	__aligned_u64 iova;
1430 	__aligned_u64 length;
1431 	__aligned_u64 page_size;
1432 	__aligned_u64 bitmap;
1433 };
1434 
1435 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8
1436 
1437 /*
1438  * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will
1439  * be required to complete stop copy.
1440  *
1441  * Note: Can be called on each device state.
1442  */
1443 
1444 struct vfio_device_feature_mig_data_size {
1445 	__aligned_u64 stop_copy_length;
1446 };
1447 
1448 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9
1449 
1450 /**
1451  * Upon VFIO_DEVICE_FEATURE_SET, set or clear the BUS mastering for the device
1452  * based on the operation specified in op flag.
1453  *
1454  * The functionality is incorporated for devices that needs bus master control,
1455  * but the in-band device interface lacks the support. Consequently, it is not
1456  * applicable to PCI devices, as bus master control for PCI devices is managed
1457  * in-band through the configuration space. At present, this feature is supported
1458  * only for CDX devices.
1459  * When the device's BUS MASTER setting is configured as CLEAR, it will result in
1460  * blocking all incoming DMA requests from the device. On the other hand, configuring
1461  * the device's BUS MASTER setting as SET (enable) will grant the device the
1462  * capability to perform DMA to the host memory.
1463  */
1464 struct vfio_device_feature_bus_master {
1465 	__u32 op;
1466 #define		VFIO_DEVICE_FEATURE_CLEAR_MASTER	0	/* Clear Bus Master */
1467 #define		VFIO_DEVICE_FEATURE_SET_MASTER		1	/* Set Bus Master */
1468 };
1469 #define VFIO_DEVICE_FEATURE_BUS_MASTER 10
1470 
1471 /* -------- API for Type1 VFIO IOMMU -------- */
1472 
1473 /**
1474  * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
1475  *
1476  * Retrieve information about the IOMMU object. Fills in provided
1477  * struct vfio_iommu_info. Caller sets argsz.
1478  *
1479  * XXX Should we do these by CHECK_EXTENSION too?
1480  */
1481 struct vfio_iommu_type1_info {
1482 	__u32	argsz;
1483 	__u32	flags;
1484 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0)	/* supported page sizes info */
1485 #define VFIO_IOMMU_INFO_CAPS	(1 << 1)	/* Info supports caps */
1486 	__aligned_u64	iova_pgsizes;		/* Bitmap of supported page sizes */
1487 	__u32   cap_offset;	/* Offset within info struct of first cap */
1488 	__u32   pad;
1489 };
1490 
1491 /*
1492  * The IOVA capability allows to report the valid IOVA range(s)
1493  * excluding any non-relaxable reserved regions exposed by
1494  * devices attached to the container. Any DMA map attempt
1495  * outside the valid iova range will return error.
1496  *
1497  * The structures below define version 1 of this capability.
1498  */
1499 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
1500 
1501 struct vfio_iova_range {
1502 	__u64	start;
1503 	__u64	end;
1504 };
1505 
1506 struct vfio_iommu_type1_info_cap_iova_range {
1507 	struct	vfio_info_cap_header header;
1508 	__u32	nr_iovas;
1509 	__u32	reserved;
1510 	struct	vfio_iova_range iova_ranges[];
1511 };
1512 
1513 /*
1514  * The migration capability allows to report supported features for migration.
1515  *
1516  * The structures below define version 1 of this capability.
1517  *
1518  * The existence of this capability indicates that IOMMU kernel driver supports
1519  * dirty page logging.
1520  *
1521  * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1522  * page logging.
1523  * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1524  * size in bytes that can be used by user applications when getting the dirty
1525  * bitmap.
1526  */
1527 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
1528 
1529 struct vfio_iommu_type1_info_cap_migration {
1530 	struct	vfio_info_cap_header header;
1531 	__u32	flags;
1532 	__u64	pgsize_bitmap;
1533 	__u64	max_dirty_bitmap_size;		/* in bytes */
1534 };
1535 
1536 /*
1537  * The DMA available capability allows to report the current number of
1538  * simultaneously outstanding DMA mappings that are allowed.
1539  *
1540  * The structure below defines version 1 of this capability.
1541  *
1542  * avail: specifies the current number of outstanding DMA mappings allowed.
1543  */
1544 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1545 
1546 struct vfio_iommu_type1_info_dma_avail {
1547 	struct	vfio_info_cap_header header;
1548 	__u32	avail;
1549 };
1550 
1551 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1552 
1553 /**
1554  * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1555  *
1556  * Map process virtual addresses to IO virtual addresses using the
1557  * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1558  *
1559  * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr
1560  * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR.  To
1561  * maintain memory consistency within the user application, the updated vaddr
1562  * must address the same memory object as originally mapped.  Failure to do so
1563  * will result in user memory corruption and/or device misbehavior.  iova and
1564  * size must match those in the original MAP_DMA call.  Protection is not
1565  * changed, and the READ & WRITE flags must be 0.
1566  */
1567 struct vfio_iommu_type1_dma_map {
1568 	__u32	argsz;
1569 	__u32	flags;
1570 #define VFIO_DMA_MAP_FLAG_READ (1 << 0)		/* readable from device */
1571 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)	/* writable from device */
1572 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1573 	__u64	vaddr;				/* Process virtual address */
1574 	__u64	iova;				/* IO virtual address */
1575 	__u64	size;				/* Size of mapping (bytes) */
1576 };
1577 
1578 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1579 
1580 struct vfio_bitmap {
1581 	__u64        pgsize;	/* page size for bitmap in bytes */
1582 	__u64        size;	/* in bytes */
1583 	__u64 *data;	/* one bit per page */
1584 };
1585 
1586 /**
1587  * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1588  *							struct vfio_dma_unmap)
1589  *
1590  * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1591  * Caller sets argsz.  The actual unmapped size is returned in the size
1592  * field.  No guarantee is made to the user that arbitrary unmaps of iova
1593  * or size different from those used in the original mapping call will
1594  * succeed.
1595  *
1596  * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1597  * before unmapping IO virtual addresses. When this flag is set, the user must
1598  * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1599  * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1600  * A bit in the bitmap represents one page, of user provided page size in
1601  * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1602  * indicates that the page at that offset from iova is dirty. A Bitmap of the
1603  * pages in the range of unmapped size is returned in the user-provided
1604  * vfio_bitmap.data.
1605  *
1606  * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses.  iova and size
1607  * must be 0.  This cannot be combined with the get-dirty-bitmap flag.
1608  *
1609  * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1610  * virtual addresses in the iova range.  DMA to already-mapped pages continues.
1611  * Groups may not be added to the container while any addresses are invalid.
1612  * This cannot be combined with the get-dirty-bitmap flag.
1613  */
1614 struct vfio_iommu_type1_dma_unmap {
1615 	__u32	argsz;
1616 	__u32	flags;
1617 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1618 #define VFIO_DMA_UNMAP_FLAG_ALL		     (1 << 1)
1619 #define VFIO_DMA_UNMAP_FLAG_VADDR	     (1 << 2)
1620 	__u64	iova;				/* IO virtual address */
1621 	__u64	size;				/* Size of mapping (bytes) */
1622 	__u8    data[];
1623 };
1624 
1625 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1626 
1627 /*
1628  * IOCTLs to enable/disable IOMMU container usage.
1629  * No parameters are supported.
1630  */
1631 #define VFIO_IOMMU_ENABLE	_IO(VFIO_TYPE, VFIO_BASE + 15)
1632 #define VFIO_IOMMU_DISABLE	_IO(VFIO_TYPE, VFIO_BASE + 16)
1633 
1634 /**
1635  * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1636  *                                     struct vfio_iommu_type1_dirty_bitmap)
1637  * IOCTL is used for dirty pages logging.
1638  * Caller should set flag depending on which operation to perform, details as
1639  * below:
1640  *
1641  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1642  * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1643  * the device; designed to be used when a migration is in progress. Dirty pages
1644  * are logged until logging is disabled by user application by calling the IOCTL
1645  * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1646  *
1647  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1648  * the IOMMU driver to stop logging dirtied pages.
1649  *
1650  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1651  * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1652  * The user must specify the IOVA range and the pgsize through the structure
1653  * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1654  * supports getting a bitmap of the smallest supported pgsize only and can be
1655  * modified in future to get a bitmap of any specified supported pgsize. The
1656  * user must provide a zeroed memory area for the bitmap memory and specify its
1657  * size in bitmap.size. One bit is used to represent one page consecutively
1658  * starting from iova offset. The user should provide page size in bitmap.pgsize
1659  * field. A bit set in the bitmap indicates that the page at that offset from
1660  * iova is dirty. The caller must set argsz to a value including the size of
1661  * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1662  * actual bitmap. If dirty pages logging is not enabled, an error will be
1663  * returned.
1664  *
1665  * Only one of the flags _START, _STOP and _GET may be specified at a time.
1666  *
1667  */
1668 struct vfio_iommu_type1_dirty_bitmap {
1669 	__u32        argsz;
1670 	__u32        flags;
1671 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START	(1 << 0)
1672 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP	(1 << 1)
1673 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP	(1 << 2)
1674 	__u8         data[];
1675 };
1676 
1677 struct vfio_iommu_type1_dirty_bitmap_get {
1678 	__u64              iova;	/* IO virtual address */
1679 	__u64              size;	/* Size of iova range */
1680 	struct vfio_bitmap bitmap;
1681 };
1682 
1683 #define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
1684 
1685 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1686 
1687 /*
1688  * The SPAPR TCE DDW info struct provides the information about
1689  * the details of Dynamic DMA window capability.
1690  *
1691  * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1692  * @max_dynamic_windows_supported tells the maximum number of windows
1693  * which the platform can create.
1694  * @levels tells the maximum number of levels in multi-level IOMMU tables;
1695  * this allows splitting a table into smaller chunks which reduces
1696  * the amount of physically contiguous memory required for the table.
1697  */
1698 struct vfio_iommu_spapr_tce_ddw_info {
1699 	__u64 pgsizes;			/* Bitmap of supported page sizes */
1700 	__u32 max_dynamic_windows_supported;
1701 	__u32 levels;
1702 };
1703 
1704 /*
1705  * The SPAPR TCE info struct provides the information about the PCI bus
1706  * address ranges available for DMA, these values are programmed into
1707  * the hardware so the guest has to know that information.
1708  *
1709  * The DMA 32 bit window start is an absolute PCI bus address.
1710  * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1711  * addresses too so the window works as a filter rather than an offset
1712  * for IOVA addresses.
1713  *
1714  * Flags supported:
1715  * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1716  *   (DDW) support is present. @ddw is only supported when DDW is present.
1717  */
1718 struct vfio_iommu_spapr_tce_info {
1719 	__u32 argsz;
1720 	__u32 flags;
1721 #define VFIO_IOMMU_SPAPR_INFO_DDW	(1 << 0)	/* DDW supported */
1722 	__u32 dma32_window_start;	/* 32 bit window start (bytes) */
1723 	__u32 dma32_window_size;	/* 32 bit window size (bytes) */
1724 	struct vfio_iommu_spapr_tce_ddw_info ddw;
1725 };
1726 
1727 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
1728 
1729 /*
1730  * EEH PE operation struct provides ways to:
1731  * - enable/disable EEH functionality;
1732  * - unfreeze IO/DMA for frozen PE;
1733  * - read PE state;
1734  * - reset PE;
1735  * - configure PE;
1736  * - inject EEH error.
1737  */
1738 struct vfio_eeh_pe_err {
1739 	__u32 type;
1740 	__u32 func;
1741 	__u64 addr;
1742 	__u64 mask;
1743 };
1744 
1745 struct vfio_eeh_pe_op {
1746 	__u32 argsz;
1747 	__u32 flags;
1748 	__u32 op;
1749 	union {
1750 		struct vfio_eeh_pe_err err;
1751 	};
1752 };
1753 
1754 #define VFIO_EEH_PE_DISABLE		0	/* Disable EEH functionality */
1755 #define VFIO_EEH_PE_ENABLE		1	/* Enable EEH functionality  */
1756 #define VFIO_EEH_PE_UNFREEZE_IO		2	/* Enable IO for frozen PE   */
1757 #define VFIO_EEH_PE_UNFREEZE_DMA	3	/* Enable DMA for frozen PE  */
1758 #define VFIO_EEH_PE_GET_STATE		4	/* PE state retrieval        */
1759 #define  VFIO_EEH_PE_STATE_NORMAL	0	/* PE in functional state    */
1760 #define  VFIO_EEH_PE_STATE_RESET	1	/* PE reset in progress      */
1761 #define  VFIO_EEH_PE_STATE_STOPPED	2	/* Stopped DMA and IO        */
1762 #define  VFIO_EEH_PE_STATE_STOPPED_DMA	4	/* Stopped DMA only          */
1763 #define  VFIO_EEH_PE_STATE_UNAVAIL	5	/* State unavailable         */
1764 #define VFIO_EEH_PE_RESET_DEACTIVATE	5	/* Deassert PE reset         */
1765 #define VFIO_EEH_PE_RESET_HOT		6	/* Assert hot reset          */
1766 #define VFIO_EEH_PE_RESET_FUNDAMENTAL	7	/* Assert fundamental reset  */
1767 #define VFIO_EEH_PE_CONFIGURE		8	/* PE configuration          */
1768 #define VFIO_EEH_PE_INJECT_ERR		9	/* Inject EEH error          */
1769 
1770 #define VFIO_EEH_PE_OP			_IO(VFIO_TYPE, VFIO_BASE + 21)
1771 
1772 /**
1773  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1774  *
1775  * Registers user space memory where DMA is allowed. It pins
1776  * user pages and does the locked memory accounting so
1777  * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1778  * get faster.
1779  */
1780 struct vfio_iommu_spapr_register_memory {
1781 	__u32	argsz;
1782 	__u32	flags;
1783 	__u64	vaddr;				/* Process virtual address */
1784 	__u64	size;				/* Size of mapping (bytes) */
1785 };
1786 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 17)
1787 
1788 /**
1789  * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1790  *
1791  * Unregisters user space memory registered with
1792  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1793  * Uses vfio_iommu_spapr_register_memory for parameters.
1794  */
1795 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 18)
1796 
1797 /**
1798  * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1799  *
1800  * Creates an additional TCE table and programs it (sets a new DMA window)
1801  * to every IOMMU group in the container. It receives page shift, window
1802  * size and number of levels in the TCE table being created.
1803  *
1804  * It allocates and returns an offset on a PCI bus of the new DMA window.
1805  */
1806 struct vfio_iommu_spapr_tce_create {
1807 	__u32 argsz;
1808 	__u32 flags;
1809 	/* in */
1810 	__u32 page_shift;
1811 	__u32 __resv1;
1812 	__u64 window_size;
1813 	__u32 levels;
1814 	__u32 __resv2;
1815 	/* out */
1816 	__u64 start_addr;
1817 };
1818 #define VFIO_IOMMU_SPAPR_TCE_CREATE	_IO(VFIO_TYPE, VFIO_BASE + 19)
1819 
1820 /**
1821  * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1822  *
1823  * Unprograms a TCE table from all groups in the container and destroys it.
1824  * It receives a PCI bus offset as a window id.
1825  */
1826 struct vfio_iommu_spapr_tce_remove {
1827 	__u32 argsz;
1828 	__u32 flags;
1829 	/* in */
1830 	__u64 start_addr;
1831 };
1832 #define VFIO_IOMMU_SPAPR_TCE_REMOVE	_IO(VFIO_TYPE, VFIO_BASE + 20)
1833 
1834 /* ***************************************************************** */
1835 
1836 #endif /* VFIO_H */
1837