1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 use core::ptr::{addr_of_mut, NonNull}; 6 use std::{ 7 ffi::CStr, 8 os::raw::{c_int, c_uchar, c_uint, c_void}, 9 }; 10 11 use qemu_api::{ 12 bindings::{self, *}, 13 c_str, 14 irq::InterruptSource, 15 prelude::*, 16 qdev::DeviceImpl, 17 qom::ObjectImpl, 18 }; 19 20 use crate::{ 21 device_class, 22 memory_ops::PL011_OPS, 23 registers::{self, Interrupt}, 24 RegisterOffset, 25 }; 26 27 /// Integer Baud Rate Divider, `UARTIBRD` 28 const IBRD_MASK: u32 = 0xffff; 29 30 /// Fractional Baud Rate Divider, `UARTFBRD` 31 const FBRD_MASK: u32 = 0x3f; 32 33 /// QEMU sourced constant. 34 pub const PL011_FIFO_DEPTH: u32 = 16; 35 36 #[derive(Clone, Copy, Debug)] 37 enum DeviceId { 38 #[allow(dead_code)] 39 Arm = 0, 40 Luminary, 41 } 42 43 impl std::ops::Index<hwaddr> for DeviceId { 44 type Output = c_uchar; 45 46 fn index(&self, idx: hwaddr) -> &Self::Output { 47 match self { 48 Self::Arm => &Self::PL011_ID_ARM[idx as usize], 49 Self::Luminary => &Self::PL011_ID_LUMINARY[idx as usize], 50 } 51 } 52 } 53 54 impl DeviceId { 55 const PL011_ID_ARM: [c_uchar; 8] = [0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]; 56 const PL011_ID_LUMINARY: [c_uchar; 8] = [0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]; 57 } 58 59 // FIFOs use 32-bit indices instead of usize, for compatibility with 60 // the migration stream produced by the C version of this device. 61 #[repr(transparent)] 62 #[derive(Debug, Default)] 63 pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]); 64 65 impl Fifo { 66 const fn len(&self) -> u32 { 67 self.0.len() as u32 68 } 69 } 70 71 impl std::ops::IndexMut<u32> for Fifo { 72 fn index_mut(&mut self, idx: u32) -> &mut Self::Output { 73 &mut self.0[idx as usize] 74 } 75 } 76 77 impl std::ops::Index<u32> for Fifo { 78 type Output = registers::Data; 79 80 fn index(&self, idx: u32) -> &Self::Output { 81 &self.0[idx as usize] 82 } 83 } 84 85 #[repr(C)] 86 #[derive(Debug, qemu_api_macros::Object, qemu_api_macros::offsets)] 87 /// PL011 Device Model in QEMU 88 pub struct PL011State { 89 pub parent_obj: SysBusDevice, 90 pub iomem: MemoryRegion, 91 #[doc(alias = "fr")] 92 pub flags: registers::Flags, 93 #[doc(alias = "lcr")] 94 pub line_control: registers::LineControl, 95 #[doc(alias = "rsr")] 96 pub receive_status_error_clear: registers::ReceiveStatusErrorClear, 97 #[doc(alias = "cr")] 98 pub control: registers::Control, 99 pub dmacr: u32, 100 pub int_enabled: u32, 101 pub int_level: u32, 102 pub read_fifo: Fifo, 103 pub ilpr: u32, 104 pub ibrd: u32, 105 pub fbrd: u32, 106 pub ifl: u32, 107 pub read_pos: u32, 108 pub read_count: u32, 109 pub read_trigger: u32, 110 #[doc(alias = "chr")] 111 pub char_backend: CharBackend, 112 /// QEMU interrupts 113 /// 114 /// ```text 115 /// * sysbus MMIO region 0: device registers 116 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line) 117 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line) 118 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line) 119 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line) 120 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line) 121 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line) 122 /// ``` 123 #[doc(alias = "irq")] 124 pub interrupts: [InterruptSource; IRQMASK.len()], 125 #[doc(alias = "clk")] 126 pub clock: NonNull<Clock>, 127 #[doc(alias = "migrate_clk")] 128 pub migrate_clock: bool, 129 /// The byte string that identifies the device. 130 device_id: DeviceId, 131 } 132 133 qom_isa!(PL011State : SysBusDevice, DeviceState, Object); 134 135 unsafe impl ObjectType for PL011State { 136 type Class = <SysBusDevice as ObjectType>::Class; 137 const TYPE_NAME: &'static CStr = crate::TYPE_PL011; 138 } 139 140 impl ObjectImpl for PL011State { 141 type ParentType = SysBusDevice; 142 143 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 144 } 145 146 impl DeviceImpl for PL011State { 147 fn properties() -> &'static [Property] { 148 &device_class::PL011_PROPERTIES 149 } 150 fn vmsd() -> Option<&'static VMStateDescription> { 151 Some(&device_class::VMSTATE_PL011) 152 } 153 const REALIZE: Option<fn(&mut Self)> = Some(Self::realize); 154 const RESET: Option<fn(&mut Self)> = Some(Self::reset); 155 } 156 157 impl PL011State { 158 /// Initializes a pre-allocated, unitialized instance of `PL011State`. 159 /// 160 /// # Safety 161 /// 162 /// `self` must point to a correctly sized and aligned location for the 163 /// `PL011State` type. It must not be called more than once on the same 164 /// location/instance. All its fields are expected to hold unitialized 165 /// values with the sole exception of `parent_obj`. 166 unsafe fn init(&mut self) { 167 const CLK_NAME: &CStr = c_str!("clk"); 168 169 // SAFETY: 170 // 171 // self and self.iomem are guaranteed to be valid at this point since callers 172 // must make sure the `self` reference is valid. 173 unsafe { 174 memory_region_init_io( 175 addr_of_mut!(self.iomem), 176 addr_of_mut!(*self).cast::<Object>(), 177 &PL011_OPS, 178 addr_of_mut!(*self).cast::<c_void>(), 179 Self::TYPE_NAME.as_ptr(), 180 0x1000, 181 ); 182 183 let sbd: &mut SysBusDevice = self.upcast_mut(); 184 sysbus_init_mmio(sbd, addr_of_mut!(self.iomem)); 185 } 186 187 for irq in self.interrupts.iter() { 188 let sbd: &SysBusDevice = self.upcast(); 189 sbd.init_irq(irq); 190 } 191 192 // SAFETY: 193 // 194 // self.clock is not initialized at this point; but since `NonNull<_>` is Copy, 195 // we can overwrite the undefined value without side effects. This is 196 // safe since all PL011State instances are created by QOM code which 197 // calls this function to initialize the fields; therefore no code is 198 // able to access an invalid self.clock value. 199 unsafe { 200 let dev: &mut DeviceState = self.upcast_mut(); 201 self.clock = NonNull::new(qdev_init_clock_in( 202 dev, 203 CLK_NAME.as_ptr(), 204 None, /* pl011_clock_update */ 205 addr_of_mut!(*self).cast::<c_void>(), 206 ClockEvent::ClockUpdate.0, 207 )) 208 .unwrap(); 209 } 210 } 211 212 pub fn read(&mut self, offset: hwaddr, _size: c_uint) -> std::ops::ControlFlow<u64, u64> { 213 use RegisterOffset::*; 214 215 let value = match RegisterOffset::try_from(offset) { 216 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => { 217 u32::from(self.device_id[(offset - 0xfe0) >> 2]) 218 } 219 Err(_) => { 220 // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset); 221 0 222 } 223 Ok(DR) => { 224 self.flags.set_receive_fifo_full(false); 225 let c = self.read_fifo[self.read_pos]; 226 if self.read_count > 0 { 227 self.read_count -= 1; 228 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1); 229 } 230 if self.read_count == 0 { 231 self.flags.set_receive_fifo_empty(true); 232 } 233 if self.read_count + 1 == self.read_trigger { 234 self.int_level &= !registers::INT_RX; 235 } 236 // Update error bits. 237 self.receive_status_error_clear.set_from_data(c); 238 self.update(); 239 // Must call qemu_chr_fe_accept_input, so return Continue: 240 let c = u32::from(c); 241 return std::ops::ControlFlow::Continue(u64::from(c)); 242 } 243 Ok(RSR) => u32::from(self.receive_status_error_clear), 244 Ok(FR) => u32::from(self.flags), 245 Ok(FBRD) => self.fbrd, 246 Ok(ILPR) => self.ilpr, 247 Ok(IBRD) => self.ibrd, 248 Ok(LCR_H) => u32::from(self.line_control), 249 Ok(CR) => u32::from(self.control), 250 Ok(FLS) => self.ifl, 251 Ok(IMSC) => self.int_enabled, 252 Ok(RIS) => self.int_level, 253 Ok(MIS) => self.int_level & self.int_enabled, 254 Ok(ICR) => { 255 // "The UARTICR Register is the interrupt clear register and is write-only" 256 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR 257 0 258 } 259 Ok(DMACR) => self.dmacr, 260 }; 261 std::ops::ControlFlow::Break(value.into()) 262 } 263 264 pub fn write(&mut self, offset: hwaddr, value: u64) { 265 // eprintln!("write offset {offset} value {value}"); 266 use RegisterOffset::*; 267 let value: u32 = value as u32; 268 match RegisterOffset::try_from(offset) { 269 Err(_bad_offset) => { 270 eprintln!("write bad offset {offset} value {value}"); 271 } 272 Ok(DR) => { 273 // ??? Check if transmitter is enabled. 274 let ch: u8 = value as u8; 275 // XXX this blocks entire thread. Rewrite to use 276 // qemu_chr_fe_write and background I/O callbacks 277 278 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 279 // initialized in realize(). 280 unsafe { 281 qemu_chr_fe_write_all(addr_of_mut!(self.char_backend), &ch, 1); 282 } 283 self.loopback_tx(value); 284 self.int_level |= registers::INT_TX; 285 self.update(); 286 } 287 Ok(RSR) => { 288 self.receive_status_error_clear.reset(); 289 } 290 Ok(FR) => { 291 // flag writes are ignored 292 } 293 Ok(ILPR) => { 294 self.ilpr = value; 295 } 296 Ok(IBRD) => { 297 self.ibrd = value; 298 } 299 Ok(FBRD) => { 300 self.fbrd = value; 301 } 302 Ok(LCR_H) => { 303 let new_val: registers::LineControl = value.into(); 304 // Reset the FIFO state on FIFO enable or disable 305 if self.line_control.fifos_enabled() != new_val.fifos_enabled() { 306 self.reset_rx_fifo(); 307 self.reset_tx_fifo(); 308 } 309 if self.line_control.send_break() ^ new_val.send_break() { 310 let mut break_enable: c_int = new_val.send_break().into(); 311 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 312 // initialized in realize(). 313 unsafe { 314 qemu_chr_fe_ioctl( 315 addr_of_mut!(self.char_backend), 316 CHR_IOCTL_SERIAL_SET_BREAK as i32, 317 addr_of_mut!(break_enable).cast::<c_void>(), 318 ); 319 } 320 self.loopback_break(break_enable > 0); 321 } 322 self.line_control = new_val; 323 self.set_read_trigger(); 324 } 325 Ok(CR) => { 326 // ??? Need to implement the enable bit. 327 self.control = value.into(); 328 self.loopback_mdmctrl(); 329 } 330 Ok(FLS) => { 331 self.ifl = value; 332 self.set_read_trigger(); 333 } 334 Ok(IMSC) => { 335 self.int_enabled = value; 336 self.update(); 337 } 338 Ok(RIS) => {} 339 Ok(MIS) => {} 340 Ok(ICR) => { 341 self.int_level &= !value; 342 self.update(); 343 } 344 Ok(DMACR) => { 345 self.dmacr = value; 346 if value & 3 > 0 { 347 // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n"); 348 eprintln!("pl011: DMA not implemented"); 349 } 350 } 351 } 352 } 353 354 #[inline] 355 fn loopback_tx(&mut self, value: u32) { 356 if !self.loopback_enabled() { 357 return; 358 } 359 360 // Caveat: 361 // 362 // In real hardware, TX loopback happens at the serial-bit level 363 // and then reassembled by the RX logics back into bytes and placed 364 // into the RX fifo. That is, loopback happens after TX fifo. 365 // 366 // Because the real hardware TX fifo is time-drained at the frame 367 // rate governed by the configured serial format, some loopback 368 // bytes in TX fifo may still be able to get into the RX fifo 369 // that could be full at times while being drained at software 370 // pace. 371 // 372 // In such scenario, the RX draining pace is the major factor 373 // deciding which loopback bytes get into the RX fifo, unless 374 // hardware flow-control is enabled. 375 // 376 // For simplicity, the above described is not emulated. 377 self.put_fifo(value); 378 } 379 380 fn loopback_mdmctrl(&mut self) { 381 if !self.loopback_enabled() { 382 return; 383 } 384 385 /* 386 * Loopback software-driven modem control outputs to modem status inputs: 387 * FR.RI <= CR.Out2 388 * FR.DCD <= CR.Out1 389 * FR.CTS <= CR.RTS 390 * FR.DSR <= CR.DTR 391 * 392 * The loopback happens immediately even if this call is triggered 393 * by setting only CR.LBE. 394 * 395 * CTS/RTS updates due to enabled hardware flow controls are not 396 * dealt with here. 397 */ 398 399 self.flags.set_ring_indicator(self.control.out_2()); 400 self.flags.set_data_carrier_detect(self.control.out_1()); 401 self.flags.set_clear_to_send(self.control.request_to_send()); 402 self.flags 403 .set_data_set_ready(self.control.data_transmit_ready()); 404 405 // Change interrupts based on updated FR 406 let mut il = self.int_level; 407 408 il &= !Interrupt::MS; 409 410 if self.flags.data_set_ready() { 411 il |= Interrupt::DSR as u32; 412 } 413 if self.flags.data_carrier_detect() { 414 il |= Interrupt::DCD as u32; 415 } 416 if self.flags.clear_to_send() { 417 il |= Interrupt::CTS as u32; 418 } 419 if self.flags.ring_indicator() { 420 il |= Interrupt::RI as u32; 421 } 422 self.int_level = il; 423 self.update(); 424 } 425 426 fn loopback_break(&mut self, enable: bool) { 427 if enable { 428 self.loopback_tx(registers::Data::BREAK.into()); 429 } 430 } 431 432 fn set_read_trigger(&mut self) { 433 self.read_trigger = 1; 434 } 435 436 pub fn realize(&mut self) { 437 // SAFETY: self.char_backend has the correct size and alignment for a 438 // CharBackend object, and its callbacks are of the correct types. 439 unsafe { 440 qemu_chr_fe_set_handlers( 441 addr_of_mut!(self.char_backend), 442 Some(pl011_can_receive), 443 Some(pl011_receive), 444 Some(pl011_event), 445 None, 446 addr_of_mut!(*self).cast::<c_void>(), 447 core::ptr::null_mut(), 448 true, 449 ); 450 } 451 } 452 453 pub fn reset(&mut self) { 454 self.line_control.reset(); 455 self.receive_status_error_clear.reset(); 456 self.dmacr = 0; 457 self.int_enabled = 0; 458 self.int_level = 0; 459 self.ilpr = 0; 460 self.ibrd = 0; 461 self.fbrd = 0; 462 self.read_trigger = 1; 463 self.ifl = 0x12; 464 self.control.reset(); 465 self.flags.reset(); 466 self.reset_rx_fifo(); 467 self.reset_tx_fifo(); 468 } 469 470 pub fn reset_rx_fifo(&mut self) { 471 self.read_count = 0; 472 self.read_pos = 0; 473 474 // Reset FIFO flags 475 self.flags.set_receive_fifo_full(false); 476 self.flags.set_receive_fifo_empty(true); 477 } 478 479 pub fn reset_tx_fifo(&mut self) { 480 // Reset FIFO flags 481 self.flags.set_transmit_fifo_full(false); 482 self.flags.set_transmit_fifo_empty(true); 483 } 484 485 pub fn can_receive(&self) -> bool { 486 // trace_pl011_can_receive(s->lcr, s->read_count, r); 487 self.read_count < self.fifo_depth() 488 } 489 490 pub fn event(&mut self, event: QEMUChrEvent) { 491 if event == bindings::QEMUChrEvent::CHR_EVENT_BREAK && !self.loopback_enabled() { 492 self.put_fifo(registers::Data::BREAK.into()); 493 } 494 } 495 496 #[inline] 497 pub fn fifo_enabled(&self) -> bool { 498 self.line_control.fifos_enabled() == registers::Mode::FIFO 499 } 500 501 #[inline] 502 pub fn loopback_enabled(&self) -> bool { 503 self.control.enable_loopback() 504 } 505 506 #[inline] 507 pub fn fifo_depth(&self) -> u32 { 508 // Note: FIFO depth is expected to be power-of-2 509 if self.fifo_enabled() { 510 return PL011_FIFO_DEPTH; 511 } 512 1 513 } 514 515 pub fn put_fifo(&mut self, value: c_uint) { 516 let depth = self.fifo_depth(); 517 assert!(depth > 0); 518 let slot = (self.read_pos + self.read_count) & (depth - 1); 519 self.read_fifo[slot] = registers::Data::from(value); 520 self.read_count += 1; 521 self.flags.set_receive_fifo_empty(false); 522 if self.read_count == depth { 523 self.flags.set_receive_fifo_full(true); 524 } 525 526 if self.read_count == self.read_trigger { 527 self.int_level |= registers::INT_RX; 528 self.update(); 529 } 530 } 531 532 pub fn update(&self) { 533 let flags = self.int_level & self.int_enabled; 534 for (irq, i) in self.interrupts.iter().zip(IRQMASK) { 535 irq.set(flags & i != 0); 536 } 537 } 538 539 pub fn post_load(&mut self, _version_id: u32) -> Result<(), ()> { 540 /* Sanity-check input state */ 541 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() { 542 return Err(()); 543 } 544 545 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 { 546 // Older versions of PL011 didn't ensure that the single 547 // character in the FIFO in FIFO-disabled mode is in 548 // element 0 of the array; convert to follow the current 549 // code's assumptions. 550 self.read_fifo[0] = self.read_fifo[self.read_pos]; 551 self.read_pos = 0; 552 } 553 554 self.ibrd &= IBRD_MASK; 555 self.fbrd &= FBRD_MASK; 556 557 Ok(()) 558 } 559 } 560 561 /// Which bits in the interrupt status matter for each outbound IRQ line ? 562 pub const IRQMASK: [u32; 6] = [ 563 /* combined IRQ */ 564 Interrupt::E 565 | Interrupt::MS 566 | Interrupt::RT as u32 567 | Interrupt::TX as u32 568 | Interrupt::RX as u32, 569 Interrupt::RX as u32, 570 Interrupt::TX as u32, 571 Interrupt::RT as u32, 572 Interrupt::MS, 573 Interrupt::E, 574 ]; 575 576 /// # Safety 577 /// 578 /// We expect the FFI user of this function to pass a valid pointer, that has 579 /// the same size as [`PL011State`]. We also expect the device is 580 /// readable/writeable from one thread at any time. 581 pub unsafe extern "C" fn pl011_can_receive(opaque: *mut c_void) -> c_int { 582 unsafe { 583 debug_assert!(!opaque.is_null()); 584 let state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 585 state.as_ref().can_receive().into() 586 } 587 } 588 589 /// # Safety 590 /// 591 /// We expect the FFI user of this function to pass a valid pointer, that has 592 /// the same size as [`PL011State`]. We also expect the device is 593 /// readable/writeable from one thread at any time. 594 /// 595 /// The buffer and size arguments must also be valid. 596 pub unsafe extern "C" fn pl011_receive(opaque: *mut c_void, buf: *const u8, size: c_int) { 597 unsafe { 598 debug_assert!(!opaque.is_null()); 599 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 600 if state.as_ref().loopback_enabled() { 601 return; 602 } 603 if size > 0 { 604 debug_assert!(!buf.is_null()); 605 state.as_mut().put_fifo(c_uint::from(buf.read_volatile())) 606 } 607 } 608 } 609 610 /// # Safety 611 /// 612 /// We expect the FFI user of this function to pass a valid pointer, that has 613 /// the same size as [`PL011State`]. We also expect the device is 614 /// readable/writeable from one thread at any time. 615 pub unsafe extern "C" fn pl011_event(opaque: *mut c_void, event: QEMUChrEvent) { 616 unsafe { 617 debug_assert!(!opaque.is_null()); 618 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 619 state.as_mut().event(event) 620 } 621 } 622 623 /// # Safety 624 /// 625 /// We expect the FFI user of this function to pass a valid pointer for `chr`. 626 #[no_mangle] 627 pub unsafe extern "C" fn pl011_create( 628 addr: u64, 629 irq: qemu_irq, 630 chr: *mut Chardev, 631 ) -> *mut DeviceState { 632 unsafe { 633 let dev: *mut DeviceState = qdev_new(PL011State::TYPE_NAME.as_ptr()); 634 let sysbus: *mut SysBusDevice = dev.cast::<SysBusDevice>(); 635 636 qdev_prop_set_chr(dev, c_str!("chardev").as_ptr(), chr); 637 sysbus_realize_and_unref(sysbus, addr_of_mut!(error_fatal)); 638 sysbus_mmio_map(sysbus, 0, addr); 639 sysbus_connect_irq(sysbus, 0, irq); 640 dev 641 } 642 } 643 644 #[repr(C)] 645 #[derive(Debug, qemu_api_macros::Object)] 646 /// PL011 Luminary device model. 647 pub struct PL011Luminary { 648 parent_obj: PL011State, 649 } 650 651 impl PL011Luminary { 652 /// Initializes a pre-allocated, unitialized instance of `PL011Luminary`. 653 /// 654 /// # Safety 655 /// 656 /// We expect the FFI user of this function to pass a valid pointer, that 657 /// has the same size as [`PL011Luminary`]. We also expect the device is 658 /// readable/writeable from one thread at any time. 659 unsafe fn init(&mut self) { 660 self.parent_obj.device_id = DeviceId::Luminary; 661 } 662 } 663 664 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object); 665 666 unsafe impl ObjectType for PL011Luminary { 667 type Class = <PL011State as ObjectType>::Class; 668 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY; 669 } 670 671 impl ObjectImpl for PL011Luminary { 672 type ParentType = PL011State; 673 674 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 675 } 676 677 impl DeviceImpl for PL011Luminary {} 678