1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 use core::ptr::{addr_of, addr_of_mut, NonNull}; 6 use std::{ 7 ffi::CStr, 8 os::raw::{c_int, c_uint, c_void}, 9 }; 10 11 use qemu_api::{ 12 bindings::{ 13 error_fatal, hwaddr, memory_region_init_io, qdev_init_clock_in, qdev_new, 14 qdev_prop_set_chr, qemu_chr_fe_ioctl, qemu_chr_fe_set_handlers, qemu_chr_fe_write_all, 15 qemu_irq, sysbus_connect_irq, sysbus_mmio_map, sysbus_realize_and_unref, CharBackend, 16 Chardev, Clock, ClockEvent, MemoryRegion, QEMUChrEvent, CHR_IOCTL_SERIAL_SET_BREAK, 17 }, 18 c_str, impl_vmstate_forward, 19 irq::InterruptSource, 20 prelude::*, 21 qdev::{DeviceImpl, DeviceState, Property}, 22 qom::{ClassInitImpl, ObjectImpl, ParentField}, 23 sysbus::{SysBusDevice, SysBusDeviceClass}, 24 vmstate::VMStateDescription, 25 }; 26 27 use crate::{ 28 device_class, 29 memory_ops::PL011_OPS, 30 registers::{self, Interrupt}, 31 RegisterOffset, 32 }; 33 34 /// Integer Baud Rate Divider, `UARTIBRD` 35 const IBRD_MASK: u32 = 0xffff; 36 37 /// Fractional Baud Rate Divider, `UARTFBRD` 38 const FBRD_MASK: u32 = 0x3f; 39 40 /// QEMU sourced constant. 41 pub const PL011_FIFO_DEPTH: u32 = 16; 42 43 #[derive(Clone, Copy)] 44 struct DeviceId(&'static [u8; 8]); 45 46 impl std::ops::Index<hwaddr> for DeviceId { 47 type Output = u8; 48 49 fn index(&self, idx: hwaddr) -> &Self::Output { 50 &self.0[idx as usize] 51 } 52 } 53 54 impl DeviceId { 55 const ARM: Self = Self(&[0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]); 56 const LUMINARY: Self = Self(&[0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]); 57 } 58 59 // FIFOs use 32-bit indices instead of usize, for compatibility with 60 // the migration stream produced by the C version of this device. 61 #[repr(transparent)] 62 #[derive(Debug, Default)] 63 pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]); 64 impl_vmstate_forward!(Fifo); 65 66 impl Fifo { 67 const fn len(&self) -> u32 { 68 self.0.len() as u32 69 } 70 } 71 72 impl std::ops::IndexMut<u32> for Fifo { 73 fn index_mut(&mut self, idx: u32) -> &mut Self::Output { 74 &mut self.0[idx as usize] 75 } 76 } 77 78 impl std::ops::Index<u32> for Fifo { 79 type Output = registers::Data; 80 81 fn index(&self, idx: u32) -> &Self::Output { 82 &self.0[idx as usize] 83 } 84 } 85 86 #[repr(C)] 87 #[derive(Debug, qemu_api_macros::Object, qemu_api_macros::offsets)] 88 /// PL011 Device Model in QEMU 89 pub struct PL011State { 90 pub parent_obj: ParentField<SysBusDevice>, 91 pub iomem: MemoryRegion, 92 #[doc(alias = "fr")] 93 pub flags: registers::Flags, 94 #[doc(alias = "lcr")] 95 pub line_control: registers::LineControl, 96 #[doc(alias = "rsr")] 97 pub receive_status_error_clear: registers::ReceiveStatusErrorClear, 98 #[doc(alias = "cr")] 99 pub control: registers::Control, 100 pub dmacr: u32, 101 pub int_enabled: u32, 102 pub int_level: u32, 103 pub read_fifo: Fifo, 104 pub ilpr: u32, 105 pub ibrd: u32, 106 pub fbrd: u32, 107 pub ifl: u32, 108 pub read_pos: u32, 109 pub read_count: u32, 110 pub read_trigger: u32, 111 #[doc(alias = "chr")] 112 pub char_backend: CharBackend, 113 /// QEMU interrupts 114 /// 115 /// ```text 116 /// * sysbus MMIO region 0: device registers 117 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line) 118 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line) 119 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line) 120 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line) 121 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line) 122 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line) 123 /// ``` 124 #[doc(alias = "irq")] 125 pub interrupts: [InterruptSource; IRQMASK.len()], 126 #[doc(alias = "clk")] 127 pub clock: NonNull<Clock>, 128 #[doc(alias = "migrate_clk")] 129 pub migrate_clock: bool, 130 } 131 132 qom_isa!(PL011State : SysBusDevice, DeviceState, Object); 133 134 #[repr(C)] 135 pub struct PL011Class { 136 parent_class: <SysBusDevice as ObjectType>::Class, 137 /// The byte string that identifies the device. 138 device_id: DeviceId, 139 } 140 141 unsafe impl ObjectType for PL011State { 142 type Class = PL011Class; 143 const TYPE_NAME: &'static CStr = crate::TYPE_PL011; 144 } 145 146 impl ClassInitImpl<PL011Class> for PL011State { 147 fn class_init(klass: &mut PL011Class) { 148 klass.device_id = DeviceId::ARM; 149 <Self as ClassInitImpl<SysBusDeviceClass>>::class_init(&mut klass.parent_class); 150 } 151 } 152 153 impl ObjectImpl for PL011State { 154 type ParentType = SysBusDevice; 155 156 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 157 const INSTANCE_POST_INIT: Option<fn(&Self)> = Some(Self::post_init); 158 } 159 160 impl DeviceImpl for PL011State { 161 fn properties() -> &'static [Property] { 162 &device_class::PL011_PROPERTIES 163 } 164 fn vmsd() -> Option<&'static VMStateDescription> { 165 Some(&device_class::VMSTATE_PL011) 166 } 167 const REALIZE: Option<fn(&Self)> = Some(Self::realize); 168 const RESET: Option<fn(&mut Self)> = Some(Self::reset); 169 } 170 171 impl PL011State { 172 /// Initializes a pre-allocated, unitialized instance of `PL011State`. 173 /// 174 /// # Safety 175 /// 176 /// `self` must point to a correctly sized and aligned location for the 177 /// `PL011State` type. It must not be called more than once on the same 178 /// location/instance. All its fields are expected to hold unitialized 179 /// values with the sole exception of `parent_obj`. 180 unsafe fn init(&mut self) { 181 const CLK_NAME: &CStr = c_str!("clk"); 182 183 // SAFETY: 184 // 185 // self and self.iomem are guaranteed to be valid at this point since callers 186 // must make sure the `self` reference is valid. 187 unsafe { 188 memory_region_init_io( 189 addr_of_mut!(self.iomem), 190 addr_of_mut!(*self).cast::<Object>(), 191 &PL011_OPS, 192 addr_of_mut!(*self).cast::<c_void>(), 193 Self::TYPE_NAME.as_ptr(), 194 0x1000, 195 ); 196 } 197 198 // SAFETY: 199 // 200 // self.clock is not initialized at this point; but since `NonNull<_>` is Copy, 201 // we can overwrite the undefined value without side effects. This is 202 // safe since all PL011State instances are created by QOM code which 203 // calls this function to initialize the fields; therefore no code is 204 // able to access an invalid self.clock value. 205 unsafe { 206 let dev: &mut DeviceState = self.upcast_mut(); 207 self.clock = NonNull::new(qdev_init_clock_in( 208 dev, 209 CLK_NAME.as_ptr(), 210 None, /* pl011_clock_update */ 211 addr_of_mut!(*self).cast::<c_void>(), 212 ClockEvent::ClockUpdate.0, 213 )) 214 .unwrap(); 215 } 216 } 217 218 fn post_init(&self) { 219 self.init_mmio(&self.iomem); 220 for irq in self.interrupts.iter() { 221 self.init_irq(irq); 222 } 223 } 224 225 pub fn read(&mut self, offset: hwaddr, _size: c_uint) -> std::ops::ControlFlow<u64, u64> { 226 use RegisterOffset::*; 227 228 let value = match RegisterOffset::try_from(offset) { 229 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => { 230 let device_id = self.get_class().device_id; 231 u32::from(device_id[(offset - 0xfe0) >> 2]) 232 } 233 Err(_) => { 234 // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset); 235 0 236 } 237 Ok(DR) => { 238 self.flags.set_receive_fifo_full(false); 239 let c = self.read_fifo[self.read_pos]; 240 if self.read_count > 0 { 241 self.read_count -= 1; 242 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1); 243 } 244 if self.read_count == 0 { 245 self.flags.set_receive_fifo_empty(true); 246 } 247 if self.read_count + 1 == self.read_trigger { 248 self.int_level &= !registers::INT_RX; 249 } 250 // Update error bits. 251 self.receive_status_error_clear.set_from_data(c); 252 self.update(); 253 // Must call qemu_chr_fe_accept_input, so return Continue: 254 let c = u32::from(c); 255 return std::ops::ControlFlow::Continue(u64::from(c)); 256 } 257 Ok(RSR) => u32::from(self.receive_status_error_clear), 258 Ok(FR) => u32::from(self.flags), 259 Ok(FBRD) => self.fbrd, 260 Ok(ILPR) => self.ilpr, 261 Ok(IBRD) => self.ibrd, 262 Ok(LCR_H) => u32::from(self.line_control), 263 Ok(CR) => u32::from(self.control), 264 Ok(FLS) => self.ifl, 265 Ok(IMSC) => self.int_enabled, 266 Ok(RIS) => self.int_level, 267 Ok(MIS) => self.int_level & self.int_enabled, 268 Ok(ICR) => { 269 // "The UARTICR Register is the interrupt clear register and is write-only" 270 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR 271 0 272 } 273 Ok(DMACR) => self.dmacr, 274 }; 275 std::ops::ControlFlow::Break(value.into()) 276 } 277 278 pub fn write(&mut self, offset: hwaddr, value: u64) { 279 // eprintln!("write offset {offset} value {value}"); 280 use RegisterOffset::*; 281 let value: u32 = value as u32; 282 match RegisterOffset::try_from(offset) { 283 Err(_bad_offset) => { 284 eprintln!("write bad offset {offset} value {value}"); 285 } 286 Ok(DR) => { 287 // ??? Check if transmitter is enabled. 288 let ch: u8 = value as u8; 289 // XXX this blocks entire thread. Rewrite to use 290 // qemu_chr_fe_write and background I/O callbacks 291 292 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 293 // initialized in realize(). 294 unsafe { 295 qemu_chr_fe_write_all(addr_of_mut!(self.char_backend), &ch, 1); 296 } 297 self.loopback_tx(value); 298 self.int_level |= registers::INT_TX; 299 self.update(); 300 } 301 Ok(RSR) => { 302 self.receive_status_error_clear.reset(); 303 } 304 Ok(FR) => { 305 // flag writes are ignored 306 } 307 Ok(ILPR) => { 308 self.ilpr = value; 309 } 310 Ok(IBRD) => { 311 self.ibrd = value; 312 } 313 Ok(FBRD) => { 314 self.fbrd = value; 315 } 316 Ok(LCR_H) => { 317 let new_val: registers::LineControl = value.into(); 318 // Reset the FIFO state on FIFO enable or disable 319 if self.line_control.fifos_enabled() != new_val.fifos_enabled() { 320 self.reset_rx_fifo(); 321 self.reset_tx_fifo(); 322 } 323 if self.line_control.send_break() ^ new_val.send_break() { 324 let mut break_enable: c_int = new_val.send_break().into(); 325 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 326 // initialized in realize(). 327 unsafe { 328 qemu_chr_fe_ioctl( 329 addr_of_mut!(self.char_backend), 330 CHR_IOCTL_SERIAL_SET_BREAK as i32, 331 addr_of_mut!(break_enable).cast::<c_void>(), 332 ); 333 } 334 self.loopback_break(break_enable > 0); 335 } 336 self.line_control = new_val; 337 self.set_read_trigger(); 338 } 339 Ok(CR) => { 340 // ??? Need to implement the enable bit. 341 self.control = value.into(); 342 self.loopback_mdmctrl(); 343 } 344 Ok(FLS) => { 345 self.ifl = value; 346 self.set_read_trigger(); 347 } 348 Ok(IMSC) => { 349 self.int_enabled = value; 350 self.update(); 351 } 352 Ok(RIS) => {} 353 Ok(MIS) => {} 354 Ok(ICR) => { 355 self.int_level &= !value; 356 self.update(); 357 } 358 Ok(DMACR) => { 359 self.dmacr = value; 360 if value & 3 > 0 { 361 // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n"); 362 eprintln!("pl011: DMA not implemented"); 363 } 364 } 365 } 366 } 367 368 #[inline] 369 fn loopback_tx(&mut self, value: u32) { 370 if !self.loopback_enabled() { 371 return; 372 } 373 374 // Caveat: 375 // 376 // In real hardware, TX loopback happens at the serial-bit level 377 // and then reassembled by the RX logics back into bytes and placed 378 // into the RX fifo. That is, loopback happens after TX fifo. 379 // 380 // Because the real hardware TX fifo is time-drained at the frame 381 // rate governed by the configured serial format, some loopback 382 // bytes in TX fifo may still be able to get into the RX fifo 383 // that could be full at times while being drained at software 384 // pace. 385 // 386 // In such scenario, the RX draining pace is the major factor 387 // deciding which loopback bytes get into the RX fifo, unless 388 // hardware flow-control is enabled. 389 // 390 // For simplicity, the above described is not emulated. 391 self.put_fifo(value); 392 } 393 394 fn loopback_mdmctrl(&mut self) { 395 if !self.loopback_enabled() { 396 return; 397 } 398 399 /* 400 * Loopback software-driven modem control outputs to modem status inputs: 401 * FR.RI <= CR.Out2 402 * FR.DCD <= CR.Out1 403 * FR.CTS <= CR.RTS 404 * FR.DSR <= CR.DTR 405 * 406 * The loopback happens immediately even if this call is triggered 407 * by setting only CR.LBE. 408 * 409 * CTS/RTS updates due to enabled hardware flow controls are not 410 * dealt with here. 411 */ 412 413 self.flags.set_ring_indicator(self.control.out_2()); 414 self.flags.set_data_carrier_detect(self.control.out_1()); 415 self.flags.set_clear_to_send(self.control.request_to_send()); 416 self.flags 417 .set_data_set_ready(self.control.data_transmit_ready()); 418 419 // Change interrupts based on updated FR 420 let mut il = self.int_level; 421 422 il &= !Interrupt::MS; 423 424 if self.flags.data_set_ready() { 425 il |= Interrupt::DSR as u32; 426 } 427 if self.flags.data_carrier_detect() { 428 il |= Interrupt::DCD as u32; 429 } 430 if self.flags.clear_to_send() { 431 il |= Interrupt::CTS as u32; 432 } 433 if self.flags.ring_indicator() { 434 il |= Interrupt::RI as u32; 435 } 436 self.int_level = il; 437 self.update(); 438 } 439 440 fn loopback_break(&mut self, enable: bool) { 441 if enable { 442 self.loopback_tx(registers::Data::BREAK.into()); 443 } 444 } 445 446 fn set_read_trigger(&mut self) { 447 self.read_trigger = 1; 448 } 449 450 pub fn realize(&self) { 451 // SAFETY: self.char_backend has the correct size and alignment for a 452 // CharBackend object, and its callbacks are of the correct types. 453 unsafe { 454 qemu_chr_fe_set_handlers( 455 addr_of!(self.char_backend) as *mut CharBackend, 456 Some(pl011_can_receive), 457 Some(pl011_receive), 458 Some(pl011_event), 459 None, 460 addr_of!(*self).cast::<c_void>() as *mut c_void, 461 core::ptr::null_mut(), 462 true, 463 ); 464 } 465 } 466 467 pub fn reset(&mut self) { 468 self.line_control.reset(); 469 self.receive_status_error_clear.reset(); 470 self.dmacr = 0; 471 self.int_enabled = 0; 472 self.int_level = 0; 473 self.ilpr = 0; 474 self.ibrd = 0; 475 self.fbrd = 0; 476 self.read_trigger = 1; 477 self.ifl = 0x12; 478 self.control.reset(); 479 self.flags.reset(); 480 self.reset_rx_fifo(); 481 self.reset_tx_fifo(); 482 } 483 484 pub fn reset_rx_fifo(&mut self) { 485 self.read_count = 0; 486 self.read_pos = 0; 487 488 // Reset FIFO flags 489 self.flags.set_receive_fifo_full(false); 490 self.flags.set_receive_fifo_empty(true); 491 } 492 493 pub fn reset_tx_fifo(&mut self) { 494 // Reset FIFO flags 495 self.flags.set_transmit_fifo_full(false); 496 self.flags.set_transmit_fifo_empty(true); 497 } 498 499 pub fn can_receive(&self) -> bool { 500 // trace_pl011_can_receive(s->lcr, s->read_count, r); 501 self.read_count < self.fifo_depth() 502 } 503 504 pub fn event(&mut self, event: QEMUChrEvent) { 505 if event == QEMUChrEvent::CHR_EVENT_BREAK && !self.loopback_enabled() { 506 self.put_fifo(registers::Data::BREAK.into()); 507 } 508 } 509 510 #[inline] 511 pub fn fifo_enabled(&self) -> bool { 512 self.line_control.fifos_enabled() == registers::Mode::FIFO 513 } 514 515 #[inline] 516 pub fn loopback_enabled(&self) -> bool { 517 self.control.enable_loopback() 518 } 519 520 #[inline] 521 pub fn fifo_depth(&self) -> u32 { 522 // Note: FIFO depth is expected to be power-of-2 523 if self.fifo_enabled() { 524 return PL011_FIFO_DEPTH; 525 } 526 1 527 } 528 529 pub fn put_fifo(&mut self, value: c_uint) { 530 let depth = self.fifo_depth(); 531 assert!(depth > 0); 532 let slot = (self.read_pos + self.read_count) & (depth - 1); 533 self.read_fifo[slot] = registers::Data::from(value); 534 self.read_count += 1; 535 self.flags.set_receive_fifo_empty(false); 536 if self.read_count == depth { 537 self.flags.set_receive_fifo_full(true); 538 } 539 540 if self.read_count == self.read_trigger { 541 self.int_level |= registers::INT_RX; 542 self.update(); 543 } 544 } 545 546 pub fn update(&self) { 547 let flags = self.int_level & self.int_enabled; 548 for (irq, i) in self.interrupts.iter().zip(IRQMASK) { 549 irq.set(flags & i != 0); 550 } 551 } 552 553 pub fn post_load(&mut self, _version_id: u32) -> Result<(), ()> { 554 /* Sanity-check input state */ 555 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() { 556 return Err(()); 557 } 558 559 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 { 560 // Older versions of PL011 didn't ensure that the single 561 // character in the FIFO in FIFO-disabled mode is in 562 // element 0 of the array; convert to follow the current 563 // code's assumptions. 564 self.read_fifo[0] = self.read_fifo[self.read_pos]; 565 self.read_pos = 0; 566 } 567 568 self.ibrd &= IBRD_MASK; 569 self.fbrd &= FBRD_MASK; 570 571 Ok(()) 572 } 573 } 574 575 /// Which bits in the interrupt status matter for each outbound IRQ line ? 576 const IRQMASK: [u32; 6] = [ 577 /* combined IRQ */ 578 Interrupt::E 579 | Interrupt::MS 580 | Interrupt::RT as u32 581 | Interrupt::TX as u32 582 | Interrupt::RX as u32, 583 Interrupt::RX as u32, 584 Interrupt::TX as u32, 585 Interrupt::RT as u32, 586 Interrupt::MS, 587 Interrupt::E, 588 ]; 589 590 /// # Safety 591 /// 592 /// We expect the FFI user of this function to pass a valid pointer, that has 593 /// the same size as [`PL011State`]. We also expect the device is 594 /// readable/writeable from one thread at any time. 595 pub unsafe extern "C" fn pl011_can_receive(opaque: *mut c_void) -> c_int { 596 let state = NonNull::new(opaque).unwrap().cast::<PL011State>(); 597 unsafe { state.as_ref().can_receive().into() } 598 } 599 600 /// # Safety 601 /// 602 /// We expect the FFI user of this function to pass a valid pointer, that has 603 /// the same size as [`PL011State`]. We also expect the device is 604 /// readable/writeable from one thread at any time. 605 /// 606 /// The buffer and size arguments must also be valid. 607 pub unsafe extern "C" fn pl011_receive(opaque: *mut c_void, buf: *const u8, size: c_int) { 608 let mut state = NonNull::new(opaque).unwrap().cast::<PL011State>(); 609 unsafe { 610 if state.as_ref().loopback_enabled() { 611 return; 612 } 613 if size > 0 { 614 debug_assert!(!buf.is_null()); 615 state.as_mut().put_fifo(c_uint::from(buf.read_volatile())) 616 } 617 } 618 } 619 620 /// # Safety 621 /// 622 /// We expect the FFI user of this function to pass a valid pointer, that has 623 /// the same size as [`PL011State`]. We also expect the device is 624 /// readable/writeable from one thread at any time. 625 pub unsafe extern "C" fn pl011_event(opaque: *mut c_void, event: QEMUChrEvent) { 626 let mut state = NonNull::new(opaque).unwrap().cast::<PL011State>(); 627 unsafe { state.as_mut().event(event) } 628 } 629 630 /// # Safety 631 /// 632 /// We expect the FFI user of this function to pass a valid pointer for `chr`. 633 #[no_mangle] 634 pub unsafe extern "C" fn pl011_create( 635 addr: u64, 636 irq: qemu_irq, 637 chr: *mut Chardev, 638 ) -> *mut DeviceState { 639 unsafe { 640 let dev: *mut DeviceState = qdev_new(PL011State::TYPE_NAME.as_ptr()); 641 let sysbus: *mut SysBusDevice = dev.cast::<SysBusDevice>(); 642 643 qdev_prop_set_chr(dev, c_str!("chardev").as_ptr(), chr); 644 sysbus_realize_and_unref(sysbus, addr_of_mut!(error_fatal)); 645 sysbus_mmio_map(sysbus, 0, addr); 646 sysbus_connect_irq(sysbus, 0, irq); 647 dev 648 } 649 } 650 651 #[repr(C)] 652 #[derive(Debug, qemu_api_macros::Object)] 653 /// PL011 Luminary device model. 654 pub struct PL011Luminary { 655 parent_obj: ParentField<PL011State>, 656 } 657 658 impl ClassInitImpl<PL011Class> for PL011Luminary { 659 fn class_init(klass: &mut PL011Class) { 660 klass.device_id = DeviceId::LUMINARY; 661 <Self as ClassInitImpl<SysBusDeviceClass>>::class_init(&mut klass.parent_class); 662 } 663 } 664 665 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object); 666 667 unsafe impl ObjectType for PL011Luminary { 668 type Class = <PL011State as ObjectType>::Class; 669 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY; 670 } 671 672 impl ObjectImpl for PL011Luminary { 673 type ParentType = PL011State; 674 } 675 676 impl DeviceImpl for PL011Luminary {} 677