1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 use core::ptr::{addr_of_mut, NonNull}; 6 use std::{ 7 ffi::CStr, 8 os::raw::{c_int, c_uint, c_void}, 9 }; 10 11 use qemu_api::{ 12 bindings::{self, *}, 13 c_str, 14 irq::InterruptSource, 15 prelude::*, 16 qdev::DeviceImpl, 17 qom::{ClassInitImpl, ObjectImpl, ParentField}, 18 }; 19 20 use crate::{ 21 device_class, 22 memory_ops::PL011_OPS, 23 registers::{self, Interrupt}, 24 RegisterOffset, 25 }; 26 27 /// Integer Baud Rate Divider, `UARTIBRD` 28 const IBRD_MASK: u32 = 0xffff; 29 30 /// Fractional Baud Rate Divider, `UARTFBRD` 31 const FBRD_MASK: u32 = 0x3f; 32 33 /// QEMU sourced constant. 34 pub const PL011_FIFO_DEPTH: u32 = 16; 35 36 #[derive(Clone, Copy)] 37 struct DeviceId(&'static [u8; 8]); 38 39 impl std::ops::Index<hwaddr> for DeviceId { 40 type Output = u8; 41 42 fn index(&self, idx: hwaddr) -> &Self::Output { 43 &self.0[idx as usize] 44 } 45 } 46 47 impl DeviceId { 48 const ARM: Self = Self(&[0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]); 49 const LUMINARY: Self = Self(&[0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]); 50 } 51 52 // FIFOs use 32-bit indices instead of usize, for compatibility with 53 // the migration stream produced by the C version of this device. 54 #[repr(transparent)] 55 #[derive(Debug, Default)] 56 pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]); 57 58 impl Fifo { 59 const fn len(&self) -> u32 { 60 self.0.len() as u32 61 } 62 } 63 64 impl std::ops::IndexMut<u32> for Fifo { 65 fn index_mut(&mut self, idx: u32) -> &mut Self::Output { 66 &mut self.0[idx as usize] 67 } 68 } 69 70 impl std::ops::Index<u32> for Fifo { 71 type Output = registers::Data; 72 73 fn index(&self, idx: u32) -> &Self::Output { 74 &self.0[idx as usize] 75 } 76 } 77 78 #[repr(C)] 79 #[derive(Debug, qemu_api_macros::Object, qemu_api_macros::offsets)] 80 /// PL011 Device Model in QEMU 81 pub struct PL011State { 82 pub parent_obj: ParentField<SysBusDevice>, 83 pub iomem: MemoryRegion, 84 #[doc(alias = "fr")] 85 pub flags: registers::Flags, 86 #[doc(alias = "lcr")] 87 pub line_control: registers::LineControl, 88 #[doc(alias = "rsr")] 89 pub receive_status_error_clear: registers::ReceiveStatusErrorClear, 90 #[doc(alias = "cr")] 91 pub control: registers::Control, 92 pub dmacr: u32, 93 pub int_enabled: u32, 94 pub int_level: u32, 95 pub read_fifo: Fifo, 96 pub ilpr: u32, 97 pub ibrd: u32, 98 pub fbrd: u32, 99 pub ifl: u32, 100 pub read_pos: u32, 101 pub read_count: u32, 102 pub read_trigger: u32, 103 #[doc(alias = "chr")] 104 pub char_backend: CharBackend, 105 /// QEMU interrupts 106 /// 107 /// ```text 108 /// * sysbus MMIO region 0: device registers 109 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line) 110 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line) 111 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line) 112 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line) 113 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line) 114 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line) 115 /// ``` 116 #[doc(alias = "irq")] 117 pub interrupts: [InterruptSource; IRQMASK.len()], 118 #[doc(alias = "clk")] 119 pub clock: NonNull<Clock>, 120 #[doc(alias = "migrate_clk")] 121 pub migrate_clock: bool, 122 } 123 124 qom_isa!(PL011State : SysBusDevice, DeviceState, Object); 125 126 pub struct PL011Class { 127 parent_class: <SysBusDevice as ObjectType>::Class, 128 /// The byte string that identifies the device. 129 device_id: DeviceId, 130 } 131 132 unsafe impl ObjectType for PL011State { 133 type Class = PL011Class; 134 const TYPE_NAME: &'static CStr = crate::TYPE_PL011; 135 } 136 137 impl ClassInitImpl<PL011Class> for PL011State { 138 fn class_init(klass: &mut PL011Class) { 139 klass.device_id = DeviceId::ARM; 140 <Self as ClassInitImpl<SysBusDeviceClass>>::class_init(&mut klass.parent_class); 141 } 142 } 143 144 impl ObjectImpl for PL011State { 145 type ParentType = SysBusDevice; 146 147 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 148 const INSTANCE_POST_INIT: Option<fn(&mut Self)> = Some(Self::post_init); 149 } 150 151 impl DeviceImpl for PL011State { 152 fn properties() -> &'static [Property] { 153 &device_class::PL011_PROPERTIES 154 } 155 fn vmsd() -> Option<&'static VMStateDescription> { 156 Some(&device_class::VMSTATE_PL011) 157 } 158 const REALIZE: Option<fn(&mut Self)> = Some(Self::realize); 159 const RESET: Option<fn(&mut Self)> = Some(Self::reset); 160 } 161 162 impl PL011State { 163 /// Initializes a pre-allocated, unitialized instance of `PL011State`. 164 /// 165 /// # Safety 166 /// 167 /// `self` must point to a correctly sized and aligned location for the 168 /// `PL011State` type. It must not be called more than once on the same 169 /// location/instance. All its fields are expected to hold unitialized 170 /// values with the sole exception of `parent_obj`. 171 unsafe fn init(&mut self) { 172 const CLK_NAME: &CStr = c_str!("clk"); 173 174 // SAFETY: 175 // 176 // self and self.iomem are guaranteed to be valid at this point since callers 177 // must make sure the `self` reference is valid. 178 unsafe { 179 memory_region_init_io( 180 addr_of_mut!(self.iomem), 181 addr_of_mut!(*self).cast::<Object>(), 182 &PL011_OPS, 183 addr_of_mut!(*self).cast::<c_void>(), 184 Self::TYPE_NAME.as_ptr(), 185 0x1000, 186 ); 187 } 188 189 // SAFETY: 190 // 191 // self.clock is not initialized at this point; but since `NonNull<_>` is Copy, 192 // we can overwrite the undefined value without side effects. This is 193 // safe since all PL011State instances are created by QOM code which 194 // calls this function to initialize the fields; therefore no code is 195 // able to access an invalid self.clock value. 196 unsafe { 197 let dev: &mut DeviceState = self.upcast_mut(); 198 self.clock = NonNull::new(qdev_init_clock_in( 199 dev, 200 CLK_NAME.as_ptr(), 201 None, /* pl011_clock_update */ 202 addr_of_mut!(*self).cast::<c_void>(), 203 ClockEvent::ClockUpdate.0, 204 )) 205 .unwrap(); 206 } 207 } 208 209 fn post_init(&mut self) { 210 let sbd: &SysBusDevice = self.upcast(); 211 212 sbd.init_mmio(&self.iomem); 213 for irq in self.interrupts.iter() { 214 sbd.init_irq(irq); 215 } 216 } 217 218 pub fn read(&mut self, offset: hwaddr, _size: c_uint) -> std::ops::ControlFlow<u64, u64> { 219 use RegisterOffset::*; 220 221 let value = match RegisterOffset::try_from(offset) { 222 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => { 223 let device_id = self.get_class().device_id; 224 u32::from(device_id[(offset - 0xfe0) >> 2]) 225 } 226 Err(_) => { 227 // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset); 228 0 229 } 230 Ok(DR) => { 231 self.flags.set_receive_fifo_full(false); 232 let c = self.read_fifo[self.read_pos]; 233 if self.read_count > 0 { 234 self.read_count -= 1; 235 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1); 236 } 237 if self.read_count == 0 { 238 self.flags.set_receive_fifo_empty(true); 239 } 240 if self.read_count + 1 == self.read_trigger { 241 self.int_level &= !registers::INT_RX; 242 } 243 // Update error bits. 244 self.receive_status_error_clear.set_from_data(c); 245 self.update(); 246 // Must call qemu_chr_fe_accept_input, so return Continue: 247 let c = u32::from(c); 248 return std::ops::ControlFlow::Continue(u64::from(c)); 249 } 250 Ok(RSR) => u32::from(self.receive_status_error_clear), 251 Ok(FR) => u32::from(self.flags), 252 Ok(FBRD) => self.fbrd, 253 Ok(ILPR) => self.ilpr, 254 Ok(IBRD) => self.ibrd, 255 Ok(LCR_H) => u32::from(self.line_control), 256 Ok(CR) => u32::from(self.control), 257 Ok(FLS) => self.ifl, 258 Ok(IMSC) => self.int_enabled, 259 Ok(RIS) => self.int_level, 260 Ok(MIS) => self.int_level & self.int_enabled, 261 Ok(ICR) => { 262 // "The UARTICR Register is the interrupt clear register and is write-only" 263 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR 264 0 265 } 266 Ok(DMACR) => self.dmacr, 267 }; 268 std::ops::ControlFlow::Break(value.into()) 269 } 270 271 pub fn write(&mut self, offset: hwaddr, value: u64) { 272 // eprintln!("write offset {offset} value {value}"); 273 use RegisterOffset::*; 274 let value: u32 = value as u32; 275 match RegisterOffset::try_from(offset) { 276 Err(_bad_offset) => { 277 eprintln!("write bad offset {offset} value {value}"); 278 } 279 Ok(DR) => { 280 // ??? Check if transmitter is enabled. 281 let ch: u8 = value as u8; 282 // XXX this blocks entire thread. Rewrite to use 283 // qemu_chr_fe_write and background I/O callbacks 284 285 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 286 // initialized in realize(). 287 unsafe { 288 qemu_chr_fe_write_all(addr_of_mut!(self.char_backend), &ch, 1); 289 } 290 self.loopback_tx(value); 291 self.int_level |= registers::INT_TX; 292 self.update(); 293 } 294 Ok(RSR) => { 295 self.receive_status_error_clear.reset(); 296 } 297 Ok(FR) => { 298 // flag writes are ignored 299 } 300 Ok(ILPR) => { 301 self.ilpr = value; 302 } 303 Ok(IBRD) => { 304 self.ibrd = value; 305 } 306 Ok(FBRD) => { 307 self.fbrd = value; 308 } 309 Ok(LCR_H) => { 310 let new_val: registers::LineControl = value.into(); 311 // Reset the FIFO state on FIFO enable or disable 312 if self.line_control.fifos_enabled() != new_val.fifos_enabled() { 313 self.reset_rx_fifo(); 314 self.reset_tx_fifo(); 315 } 316 if self.line_control.send_break() ^ new_val.send_break() { 317 let mut break_enable: c_int = new_val.send_break().into(); 318 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 319 // initialized in realize(). 320 unsafe { 321 qemu_chr_fe_ioctl( 322 addr_of_mut!(self.char_backend), 323 CHR_IOCTL_SERIAL_SET_BREAK as i32, 324 addr_of_mut!(break_enable).cast::<c_void>(), 325 ); 326 } 327 self.loopback_break(break_enable > 0); 328 } 329 self.line_control = new_val; 330 self.set_read_trigger(); 331 } 332 Ok(CR) => { 333 // ??? Need to implement the enable bit. 334 self.control = value.into(); 335 self.loopback_mdmctrl(); 336 } 337 Ok(FLS) => { 338 self.ifl = value; 339 self.set_read_trigger(); 340 } 341 Ok(IMSC) => { 342 self.int_enabled = value; 343 self.update(); 344 } 345 Ok(RIS) => {} 346 Ok(MIS) => {} 347 Ok(ICR) => { 348 self.int_level &= !value; 349 self.update(); 350 } 351 Ok(DMACR) => { 352 self.dmacr = value; 353 if value & 3 > 0 { 354 // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n"); 355 eprintln!("pl011: DMA not implemented"); 356 } 357 } 358 } 359 } 360 361 #[inline] 362 fn loopback_tx(&mut self, value: u32) { 363 if !self.loopback_enabled() { 364 return; 365 } 366 367 // Caveat: 368 // 369 // In real hardware, TX loopback happens at the serial-bit level 370 // and then reassembled by the RX logics back into bytes and placed 371 // into the RX fifo. That is, loopback happens after TX fifo. 372 // 373 // Because the real hardware TX fifo is time-drained at the frame 374 // rate governed by the configured serial format, some loopback 375 // bytes in TX fifo may still be able to get into the RX fifo 376 // that could be full at times while being drained at software 377 // pace. 378 // 379 // In such scenario, the RX draining pace is the major factor 380 // deciding which loopback bytes get into the RX fifo, unless 381 // hardware flow-control is enabled. 382 // 383 // For simplicity, the above described is not emulated. 384 self.put_fifo(value); 385 } 386 387 fn loopback_mdmctrl(&mut self) { 388 if !self.loopback_enabled() { 389 return; 390 } 391 392 /* 393 * Loopback software-driven modem control outputs to modem status inputs: 394 * FR.RI <= CR.Out2 395 * FR.DCD <= CR.Out1 396 * FR.CTS <= CR.RTS 397 * FR.DSR <= CR.DTR 398 * 399 * The loopback happens immediately even if this call is triggered 400 * by setting only CR.LBE. 401 * 402 * CTS/RTS updates due to enabled hardware flow controls are not 403 * dealt with here. 404 */ 405 406 self.flags.set_ring_indicator(self.control.out_2()); 407 self.flags.set_data_carrier_detect(self.control.out_1()); 408 self.flags.set_clear_to_send(self.control.request_to_send()); 409 self.flags 410 .set_data_set_ready(self.control.data_transmit_ready()); 411 412 // Change interrupts based on updated FR 413 let mut il = self.int_level; 414 415 il &= !Interrupt::MS; 416 417 if self.flags.data_set_ready() { 418 il |= Interrupt::DSR as u32; 419 } 420 if self.flags.data_carrier_detect() { 421 il |= Interrupt::DCD as u32; 422 } 423 if self.flags.clear_to_send() { 424 il |= Interrupt::CTS as u32; 425 } 426 if self.flags.ring_indicator() { 427 il |= Interrupt::RI as u32; 428 } 429 self.int_level = il; 430 self.update(); 431 } 432 433 fn loopback_break(&mut self, enable: bool) { 434 if enable { 435 self.loopback_tx(registers::Data::BREAK.into()); 436 } 437 } 438 439 fn set_read_trigger(&mut self) { 440 self.read_trigger = 1; 441 } 442 443 pub fn realize(&mut self) { 444 // SAFETY: self.char_backend has the correct size and alignment for a 445 // CharBackend object, and its callbacks are of the correct types. 446 unsafe { 447 qemu_chr_fe_set_handlers( 448 addr_of_mut!(self.char_backend), 449 Some(pl011_can_receive), 450 Some(pl011_receive), 451 Some(pl011_event), 452 None, 453 addr_of_mut!(*self).cast::<c_void>(), 454 core::ptr::null_mut(), 455 true, 456 ); 457 } 458 } 459 460 pub fn reset(&mut self) { 461 self.line_control.reset(); 462 self.receive_status_error_clear.reset(); 463 self.dmacr = 0; 464 self.int_enabled = 0; 465 self.int_level = 0; 466 self.ilpr = 0; 467 self.ibrd = 0; 468 self.fbrd = 0; 469 self.read_trigger = 1; 470 self.ifl = 0x12; 471 self.control.reset(); 472 self.flags.reset(); 473 self.reset_rx_fifo(); 474 self.reset_tx_fifo(); 475 } 476 477 pub fn reset_rx_fifo(&mut self) { 478 self.read_count = 0; 479 self.read_pos = 0; 480 481 // Reset FIFO flags 482 self.flags.set_receive_fifo_full(false); 483 self.flags.set_receive_fifo_empty(true); 484 } 485 486 pub fn reset_tx_fifo(&mut self) { 487 // Reset FIFO flags 488 self.flags.set_transmit_fifo_full(false); 489 self.flags.set_transmit_fifo_empty(true); 490 } 491 492 pub fn can_receive(&self) -> bool { 493 // trace_pl011_can_receive(s->lcr, s->read_count, r); 494 self.read_count < self.fifo_depth() 495 } 496 497 pub fn event(&mut self, event: QEMUChrEvent) { 498 if event == bindings::QEMUChrEvent::CHR_EVENT_BREAK && !self.loopback_enabled() { 499 self.put_fifo(registers::Data::BREAK.into()); 500 } 501 } 502 503 #[inline] 504 pub fn fifo_enabled(&self) -> bool { 505 self.line_control.fifos_enabled() == registers::Mode::FIFO 506 } 507 508 #[inline] 509 pub fn loopback_enabled(&self) -> bool { 510 self.control.enable_loopback() 511 } 512 513 #[inline] 514 pub fn fifo_depth(&self) -> u32 { 515 // Note: FIFO depth is expected to be power-of-2 516 if self.fifo_enabled() { 517 return PL011_FIFO_DEPTH; 518 } 519 1 520 } 521 522 pub fn put_fifo(&mut self, value: c_uint) { 523 let depth = self.fifo_depth(); 524 assert!(depth > 0); 525 let slot = (self.read_pos + self.read_count) & (depth - 1); 526 self.read_fifo[slot] = registers::Data::from(value); 527 self.read_count += 1; 528 self.flags.set_receive_fifo_empty(false); 529 if self.read_count == depth { 530 self.flags.set_receive_fifo_full(true); 531 } 532 533 if self.read_count == self.read_trigger { 534 self.int_level |= registers::INT_RX; 535 self.update(); 536 } 537 } 538 539 pub fn update(&self) { 540 let flags = self.int_level & self.int_enabled; 541 for (irq, i) in self.interrupts.iter().zip(IRQMASK) { 542 irq.set(flags & i != 0); 543 } 544 } 545 546 pub fn post_load(&mut self, _version_id: u32) -> Result<(), ()> { 547 /* Sanity-check input state */ 548 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() { 549 return Err(()); 550 } 551 552 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 { 553 // Older versions of PL011 didn't ensure that the single 554 // character in the FIFO in FIFO-disabled mode is in 555 // element 0 of the array; convert to follow the current 556 // code's assumptions. 557 self.read_fifo[0] = self.read_fifo[self.read_pos]; 558 self.read_pos = 0; 559 } 560 561 self.ibrd &= IBRD_MASK; 562 self.fbrd &= FBRD_MASK; 563 564 Ok(()) 565 } 566 } 567 568 /// Which bits in the interrupt status matter for each outbound IRQ line ? 569 pub const IRQMASK: [u32; 6] = [ 570 /* combined IRQ */ 571 Interrupt::E 572 | Interrupt::MS 573 | Interrupt::RT as u32 574 | Interrupt::TX as u32 575 | Interrupt::RX as u32, 576 Interrupt::RX as u32, 577 Interrupt::TX as u32, 578 Interrupt::RT as u32, 579 Interrupt::MS, 580 Interrupt::E, 581 ]; 582 583 /// # Safety 584 /// 585 /// We expect the FFI user of this function to pass a valid pointer, that has 586 /// the same size as [`PL011State`]. We also expect the device is 587 /// readable/writeable from one thread at any time. 588 pub unsafe extern "C" fn pl011_can_receive(opaque: *mut c_void) -> c_int { 589 unsafe { 590 debug_assert!(!opaque.is_null()); 591 let state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 592 state.as_ref().can_receive().into() 593 } 594 } 595 596 /// # Safety 597 /// 598 /// We expect the FFI user of this function to pass a valid pointer, that has 599 /// the same size as [`PL011State`]. We also expect the device is 600 /// readable/writeable from one thread at any time. 601 /// 602 /// The buffer and size arguments must also be valid. 603 pub unsafe extern "C" fn pl011_receive(opaque: *mut c_void, buf: *const u8, size: c_int) { 604 unsafe { 605 debug_assert!(!opaque.is_null()); 606 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 607 if state.as_ref().loopback_enabled() { 608 return; 609 } 610 if size > 0 { 611 debug_assert!(!buf.is_null()); 612 state.as_mut().put_fifo(c_uint::from(buf.read_volatile())) 613 } 614 } 615 } 616 617 /// # Safety 618 /// 619 /// We expect the FFI user of this function to pass a valid pointer, that has 620 /// the same size as [`PL011State`]. We also expect the device is 621 /// readable/writeable from one thread at any time. 622 pub unsafe extern "C" fn pl011_event(opaque: *mut c_void, event: QEMUChrEvent) { 623 unsafe { 624 debug_assert!(!opaque.is_null()); 625 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 626 state.as_mut().event(event) 627 } 628 } 629 630 /// # Safety 631 /// 632 /// We expect the FFI user of this function to pass a valid pointer for `chr`. 633 #[no_mangle] 634 pub unsafe extern "C" fn pl011_create( 635 addr: u64, 636 irq: qemu_irq, 637 chr: *mut Chardev, 638 ) -> *mut DeviceState { 639 unsafe { 640 let dev: *mut DeviceState = qdev_new(PL011State::TYPE_NAME.as_ptr()); 641 let sysbus: *mut SysBusDevice = dev.cast::<SysBusDevice>(); 642 643 qdev_prop_set_chr(dev, c_str!("chardev").as_ptr(), chr); 644 sysbus_realize_and_unref(sysbus, addr_of_mut!(error_fatal)); 645 sysbus_mmio_map(sysbus, 0, addr); 646 sysbus_connect_irq(sysbus, 0, irq); 647 dev 648 } 649 } 650 651 #[repr(C)] 652 #[derive(Debug, qemu_api_macros::Object)] 653 /// PL011 Luminary device model. 654 pub struct PL011Luminary { 655 parent_obj: ParentField<PL011State>, 656 } 657 658 impl ClassInitImpl<PL011Class> for PL011Luminary { 659 fn class_init(klass: &mut PL011Class) { 660 klass.device_id = DeviceId::LUMINARY; 661 <Self as ClassInitImpl<SysBusDeviceClass>>::class_init(&mut klass.parent_class); 662 } 663 } 664 665 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object); 666 667 unsafe impl ObjectType for PL011Luminary { 668 type Class = <PL011State as ObjectType>::Class; 669 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY; 670 } 671 672 impl ObjectImpl for PL011Luminary { 673 type ParentType = PL011State; 674 } 675 676 impl DeviceImpl for PL011Luminary {} 677