1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 use std::{ffi::CStr, mem::size_of, ptr::addr_of_mut}; 6 7 use qemu_api::{ 8 chardev::{CharBackend, Chardev, Event}, 9 impl_vmstate_forward, 10 irq::{IRQState, InterruptSource}, 11 memory::{hwaddr, MemoryRegion, MemoryRegionOps, MemoryRegionOpsBuilder}, 12 prelude::*, 13 qdev::{Clock, ClockEvent, DeviceImpl, DeviceState, Property, ResetType, ResettablePhasesImpl}, 14 qom::{ObjectImpl, Owned, ParentField}, 15 static_assert, 16 sysbus::{SysBusDevice, SysBusDeviceImpl}, 17 vmstate::VMStateDescription, 18 }; 19 20 use crate::{ 21 device_class, 22 registers::{self, Interrupt, RegisterOffset}, 23 }; 24 25 // TODO: You must disable the UART before any of the control registers are 26 // reprogrammed. When the UART is disabled in the middle of transmission or 27 // reception, it completes the current character before stopping 28 29 /// Integer Baud Rate Divider, `UARTIBRD` 30 const IBRD_MASK: u32 = 0xffff; 31 32 /// Fractional Baud Rate Divider, `UARTFBRD` 33 const FBRD_MASK: u32 = 0x3f; 34 35 /// QEMU sourced constant. 36 pub const PL011_FIFO_DEPTH: u32 = 16; 37 38 #[derive(Clone, Copy)] 39 struct DeviceId(&'static [u8; 8]); 40 41 impl std::ops::Index<hwaddr> for DeviceId { 42 type Output = u8; 43 44 fn index(&self, idx: hwaddr) -> &Self::Output { 45 &self.0[idx as usize] 46 } 47 } 48 49 // FIFOs use 32-bit indices instead of usize, for compatibility with 50 // the migration stream produced by the C version of this device. 51 #[repr(transparent)] 52 #[derive(Debug, Default)] 53 pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]); 54 impl_vmstate_forward!(Fifo); 55 56 impl Fifo { 57 const fn len(&self) -> u32 { 58 self.0.len() as u32 59 } 60 } 61 62 impl std::ops::IndexMut<u32> for Fifo { 63 fn index_mut(&mut self, idx: u32) -> &mut Self::Output { 64 &mut self.0[idx as usize] 65 } 66 } 67 68 impl std::ops::Index<u32> for Fifo { 69 type Output = registers::Data; 70 71 fn index(&self, idx: u32) -> &Self::Output { 72 &self.0[idx as usize] 73 } 74 } 75 76 #[repr(C)] 77 #[derive(Debug, Default, qemu_api_macros::offsets)] 78 pub struct PL011Registers { 79 #[doc(alias = "fr")] 80 pub flags: registers::Flags, 81 #[doc(alias = "lcr")] 82 pub line_control: registers::LineControl, 83 #[doc(alias = "rsr")] 84 pub receive_status_error_clear: registers::ReceiveStatusErrorClear, 85 #[doc(alias = "cr")] 86 pub control: registers::Control, 87 pub dmacr: u32, 88 pub int_enabled: u32, 89 pub int_level: u32, 90 pub read_fifo: Fifo, 91 pub ilpr: u32, 92 pub ibrd: u32, 93 pub fbrd: u32, 94 pub ifl: u32, 95 pub read_pos: u32, 96 pub read_count: u32, 97 pub read_trigger: u32, 98 } 99 100 #[repr(C)] 101 #[derive(qemu_api_macros::Object, qemu_api_macros::offsets)] 102 /// PL011 Device Model in QEMU 103 pub struct PL011State { 104 pub parent_obj: ParentField<SysBusDevice>, 105 pub iomem: MemoryRegion, 106 #[doc(alias = "chr")] 107 pub char_backend: CharBackend, 108 pub regs: BqlRefCell<PL011Registers>, 109 /// QEMU interrupts 110 /// 111 /// ```text 112 /// * sysbus MMIO region 0: device registers 113 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line) 114 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line) 115 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line) 116 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line) 117 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line) 118 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line) 119 /// ``` 120 #[doc(alias = "irq")] 121 pub interrupts: [InterruptSource; IRQMASK.len()], 122 #[doc(alias = "clk")] 123 pub clock: Owned<Clock>, 124 #[doc(alias = "migrate_clk")] 125 pub migrate_clock: bool, 126 } 127 128 // Some C users of this device embed its state struct into their own 129 // structs, so the size of the Rust version must not be any larger 130 // than the size of the C one. If this assert triggers you need to 131 // expand the padding_for_rust[] array in the C PL011State struct. 132 static_assert!(size_of::<PL011State>() <= size_of::<qemu_api::bindings::PL011State>()); 133 134 qom_isa!(PL011State : SysBusDevice, DeviceState, Object); 135 136 #[repr(C)] 137 pub struct PL011Class { 138 parent_class: <SysBusDevice as ObjectType>::Class, 139 /// The byte string that identifies the device. 140 device_id: DeviceId, 141 } 142 143 trait PL011Impl: SysBusDeviceImpl + IsA<PL011State> { 144 const DEVICE_ID: DeviceId; 145 } 146 147 impl PL011Class { 148 fn class_init<T: PL011Impl>(&mut self) { 149 self.device_id = T::DEVICE_ID; 150 self.parent_class.class_init::<T>(); 151 } 152 } 153 154 unsafe impl ObjectType for PL011State { 155 type Class = PL011Class; 156 const TYPE_NAME: &'static CStr = crate::TYPE_PL011; 157 } 158 159 impl PL011Impl for PL011State { 160 const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]); 161 } 162 163 impl ObjectImpl for PL011State { 164 type ParentType = SysBusDevice; 165 166 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 167 const INSTANCE_POST_INIT: Option<fn(&Self)> = Some(Self::post_init); 168 const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>; 169 } 170 171 impl DeviceImpl for PL011State { 172 fn properties() -> &'static [Property] { 173 &device_class::PL011_PROPERTIES 174 } 175 fn vmsd() -> Option<&'static VMStateDescription> { 176 Some(&device_class::VMSTATE_PL011) 177 } 178 const REALIZE: Option<fn(&Self)> = Some(Self::realize); 179 } 180 181 impl ResettablePhasesImpl for PL011State { 182 const HOLD: Option<fn(&Self, ResetType)> = Some(Self::reset_hold); 183 } 184 185 impl SysBusDeviceImpl for PL011State {} 186 187 impl PL011Registers { 188 pub(self) fn read(&mut self, offset: RegisterOffset) -> (bool, u32) { 189 use RegisterOffset::*; 190 191 let mut update = false; 192 let result = match offset { 193 DR => { 194 self.flags.set_receive_fifo_full(false); 195 let c = self.read_fifo[self.read_pos]; 196 if self.read_count > 0 { 197 self.read_count -= 1; 198 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1); 199 } 200 if self.read_count == 0 { 201 self.flags.set_receive_fifo_empty(true); 202 } 203 if self.read_count + 1 == self.read_trigger { 204 self.int_level &= !Interrupt::RX.0; 205 } 206 // Update error bits. 207 self.receive_status_error_clear.set_from_data(c); 208 // Must call qemu_chr_fe_accept_input 209 update = true; 210 u32::from(c) 211 } 212 RSR => u32::from(self.receive_status_error_clear), 213 FR => u32::from(self.flags), 214 FBRD => self.fbrd, 215 ILPR => self.ilpr, 216 IBRD => self.ibrd, 217 LCR_H => u32::from(self.line_control), 218 CR => u32::from(self.control), 219 FLS => self.ifl, 220 IMSC => self.int_enabled, 221 RIS => self.int_level, 222 MIS => self.int_level & self.int_enabled, 223 ICR => { 224 // "The UARTICR Register is the interrupt clear register and is write-only" 225 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR 226 0 227 } 228 DMACR => self.dmacr, 229 }; 230 (update, result) 231 } 232 233 pub(self) fn write( 234 &mut self, 235 offset: RegisterOffset, 236 value: u32, 237 char_backend: &CharBackend, 238 ) -> bool { 239 // eprintln!("write offset {offset} value {value}"); 240 use RegisterOffset::*; 241 match offset { 242 DR => { 243 // interrupts always checked 244 let _ = self.loopback_tx(value.into()); 245 self.int_level |= Interrupt::TX.0; 246 return true; 247 } 248 RSR => { 249 self.receive_status_error_clear = 0.into(); 250 } 251 FR => { 252 // flag writes are ignored 253 } 254 ILPR => { 255 self.ilpr = value; 256 } 257 IBRD => { 258 self.ibrd = value; 259 } 260 FBRD => { 261 self.fbrd = value; 262 } 263 LCR_H => { 264 let new_val: registers::LineControl = value.into(); 265 // Reset the FIFO state on FIFO enable or disable 266 if self.line_control.fifos_enabled() != new_val.fifos_enabled() { 267 self.reset_rx_fifo(); 268 self.reset_tx_fifo(); 269 } 270 let update = (self.line_control.send_break() != new_val.send_break()) && { 271 let break_enable = new_val.send_break(); 272 let _ = char_backend.send_break(break_enable); 273 self.loopback_break(break_enable) 274 }; 275 self.line_control = new_val; 276 self.set_read_trigger(); 277 return update; 278 } 279 CR => { 280 // ??? Need to implement the enable bit. 281 self.control = value.into(); 282 return self.loopback_mdmctrl(); 283 } 284 FLS => { 285 self.ifl = value; 286 self.set_read_trigger(); 287 } 288 IMSC => { 289 self.int_enabled = value; 290 return true; 291 } 292 RIS => {} 293 MIS => {} 294 ICR => { 295 self.int_level &= !value; 296 return true; 297 } 298 DMACR => { 299 self.dmacr = value; 300 if value & 3 > 0 { 301 // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n"); 302 eprintln!("pl011: DMA not implemented"); 303 } 304 } 305 } 306 false 307 } 308 309 #[inline] 310 #[must_use] 311 fn loopback_tx(&mut self, value: registers::Data) -> bool { 312 // Caveat: 313 // 314 // In real hardware, TX loopback happens at the serial-bit level 315 // and then reassembled by the RX logics back into bytes and placed 316 // into the RX fifo. That is, loopback happens after TX fifo. 317 // 318 // Because the real hardware TX fifo is time-drained at the frame 319 // rate governed by the configured serial format, some loopback 320 // bytes in TX fifo may still be able to get into the RX fifo 321 // that could be full at times while being drained at software 322 // pace. 323 // 324 // In such scenario, the RX draining pace is the major factor 325 // deciding which loopback bytes get into the RX fifo, unless 326 // hardware flow-control is enabled. 327 // 328 // For simplicity, the above described is not emulated. 329 self.loopback_enabled() && self.put_fifo(value) 330 } 331 332 #[must_use] 333 fn loopback_mdmctrl(&mut self) -> bool { 334 if !self.loopback_enabled() { 335 return false; 336 } 337 338 /* 339 * Loopback software-driven modem control outputs to modem status inputs: 340 * FR.RI <= CR.Out2 341 * FR.DCD <= CR.Out1 342 * FR.CTS <= CR.RTS 343 * FR.DSR <= CR.DTR 344 * 345 * The loopback happens immediately even if this call is triggered 346 * by setting only CR.LBE. 347 * 348 * CTS/RTS updates due to enabled hardware flow controls are not 349 * dealt with here. 350 */ 351 352 self.flags.set_ring_indicator(self.control.out_2()); 353 self.flags.set_data_carrier_detect(self.control.out_1()); 354 self.flags.set_clear_to_send(self.control.request_to_send()); 355 self.flags 356 .set_data_set_ready(self.control.data_transmit_ready()); 357 358 // Change interrupts based on updated FR 359 let mut il = self.int_level; 360 361 il &= !Interrupt::MS.0; 362 363 if self.flags.data_set_ready() { 364 il |= Interrupt::DSR.0; 365 } 366 if self.flags.data_carrier_detect() { 367 il |= Interrupt::DCD.0; 368 } 369 if self.flags.clear_to_send() { 370 il |= Interrupt::CTS.0; 371 } 372 if self.flags.ring_indicator() { 373 il |= Interrupt::RI.0; 374 } 375 self.int_level = il; 376 true 377 } 378 379 fn loopback_break(&mut self, enable: bool) -> bool { 380 enable && self.loopback_tx(registers::Data::BREAK) 381 } 382 383 fn set_read_trigger(&mut self) { 384 self.read_trigger = 1; 385 } 386 387 pub fn reset(&mut self) { 388 self.line_control.reset(); 389 self.receive_status_error_clear.reset(); 390 self.dmacr = 0; 391 self.int_enabled = 0; 392 self.int_level = 0; 393 self.ilpr = 0; 394 self.ibrd = 0; 395 self.fbrd = 0; 396 self.read_trigger = 1; 397 self.ifl = 0x12; 398 self.control.reset(); 399 self.flags.reset(); 400 self.reset_rx_fifo(); 401 self.reset_tx_fifo(); 402 } 403 404 pub fn reset_rx_fifo(&mut self) { 405 self.read_count = 0; 406 self.read_pos = 0; 407 408 // Reset FIFO flags 409 self.flags.set_receive_fifo_full(false); 410 self.flags.set_receive_fifo_empty(true); 411 } 412 413 pub fn reset_tx_fifo(&mut self) { 414 // Reset FIFO flags 415 self.flags.set_transmit_fifo_full(false); 416 self.flags.set_transmit_fifo_empty(true); 417 } 418 419 #[inline] 420 pub fn fifo_enabled(&self) -> bool { 421 self.line_control.fifos_enabled() == registers::Mode::FIFO 422 } 423 424 #[inline] 425 pub fn loopback_enabled(&self) -> bool { 426 self.control.enable_loopback() 427 } 428 429 #[inline] 430 pub fn fifo_depth(&self) -> u32 { 431 // Note: FIFO depth is expected to be power-of-2 432 if self.fifo_enabled() { 433 return PL011_FIFO_DEPTH; 434 } 435 1 436 } 437 438 #[must_use] 439 pub fn put_fifo(&mut self, value: registers::Data) -> bool { 440 let depth = self.fifo_depth(); 441 assert!(depth > 0); 442 let slot = (self.read_pos + self.read_count) & (depth - 1); 443 self.read_fifo[slot] = value; 444 self.read_count += 1; 445 self.flags.set_receive_fifo_empty(false); 446 if self.read_count == depth { 447 self.flags.set_receive_fifo_full(true); 448 } 449 450 if self.read_count == self.read_trigger { 451 self.int_level |= Interrupt::RX.0; 452 return true; 453 } 454 false 455 } 456 457 pub fn post_load(&mut self) -> Result<(), ()> { 458 /* Sanity-check input state */ 459 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() { 460 return Err(()); 461 } 462 463 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 { 464 // Older versions of PL011 didn't ensure that the single 465 // character in the FIFO in FIFO-disabled mode is in 466 // element 0 of the array; convert to follow the current 467 // code's assumptions. 468 self.read_fifo[0] = self.read_fifo[self.read_pos]; 469 self.read_pos = 0; 470 } 471 472 self.ibrd &= IBRD_MASK; 473 self.fbrd &= FBRD_MASK; 474 475 Ok(()) 476 } 477 } 478 479 impl PL011State { 480 /// Initializes a pre-allocated, unitialized instance of `PL011State`. 481 /// 482 /// # Safety 483 /// 484 /// `self` must point to a correctly sized and aligned location for the 485 /// `PL011State` type. It must not be called more than once on the same 486 /// location/instance. All its fields are expected to hold unitialized 487 /// values with the sole exception of `parent_obj`. 488 unsafe fn init(&mut self) { 489 static PL011_OPS: MemoryRegionOps<PL011State> = MemoryRegionOpsBuilder::<PL011State>::new() 490 .read(&PL011State::read) 491 .write(&PL011State::write) 492 .native_endian() 493 .impl_sizes(4, 4) 494 .build(); 495 496 // SAFETY: 497 // 498 // self and self.iomem are guaranteed to be valid at this point since callers 499 // must make sure the `self` reference is valid. 500 MemoryRegion::init_io( 501 unsafe { &mut *addr_of_mut!(self.iomem) }, 502 addr_of_mut!(*self), 503 &PL011_OPS, 504 "pl011", 505 0x1000, 506 ); 507 508 self.regs = Default::default(); 509 510 // SAFETY: 511 // 512 // self.clock is not initialized at this point; but since `Owned<_>` is 513 // not Drop, we can overwrite the undefined value without side effects; 514 // it's not sound but, because for all PL011State instances are created 515 // by QOM code which calls this function to initialize the fields, at 516 // leastno code is able to access an invalid self.clock value. 517 self.clock = self.init_clock_in("clk", &Self::clock_update, ClockEvent::ClockUpdate); 518 } 519 520 const fn clock_update(&self, _event: ClockEvent) { 521 /* pl011_trace_baudrate_change(s); */ 522 } 523 524 fn post_init(&self) { 525 self.init_mmio(&self.iomem); 526 for irq in self.interrupts.iter() { 527 self.init_irq(irq); 528 } 529 } 530 531 fn read(&self, offset: hwaddr, _size: u32) -> u64 { 532 match RegisterOffset::try_from(offset) { 533 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => { 534 let device_id = self.get_class().device_id; 535 u64::from(device_id[(offset - 0xfe0) >> 2]) 536 } 537 Err(_) => { 538 // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset); 539 0 540 } 541 Ok(field) => { 542 let (update_irq, result) = self.regs.borrow_mut().read(field); 543 if update_irq { 544 self.update(); 545 self.char_backend.accept_input(); 546 } 547 result.into() 548 } 549 } 550 } 551 552 fn write(&self, offset: hwaddr, value: u64, _size: u32) { 553 let mut update_irq = false; 554 if let Ok(field) = RegisterOffset::try_from(offset) { 555 // qemu_chr_fe_write_all() calls into the can_receive 556 // callback, so handle writes before entering PL011Registers. 557 if field == RegisterOffset::DR { 558 // ??? Check if transmitter is enabled. 559 let ch: [u8; 1] = [value as u8]; 560 // XXX this blocks entire thread. Rewrite to use 561 // qemu_chr_fe_write and background I/O callbacks 562 let _ = self.char_backend.write_all(&ch); 563 } 564 565 update_irq = self 566 .regs 567 .borrow_mut() 568 .write(field, value as u32, &self.char_backend); 569 } else { 570 eprintln!("write bad offset {offset} value {value}"); 571 } 572 if update_irq { 573 self.update(); 574 } 575 } 576 577 fn can_receive(&self) -> u32 { 578 let regs = self.regs.borrow(); 579 // trace_pl011_can_receive(s->lcr, s->read_count, r); 580 u32::from(regs.read_count < regs.fifo_depth()) 581 } 582 583 fn receive(&self, buf: &[u8]) { 584 if buf.is_empty() { 585 return; 586 } 587 let mut regs = self.regs.borrow_mut(); 588 let c: u32 = buf[0].into(); 589 let update_irq = !regs.loopback_enabled() && regs.put_fifo(c.into()); 590 // Release the BqlRefCell before calling self.update() 591 drop(regs); 592 593 if update_irq { 594 self.update(); 595 } 596 } 597 598 fn event(&self, event: Event) { 599 let mut update_irq = false; 600 let mut regs = self.regs.borrow_mut(); 601 if event == Event::CHR_EVENT_BREAK && !regs.loopback_enabled() { 602 update_irq = regs.put_fifo(registers::Data::BREAK); 603 } 604 // Release the BqlRefCell before calling self.update() 605 drop(regs); 606 607 if update_irq { 608 self.update() 609 } 610 } 611 612 fn realize(&self) { 613 self.char_backend 614 .enable_handlers(self, Self::can_receive, Self::receive, Self::event); 615 } 616 617 fn reset_hold(&self, _type: ResetType) { 618 self.regs.borrow_mut().reset(); 619 } 620 621 fn update(&self) { 622 let regs = self.regs.borrow(); 623 let flags = regs.int_level & regs.int_enabled; 624 for (irq, i) in self.interrupts.iter().zip(IRQMASK) { 625 irq.set(flags & i != 0); 626 } 627 } 628 629 pub fn post_load(&self, _version_id: u32) -> Result<(), ()> { 630 self.regs.borrow_mut().post_load() 631 } 632 } 633 634 /// Which bits in the interrupt status matter for each outbound IRQ line ? 635 const IRQMASK: [u32; 6] = [ 636 /* combined IRQ */ 637 Interrupt::E.0 | Interrupt::MS.0 | Interrupt::RT.0 | Interrupt::TX.0 | Interrupt::RX.0, 638 Interrupt::RX.0, 639 Interrupt::TX.0, 640 Interrupt::RT.0, 641 Interrupt::MS.0, 642 Interrupt::E.0, 643 ]; 644 645 /// # Safety 646 /// 647 /// We expect the FFI user of this function to pass a valid pointer for `chr` 648 /// and `irq`. 649 #[no_mangle] 650 pub unsafe extern "C" fn pl011_create( 651 addr: u64, 652 irq: *mut IRQState, 653 chr: *mut Chardev, 654 ) -> *mut DeviceState { 655 // SAFETY: The callers promise that they have owned references. 656 // They do not gift them to pl011_create, so use `Owned::from`. 657 let irq = unsafe { Owned::<IRQState>::from(&*irq) }; 658 659 let dev = PL011State::new(); 660 if !chr.is_null() { 661 let chr = unsafe { Owned::<Chardev>::from(&*chr) }; 662 dev.prop_set_chr("chardev", &chr); 663 } 664 dev.sysbus_realize(); 665 dev.mmio_map(0, addr); 666 dev.connect_irq(0, &irq); 667 668 // The pointer is kept alive by the QOM tree; drop the owned ref 669 dev.as_mut_ptr() 670 } 671 672 #[repr(C)] 673 #[derive(qemu_api_macros::Object)] 674 /// PL011 Luminary device model. 675 pub struct PL011Luminary { 676 parent_obj: ParentField<PL011State>, 677 } 678 679 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object); 680 681 unsafe impl ObjectType for PL011Luminary { 682 type Class = <PL011State as ObjectType>::Class; 683 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY; 684 } 685 686 impl ObjectImpl for PL011Luminary { 687 type ParentType = PL011State; 688 689 const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>; 690 } 691 692 impl PL011Impl for PL011Luminary { 693 const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]); 694 } 695 696 impl DeviceImpl for PL011Luminary {} 697 impl ResettablePhasesImpl for PL011Luminary {} 698 impl SysBusDeviceImpl for PL011Luminary {} 699