1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 use core::ptr::{addr_of_mut, NonNull}; 6 use std::{ 7 ffi::CStr, 8 os::raw::{c_int, c_uchar, c_uint, c_void}, 9 }; 10 11 use qemu_api::{ 12 bindings::{self, *}, 13 c_str, 14 irq::InterruptSource, 15 prelude::*, 16 qdev::DeviceImpl, 17 qom::ObjectImpl, 18 }; 19 20 use crate::{ 21 device_class, 22 memory_ops::PL011_OPS, 23 registers::{self, Interrupt}, 24 RegisterOffset, 25 }; 26 27 /// Integer Baud Rate Divider, `UARTIBRD` 28 const IBRD_MASK: u32 = 0xffff; 29 30 /// Fractional Baud Rate Divider, `UARTFBRD` 31 const FBRD_MASK: u32 = 0x3f; 32 33 /// QEMU sourced constant. 34 pub const PL011_FIFO_DEPTH: u32 = 16; 35 36 #[derive(Clone, Copy, Debug)] 37 enum DeviceId { 38 #[allow(dead_code)] 39 Arm = 0, 40 Luminary, 41 } 42 43 impl std::ops::Index<hwaddr> for DeviceId { 44 type Output = c_uchar; 45 46 fn index(&self, idx: hwaddr) -> &Self::Output { 47 match self { 48 Self::Arm => &Self::PL011_ID_ARM[idx as usize], 49 Self::Luminary => &Self::PL011_ID_LUMINARY[idx as usize], 50 } 51 } 52 } 53 54 impl DeviceId { 55 const PL011_ID_ARM: [c_uchar; 8] = [0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]; 56 const PL011_ID_LUMINARY: [c_uchar; 8] = [0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]; 57 } 58 59 // FIFOs use 32-bit indices instead of usize, for compatibility with 60 // the migration stream produced by the C version of this device. 61 #[repr(transparent)] 62 #[derive(Debug, Default)] 63 pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]); 64 65 impl Fifo { 66 const fn len(&self) -> u32 { 67 self.0.len() as u32 68 } 69 } 70 71 impl std::ops::IndexMut<u32> for Fifo { 72 fn index_mut(&mut self, idx: u32) -> &mut Self::Output { 73 &mut self.0[idx as usize] 74 } 75 } 76 77 impl std::ops::Index<u32> for Fifo { 78 type Output = registers::Data; 79 80 fn index(&self, idx: u32) -> &Self::Output { 81 &self.0[idx as usize] 82 } 83 } 84 85 #[repr(C)] 86 #[derive(Debug, qemu_api_macros::Object, qemu_api_macros::offsets)] 87 /// PL011 Device Model in QEMU 88 pub struct PL011State { 89 pub parent_obj: SysBusDevice, 90 pub iomem: MemoryRegion, 91 #[doc(alias = "fr")] 92 pub flags: registers::Flags, 93 #[doc(alias = "lcr")] 94 pub line_control: registers::LineControl, 95 #[doc(alias = "rsr")] 96 pub receive_status_error_clear: registers::ReceiveStatusErrorClear, 97 #[doc(alias = "cr")] 98 pub control: registers::Control, 99 pub dmacr: u32, 100 pub int_enabled: u32, 101 pub int_level: u32, 102 pub read_fifo: Fifo, 103 pub ilpr: u32, 104 pub ibrd: u32, 105 pub fbrd: u32, 106 pub ifl: u32, 107 pub read_pos: u32, 108 pub read_count: u32, 109 pub read_trigger: u32, 110 #[doc(alias = "chr")] 111 pub char_backend: CharBackend, 112 /// QEMU interrupts 113 /// 114 /// ```text 115 /// * sysbus MMIO region 0: device registers 116 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line) 117 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line) 118 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line) 119 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line) 120 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line) 121 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line) 122 /// ``` 123 #[doc(alias = "irq")] 124 pub interrupts: [InterruptSource; IRQMASK.len()], 125 #[doc(alias = "clk")] 126 pub clock: NonNull<Clock>, 127 #[doc(alias = "migrate_clk")] 128 pub migrate_clock: bool, 129 /// The byte string that identifies the device. 130 device_id: DeviceId, 131 } 132 133 qom_isa!(PL011State : SysBusDevice, DeviceState, Object); 134 135 unsafe impl ObjectType for PL011State { 136 type Class = <SysBusDevice as ObjectType>::Class; 137 const TYPE_NAME: &'static CStr = crate::TYPE_PL011; 138 } 139 140 impl ObjectImpl for PL011State { 141 type ParentType = SysBusDevice; 142 143 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 144 } 145 146 impl DeviceImpl for PL011State { 147 fn properties() -> &'static [Property] { 148 &device_class::PL011_PROPERTIES 149 } 150 fn vmsd() -> Option<&'static VMStateDescription> { 151 Some(&device_class::VMSTATE_PL011) 152 } 153 const REALIZE: Option<fn(&mut Self)> = Some(Self::realize); 154 const RESET: Option<fn(&mut Self)> = Some(Self::reset); 155 } 156 157 impl PL011State { 158 /// Initializes a pre-allocated, unitialized instance of `PL011State`. 159 /// 160 /// # Safety 161 /// 162 /// `self` must point to a correctly sized and aligned location for the 163 /// `PL011State` type. It must not be called more than once on the same 164 /// location/instance. All its fields are expected to hold unitialized 165 /// values with the sole exception of `parent_obj`. 166 unsafe fn init(&mut self) { 167 const CLK_NAME: &CStr = c_str!("clk"); 168 169 // SAFETY: 170 // 171 // self and self.iomem are guaranteed to be valid at this point since callers 172 // must make sure the `self` reference is valid. 173 unsafe { 174 memory_region_init_io( 175 addr_of_mut!(self.iomem), 176 addr_of_mut!(*self).cast::<Object>(), 177 &PL011_OPS, 178 addr_of_mut!(*self).cast::<c_void>(), 179 Self::TYPE_NAME.as_ptr(), 180 0x1000, 181 ); 182 183 let sbd: &mut SysBusDevice = self.upcast_mut(); 184 sysbus_init_mmio(sbd, addr_of_mut!(self.iomem)); 185 } 186 187 for irq in self.interrupts.iter() { 188 let sbd: &SysBusDevice = self.upcast(); 189 sbd.init_irq(irq); 190 } 191 192 // SAFETY: 193 // 194 // self.clock is not initialized at this point; but since `NonNull<_>` is Copy, 195 // we can overwrite the undefined value without side effects. This is 196 // safe since all PL011State instances are created by QOM code which 197 // calls this function to initialize the fields; therefore no code is 198 // able to access an invalid self.clock value. 199 unsafe { 200 let dev: &mut DeviceState = self.upcast_mut(); 201 self.clock = NonNull::new(qdev_init_clock_in( 202 dev, 203 CLK_NAME.as_ptr(), 204 None, /* pl011_clock_update */ 205 addr_of_mut!(*self).cast::<c_void>(), 206 ClockEvent::ClockUpdate.0, 207 )) 208 .unwrap(); 209 } 210 } 211 212 pub fn read(&mut self, offset: hwaddr, _size: c_uint) -> std::ops::ControlFlow<u64, u64> { 213 use RegisterOffset::*; 214 215 let value = match RegisterOffset::try_from(offset) { 216 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => { 217 u32::from(self.device_id[(offset - 0xfe0) >> 2]) 218 } 219 Err(_) => { 220 // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset); 221 0 222 } 223 Ok(DR) => { 224 self.flags.set_receive_fifo_full(false); 225 let c = self.read_fifo[self.read_pos]; 226 if self.read_count > 0 { 227 self.read_count -= 1; 228 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1); 229 } 230 if self.read_count == 0 { 231 self.flags.set_receive_fifo_empty(true); 232 } 233 if self.read_count + 1 == self.read_trigger { 234 self.int_level &= !registers::INT_RX; 235 } 236 // Update error bits. 237 self.receive_status_error_clear.set_from_data(c); 238 self.update(); 239 // Must call qemu_chr_fe_accept_input, so return Continue: 240 let c = u32::from(c); 241 return std::ops::ControlFlow::Continue(u64::from(c)); 242 } 243 Ok(RSR) => u32::from(self.receive_status_error_clear), 244 Ok(FR) => u32::from(self.flags), 245 Ok(FBRD) => self.fbrd, 246 Ok(ILPR) => self.ilpr, 247 Ok(IBRD) => self.ibrd, 248 Ok(LCR_H) => u32::from(self.line_control), 249 Ok(CR) => u32::from(self.control), 250 Ok(FLS) => self.ifl, 251 Ok(IMSC) => self.int_enabled, 252 Ok(RIS) => self.int_level, 253 Ok(MIS) => self.int_level & self.int_enabled, 254 Ok(ICR) => { 255 // "The UARTICR Register is the interrupt clear register and is write-only" 256 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR 257 0 258 } 259 Ok(DMACR) => self.dmacr, 260 }; 261 std::ops::ControlFlow::Break(value.into()) 262 } 263 264 pub fn write(&mut self, offset: hwaddr, value: u64) { 265 // eprintln!("write offset {offset} value {value}"); 266 use RegisterOffset::*; 267 let value: u32 = value as u32; 268 match RegisterOffset::try_from(offset) { 269 Err(_bad_offset) => { 270 eprintln!("write bad offset {offset} value {value}"); 271 } 272 Ok(DR) => { 273 // ??? Check if transmitter is enabled. 274 let ch: u8 = value as u8; 275 // XXX this blocks entire thread. Rewrite to use 276 // qemu_chr_fe_write and background I/O callbacks 277 278 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 279 // initialized in realize(). 280 unsafe { 281 qemu_chr_fe_write_all(addr_of_mut!(self.char_backend), &ch, 1); 282 } 283 self.loopback_tx(value); 284 self.int_level |= registers::INT_TX; 285 self.update(); 286 } 287 Ok(RSR) => { 288 self.receive_status_error_clear.reset(); 289 } 290 Ok(FR) => { 291 // flag writes are ignored 292 } 293 Ok(ILPR) => { 294 self.ilpr = value; 295 } 296 Ok(IBRD) => { 297 self.ibrd = value; 298 } 299 Ok(FBRD) => { 300 self.fbrd = value; 301 } 302 Ok(LCR_H) => { 303 let new_val: registers::LineControl = value.into(); 304 // Reset the FIFO state on FIFO enable or disable 305 if bool::from(self.line_control.fifos_enabled()) 306 ^ bool::from(new_val.fifos_enabled()) 307 { 308 self.reset_rx_fifo(); 309 self.reset_tx_fifo(); 310 } 311 if self.line_control.send_break() ^ new_val.send_break() { 312 let mut break_enable: c_int = new_val.send_break().into(); 313 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 314 // initialized in realize(). 315 unsafe { 316 qemu_chr_fe_ioctl( 317 addr_of_mut!(self.char_backend), 318 CHR_IOCTL_SERIAL_SET_BREAK as i32, 319 addr_of_mut!(break_enable).cast::<c_void>(), 320 ); 321 } 322 self.loopback_break(break_enable > 0); 323 } 324 self.line_control = new_val; 325 self.set_read_trigger(); 326 } 327 Ok(CR) => { 328 // ??? Need to implement the enable bit. 329 self.control = value.into(); 330 self.loopback_mdmctrl(); 331 } 332 Ok(FLS) => { 333 self.ifl = value; 334 self.set_read_trigger(); 335 } 336 Ok(IMSC) => { 337 self.int_enabled = value; 338 self.update(); 339 } 340 Ok(RIS) => {} 341 Ok(MIS) => {} 342 Ok(ICR) => { 343 self.int_level &= !value; 344 self.update(); 345 } 346 Ok(DMACR) => { 347 self.dmacr = value; 348 if value & 3 > 0 { 349 // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n"); 350 eprintln!("pl011: DMA not implemented"); 351 } 352 } 353 } 354 } 355 356 #[inline] 357 fn loopback_tx(&mut self, value: u32) { 358 if !self.loopback_enabled() { 359 return; 360 } 361 362 // Caveat: 363 // 364 // In real hardware, TX loopback happens at the serial-bit level 365 // and then reassembled by the RX logics back into bytes and placed 366 // into the RX fifo. That is, loopback happens after TX fifo. 367 // 368 // Because the real hardware TX fifo is time-drained at the frame 369 // rate governed by the configured serial format, some loopback 370 // bytes in TX fifo may still be able to get into the RX fifo 371 // that could be full at times while being drained at software 372 // pace. 373 // 374 // In such scenario, the RX draining pace is the major factor 375 // deciding which loopback bytes get into the RX fifo, unless 376 // hardware flow-control is enabled. 377 // 378 // For simplicity, the above described is not emulated. 379 self.put_fifo(value); 380 } 381 382 fn loopback_mdmctrl(&mut self) { 383 if !self.loopback_enabled() { 384 return; 385 } 386 387 /* 388 * Loopback software-driven modem control outputs to modem status inputs: 389 * FR.RI <= CR.Out2 390 * FR.DCD <= CR.Out1 391 * FR.CTS <= CR.RTS 392 * FR.DSR <= CR.DTR 393 * 394 * The loopback happens immediately even if this call is triggered 395 * by setting only CR.LBE. 396 * 397 * CTS/RTS updates due to enabled hardware flow controls are not 398 * dealt with here. 399 */ 400 401 self.flags.set_ring_indicator(self.control.out_2()); 402 self.flags.set_data_carrier_detect(self.control.out_1()); 403 self.flags.set_clear_to_send(self.control.request_to_send()); 404 self.flags 405 .set_data_set_ready(self.control.data_transmit_ready()); 406 407 // Change interrupts based on updated FR 408 let mut il = self.int_level; 409 410 il &= !Interrupt::MS; 411 412 if self.flags.data_set_ready() { 413 il |= Interrupt::DSR as u32; 414 } 415 if self.flags.data_carrier_detect() { 416 il |= Interrupt::DCD as u32; 417 } 418 if self.flags.clear_to_send() { 419 il |= Interrupt::CTS as u32; 420 } 421 if self.flags.ring_indicator() { 422 il |= Interrupt::RI as u32; 423 } 424 self.int_level = il; 425 self.update(); 426 } 427 428 fn loopback_break(&mut self, enable: bool) { 429 if enable { 430 self.loopback_tx(registers::Data::BREAK.into()); 431 } 432 } 433 434 fn set_read_trigger(&mut self) { 435 self.read_trigger = 1; 436 } 437 438 pub fn realize(&mut self) { 439 // SAFETY: self.char_backend has the correct size and alignment for a 440 // CharBackend object, and its callbacks are of the correct types. 441 unsafe { 442 qemu_chr_fe_set_handlers( 443 addr_of_mut!(self.char_backend), 444 Some(pl011_can_receive), 445 Some(pl011_receive), 446 Some(pl011_event), 447 None, 448 addr_of_mut!(*self).cast::<c_void>(), 449 core::ptr::null_mut(), 450 true, 451 ); 452 } 453 } 454 455 pub fn reset(&mut self) { 456 self.line_control.reset(); 457 self.receive_status_error_clear.reset(); 458 self.dmacr = 0; 459 self.int_enabled = 0; 460 self.int_level = 0; 461 self.ilpr = 0; 462 self.ibrd = 0; 463 self.fbrd = 0; 464 self.read_trigger = 1; 465 self.ifl = 0x12; 466 self.control.reset(); 467 self.flags.reset(); 468 self.reset_rx_fifo(); 469 self.reset_tx_fifo(); 470 } 471 472 pub fn reset_rx_fifo(&mut self) { 473 self.read_count = 0; 474 self.read_pos = 0; 475 476 // Reset FIFO flags 477 self.flags.set_receive_fifo_full(false); 478 self.flags.set_receive_fifo_empty(true); 479 } 480 481 pub fn reset_tx_fifo(&mut self) { 482 // Reset FIFO flags 483 self.flags.set_transmit_fifo_full(false); 484 self.flags.set_transmit_fifo_empty(true); 485 } 486 487 pub fn can_receive(&self) -> bool { 488 // trace_pl011_can_receive(s->lcr, s->read_count, r); 489 self.read_count < self.fifo_depth() 490 } 491 492 pub fn event(&mut self, event: QEMUChrEvent) { 493 if event == bindings::QEMUChrEvent::CHR_EVENT_BREAK && !self.loopback_enabled() { 494 self.put_fifo(registers::Data::BREAK.into()); 495 } 496 } 497 498 #[inline] 499 pub fn fifo_enabled(&self) -> bool { 500 matches!(self.line_control.fifos_enabled(), registers::Mode::FIFO) 501 } 502 503 #[inline] 504 pub fn loopback_enabled(&self) -> bool { 505 self.control.enable_loopback() 506 } 507 508 #[inline] 509 pub fn fifo_depth(&self) -> u32 { 510 // Note: FIFO depth is expected to be power-of-2 511 if self.fifo_enabled() { 512 return PL011_FIFO_DEPTH; 513 } 514 1 515 } 516 517 pub fn put_fifo(&mut self, value: c_uint) { 518 let depth = self.fifo_depth(); 519 assert!(depth > 0); 520 let slot = (self.read_pos + self.read_count) & (depth - 1); 521 self.read_fifo[slot] = registers::Data::from(value); 522 self.read_count += 1; 523 self.flags.set_receive_fifo_empty(false); 524 if self.read_count == depth { 525 self.flags.set_receive_fifo_full(true); 526 } 527 528 if self.read_count == self.read_trigger { 529 self.int_level |= registers::INT_RX; 530 self.update(); 531 } 532 } 533 534 pub fn update(&self) { 535 let flags = self.int_level & self.int_enabled; 536 for (irq, i) in self.interrupts.iter().zip(IRQMASK) { 537 irq.set(flags & i != 0); 538 } 539 } 540 541 pub fn post_load(&mut self, _version_id: u32) -> Result<(), ()> { 542 /* Sanity-check input state */ 543 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() { 544 return Err(()); 545 } 546 547 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 { 548 // Older versions of PL011 didn't ensure that the single 549 // character in the FIFO in FIFO-disabled mode is in 550 // element 0 of the array; convert to follow the current 551 // code's assumptions. 552 self.read_fifo[0] = self.read_fifo[self.read_pos]; 553 self.read_pos = 0; 554 } 555 556 self.ibrd &= IBRD_MASK; 557 self.fbrd &= FBRD_MASK; 558 559 Ok(()) 560 } 561 } 562 563 /// Which bits in the interrupt status matter for each outbound IRQ line ? 564 pub const IRQMASK: [u32; 6] = [ 565 /* combined IRQ */ 566 Interrupt::E 567 | Interrupt::MS 568 | Interrupt::RT as u32 569 | Interrupt::TX as u32 570 | Interrupt::RX as u32, 571 Interrupt::RX as u32, 572 Interrupt::TX as u32, 573 Interrupt::RT as u32, 574 Interrupt::MS, 575 Interrupt::E, 576 ]; 577 578 /// # Safety 579 /// 580 /// We expect the FFI user of this function to pass a valid pointer, that has 581 /// the same size as [`PL011State`]. We also expect the device is 582 /// readable/writeable from one thread at any time. 583 pub unsafe extern "C" fn pl011_can_receive(opaque: *mut c_void) -> c_int { 584 unsafe { 585 debug_assert!(!opaque.is_null()); 586 let state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 587 state.as_ref().can_receive().into() 588 } 589 } 590 591 /// # Safety 592 /// 593 /// We expect the FFI user of this function to pass a valid pointer, that has 594 /// the same size as [`PL011State`]. We also expect the device is 595 /// readable/writeable from one thread at any time. 596 /// 597 /// The buffer and size arguments must also be valid. 598 pub unsafe extern "C" fn pl011_receive(opaque: *mut c_void, buf: *const u8, size: c_int) { 599 unsafe { 600 debug_assert!(!opaque.is_null()); 601 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 602 if state.as_ref().loopback_enabled() { 603 return; 604 } 605 if size > 0 { 606 debug_assert!(!buf.is_null()); 607 state.as_mut().put_fifo(c_uint::from(buf.read_volatile())) 608 } 609 } 610 } 611 612 /// # Safety 613 /// 614 /// We expect the FFI user of this function to pass a valid pointer, that has 615 /// the same size as [`PL011State`]. We also expect the device is 616 /// readable/writeable from one thread at any time. 617 pub unsafe extern "C" fn pl011_event(opaque: *mut c_void, event: QEMUChrEvent) { 618 unsafe { 619 debug_assert!(!opaque.is_null()); 620 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 621 state.as_mut().event(event) 622 } 623 } 624 625 /// # Safety 626 /// 627 /// We expect the FFI user of this function to pass a valid pointer for `chr`. 628 #[no_mangle] 629 pub unsafe extern "C" fn pl011_create( 630 addr: u64, 631 irq: qemu_irq, 632 chr: *mut Chardev, 633 ) -> *mut DeviceState { 634 unsafe { 635 let dev: *mut DeviceState = qdev_new(PL011State::TYPE_NAME.as_ptr()); 636 let sysbus: *mut SysBusDevice = dev.cast::<SysBusDevice>(); 637 638 qdev_prop_set_chr(dev, c_str!("chardev").as_ptr(), chr); 639 sysbus_realize_and_unref(sysbus, addr_of_mut!(error_fatal)); 640 sysbus_mmio_map(sysbus, 0, addr); 641 sysbus_connect_irq(sysbus, 0, irq); 642 dev 643 } 644 } 645 646 #[repr(C)] 647 #[derive(Debug, qemu_api_macros::Object)] 648 /// PL011 Luminary device model. 649 pub struct PL011Luminary { 650 parent_obj: PL011State, 651 } 652 653 impl PL011Luminary { 654 /// Initializes a pre-allocated, unitialized instance of `PL011Luminary`. 655 /// 656 /// # Safety 657 /// 658 /// We expect the FFI user of this function to pass a valid pointer, that 659 /// has the same size as [`PL011Luminary`]. We also expect the device is 660 /// readable/writeable from one thread at any time. 661 unsafe fn init(&mut self) { 662 self.parent_obj.device_id = DeviceId::Luminary; 663 } 664 } 665 666 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object); 667 668 unsafe impl ObjectType for PL011Luminary { 669 type Class = <PL011State as ObjectType>::Class; 670 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY; 671 } 672 673 impl ObjectImpl for PL011Luminary { 674 type ParentType = PL011State; 675 676 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 677 } 678 679 impl DeviceImpl for PL011Luminary {} 680