1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 use core::ptr::{addr_of_mut, NonNull}; 6 use std::{ 7 ffi::CStr, 8 os::raw::{c_int, c_uint, c_void}, 9 }; 10 11 use qemu_api::{ 12 bindings::{self, *}, 13 c_str, 14 irq::InterruptSource, 15 prelude::*, 16 qdev::DeviceImpl, 17 qom::{ClassInitImpl, ObjectImpl, ParentField}, 18 }; 19 20 use crate::{ 21 device_class, 22 memory_ops::PL011_OPS, 23 registers::{self, Interrupt}, 24 RegisterOffset, 25 }; 26 27 /// Integer Baud Rate Divider, `UARTIBRD` 28 const IBRD_MASK: u32 = 0xffff; 29 30 /// Fractional Baud Rate Divider, `UARTFBRD` 31 const FBRD_MASK: u32 = 0x3f; 32 33 /// QEMU sourced constant. 34 pub const PL011_FIFO_DEPTH: u32 = 16; 35 36 #[derive(Clone, Copy)] 37 struct DeviceId(&'static [u8; 8]); 38 39 impl std::ops::Index<hwaddr> for DeviceId { 40 type Output = u8; 41 42 fn index(&self, idx: hwaddr) -> &Self::Output { 43 &self.0[idx as usize] 44 } 45 } 46 47 impl DeviceId { 48 const ARM: Self = Self(&[0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]); 49 const LUMINARY: Self = Self(&[0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]); 50 } 51 52 // FIFOs use 32-bit indices instead of usize, for compatibility with 53 // the migration stream produced by the C version of this device. 54 #[repr(transparent)] 55 #[derive(Debug, Default)] 56 pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]); 57 58 impl Fifo { 59 const fn len(&self) -> u32 { 60 self.0.len() as u32 61 } 62 } 63 64 impl std::ops::IndexMut<u32> for Fifo { 65 fn index_mut(&mut self, idx: u32) -> &mut Self::Output { 66 &mut self.0[idx as usize] 67 } 68 } 69 70 impl std::ops::Index<u32> for Fifo { 71 type Output = registers::Data; 72 73 fn index(&self, idx: u32) -> &Self::Output { 74 &self.0[idx as usize] 75 } 76 } 77 78 #[repr(C)] 79 #[derive(Debug, qemu_api_macros::Object, qemu_api_macros::offsets)] 80 /// PL011 Device Model in QEMU 81 pub struct PL011State { 82 pub parent_obj: ParentField<SysBusDevice>, 83 pub iomem: MemoryRegion, 84 #[doc(alias = "fr")] 85 pub flags: registers::Flags, 86 #[doc(alias = "lcr")] 87 pub line_control: registers::LineControl, 88 #[doc(alias = "rsr")] 89 pub receive_status_error_clear: registers::ReceiveStatusErrorClear, 90 #[doc(alias = "cr")] 91 pub control: registers::Control, 92 pub dmacr: u32, 93 pub int_enabled: u32, 94 pub int_level: u32, 95 pub read_fifo: Fifo, 96 pub ilpr: u32, 97 pub ibrd: u32, 98 pub fbrd: u32, 99 pub ifl: u32, 100 pub read_pos: u32, 101 pub read_count: u32, 102 pub read_trigger: u32, 103 #[doc(alias = "chr")] 104 pub char_backend: CharBackend, 105 /// QEMU interrupts 106 /// 107 /// ```text 108 /// * sysbus MMIO region 0: device registers 109 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line) 110 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line) 111 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line) 112 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line) 113 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line) 114 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line) 115 /// ``` 116 #[doc(alias = "irq")] 117 pub interrupts: [InterruptSource; IRQMASK.len()], 118 #[doc(alias = "clk")] 119 pub clock: NonNull<Clock>, 120 #[doc(alias = "migrate_clk")] 121 pub migrate_clock: bool, 122 } 123 124 qom_isa!(PL011State : SysBusDevice, DeviceState, Object); 125 126 #[repr(C)] 127 pub struct PL011Class { 128 parent_class: <SysBusDevice as ObjectType>::Class, 129 /// The byte string that identifies the device. 130 device_id: DeviceId, 131 } 132 133 unsafe impl ObjectType for PL011State { 134 type Class = PL011Class; 135 const TYPE_NAME: &'static CStr = crate::TYPE_PL011; 136 } 137 138 impl ClassInitImpl<PL011Class> for PL011State { 139 fn class_init(klass: &mut PL011Class) { 140 klass.device_id = DeviceId::ARM; 141 <Self as ClassInitImpl<SysBusDeviceClass>>::class_init(&mut klass.parent_class); 142 } 143 } 144 145 impl ObjectImpl for PL011State { 146 type ParentType = SysBusDevice; 147 148 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 149 const INSTANCE_POST_INIT: Option<fn(&Self)> = Some(Self::post_init); 150 } 151 152 impl DeviceImpl for PL011State { 153 fn properties() -> &'static [Property] { 154 &device_class::PL011_PROPERTIES 155 } 156 fn vmsd() -> Option<&'static VMStateDescription> { 157 Some(&device_class::VMSTATE_PL011) 158 } 159 const REALIZE: Option<fn(&mut Self)> = Some(Self::realize); 160 const RESET: Option<fn(&mut Self)> = Some(Self::reset); 161 } 162 163 impl PL011State { 164 /// Initializes a pre-allocated, unitialized instance of `PL011State`. 165 /// 166 /// # Safety 167 /// 168 /// `self` must point to a correctly sized and aligned location for the 169 /// `PL011State` type. It must not be called more than once on the same 170 /// location/instance. All its fields are expected to hold unitialized 171 /// values with the sole exception of `parent_obj`. 172 unsafe fn init(&mut self) { 173 const CLK_NAME: &CStr = c_str!("clk"); 174 175 // SAFETY: 176 // 177 // self and self.iomem are guaranteed to be valid at this point since callers 178 // must make sure the `self` reference is valid. 179 unsafe { 180 memory_region_init_io( 181 addr_of_mut!(self.iomem), 182 addr_of_mut!(*self).cast::<Object>(), 183 &PL011_OPS, 184 addr_of_mut!(*self).cast::<c_void>(), 185 Self::TYPE_NAME.as_ptr(), 186 0x1000, 187 ); 188 } 189 190 // SAFETY: 191 // 192 // self.clock is not initialized at this point; but since `NonNull<_>` is Copy, 193 // we can overwrite the undefined value without side effects. This is 194 // safe since all PL011State instances are created by QOM code which 195 // calls this function to initialize the fields; therefore no code is 196 // able to access an invalid self.clock value. 197 unsafe { 198 let dev: &mut DeviceState = self.upcast_mut(); 199 self.clock = NonNull::new(qdev_init_clock_in( 200 dev, 201 CLK_NAME.as_ptr(), 202 None, /* pl011_clock_update */ 203 addr_of_mut!(*self).cast::<c_void>(), 204 ClockEvent::ClockUpdate.0, 205 )) 206 .unwrap(); 207 } 208 } 209 210 fn post_init(&self) { 211 self.init_mmio(&self.iomem); 212 for irq in self.interrupts.iter() { 213 self.init_irq(irq); 214 } 215 } 216 217 pub fn read(&mut self, offset: hwaddr, _size: c_uint) -> std::ops::ControlFlow<u64, u64> { 218 use RegisterOffset::*; 219 220 let value = match RegisterOffset::try_from(offset) { 221 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => { 222 let device_id = self.get_class().device_id; 223 u32::from(device_id[(offset - 0xfe0) >> 2]) 224 } 225 Err(_) => { 226 // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset); 227 0 228 } 229 Ok(DR) => { 230 self.flags.set_receive_fifo_full(false); 231 let c = self.read_fifo[self.read_pos]; 232 if self.read_count > 0 { 233 self.read_count -= 1; 234 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1); 235 } 236 if self.read_count == 0 { 237 self.flags.set_receive_fifo_empty(true); 238 } 239 if self.read_count + 1 == self.read_trigger { 240 self.int_level &= !registers::INT_RX; 241 } 242 // Update error bits. 243 self.receive_status_error_clear.set_from_data(c); 244 self.update(); 245 // Must call qemu_chr_fe_accept_input, so return Continue: 246 let c = u32::from(c); 247 return std::ops::ControlFlow::Continue(u64::from(c)); 248 } 249 Ok(RSR) => u32::from(self.receive_status_error_clear), 250 Ok(FR) => u32::from(self.flags), 251 Ok(FBRD) => self.fbrd, 252 Ok(ILPR) => self.ilpr, 253 Ok(IBRD) => self.ibrd, 254 Ok(LCR_H) => u32::from(self.line_control), 255 Ok(CR) => u32::from(self.control), 256 Ok(FLS) => self.ifl, 257 Ok(IMSC) => self.int_enabled, 258 Ok(RIS) => self.int_level, 259 Ok(MIS) => self.int_level & self.int_enabled, 260 Ok(ICR) => { 261 // "The UARTICR Register is the interrupt clear register and is write-only" 262 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR 263 0 264 } 265 Ok(DMACR) => self.dmacr, 266 }; 267 std::ops::ControlFlow::Break(value.into()) 268 } 269 270 pub fn write(&mut self, offset: hwaddr, value: u64) { 271 // eprintln!("write offset {offset} value {value}"); 272 use RegisterOffset::*; 273 let value: u32 = value as u32; 274 match RegisterOffset::try_from(offset) { 275 Err(_bad_offset) => { 276 eprintln!("write bad offset {offset} value {value}"); 277 } 278 Ok(DR) => { 279 // ??? Check if transmitter is enabled. 280 let ch: u8 = value as u8; 281 // XXX this blocks entire thread. Rewrite to use 282 // qemu_chr_fe_write and background I/O callbacks 283 284 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 285 // initialized in realize(). 286 unsafe { 287 qemu_chr_fe_write_all(addr_of_mut!(self.char_backend), &ch, 1); 288 } 289 self.loopback_tx(value); 290 self.int_level |= registers::INT_TX; 291 self.update(); 292 } 293 Ok(RSR) => { 294 self.receive_status_error_clear.reset(); 295 } 296 Ok(FR) => { 297 // flag writes are ignored 298 } 299 Ok(ILPR) => { 300 self.ilpr = value; 301 } 302 Ok(IBRD) => { 303 self.ibrd = value; 304 } 305 Ok(FBRD) => { 306 self.fbrd = value; 307 } 308 Ok(LCR_H) => { 309 let new_val: registers::LineControl = value.into(); 310 // Reset the FIFO state on FIFO enable or disable 311 if self.line_control.fifos_enabled() != new_val.fifos_enabled() { 312 self.reset_rx_fifo(); 313 self.reset_tx_fifo(); 314 } 315 if self.line_control.send_break() ^ new_val.send_break() { 316 let mut break_enable: c_int = new_val.send_break().into(); 317 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 318 // initialized in realize(). 319 unsafe { 320 qemu_chr_fe_ioctl( 321 addr_of_mut!(self.char_backend), 322 CHR_IOCTL_SERIAL_SET_BREAK as i32, 323 addr_of_mut!(break_enable).cast::<c_void>(), 324 ); 325 } 326 self.loopback_break(break_enable > 0); 327 } 328 self.line_control = new_val; 329 self.set_read_trigger(); 330 } 331 Ok(CR) => { 332 // ??? Need to implement the enable bit. 333 self.control = value.into(); 334 self.loopback_mdmctrl(); 335 } 336 Ok(FLS) => { 337 self.ifl = value; 338 self.set_read_trigger(); 339 } 340 Ok(IMSC) => { 341 self.int_enabled = value; 342 self.update(); 343 } 344 Ok(RIS) => {} 345 Ok(MIS) => {} 346 Ok(ICR) => { 347 self.int_level &= !value; 348 self.update(); 349 } 350 Ok(DMACR) => { 351 self.dmacr = value; 352 if value & 3 > 0 { 353 // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n"); 354 eprintln!("pl011: DMA not implemented"); 355 } 356 } 357 } 358 } 359 360 #[inline] 361 fn loopback_tx(&mut self, value: u32) { 362 if !self.loopback_enabled() { 363 return; 364 } 365 366 // Caveat: 367 // 368 // In real hardware, TX loopback happens at the serial-bit level 369 // and then reassembled by the RX logics back into bytes and placed 370 // into the RX fifo. That is, loopback happens after TX fifo. 371 // 372 // Because the real hardware TX fifo is time-drained at the frame 373 // rate governed by the configured serial format, some loopback 374 // bytes in TX fifo may still be able to get into the RX fifo 375 // that could be full at times while being drained at software 376 // pace. 377 // 378 // In such scenario, the RX draining pace is the major factor 379 // deciding which loopback bytes get into the RX fifo, unless 380 // hardware flow-control is enabled. 381 // 382 // For simplicity, the above described is not emulated. 383 self.put_fifo(value); 384 } 385 386 fn loopback_mdmctrl(&mut self) { 387 if !self.loopback_enabled() { 388 return; 389 } 390 391 /* 392 * Loopback software-driven modem control outputs to modem status inputs: 393 * FR.RI <= CR.Out2 394 * FR.DCD <= CR.Out1 395 * FR.CTS <= CR.RTS 396 * FR.DSR <= CR.DTR 397 * 398 * The loopback happens immediately even if this call is triggered 399 * by setting only CR.LBE. 400 * 401 * CTS/RTS updates due to enabled hardware flow controls are not 402 * dealt with here. 403 */ 404 405 self.flags.set_ring_indicator(self.control.out_2()); 406 self.flags.set_data_carrier_detect(self.control.out_1()); 407 self.flags.set_clear_to_send(self.control.request_to_send()); 408 self.flags 409 .set_data_set_ready(self.control.data_transmit_ready()); 410 411 // Change interrupts based on updated FR 412 let mut il = self.int_level; 413 414 il &= !Interrupt::MS; 415 416 if self.flags.data_set_ready() { 417 il |= Interrupt::DSR as u32; 418 } 419 if self.flags.data_carrier_detect() { 420 il |= Interrupt::DCD as u32; 421 } 422 if self.flags.clear_to_send() { 423 il |= Interrupt::CTS as u32; 424 } 425 if self.flags.ring_indicator() { 426 il |= Interrupt::RI as u32; 427 } 428 self.int_level = il; 429 self.update(); 430 } 431 432 fn loopback_break(&mut self, enable: bool) { 433 if enable { 434 self.loopback_tx(registers::Data::BREAK.into()); 435 } 436 } 437 438 fn set_read_trigger(&mut self) { 439 self.read_trigger = 1; 440 } 441 442 pub fn realize(&mut self) { 443 // SAFETY: self.char_backend has the correct size and alignment for a 444 // CharBackend object, and its callbacks are of the correct types. 445 unsafe { 446 qemu_chr_fe_set_handlers( 447 addr_of_mut!(self.char_backend), 448 Some(pl011_can_receive), 449 Some(pl011_receive), 450 Some(pl011_event), 451 None, 452 addr_of_mut!(*self).cast::<c_void>(), 453 core::ptr::null_mut(), 454 true, 455 ); 456 } 457 } 458 459 pub fn reset(&mut self) { 460 self.line_control.reset(); 461 self.receive_status_error_clear.reset(); 462 self.dmacr = 0; 463 self.int_enabled = 0; 464 self.int_level = 0; 465 self.ilpr = 0; 466 self.ibrd = 0; 467 self.fbrd = 0; 468 self.read_trigger = 1; 469 self.ifl = 0x12; 470 self.control.reset(); 471 self.flags.reset(); 472 self.reset_rx_fifo(); 473 self.reset_tx_fifo(); 474 } 475 476 pub fn reset_rx_fifo(&mut self) { 477 self.read_count = 0; 478 self.read_pos = 0; 479 480 // Reset FIFO flags 481 self.flags.set_receive_fifo_full(false); 482 self.flags.set_receive_fifo_empty(true); 483 } 484 485 pub fn reset_tx_fifo(&mut self) { 486 // Reset FIFO flags 487 self.flags.set_transmit_fifo_full(false); 488 self.flags.set_transmit_fifo_empty(true); 489 } 490 491 pub fn can_receive(&self) -> bool { 492 // trace_pl011_can_receive(s->lcr, s->read_count, r); 493 self.read_count < self.fifo_depth() 494 } 495 496 pub fn event(&mut self, event: QEMUChrEvent) { 497 if event == bindings::QEMUChrEvent::CHR_EVENT_BREAK && !self.loopback_enabled() { 498 self.put_fifo(registers::Data::BREAK.into()); 499 } 500 } 501 502 #[inline] 503 pub fn fifo_enabled(&self) -> bool { 504 self.line_control.fifos_enabled() == registers::Mode::FIFO 505 } 506 507 #[inline] 508 pub fn loopback_enabled(&self) -> bool { 509 self.control.enable_loopback() 510 } 511 512 #[inline] 513 pub fn fifo_depth(&self) -> u32 { 514 // Note: FIFO depth is expected to be power-of-2 515 if self.fifo_enabled() { 516 return PL011_FIFO_DEPTH; 517 } 518 1 519 } 520 521 pub fn put_fifo(&mut self, value: c_uint) { 522 let depth = self.fifo_depth(); 523 assert!(depth > 0); 524 let slot = (self.read_pos + self.read_count) & (depth - 1); 525 self.read_fifo[slot] = registers::Data::from(value); 526 self.read_count += 1; 527 self.flags.set_receive_fifo_empty(false); 528 if self.read_count == depth { 529 self.flags.set_receive_fifo_full(true); 530 } 531 532 if self.read_count == self.read_trigger { 533 self.int_level |= registers::INT_RX; 534 self.update(); 535 } 536 } 537 538 pub fn update(&self) { 539 let flags = self.int_level & self.int_enabled; 540 for (irq, i) in self.interrupts.iter().zip(IRQMASK) { 541 irq.set(flags & i != 0); 542 } 543 } 544 545 pub fn post_load(&mut self, _version_id: u32) -> Result<(), ()> { 546 /* Sanity-check input state */ 547 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() { 548 return Err(()); 549 } 550 551 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 { 552 // Older versions of PL011 didn't ensure that the single 553 // character in the FIFO in FIFO-disabled mode is in 554 // element 0 of the array; convert to follow the current 555 // code's assumptions. 556 self.read_fifo[0] = self.read_fifo[self.read_pos]; 557 self.read_pos = 0; 558 } 559 560 self.ibrd &= IBRD_MASK; 561 self.fbrd &= FBRD_MASK; 562 563 Ok(()) 564 } 565 } 566 567 /// Which bits in the interrupt status matter for each outbound IRQ line ? 568 pub const IRQMASK: [u32; 6] = [ 569 /* combined IRQ */ 570 Interrupt::E 571 | Interrupt::MS 572 | Interrupt::RT as u32 573 | Interrupt::TX as u32 574 | Interrupt::RX as u32, 575 Interrupt::RX as u32, 576 Interrupt::TX as u32, 577 Interrupt::RT as u32, 578 Interrupt::MS, 579 Interrupt::E, 580 ]; 581 582 /// # Safety 583 /// 584 /// We expect the FFI user of this function to pass a valid pointer, that has 585 /// the same size as [`PL011State`]. We also expect the device is 586 /// readable/writeable from one thread at any time. 587 pub unsafe extern "C" fn pl011_can_receive(opaque: *mut c_void) -> c_int { 588 unsafe { 589 debug_assert!(!opaque.is_null()); 590 let state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 591 state.as_ref().can_receive().into() 592 } 593 } 594 595 /// # Safety 596 /// 597 /// We expect the FFI user of this function to pass a valid pointer, that has 598 /// the same size as [`PL011State`]. We also expect the device is 599 /// readable/writeable from one thread at any time. 600 /// 601 /// The buffer and size arguments must also be valid. 602 pub unsafe extern "C" fn pl011_receive(opaque: *mut c_void, buf: *const u8, size: c_int) { 603 unsafe { 604 debug_assert!(!opaque.is_null()); 605 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 606 if state.as_ref().loopback_enabled() { 607 return; 608 } 609 if size > 0 { 610 debug_assert!(!buf.is_null()); 611 state.as_mut().put_fifo(c_uint::from(buf.read_volatile())) 612 } 613 } 614 } 615 616 /// # Safety 617 /// 618 /// We expect the FFI user of this function to pass a valid pointer, that has 619 /// the same size as [`PL011State`]. We also expect the device is 620 /// readable/writeable from one thread at any time. 621 pub unsafe extern "C" fn pl011_event(opaque: *mut c_void, event: QEMUChrEvent) { 622 unsafe { 623 debug_assert!(!opaque.is_null()); 624 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 625 state.as_mut().event(event) 626 } 627 } 628 629 /// # Safety 630 /// 631 /// We expect the FFI user of this function to pass a valid pointer for `chr`. 632 #[no_mangle] 633 pub unsafe extern "C" fn pl011_create( 634 addr: u64, 635 irq: qemu_irq, 636 chr: *mut Chardev, 637 ) -> *mut DeviceState { 638 unsafe { 639 let dev: *mut DeviceState = qdev_new(PL011State::TYPE_NAME.as_ptr()); 640 let sysbus: *mut SysBusDevice = dev.cast::<SysBusDevice>(); 641 642 qdev_prop_set_chr(dev, c_str!("chardev").as_ptr(), chr); 643 sysbus_realize_and_unref(sysbus, addr_of_mut!(error_fatal)); 644 sysbus_mmio_map(sysbus, 0, addr); 645 sysbus_connect_irq(sysbus, 0, irq); 646 dev 647 } 648 } 649 650 #[repr(C)] 651 #[derive(Debug, qemu_api_macros::Object)] 652 /// PL011 Luminary device model. 653 pub struct PL011Luminary { 654 parent_obj: ParentField<PL011State>, 655 } 656 657 impl ClassInitImpl<PL011Class> for PL011Luminary { 658 fn class_init(klass: &mut PL011Class) { 659 klass.device_id = DeviceId::LUMINARY; 660 <Self as ClassInitImpl<SysBusDeviceClass>>::class_init(&mut klass.parent_class); 661 } 662 } 663 664 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object); 665 666 unsafe impl ObjectType for PL011Luminary { 667 type Class = <PL011State as ObjectType>::Class; 668 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY; 669 } 670 671 impl ObjectImpl for PL011Luminary { 672 type ParentType = PL011State; 673 } 674 675 impl DeviceImpl for PL011Luminary {} 676