1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 use std::{ffi::CStr, mem::size_of}; 6 7 use qemu_api::{ 8 chardev::{CharBackend, Chardev, Event}, 9 impl_vmstate_forward, 10 irq::{IRQState, InterruptSource}, 11 memory::{hwaddr, MemoryRegion, MemoryRegionOps, MemoryRegionOpsBuilder}, 12 prelude::*, 13 qdev::{Clock, ClockEvent, DeviceImpl, DeviceState, Property, ResetType, ResettablePhasesImpl}, 14 qom::{ObjectImpl, Owned, ParentField, ParentInit}, 15 static_assert, 16 sysbus::{SysBusDevice, SysBusDeviceImpl}, 17 uninit_field_mut, 18 vmstate::VMStateDescription, 19 }; 20 21 use crate::{ 22 device_class, 23 registers::{self, Interrupt, RegisterOffset}, 24 }; 25 26 // TODO: You must disable the UART before any of the control registers are 27 // reprogrammed. When the UART is disabled in the middle of transmission or 28 // reception, it completes the current character before stopping 29 30 /// Integer Baud Rate Divider, `UARTIBRD` 31 const IBRD_MASK: u32 = 0xffff; 32 33 /// Fractional Baud Rate Divider, `UARTFBRD` 34 const FBRD_MASK: u32 = 0x3f; 35 36 /// QEMU sourced constant. 37 pub const PL011_FIFO_DEPTH: u32 = 16; 38 39 #[derive(Clone, Copy)] 40 struct DeviceId(&'static [u8; 8]); 41 42 impl std::ops::Index<hwaddr> for DeviceId { 43 type Output = u8; 44 45 fn index(&self, idx: hwaddr) -> &Self::Output { 46 &self.0[idx as usize] 47 } 48 } 49 50 // FIFOs use 32-bit indices instead of usize, for compatibility with 51 // the migration stream produced by the C version of this device. 52 #[repr(transparent)] 53 #[derive(Debug, Default)] 54 pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]); 55 impl_vmstate_forward!(Fifo); 56 57 impl Fifo { 58 const fn len(&self) -> u32 { 59 self.0.len() as u32 60 } 61 } 62 63 impl std::ops::IndexMut<u32> for Fifo { 64 fn index_mut(&mut self, idx: u32) -> &mut Self::Output { 65 &mut self.0[idx as usize] 66 } 67 } 68 69 impl std::ops::Index<u32> for Fifo { 70 type Output = registers::Data; 71 72 fn index(&self, idx: u32) -> &Self::Output { 73 &self.0[idx as usize] 74 } 75 } 76 77 #[repr(C)] 78 #[derive(Debug, Default)] 79 pub struct PL011Registers { 80 #[doc(alias = "fr")] 81 pub flags: registers::Flags, 82 #[doc(alias = "lcr")] 83 pub line_control: registers::LineControl, 84 #[doc(alias = "rsr")] 85 pub receive_status_error_clear: registers::ReceiveStatusErrorClear, 86 #[doc(alias = "cr")] 87 pub control: registers::Control, 88 pub dmacr: u32, 89 pub int_enabled: Interrupt, 90 pub int_level: Interrupt, 91 pub read_fifo: Fifo, 92 pub ilpr: u32, 93 pub ibrd: u32, 94 pub fbrd: u32, 95 pub ifl: u32, 96 pub read_pos: u32, 97 pub read_count: u32, 98 pub read_trigger: u32, 99 } 100 101 #[repr(C)] 102 #[derive(qemu_api_macros::Object)] 103 /// PL011 Device Model in QEMU 104 pub struct PL011State { 105 pub parent_obj: ParentField<SysBusDevice>, 106 pub iomem: MemoryRegion, 107 #[doc(alias = "chr")] 108 pub char_backend: CharBackend, 109 pub regs: BqlRefCell<PL011Registers>, 110 /// QEMU interrupts 111 /// 112 /// ```text 113 /// * sysbus MMIO region 0: device registers 114 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line) 115 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line) 116 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line) 117 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line) 118 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line) 119 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line) 120 /// ``` 121 #[doc(alias = "irq")] 122 pub interrupts: [InterruptSource; IRQMASK.len()], 123 #[doc(alias = "clk")] 124 pub clock: Owned<Clock>, 125 #[doc(alias = "migrate_clk")] 126 pub migrate_clock: bool, 127 } 128 129 // Some C users of this device embed its state struct into their own 130 // structs, so the size of the Rust version must not be any larger 131 // than the size of the C one. If this assert triggers you need to 132 // expand the padding_for_rust[] array in the C PL011State struct. 133 static_assert!(size_of::<PL011State>() <= size_of::<qemu_api::bindings::PL011State>()); 134 135 qom_isa!(PL011State : SysBusDevice, DeviceState, Object); 136 137 #[repr(C)] 138 pub struct PL011Class { 139 parent_class: <SysBusDevice as ObjectType>::Class, 140 /// The byte string that identifies the device. 141 device_id: DeviceId, 142 } 143 144 trait PL011Impl: SysBusDeviceImpl + IsA<PL011State> { 145 const DEVICE_ID: DeviceId; 146 } 147 148 impl PL011Class { 149 fn class_init<T: PL011Impl>(&mut self) { 150 self.device_id = T::DEVICE_ID; 151 self.parent_class.class_init::<T>(); 152 } 153 } 154 155 unsafe impl ObjectType for PL011State { 156 type Class = PL011Class; 157 const TYPE_NAME: &'static CStr = crate::TYPE_PL011; 158 } 159 160 impl PL011Impl for PL011State { 161 const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]); 162 } 163 164 impl ObjectImpl for PL011State { 165 type ParentType = SysBusDevice; 166 167 const INSTANCE_INIT: Option<unsafe fn(ParentInit<Self>)> = Some(Self::init); 168 const INSTANCE_POST_INIT: Option<fn(&Self)> = Some(Self::post_init); 169 const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>; 170 } 171 172 impl DeviceImpl for PL011State { 173 fn properties() -> &'static [Property] { 174 &device_class::PL011_PROPERTIES 175 } 176 fn vmsd() -> Option<&'static VMStateDescription> { 177 Some(&device_class::VMSTATE_PL011) 178 } 179 const REALIZE: Option<fn(&Self) -> qemu_api::Result<()>> = Some(Self::realize); 180 } 181 182 impl ResettablePhasesImpl for PL011State { 183 const HOLD: Option<fn(&Self, ResetType)> = Some(Self::reset_hold); 184 } 185 186 impl SysBusDeviceImpl for PL011State {} 187 188 impl PL011Registers { 189 pub(self) fn read(&mut self, offset: RegisterOffset) -> (bool, u32) { 190 use RegisterOffset::*; 191 192 let mut update = false; 193 let result = match offset { 194 DR => self.read_data_register(&mut update), 195 RSR => u32::from(self.receive_status_error_clear), 196 FR => u32::from(self.flags), 197 FBRD => self.fbrd, 198 ILPR => self.ilpr, 199 IBRD => self.ibrd, 200 LCR_H => u32::from(self.line_control), 201 CR => u32::from(self.control), 202 FLS => self.ifl, 203 IMSC => u32::from(self.int_enabled), 204 RIS => u32::from(self.int_level), 205 MIS => u32::from(self.int_level & self.int_enabled), 206 ICR => { 207 // "The UARTICR Register is the interrupt clear register and is write-only" 208 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR 209 0 210 } 211 DMACR => self.dmacr, 212 }; 213 (update, result) 214 } 215 216 pub(self) fn write( 217 &mut self, 218 offset: RegisterOffset, 219 value: u32, 220 char_backend: &CharBackend, 221 ) -> bool { 222 // eprintln!("write offset {offset} value {value}"); 223 use RegisterOffset::*; 224 match offset { 225 DR => return self.write_data_register(value), 226 RSR => { 227 self.receive_status_error_clear = 0.into(); 228 } 229 FR => { 230 // flag writes are ignored 231 } 232 ILPR => { 233 self.ilpr = value; 234 } 235 IBRD => { 236 self.ibrd = value; 237 } 238 FBRD => { 239 self.fbrd = value; 240 } 241 LCR_H => { 242 let new_val: registers::LineControl = value.into(); 243 // Reset the FIFO state on FIFO enable or disable 244 if self.line_control.fifos_enabled() != new_val.fifos_enabled() { 245 self.reset_rx_fifo(); 246 self.reset_tx_fifo(); 247 } 248 let update = (self.line_control.send_break() != new_val.send_break()) && { 249 let break_enable = new_val.send_break(); 250 let _ = char_backend.send_break(break_enable); 251 self.loopback_break(break_enable) 252 }; 253 self.line_control = new_val; 254 self.set_read_trigger(); 255 return update; 256 } 257 CR => { 258 // ??? Need to implement the enable bit. 259 self.control = value.into(); 260 return self.loopback_mdmctrl(); 261 } 262 FLS => { 263 self.ifl = value; 264 self.set_read_trigger(); 265 } 266 IMSC => { 267 self.int_enabled = Interrupt::from(value); 268 return true; 269 } 270 RIS => {} 271 MIS => {} 272 ICR => { 273 self.int_level &= !Interrupt::from(value); 274 return true; 275 } 276 DMACR => { 277 self.dmacr = value; 278 if value & 3 > 0 { 279 // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n"); 280 eprintln!("pl011: DMA not implemented"); 281 } 282 } 283 } 284 false 285 } 286 287 fn read_data_register(&mut self, update: &mut bool) -> u32 { 288 self.flags.set_receive_fifo_full(false); 289 let c = self.read_fifo[self.read_pos]; 290 291 if self.read_count > 0 { 292 self.read_count -= 1; 293 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1); 294 } 295 if self.read_count == 0 { 296 self.flags.set_receive_fifo_empty(true); 297 } 298 if self.read_count + 1 == self.read_trigger { 299 self.int_level &= !Interrupt::RX; 300 } 301 self.receive_status_error_clear.set_from_data(c); 302 *update = true; 303 u32::from(c) 304 } 305 306 fn write_data_register(&mut self, value: u32) -> bool { 307 // interrupts always checked 308 let _ = self.loopback_tx(value.into()); 309 self.int_level |= Interrupt::TX; 310 true 311 } 312 313 #[inline] 314 #[must_use] 315 fn loopback_tx(&mut self, value: registers::Data) -> bool { 316 // Caveat: 317 // 318 // In real hardware, TX loopback happens at the serial-bit level 319 // and then reassembled by the RX logics back into bytes and placed 320 // into the RX fifo. That is, loopback happens after TX fifo. 321 // 322 // Because the real hardware TX fifo is time-drained at the frame 323 // rate governed by the configured serial format, some loopback 324 // bytes in TX fifo may still be able to get into the RX fifo 325 // that could be full at times while being drained at software 326 // pace. 327 // 328 // In such scenario, the RX draining pace is the major factor 329 // deciding which loopback bytes get into the RX fifo, unless 330 // hardware flow-control is enabled. 331 // 332 // For simplicity, the above described is not emulated. 333 self.loopback_enabled() && self.fifo_rx_put(value) 334 } 335 336 #[must_use] 337 fn loopback_mdmctrl(&mut self) -> bool { 338 if !self.loopback_enabled() { 339 return false; 340 } 341 342 /* 343 * Loopback software-driven modem control outputs to modem status inputs: 344 * FR.RI <= CR.Out2 345 * FR.DCD <= CR.Out1 346 * FR.CTS <= CR.RTS 347 * FR.DSR <= CR.DTR 348 * 349 * The loopback happens immediately even if this call is triggered 350 * by setting only CR.LBE. 351 * 352 * CTS/RTS updates due to enabled hardware flow controls are not 353 * dealt with here. 354 */ 355 356 self.flags.set_ring_indicator(self.control.out_2()); 357 self.flags.set_data_carrier_detect(self.control.out_1()); 358 self.flags.set_clear_to_send(self.control.request_to_send()); 359 self.flags 360 .set_data_set_ready(self.control.data_transmit_ready()); 361 362 // Change interrupts based on updated FR 363 let mut il = self.int_level; 364 365 il &= !Interrupt::MS; 366 367 if self.flags.data_set_ready() { 368 il |= Interrupt::DSR; 369 } 370 if self.flags.data_carrier_detect() { 371 il |= Interrupt::DCD; 372 } 373 if self.flags.clear_to_send() { 374 il |= Interrupt::CTS; 375 } 376 if self.flags.ring_indicator() { 377 il |= Interrupt::RI; 378 } 379 self.int_level = il; 380 true 381 } 382 383 fn loopback_break(&mut self, enable: bool) -> bool { 384 enable && self.loopback_tx(registers::Data::BREAK) 385 } 386 387 fn set_read_trigger(&mut self) { 388 self.read_trigger = 1; 389 } 390 391 pub fn reset(&mut self) { 392 self.line_control.reset(); 393 self.receive_status_error_clear.reset(); 394 self.dmacr = 0; 395 self.int_enabled = 0.into(); 396 self.int_level = 0.into(); 397 self.ilpr = 0; 398 self.ibrd = 0; 399 self.fbrd = 0; 400 self.read_trigger = 1; 401 self.ifl = 0x12; 402 self.control.reset(); 403 self.flags.reset(); 404 self.reset_rx_fifo(); 405 self.reset_tx_fifo(); 406 } 407 408 pub fn reset_rx_fifo(&mut self) { 409 self.read_count = 0; 410 self.read_pos = 0; 411 412 // Reset FIFO flags 413 self.flags.set_receive_fifo_full(false); 414 self.flags.set_receive_fifo_empty(true); 415 } 416 417 pub fn reset_tx_fifo(&mut self) { 418 // Reset FIFO flags 419 self.flags.set_transmit_fifo_full(false); 420 self.flags.set_transmit_fifo_empty(true); 421 } 422 423 #[inline] 424 pub fn fifo_enabled(&self) -> bool { 425 self.line_control.fifos_enabled() == registers::Mode::FIFO 426 } 427 428 #[inline] 429 pub fn loopback_enabled(&self) -> bool { 430 self.control.enable_loopback() 431 } 432 433 #[inline] 434 pub fn fifo_depth(&self) -> u32 { 435 // Note: FIFO depth is expected to be power-of-2 436 if self.fifo_enabled() { 437 return PL011_FIFO_DEPTH; 438 } 439 1 440 } 441 442 #[must_use] 443 pub fn fifo_rx_put(&mut self, value: registers::Data) -> bool { 444 let depth = self.fifo_depth(); 445 assert!(depth > 0); 446 let slot = (self.read_pos + self.read_count) & (depth - 1); 447 self.read_fifo[slot] = value; 448 self.read_count += 1; 449 self.flags.set_receive_fifo_empty(false); 450 if self.read_count == depth { 451 self.flags.set_receive_fifo_full(true); 452 } 453 454 if self.read_count == self.read_trigger { 455 self.int_level |= Interrupt::RX; 456 return true; 457 } 458 false 459 } 460 461 pub fn post_load(&mut self) -> Result<(), ()> { 462 /* Sanity-check input state */ 463 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() { 464 return Err(()); 465 } 466 467 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 { 468 // Older versions of PL011 didn't ensure that the single 469 // character in the FIFO in FIFO-disabled mode is in 470 // element 0 of the array; convert to follow the current 471 // code's assumptions. 472 self.read_fifo[0] = self.read_fifo[self.read_pos]; 473 self.read_pos = 0; 474 } 475 476 self.ibrd &= IBRD_MASK; 477 self.fbrd &= FBRD_MASK; 478 479 Ok(()) 480 } 481 } 482 483 impl PL011State { 484 /// Initializes a pre-allocated, uninitialized instance of `PL011State`. 485 /// 486 /// # Safety 487 /// 488 /// `self` must point to a correctly sized and aligned location for the 489 /// `PL011State` type. It must not be called more than once on the same 490 /// location/instance. All its fields are expected to hold uninitialized 491 /// values with the sole exception of `parent_obj`. 492 unsafe fn init(mut this: ParentInit<Self>) { 493 static PL011_OPS: MemoryRegionOps<PL011State> = MemoryRegionOpsBuilder::<PL011State>::new() 494 .read(&PL011State::read) 495 .write(&PL011State::write) 496 .native_endian() 497 .impl_sizes(4, 4) 498 .build(); 499 500 // SAFETY: this and this.iomem are guaranteed to be valid at this point 501 MemoryRegion::init_io( 502 &mut uninit_field_mut!(*this, iomem), 503 &PL011_OPS, 504 "pl011", 505 0x1000, 506 ); 507 508 uninit_field_mut!(*this, regs).write(Default::default()); 509 510 let clock = DeviceState::init_clock_in( 511 &mut this, 512 "clk", 513 &Self::clock_update, 514 ClockEvent::ClockUpdate, 515 ); 516 uninit_field_mut!(*this, clock).write(clock); 517 } 518 519 const fn clock_update(&self, _event: ClockEvent) { 520 /* pl011_trace_baudrate_change(s); */ 521 } 522 523 fn post_init(&self) { 524 self.init_mmio(&self.iomem); 525 for irq in self.interrupts.iter() { 526 self.init_irq(irq); 527 } 528 } 529 530 fn read(&self, offset: hwaddr, _size: u32) -> u64 { 531 match RegisterOffset::try_from(offset) { 532 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => { 533 let device_id = self.get_class().device_id; 534 u64::from(device_id[(offset - 0xfe0) >> 2]) 535 } 536 Err(_) => { 537 // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset); 538 0 539 } 540 Ok(field) => { 541 let (update_irq, result) = self.regs.borrow_mut().read(field); 542 if update_irq { 543 self.update(); 544 self.char_backend.accept_input(); 545 } 546 result.into() 547 } 548 } 549 } 550 551 fn write(&self, offset: hwaddr, value: u64, _size: u32) { 552 let mut update_irq = false; 553 if let Ok(field) = RegisterOffset::try_from(offset) { 554 // qemu_chr_fe_write_all() calls into the can_receive 555 // callback, so handle writes before entering PL011Registers. 556 if field == RegisterOffset::DR { 557 // ??? Check if transmitter is enabled. 558 let ch: [u8; 1] = [value as u8]; 559 // XXX this blocks entire thread. Rewrite to use 560 // qemu_chr_fe_write and background I/O callbacks 561 let _ = self.char_backend.write_all(&ch); 562 } 563 564 update_irq = self 565 .regs 566 .borrow_mut() 567 .write(field, value as u32, &self.char_backend); 568 } else { 569 eprintln!("write bad offset {offset} value {value}"); 570 } 571 if update_irq { 572 self.update(); 573 } 574 } 575 576 fn can_receive(&self) -> u32 { 577 let regs = self.regs.borrow(); 578 // trace_pl011_can_receive(s->lcr, s->read_count, r); 579 regs.fifo_depth() - regs.read_count 580 } 581 582 fn receive(&self, buf: &[u8]) { 583 let mut regs = self.regs.borrow_mut(); 584 if regs.loopback_enabled() { 585 // In loopback mode, the RX input signal is internally disconnected 586 // from the entire receiving logics; thus, all inputs are ignored, 587 // and BREAK detection on RX input signal is also not performed. 588 return; 589 } 590 591 let mut update_irq = false; 592 for &c in buf { 593 let c: u32 = c.into(); 594 update_irq |= regs.fifo_rx_put(c.into()); 595 } 596 597 // Release the BqlRefCell before calling self.update() 598 drop(regs); 599 if update_irq { 600 self.update(); 601 } 602 } 603 604 fn event(&self, event: Event) { 605 let mut update_irq = false; 606 let mut regs = self.regs.borrow_mut(); 607 if event == Event::CHR_EVENT_BREAK && !regs.loopback_enabled() { 608 update_irq = regs.fifo_rx_put(registers::Data::BREAK); 609 } 610 // Release the BqlRefCell before calling self.update() 611 drop(regs); 612 613 if update_irq { 614 self.update() 615 } 616 } 617 618 fn realize(&self) -> qemu_api::Result<()> { 619 self.char_backend 620 .enable_handlers(self, Self::can_receive, Self::receive, Self::event); 621 Ok(()) 622 } 623 624 fn reset_hold(&self, _type: ResetType) { 625 self.regs.borrow_mut().reset(); 626 } 627 628 fn update(&self) { 629 let regs = self.regs.borrow(); 630 let flags = regs.int_level & regs.int_enabled; 631 for (irq, i) in self.interrupts.iter().zip(IRQMASK) { 632 irq.set(flags.any_set(i)); 633 } 634 } 635 636 pub fn post_load(&self, _version_id: u32) -> Result<(), ()> { 637 self.regs.borrow_mut().post_load() 638 } 639 } 640 641 /// Which bits in the interrupt status matter for each outbound IRQ line ? 642 const IRQMASK: [Interrupt; 6] = [ 643 Interrupt::all(), 644 Interrupt::RX, 645 Interrupt::TX, 646 Interrupt::RT, 647 Interrupt::MS, 648 Interrupt::E, 649 ]; 650 651 /// # Safety 652 /// 653 /// We expect the FFI user of this function to pass a valid pointer for `chr` 654 /// and `irq`. 655 #[no_mangle] 656 pub unsafe extern "C" fn pl011_create( 657 addr: u64, 658 irq: *mut IRQState, 659 chr: *mut Chardev, 660 ) -> *mut DeviceState { 661 // SAFETY: The callers promise that they have owned references. 662 // They do not gift them to pl011_create, so use `Owned::from`. 663 let irq = unsafe { Owned::<IRQState>::from(&*irq) }; 664 665 let dev = PL011State::new(); 666 if !chr.is_null() { 667 let chr = unsafe { Owned::<Chardev>::from(&*chr) }; 668 dev.prop_set_chr("chardev", &chr); 669 } 670 dev.sysbus_realize(); 671 dev.mmio_map(0, addr); 672 dev.connect_irq(0, &irq); 673 674 // The pointer is kept alive by the QOM tree; drop the owned ref 675 dev.as_mut_ptr() 676 } 677 678 #[repr(C)] 679 #[derive(qemu_api_macros::Object)] 680 /// PL011 Luminary device model. 681 pub struct PL011Luminary { 682 parent_obj: ParentField<PL011State>, 683 } 684 685 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object); 686 687 unsafe impl ObjectType for PL011Luminary { 688 type Class = <PL011State as ObjectType>::Class; 689 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY; 690 } 691 692 impl ObjectImpl for PL011Luminary { 693 type ParentType = PL011State; 694 695 const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>; 696 } 697 698 impl PL011Impl for PL011Luminary { 699 const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]); 700 } 701 702 impl DeviceImpl for PL011Luminary {} 703 impl ResettablePhasesImpl for PL011Luminary {} 704 impl SysBusDeviceImpl for PL011Luminary {} 705