1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 use std::{ffi::CStr, mem::size_of}; 6 7 use qemu_api::{ 8 chardev::{CharBackend, Chardev, Event}, 9 impl_vmstate_forward, 10 irq::{IRQState, InterruptSource}, 11 log::Log, 12 log_mask_ln, 13 memory::{hwaddr, MemoryRegion, MemoryRegionOps, MemoryRegionOpsBuilder}, 14 prelude::*, 15 qdev::{Clock, ClockEvent, DeviceImpl, DeviceState, Property, ResetType, ResettablePhasesImpl}, 16 qom::{ObjectImpl, Owned, ParentField, ParentInit}, 17 static_assert, 18 sysbus::{SysBusDevice, SysBusDeviceImpl}, 19 uninit_field_mut, 20 vmstate::VMStateDescription, 21 }; 22 23 use crate::{ 24 device_class, 25 registers::{self, Interrupt, RegisterOffset}, 26 }; 27 28 // TODO: You must disable the UART before any of the control registers are 29 // reprogrammed. When the UART is disabled in the middle of transmission or 30 // reception, it completes the current character before stopping 31 32 /// Integer Baud Rate Divider, `UARTIBRD` 33 const IBRD_MASK: u32 = 0xffff; 34 35 /// Fractional Baud Rate Divider, `UARTFBRD` 36 const FBRD_MASK: u32 = 0x3f; 37 38 /// QEMU sourced constant. 39 pub const PL011_FIFO_DEPTH: u32 = 16; 40 41 #[derive(Clone, Copy)] 42 struct DeviceId(&'static [u8; 8]); 43 44 impl std::ops::Index<hwaddr> for DeviceId { 45 type Output = u8; 46 47 fn index(&self, idx: hwaddr) -> &Self::Output { 48 &self.0[idx as usize] 49 } 50 } 51 52 // FIFOs use 32-bit indices instead of usize, for compatibility with 53 // the migration stream produced by the C version of this device. 54 #[repr(transparent)] 55 #[derive(Debug, Default)] 56 pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]); 57 impl_vmstate_forward!(Fifo); 58 59 impl Fifo { 60 const fn len(&self) -> u32 { 61 self.0.len() as u32 62 } 63 } 64 65 impl std::ops::IndexMut<u32> for Fifo { 66 fn index_mut(&mut self, idx: u32) -> &mut Self::Output { 67 &mut self.0[idx as usize] 68 } 69 } 70 71 impl std::ops::Index<u32> for Fifo { 72 type Output = registers::Data; 73 74 fn index(&self, idx: u32) -> &Self::Output { 75 &self.0[idx as usize] 76 } 77 } 78 79 #[repr(C)] 80 #[derive(Debug, Default)] 81 pub struct PL011Registers { 82 #[doc(alias = "fr")] 83 pub flags: registers::Flags, 84 #[doc(alias = "lcr")] 85 pub line_control: registers::LineControl, 86 #[doc(alias = "rsr")] 87 pub receive_status_error_clear: registers::ReceiveStatusErrorClear, 88 #[doc(alias = "cr")] 89 pub control: registers::Control, 90 pub dmacr: u32, 91 pub int_enabled: Interrupt, 92 pub int_level: Interrupt, 93 pub read_fifo: Fifo, 94 pub ilpr: u32, 95 pub ibrd: u32, 96 pub fbrd: u32, 97 pub ifl: u32, 98 pub read_pos: u32, 99 pub read_count: u32, 100 pub read_trigger: u32, 101 } 102 103 #[repr(C)] 104 #[derive(qemu_api_macros::Object)] 105 /// PL011 Device Model in QEMU 106 pub struct PL011State { 107 pub parent_obj: ParentField<SysBusDevice>, 108 pub iomem: MemoryRegion, 109 #[doc(alias = "chr")] 110 pub char_backend: CharBackend, 111 pub regs: BqlRefCell<PL011Registers>, 112 /// QEMU interrupts 113 /// 114 /// ```text 115 /// * sysbus MMIO region 0: device registers 116 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line) 117 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line) 118 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line) 119 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line) 120 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line) 121 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line) 122 /// ``` 123 #[doc(alias = "irq")] 124 pub interrupts: [InterruptSource; IRQMASK.len()], 125 #[doc(alias = "clk")] 126 pub clock: Owned<Clock>, 127 #[doc(alias = "migrate_clk")] 128 pub migrate_clock: bool, 129 } 130 131 // Some C users of this device embed its state struct into their own 132 // structs, so the size of the Rust version must not be any larger 133 // than the size of the C one. If this assert triggers you need to 134 // expand the padding_for_rust[] array in the C PL011State struct. 135 static_assert!(size_of::<PL011State>() <= size_of::<qemu_api::bindings::PL011State>()); 136 137 qom_isa!(PL011State : SysBusDevice, DeviceState, Object); 138 139 #[repr(C)] 140 pub struct PL011Class { 141 parent_class: <SysBusDevice as ObjectType>::Class, 142 /// The byte string that identifies the device. 143 device_id: DeviceId, 144 } 145 146 trait PL011Impl: SysBusDeviceImpl + IsA<PL011State> { 147 const DEVICE_ID: DeviceId; 148 } 149 150 impl PL011Class { 151 fn class_init<T: PL011Impl>(&mut self) { 152 self.device_id = T::DEVICE_ID; 153 self.parent_class.class_init::<T>(); 154 } 155 } 156 157 unsafe impl ObjectType for PL011State { 158 type Class = PL011Class; 159 const TYPE_NAME: &'static CStr = crate::TYPE_PL011; 160 } 161 162 impl PL011Impl for PL011State { 163 const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]); 164 } 165 166 impl ObjectImpl for PL011State { 167 type ParentType = SysBusDevice; 168 169 const INSTANCE_INIT: Option<unsafe fn(ParentInit<Self>)> = Some(Self::init); 170 const INSTANCE_POST_INIT: Option<fn(&Self)> = Some(Self::post_init); 171 const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>; 172 } 173 174 impl DeviceImpl for PL011State { 175 fn properties() -> &'static [Property] { 176 &device_class::PL011_PROPERTIES 177 } 178 fn vmsd() -> Option<&'static VMStateDescription> { 179 Some(&device_class::VMSTATE_PL011) 180 } 181 const REALIZE: Option<fn(&Self) -> qemu_api::Result<()>> = Some(Self::realize); 182 } 183 184 impl ResettablePhasesImpl for PL011State { 185 const HOLD: Option<fn(&Self, ResetType)> = Some(Self::reset_hold); 186 } 187 188 impl SysBusDeviceImpl for PL011State {} 189 190 impl PL011Registers { 191 pub(self) fn read(&mut self, offset: RegisterOffset) -> (bool, u32) { 192 use RegisterOffset::*; 193 194 let mut update = false; 195 let result = match offset { 196 DR => self.read_data_register(&mut update), 197 RSR => u32::from(self.receive_status_error_clear), 198 FR => u32::from(self.flags), 199 FBRD => self.fbrd, 200 ILPR => self.ilpr, 201 IBRD => self.ibrd, 202 LCR_H => u32::from(self.line_control), 203 CR => u32::from(self.control), 204 FLS => self.ifl, 205 IMSC => u32::from(self.int_enabled), 206 RIS => u32::from(self.int_level), 207 MIS => u32::from(self.int_level & self.int_enabled), 208 ICR => { 209 // "The UARTICR Register is the interrupt clear register and is write-only" 210 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR 211 0 212 } 213 DMACR => self.dmacr, 214 }; 215 (update, result) 216 } 217 218 pub(self) fn write( 219 &mut self, 220 offset: RegisterOffset, 221 value: u32, 222 char_backend: &CharBackend, 223 ) -> bool { 224 // eprintln!("write offset {offset} value {value}"); 225 use RegisterOffset::*; 226 match offset { 227 DR => return self.write_data_register(value), 228 RSR => { 229 self.receive_status_error_clear = 0.into(); 230 } 231 FR => { 232 // flag writes are ignored 233 } 234 ILPR => { 235 self.ilpr = value; 236 } 237 IBRD => { 238 self.ibrd = value; 239 } 240 FBRD => { 241 self.fbrd = value; 242 } 243 LCR_H => { 244 let new_val: registers::LineControl = value.into(); 245 // Reset the FIFO state on FIFO enable or disable 246 if self.line_control.fifos_enabled() != new_val.fifos_enabled() { 247 self.reset_rx_fifo(); 248 self.reset_tx_fifo(); 249 } 250 let update = (self.line_control.send_break() != new_val.send_break()) && { 251 let break_enable = new_val.send_break(); 252 let _ = char_backend.send_break(break_enable); 253 self.loopback_break(break_enable) 254 }; 255 self.line_control = new_val; 256 self.set_read_trigger(); 257 return update; 258 } 259 CR => { 260 // ??? Need to implement the enable bit. 261 self.control = value.into(); 262 return self.loopback_mdmctrl(); 263 } 264 FLS => { 265 self.ifl = value; 266 self.set_read_trigger(); 267 } 268 IMSC => { 269 self.int_enabled = Interrupt::from(value); 270 return true; 271 } 272 RIS => {} 273 MIS => {} 274 ICR => { 275 self.int_level &= !Interrupt::from(value); 276 return true; 277 } 278 DMACR => { 279 self.dmacr = value; 280 if value & 3 > 0 { 281 log_mask_ln!(Log::Unimp, "pl011: DMA not implemented"); 282 } 283 } 284 } 285 false 286 } 287 288 fn read_data_register(&mut self, update: &mut bool) -> u32 { 289 self.flags.set_receive_fifo_full(false); 290 let c = self.read_fifo[self.read_pos]; 291 292 if self.read_count > 0 { 293 self.read_count -= 1; 294 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1); 295 } 296 if self.read_count == 0 { 297 self.flags.set_receive_fifo_empty(true); 298 } 299 if self.read_count + 1 == self.read_trigger { 300 self.int_level &= !Interrupt::RX; 301 } 302 self.receive_status_error_clear.set_from_data(c); 303 *update = true; 304 u32::from(c) 305 } 306 307 fn write_data_register(&mut self, value: u32) -> bool { 308 // interrupts always checked 309 let _ = self.loopback_tx(value.into()); 310 self.int_level |= Interrupt::TX; 311 true 312 } 313 314 #[inline] 315 #[must_use] 316 fn loopback_tx(&mut self, value: registers::Data) -> bool { 317 // Caveat: 318 // 319 // In real hardware, TX loopback happens at the serial-bit level 320 // and then reassembled by the RX logics back into bytes and placed 321 // into the RX fifo. That is, loopback happens after TX fifo. 322 // 323 // Because the real hardware TX fifo is time-drained at the frame 324 // rate governed by the configured serial format, some loopback 325 // bytes in TX fifo may still be able to get into the RX fifo 326 // that could be full at times while being drained at software 327 // pace. 328 // 329 // In such scenario, the RX draining pace is the major factor 330 // deciding which loopback bytes get into the RX fifo, unless 331 // hardware flow-control is enabled. 332 // 333 // For simplicity, the above described is not emulated. 334 self.loopback_enabled() && self.fifo_rx_put(value) 335 } 336 337 #[must_use] 338 fn loopback_mdmctrl(&mut self) -> bool { 339 if !self.loopback_enabled() { 340 return false; 341 } 342 343 /* 344 * Loopback software-driven modem control outputs to modem status inputs: 345 * FR.RI <= CR.Out2 346 * FR.DCD <= CR.Out1 347 * FR.CTS <= CR.RTS 348 * FR.DSR <= CR.DTR 349 * 350 * The loopback happens immediately even if this call is triggered 351 * by setting only CR.LBE. 352 * 353 * CTS/RTS updates due to enabled hardware flow controls are not 354 * dealt with here. 355 */ 356 357 self.flags.set_ring_indicator(self.control.out_2()); 358 self.flags.set_data_carrier_detect(self.control.out_1()); 359 self.flags.set_clear_to_send(self.control.request_to_send()); 360 self.flags 361 .set_data_set_ready(self.control.data_transmit_ready()); 362 363 // Change interrupts based on updated FR 364 let mut il = self.int_level; 365 366 il &= !Interrupt::MS; 367 368 if self.flags.data_set_ready() { 369 il |= Interrupt::DSR; 370 } 371 if self.flags.data_carrier_detect() { 372 il |= Interrupt::DCD; 373 } 374 if self.flags.clear_to_send() { 375 il |= Interrupt::CTS; 376 } 377 if self.flags.ring_indicator() { 378 il |= Interrupt::RI; 379 } 380 self.int_level = il; 381 true 382 } 383 384 fn loopback_break(&mut self, enable: bool) -> bool { 385 enable && self.loopback_tx(registers::Data::BREAK) 386 } 387 388 fn set_read_trigger(&mut self) { 389 self.read_trigger = 1; 390 } 391 392 pub fn reset(&mut self) { 393 self.line_control.reset(); 394 self.receive_status_error_clear.reset(); 395 self.dmacr = 0; 396 self.int_enabled = 0.into(); 397 self.int_level = 0.into(); 398 self.ilpr = 0; 399 self.ibrd = 0; 400 self.fbrd = 0; 401 self.read_trigger = 1; 402 self.ifl = 0x12; 403 self.control.reset(); 404 self.flags.reset(); 405 self.reset_rx_fifo(); 406 self.reset_tx_fifo(); 407 } 408 409 pub fn reset_rx_fifo(&mut self) { 410 self.read_count = 0; 411 self.read_pos = 0; 412 413 // Reset FIFO flags 414 self.flags.set_receive_fifo_full(false); 415 self.flags.set_receive_fifo_empty(true); 416 } 417 418 pub fn reset_tx_fifo(&mut self) { 419 // Reset FIFO flags 420 self.flags.set_transmit_fifo_full(false); 421 self.flags.set_transmit_fifo_empty(true); 422 } 423 424 #[inline] 425 pub fn fifo_enabled(&self) -> bool { 426 self.line_control.fifos_enabled() == registers::Mode::FIFO 427 } 428 429 #[inline] 430 pub fn loopback_enabled(&self) -> bool { 431 self.control.enable_loopback() 432 } 433 434 #[inline] 435 pub fn fifo_depth(&self) -> u32 { 436 // Note: FIFO depth is expected to be power-of-2 437 if self.fifo_enabled() { 438 return PL011_FIFO_DEPTH; 439 } 440 1 441 } 442 443 #[must_use] 444 pub fn fifo_rx_put(&mut self, value: registers::Data) -> bool { 445 let depth = self.fifo_depth(); 446 assert!(depth > 0); 447 let slot = (self.read_pos + self.read_count) & (depth - 1); 448 self.read_fifo[slot] = value; 449 self.read_count += 1; 450 self.flags.set_receive_fifo_empty(false); 451 if self.read_count == depth { 452 self.flags.set_receive_fifo_full(true); 453 } 454 455 if self.read_count == self.read_trigger { 456 self.int_level |= Interrupt::RX; 457 return true; 458 } 459 false 460 } 461 462 pub fn post_load(&mut self) -> Result<(), ()> { 463 /* Sanity-check input state */ 464 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() { 465 return Err(()); 466 } 467 468 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 { 469 // Older versions of PL011 didn't ensure that the single 470 // character in the FIFO in FIFO-disabled mode is in 471 // element 0 of the array; convert to follow the current 472 // code's assumptions. 473 self.read_fifo[0] = self.read_fifo[self.read_pos]; 474 self.read_pos = 0; 475 } 476 477 self.ibrd &= IBRD_MASK; 478 self.fbrd &= FBRD_MASK; 479 480 Ok(()) 481 } 482 } 483 484 impl PL011State { 485 /// Initializes a pre-allocated, uninitialized instance of `PL011State`. 486 /// 487 /// # Safety 488 /// 489 /// `self` must point to a correctly sized and aligned location for the 490 /// `PL011State` type. It must not be called more than once on the same 491 /// location/instance. All its fields are expected to hold uninitialized 492 /// values with the sole exception of `parent_obj`. 493 unsafe fn init(mut this: ParentInit<Self>) { 494 static PL011_OPS: MemoryRegionOps<PL011State> = MemoryRegionOpsBuilder::<PL011State>::new() 495 .read(&PL011State::read) 496 .write(&PL011State::write) 497 .native_endian() 498 .impl_sizes(4, 4) 499 .build(); 500 501 // SAFETY: this and this.iomem are guaranteed to be valid at this point 502 MemoryRegion::init_io( 503 &mut uninit_field_mut!(*this, iomem), 504 &PL011_OPS, 505 "pl011", 506 0x1000, 507 ); 508 509 uninit_field_mut!(*this, regs).write(Default::default()); 510 511 let clock = DeviceState::init_clock_in( 512 &mut this, 513 "clk", 514 &Self::clock_update, 515 ClockEvent::ClockUpdate, 516 ); 517 uninit_field_mut!(*this, clock).write(clock); 518 } 519 520 const fn clock_update(&self, _event: ClockEvent) { 521 /* pl011_trace_baudrate_change(s); */ 522 } 523 524 fn post_init(&self) { 525 self.init_mmio(&self.iomem); 526 for irq in self.interrupts.iter() { 527 self.init_irq(irq); 528 } 529 } 530 531 fn read(&self, offset: hwaddr, _size: u32) -> u64 { 532 match RegisterOffset::try_from(offset) { 533 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => { 534 let device_id = self.get_class().device_id; 535 u64::from(device_id[(offset - 0xfe0) >> 2]) 536 } 537 Err(_) => { 538 log_mask_ln!(Log::GuestError, "PL011State::read: Bad offset {offset}"); 539 0 540 } 541 Ok(field) => { 542 let (update_irq, result) = self.regs.borrow_mut().read(field); 543 if update_irq { 544 self.update(); 545 self.char_backend.accept_input(); 546 } 547 result.into() 548 } 549 } 550 } 551 552 fn write(&self, offset: hwaddr, value: u64, _size: u32) { 553 let mut update_irq = false; 554 if let Ok(field) = RegisterOffset::try_from(offset) { 555 // qemu_chr_fe_write_all() calls into the can_receive 556 // callback, so handle writes before entering PL011Registers. 557 if field == RegisterOffset::DR { 558 // ??? Check if transmitter is enabled. 559 let ch: [u8; 1] = [value as u8]; 560 // XXX this blocks entire thread. Rewrite to use 561 // qemu_chr_fe_write and background I/O callbacks 562 let _ = self.char_backend.write_all(&ch); 563 } 564 565 update_irq = self 566 .regs 567 .borrow_mut() 568 .write(field, value as u32, &self.char_backend); 569 } else { 570 log_mask_ln!( 571 Log::GuestError, 572 "PL011State::write: Bad offset {offset} value {value}" 573 ); 574 } 575 if update_irq { 576 self.update(); 577 } 578 } 579 580 fn can_receive(&self) -> u32 { 581 let regs = self.regs.borrow(); 582 // trace_pl011_can_receive(s->lcr, s->read_count, r); 583 regs.fifo_depth() - regs.read_count 584 } 585 586 fn receive(&self, buf: &[u8]) { 587 let mut regs = self.regs.borrow_mut(); 588 if regs.loopback_enabled() { 589 // In loopback mode, the RX input signal is internally disconnected 590 // from the entire receiving logics; thus, all inputs are ignored, 591 // and BREAK detection on RX input signal is also not performed. 592 return; 593 } 594 595 let mut update_irq = false; 596 for &c in buf { 597 let c: u32 = c.into(); 598 update_irq |= regs.fifo_rx_put(c.into()); 599 } 600 601 // Release the BqlRefCell before calling self.update() 602 drop(regs); 603 if update_irq { 604 self.update(); 605 } 606 } 607 608 fn event(&self, event: Event) { 609 let mut update_irq = false; 610 let mut regs = self.regs.borrow_mut(); 611 if event == Event::CHR_EVENT_BREAK && !regs.loopback_enabled() { 612 update_irq = regs.fifo_rx_put(registers::Data::BREAK); 613 } 614 // Release the BqlRefCell before calling self.update() 615 drop(regs); 616 617 if update_irq { 618 self.update() 619 } 620 } 621 622 fn realize(&self) -> qemu_api::Result<()> { 623 self.char_backend 624 .enable_handlers(self, Self::can_receive, Self::receive, Self::event); 625 Ok(()) 626 } 627 628 fn reset_hold(&self, _type: ResetType) { 629 self.regs.borrow_mut().reset(); 630 } 631 632 fn update(&self) { 633 let regs = self.regs.borrow(); 634 let flags = regs.int_level & regs.int_enabled; 635 for (irq, i) in self.interrupts.iter().zip(IRQMASK) { 636 irq.set(flags.any_set(i)); 637 } 638 } 639 640 pub fn post_load(&self, _version_id: u32) -> Result<(), ()> { 641 self.regs.borrow_mut().post_load() 642 } 643 } 644 645 /// Which bits in the interrupt status matter for each outbound IRQ line ? 646 const IRQMASK: [Interrupt; 6] = [ 647 Interrupt::all(), 648 Interrupt::RX, 649 Interrupt::TX, 650 Interrupt::RT, 651 Interrupt::MS, 652 Interrupt::E, 653 ]; 654 655 /// # Safety 656 /// 657 /// We expect the FFI user of this function to pass a valid pointer for `chr` 658 /// and `irq`. 659 #[no_mangle] 660 pub unsafe extern "C" fn pl011_create( 661 addr: u64, 662 irq: *mut IRQState, 663 chr: *mut Chardev, 664 ) -> *mut DeviceState { 665 // SAFETY: The callers promise that they have owned references. 666 // They do not gift them to pl011_create, so use `Owned::from`. 667 let irq = unsafe { Owned::<IRQState>::from(&*irq) }; 668 669 let dev = PL011State::new(); 670 if !chr.is_null() { 671 let chr = unsafe { Owned::<Chardev>::from(&*chr) }; 672 dev.prop_set_chr("chardev", &chr); 673 } 674 dev.sysbus_realize(); 675 dev.mmio_map(0, addr); 676 dev.connect_irq(0, &irq); 677 678 // The pointer is kept alive by the QOM tree; drop the owned ref 679 dev.as_mut_ptr() 680 } 681 682 #[repr(C)] 683 #[derive(qemu_api_macros::Object)] 684 /// PL011 Luminary device model. 685 pub struct PL011Luminary { 686 parent_obj: ParentField<PL011State>, 687 } 688 689 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object); 690 691 unsafe impl ObjectType for PL011Luminary { 692 type Class = <PL011State as ObjectType>::Class; 693 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY; 694 } 695 696 impl ObjectImpl for PL011Luminary { 697 type ParentType = PL011State; 698 699 const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>; 700 } 701 702 impl PL011Impl for PL011Luminary { 703 const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]); 704 } 705 706 impl DeviceImpl for PL011Luminary {} 707 impl ResettablePhasesImpl for PL011Luminary {} 708 impl SysBusDeviceImpl for PL011Luminary {} 709