1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 use core::ptr::{addr_of_mut, NonNull}; 6 use std::{ 7 ffi::CStr, 8 os::raw::{c_int, c_uint, c_void}, 9 }; 10 11 use qemu_api::{ 12 bindings::{self, *}, 13 c_str, 14 irq::InterruptSource, 15 prelude::*, 16 qdev::DeviceImpl, 17 qom::{ClassInitImpl, ObjectImpl, ParentField}, 18 }; 19 20 use crate::{ 21 device_class, 22 memory_ops::PL011_OPS, 23 registers::{self, Interrupt}, 24 RegisterOffset, 25 }; 26 27 /// Integer Baud Rate Divider, `UARTIBRD` 28 const IBRD_MASK: u32 = 0xffff; 29 30 /// Fractional Baud Rate Divider, `UARTFBRD` 31 const FBRD_MASK: u32 = 0x3f; 32 33 /// QEMU sourced constant. 34 pub const PL011_FIFO_DEPTH: u32 = 16; 35 36 #[derive(Clone, Copy)] 37 struct DeviceId(&'static [u8; 8]); 38 39 impl std::ops::Index<hwaddr> for DeviceId { 40 type Output = u8; 41 42 fn index(&self, idx: hwaddr) -> &Self::Output { 43 &self.0[idx as usize] 44 } 45 } 46 47 impl DeviceId { 48 const ARM: Self = Self(&[0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]); 49 const LUMINARY: Self = Self(&[0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]); 50 } 51 52 // FIFOs use 32-bit indices instead of usize, for compatibility with 53 // the migration stream produced by the C version of this device. 54 #[repr(transparent)] 55 #[derive(Debug, Default)] 56 pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]); 57 58 impl Fifo { 59 const fn len(&self) -> u32 { 60 self.0.len() as u32 61 } 62 } 63 64 impl std::ops::IndexMut<u32> for Fifo { 65 fn index_mut(&mut self, idx: u32) -> &mut Self::Output { 66 &mut self.0[idx as usize] 67 } 68 } 69 70 impl std::ops::Index<u32> for Fifo { 71 type Output = registers::Data; 72 73 fn index(&self, idx: u32) -> &Self::Output { 74 &self.0[idx as usize] 75 } 76 } 77 78 #[repr(C)] 79 #[derive(Debug, qemu_api_macros::Object, qemu_api_macros::offsets)] 80 /// PL011 Device Model in QEMU 81 pub struct PL011State { 82 pub parent_obj: ParentField<SysBusDevice>, 83 pub iomem: MemoryRegion, 84 #[doc(alias = "fr")] 85 pub flags: registers::Flags, 86 #[doc(alias = "lcr")] 87 pub line_control: registers::LineControl, 88 #[doc(alias = "rsr")] 89 pub receive_status_error_clear: registers::ReceiveStatusErrorClear, 90 #[doc(alias = "cr")] 91 pub control: registers::Control, 92 pub dmacr: u32, 93 pub int_enabled: u32, 94 pub int_level: u32, 95 pub read_fifo: Fifo, 96 pub ilpr: u32, 97 pub ibrd: u32, 98 pub fbrd: u32, 99 pub ifl: u32, 100 pub read_pos: u32, 101 pub read_count: u32, 102 pub read_trigger: u32, 103 #[doc(alias = "chr")] 104 pub char_backend: CharBackend, 105 /// QEMU interrupts 106 /// 107 /// ```text 108 /// * sysbus MMIO region 0: device registers 109 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line) 110 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line) 111 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line) 112 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line) 113 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line) 114 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line) 115 /// ``` 116 #[doc(alias = "irq")] 117 pub interrupts: [InterruptSource; IRQMASK.len()], 118 #[doc(alias = "clk")] 119 pub clock: NonNull<Clock>, 120 #[doc(alias = "migrate_clk")] 121 pub migrate_clock: bool, 122 } 123 124 qom_isa!(PL011State : SysBusDevice, DeviceState, Object); 125 126 pub struct PL011Class { 127 parent_class: <SysBusDevice as ObjectType>::Class, 128 /// The byte string that identifies the device. 129 device_id: DeviceId, 130 } 131 132 unsafe impl ObjectType for PL011State { 133 type Class = PL011Class; 134 const TYPE_NAME: &'static CStr = crate::TYPE_PL011; 135 } 136 137 impl ClassInitImpl<PL011Class> for PL011State { 138 fn class_init(klass: &mut PL011Class) { 139 klass.device_id = DeviceId::ARM; 140 <Self as ClassInitImpl<SysBusDeviceClass>>::class_init(&mut klass.parent_class); 141 } 142 } 143 144 impl ObjectImpl for PL011State { 145 type ParentType = SysBusDevice; 146 147 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 148 const INSTANCE_POST_INIT: Option<fn(&Self)> = Some(Self::post_init); 149 } 150 151 impl DeviceImpl for PL011State { 152 fn properties() -> &'static [Property] { 153 &device_class::PL011_PROPERTIES 154 } 155 fn vmsd() -> Option<&'static VMStateDescription> { 156 Some(&device_class::VMSTATE_PL011) 157 } 158 const REALIZE: Option<fn(&mut Self)> = Some(Self::realize); 159 const RESET: Option<fn(&mut Self)> = Some(Self::reset); 160 } 161 162 impl PL011State { 163 /// Initializes a pre-allocated, unitialized instance of `PL011State`. 164 /// 165 /// # Safety 166 /// 167 /// `self` must point to a correctly sized and aligned location for the 168 /// `PL011State` type. It must not be called more than once on the same 169 /// location/instance. All its fields are expected to hold unitialized 170 /// values with the sole exception of `parent_obj`. 171 unsafe fn init(&mut self) { 172 const CLK_NAME: &CStr = c_str!("clk"); 173 174 // SAFETY: 175 // 176 // self and self.iomem are guaranteed to be valid at this point since callers 177 // must make sure the `self` reference is valid. 178 unsafe { 179 memory_region_init_io( 180 addr_of_mut!(self.iomem), 181 addr_of_mut!(*self).cast::<Object>(), 182 &PL011_OPS, 183 addr_of_mut!(*self).cast::<c_void>(), 184 Self::TYPE_NAME.as_ptr(), 185 0x1000, 186 ); 187 } 188 189 // SAFETY: 190 // 191 // self.clock is not initialized at this point; but since `NonNull<_>` is Copy, 192 // we can overwrite the undefined value without side effects. This is 193 // safe since all PL011State instances are created by QOM code which 194 // calls this function to initialize the fields; therefore no code is 195 // able to access an invalid self.clock value. 196 unsafe { 197 let dev: &mut DeviceState = self.upcast_mut(); 198 self.clock = NonNull::new(qdev_init_clock_in( 199 dev, 200 CLK_NAME.as_ptr(), 201 None, /* pl011_clock_update */ 202 addr_of_mut!(*self).cast::<c_void>(), 203 ClockEvent::ClockUpdate.0, 204 )) 205 .unwrap(); 206 } 207 } 208 209 fn post_init(&self) { 210 self.init_mmio(&self.iomem); 211 for irq in self.interrupts.iter() { 212 self.init_irq(irq); 213 } 214 } 215 216 pub fn read(&mut self, offset: hwaddr, _size: c_uint) -> std::ops::ControlFlow<u64, u64> { 217 use RegisterOffset::*; 218 219 let value = match RegisterOffset::try_from(offset) { 220 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => { 221 let device_id = self.get_class().device_id; 222 u32::from(device_id[(offset - 0xfe0) >> 2]) 223 } 224 Err(_) => { 225 // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset); 226 0 227 } 228 Ok(DR) => { 229 self.flags.set_receive_fifo_full(false); 230 let c = self.read_fifo[self.read_pos]; 231 if self.read_count > 0 { 232 self.read_count -= 1; 233 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1); 234 } 235 if self.read_count == 0 { 236 self.flags.set_receive_fifo_empty(true); 237 } 238 if self.read_count + 1 == self.read_trigger { 239 self.int_level &= !registers::INT_RX; 240 } 241 // Update error bits. 242 self.receive_status_error_clear.set_from_data(c); 243 self.update(); 244 // Must call qemu_chr_fe_accept_input, so return Continue: 245 let c = u32::from(c); 246 return std::ops::ControlFlow::Continue(u64::from(c)); 247 } 248 Ok(RSR) => u32::from(self.receive_status_error_clear), 249 Ok(FR) => u32::from(self.flags), 250 Ok(FBRD) => self.fbrd, 251 Ok(ILPR) => self.ilpr, 252 Ok(IBRD) => self.ibrd, 253 Ok(LCR_H) => u32::from(self.line_control), 254 Ok(CR) => u32::from(self.control), 255 Ok(FLS) => self.ifl, 256 Ok(IMSC) => self.int_enabled, 257 Ok(RIS) => self.int_level, 258 Ok(MIS) => self.int_level & self.int_enabled, 259 Ok(ICR) => { 260 // "The UARTICR Register is the interrupt clear register and is write-only" 261 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR 262 0 263 } 264 Ok(DMACR) => self.dmacr, 265 }; 266 std::ops::ControlFlow::Break(value.into()) 267 } 268 269 pub fn write(&mut self, offset: hwaddr, value: u64) { 270 // eprintln!("write offset {offset} value {value}"); 271 use RegisterOffset::*; 272 let value: u32 = value as u32; 273 match RegisterOffset::try_from(offset) { 274 Err(_bad_offset) => { 275 eprintln!("write bad offset {offset} value {value}"); 276 } 277 Ok(DR) => { 278 // ??? Check if transmitter is enabled. 279 let ch: u8 = value as u8; 280 // XXX this blocks entire thread. Rewrite to use 281 // qemu_chr_fe_write and background I/O callbacks 282 283 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 284 // initialized in realize(). 285 unsafe { 286 qemu_chr_fe_write_all(addr_of_mut!(self.char_backend), &ch, 1); 287 } 288 self.loopback_tx(value); 289 self.int_level |= registers::INT_TX; 290 self.update(); 291 } 292 Ok(RSR) => { 293 self.receive_status_error_clear.reset(); 294 } 295 Ok(FR) => { 296 // flag writes are ignored 297 } 298 Ok(ILPR) => { 299 self.ilpr = value; 300 } 301 Ok(IBRD) => { 302 self.ibrd = value; 303 } 304 Ok(FBRD) => { 305 self.fbrd = value; 306 } 307 Ok(LCR_H) => { 308 let new_val: registers::LineControl = value.into(); 309 // Reset the FIFO state on FIFO enable or disable 310 if self.line_control.fifos_enabled() != new_val.fifos_enabled() { 311 self.reset_rx_fifo(); 312 self.reset_tx_fifo(); 313 } 314 if self.line_control.send_break() ^ new_val.send_break() { 315 let mut break_enable: c_int = new_val.send_break().into(); 316 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 317 // initialized in realize(). 318 unsafe { 319 qemu_chr_fe_ioctl( 320 addr_of_mut!(self.char_backend), 321 CHR_IOCTL_SERIAL_SET_BREAK as i32, 322 addr_of_mut!(break_enable).cast::<c_void>(), 323 ); 324 } 325 self.loopback_break(break_enable > 0); 326 } 327 self.line_control = new_val; 328 self.set_read_trigger(); 329 } 330 Ok(CR) => { 331 // ??? Need to implement the enable bit. 332 self.control = value.into(); 333 self.loopback_mdmctrl(); 334 } 335 Ok(FLS) => { 336 self.ifl = value; 337 self.set_read_trigger(); 338 } 339 Ok(IMSC) => { 340 self.int_enabled = value; 341 self.update(); 342 } 343 Ok(RIS) => {} 344 Ok(MIS) => {} 345 Ok(ICR) => { 346 self.int_level &= !value; 347 self.update(); 348 } 349 Ok(DMACR) => { 350 self.dmacr = value; 351 if value & 3 > 0 { 352 // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n"); 353 eprintln!("pl011: DMA not implemented"); 354 } 355 } 356 } 357 } 358 359 #[inline] 360 fn loopback_tx(&mut self, value: u32) { 361 if !self.loopback_enabled() { 362 return; 363 } 364 365 // Caveat: 366 // 367 // In real hardware, TX loopback happens at the serial-bit level 368 // and then reassembled by the RX logics back into bytes and placed 369 // into the RX fifo. That is, loopback happens after TX fifo. 370 // 371 // Because the real hardware TX fifo is time-drained at the frame 372 // rate governed by the configured serial format, some loopback 373 // bytes in TX fifo may still be able to get into the RX fifo 374 // that could be full at times while being drained at software 375 // pace. 376 // 377 // In such scenario, the RX draining pace is the major factor 378 // deciding which loopback bytes get into the RX fifo, unless 379 // hardware flow-control is enabled. 380 // 381 // For simplicity, the above described is not emulated. 382 self.put_fifo(value); 383 } 384 385 fn loopback_mdmctrl(&mut self) { 386 if !self.loopback_enabled() { 387 return; 388 } 389 390 /* 391 * Loopback software-driven modem control outputs to modem status inputs: 392 * FR.RI <= CR.Out2 393 * FR.DCD <= CR.Out1 394 * FR.CTS <= CR.RTS 395 * FR.DSR <= CR.DTR 396 * 397 * The loopback happens immediately even if this call is triggered 398 * by setting only CR.LBE. 399 * 400 * CTS/RTS updates due to enabled hardware flow controls are not 401 * dealt with here. 402 */ 403 404 self.flags.set_ring_indicator(self.control.out_2()); 405 self.flags.set_data_carrier_detect(self.control.out_1()); 406 self.flags.set_clear_to_send(self.control.request_to_send()); 407 self.flags 408 .set_data_set_ready(self.control.data_transmit_ready()); 409 410 // Change interrupts based on updated FR 411 let mut il = self.int_level; 412 413 il &= !Interrupt::MS; 414 415 if self.flags.data_set_ready() { 416 il |= Interrupt::DSR as u32; 417 } 418 if self.flags.data_carrier_detect() { 419 il |= Interrupt::DCD as u32; 420 } 421 if self.flags.clear_to_send() { 422 il |= Interrupt::CTS as u32; 423 } 424 if self.flags.ring_indicator() { 425 il |= Interrupt::RI as u32; 426 } 427 self.int_level = il; 428 self.update(); 429 } 430 431 fn loopback_break(&mut self, enable: bool) { 432 if enable { 433 self.loopback_tx(registers::Data::BREAK.into()); 434 } 435 } 436 437 fn set_read_trigger(&mut self) { 438 self.read_trigger = 1; 439 } 440 441 pub fn realize(&mut self) { 442 // SAFETY: self.char_backend has the correct size and alignment for a 443 // CharBackend object, and its callbacks are of the correct types. 444 unsafe { 445 qemu_chr_fe_set_handlers( 446 addr_of_mut!(self.char_backend), 447 Some(pl011_can_receive), 448 Some(pl011_receive), 449 Some(pl011_event), 450 None, 451 addr_of_mut!(*self).cast::<c_void>(), 452 core::ptr::null_mut(), 453 true, 454 ); 455 } 456 } 457 458 pub fn reset(&mut self) { 459 self.line_control.reset(); 460 self.receive_status_error_clear.reset(); 461 self.dmacr = 0; 462 self.int_enabled = 0; 463 self.int_level = 0; 464 self.ilpr = 0; 465 self.ibrd = 0; 466 self.fbrd = 0; 467 self.read_trigger = 1; 468 self.ifl = 0x12; 469 self.control.reset(); 470 self.flags.reset(); 471 self.reset_rx_fifo(); 472 self.reset_tx_fifo(); 473 } 474 475 pub fn reset_rx_fifo(&mut self) { 476 self.read_count = 0; 477 self.read_pos = 0; 478 479 // Reset FIFO flags 480 self.flags.set_receive_fifo_full(false); 481 self.flags.set_receive_fifo_empty(true); 482 } 483 484 pub fn reset_tx_fifo(&mut self) { 485 // Reset FIFO flags 486 self.flags.set_transmit_fifo_full(false); 487 self.flags.set_transmit_fifo_empty(true); 488 } 489 490 pub fn can_receive(&self) -> bool { 491 // trace_pl011_can_receive(s->lcr, s->read_count, r); 492 self.read_count < self.fifo_depth() 493 } 494 495 pub fn event(&mut self, event: QEMUChrEvent) { 496 if event == bindings::QEMUChrEvent::CHR_EVENT_BREAK && !self.loopback_enabled() { 497 self.put_fifo(registers::Data::BREAK.into()); 498 } 499 } 500 501 #[inline] 502 pub fn fifo_enabled(&self) -> bool { 503 self.line_control.fifos_enabled() == registers::Mode::FIFO 504 } 505 506 #[inline] 507 pub fn loopback_enabled(&self) -> bool { 508 self.control.enable_loopback() 509 } 510 511 #[inline] 512 pub fn fifo_depth(&self) -> u32 { 513 // Note: FIFO depth is expected to be power-of-2 514 if self.fifo_enabled() { 515 return PL011_FIFO_DEPTH; 516 } 517 1 518 } 519 520 pub fn put_fifo(&mut self, value: c_uint) { 521 let depth = self.fifo_depth(); 522 assert!(depth > 0); 523 let slot = (self.read_pos + self.read_count) & (depth - 1); 524 self.read_fifo[slot] = registers::Data::from(value); 525 self.read_count += 1; 526 self.flags.set_receive_fifo_empty(false); 527 if self.read_count == depth { 528 self.flags.set_receive_fifo_full(true); 529 } 530 531 if self.read_count == self.read_trigger { 532 self.int_level |= registers::INT_RX; 533 self.update(); 534 } 535 } 536 537 pub fn update(&self) { 538 let flags = self.int_level & self.int_enabled; 539 for (irq, i) in self.interrupts.iter().zip(IRQMASK) { 540 irq.set(flags & i != 0); 541 } 542 } 543 544 pub fn post_load(&mut self, _version_id: u32) -> Result<(), ()> { 545 /* Sanity-check input state */ 546 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() { 547 return Err(()); 548 } 549 550 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 { 551 // Older versions of PL011 didn't ensure that the single 552 // character in the FIFO in FIFO-disabled mode is in 553 // element 0 of the array; convert to follow the current 554 // code's assumptions. 555 self.read_fifo[0] = self.read_fifo[self.read_pos]; 556 self.read_pos = 0; 557 } 558 559 self.ibrd &= IBRD_MASK; 560 self.fbrd &= FBRD_MASK; 561 562 Ok(()) 563 } 564 } 565 566 /// Which bits in the interrupt status matter for each outbound IRQ line ? 567 pub const IRQMASK: [u32; 6] = [ 568 /* combined IRQ */ 569 Interrupt::E 570 | Interrupt::MS 571 | Interrupt::RT as u32 572 | Interrupt::TX as u32 573 | Interrupt::RX as u32, 574 Interrupt::RX as u32, 575 Interrupt::TX as u32, 576 Interrupt::RT as u32, 577 Interrupt::MS, 578 Interrupt::E, 579 ]; 580 581 /// # Safety 582 /// 583 /// We expect the FFI user of this function to pass a valid pointer, that has 584 /// the same size as [`PL011State`]. We also expect the device is 585 /// readable/writeable from one thread at any time. 586 pub unsafe extern "C" fn pl011_can_receive(opaque: *mut c_void) -> c_int { 587 unsafe { 588 debug_assert!(!opaque.is_null()); 589 let state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 590 state.as_ref().can_receive().into() 591 } 592 } 593 594 /// # Safety 595 /// 596 /// We expect the FFI user of this function to pass a valid pointer, that has 597 /// the same size as [`PL011State`]. We also expect the device is 598 /// readable/writeable from one thread at any time. 599 /// 600 /// The buffer and size arguments must also be valid. 601 pub unsafe extern "C" fn pl011_receive(opaque: *mut c_void, buf: *const u8, size: c_int) { 602 unsafe { 603 debug_assert!(!opaque.is_null()); 604 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 605 if state.as_ref().loopback_enabled() { 606 return; 607 } 608 if size > 0 { 609 debug_assert!(!buf.is_null()); 610 state.as_mut().put_fifo(c_uint::from(buf.read_volatile())) 611 } 612 } 613 } 614 615 /// # Safety 616 /// 617 /// We expect the FFI user of this function to pass a valid pointer, that has 618 /// the same size as [`PL011State`]. We also expect the device is 619 /// readable/writeable from one thread at any time. 620 pub unsafe extern "C" fn pl011_event(opaque: *mut c_void, event: QEMUChrEvent) { 621 unsafe { 622 debug_assert!(!opaque.is_null()); 623 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 624 state.as_mut().event(event) 625 } 626 } 627 628 /// # Safety 629 /// 630 /// We expect the FFI user of this function to pass a valid pointer for `chr`. 631 #[no_mangle] 632 pub unsafe extern "C" fn pl011_create( 633 addr: u64, 634 irq: qemu_irq, 635 chr: *mut Chardev, 636 ) -> *mut DeviceState { 637 unsafe { 638 let dev: *mut DeviceState = qdev_new(PL011State::TYPE_NAME.as_ptr()); 639 let sysbus: *mut SysBusDevice = dev.cast::<SysBusDevice>(); 640 641 qdev_prop_set_chr(dev, c_str!("chardev").as_ptr(), chr); 642 sysbus_realize_and_unref(sysbus, addr_of_mut!(error_fatal)); 643 sysbus_mmio_map(sysbus, 0, addr); 644 sysbus_connect_irq(sysbus, 0, irq); 645 dev 646 } 647 } 648 649 #[repr(C)] 650 #[derive(Debug, qemu_api_macros::Object)] 651 /// PL011 Luminary device model. 652 pub struct PL011Luminary { 653 parent_obj: ParentField<PL011State>, 654 } 655 656 impl ClassInitImpl<PL011Class> for PL011Luminary { 657 fn class_init(klass: &mut PL011Class) { 658 klass.device_id = DeviceId::LUMINARY; 659 <Self as ClassInitImpl<SysBusDeviceClass>>::class_init(&mut klass.parent_class); 660 } 661 } 662 663 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object); 664 665 unsafe impl ObjectType for PL011Luminary { 666 type Class = <PL011State as ObjectType>::Class; 667 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY; 668 } 669 670 impl ObjectImpl for PL011Luminary { 671 type ParentType = PL011State; 672 } 673 674 impl DeviceImpl for PL011Luminary {} 675