xref: /qemu/hw/ssi/aspeed_smc.c (revision d0e250400844323a6edf783b0d8ef7545e34105f)
1 /*
2  * ASPEED AST2400 SMC Controller (SPI Flash Only)
3  *
4  * Copyright (C) 2016 IBM Corp.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "exec/address-spaces.h"
33 
34 #include "hw/irq.h"
35 #include "hw/qdev-properties.h"
36 #include "hw/ssi/aspeed_smc.h"
37 
38 /* CE Type Setting Register */
39 #define R_CONF            (0x00 / 4)
40 #define   CONF_LEGACY_DISABLE  (1 << 31)
41 #define   CONF_ENABLE_W4       20
42 #define   CONF_ENABLE_W3       19
43 #define   CONF_ENABLE_W2       18
44 #define   CONF_ENABLE_W1       17
45 #define   CONF_ENABLE_W0       16
46 #define   CONF_FLASH_TYPE4     8
47 #define   CONF_FLASH_TYPE3     6
48 #define   CONF_FLASH_TYPE2     4
49 #define   CONF_FLASH_TYPE1     2
50 #define   CONF_FLASH_TYPE0     0
51 #define      CONF_FLASH_TYPE_NOR   0x0
52 #define      CONF_FLASH_TYPE_NAND  0x1
53 #define      CONF_FLASH_TYPE_SPI   0x2
54 
55 /* CE Control Register */
56 #define R_CE_CTRL            (0x04 / 4)
57 #define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
58 #define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
59 #define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
60 #define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
61 #define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
62 
63 /* Interrupt Control and Status Register */
64 #define R_INTR_CTRL       (0x08 / 4)
65 #define   INTR_CTRL_DMA_STATUS            (1 << 11)
66 #define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
67 #define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
68 #define   INTR_CTRL_DMA_EN                (1 << 3)
69 #define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
70 #define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
71 
72 /* CEx Control Register */
73 #define R_CTRL0           (0x10 / 4)
74 #define   CTRL_IO_DUAL_DATA        (1 << 29)
75 #define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
76 #define   CTRL_CMD_SHIFT           16
77 #define   CTRL_CMD_MASK            0xff
78 #define   CTRL_DUMMY_HIGH_SHIFT    14
79 #define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
80 #define CE_CTRL_CLOCK_FREQ_SHIFT   8
81 #define CE_CTRL_CLOCK_FREQ_MASK    0xf
82 #define CE_CTRL_CLOCK_FREQ(div)                                         \
83     (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
84 #define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
85 #define   CTRL_CE_STOP_ACTIVE      (1 << 2)
86 #define   CTRL_CMD_MODE_MASK       0x3
87 #define     CTRL_READMODE          0x0
88 #define     CTRL_FREADMODE         0x1
89 #define     CTRL_WRITEMODE         0x2
90 #define     CTRL_USERMODE          0x3
91 #define R_CTRL1           (0x14 / 4)
92 #define R_CTRL2           (0x18 / 4)
93 #define R_CTRL3           (0x1C / 4)
94 #define R_CTRL4           (0x20 / 4)
95 
96 /* CEx Segment Address Register */
97 #define R_SEG_ADDR0       (0x30 / 4)
98 #define   SEG_END_SHIFT        24   /* 8MB units */
99 #define   SEG_END_MASK         0xff
100 #define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
101 #define   SEG_START_MASK       0xff
102 #define R_SEG_ADDR1       (0x34 / 4)
103 #define R_SEG_ADDR2       (0x38 / 4)
104 #define R_SEG_ADDR3       (0x3C / 4)
105 #define R_SEG_ADDR4       (0x40 / 4)
106 
107 /* Misc Control Register #1 */
108 #define R_MISC_CTRL1      (0x50 / 4)
109 
110 /* SPI dummy cycle data */
111 #define R_DUMMY_DATA      (0x54 / 4)
112 
113 /* DMA Control/Status Register */
114 #define R_DMA_CTRL        (0x80 / 4)
115 #define   DMA_CTRL_DELAY_MASK   0xf
116 #define   DMA_CTRL_DELAY_SHIFT  8
117 #define   DMA_CTRL_FREQ_MASK    0xf
118 #define   DMA_CTRL_FREQ_SHIFT   4
119 #define   DMA_CTRL_CALIB        (1 << 3)
120 #define   DMA_CTRL_CKSUM        (1 << 2)
121 #define   DMA_CTRL_WRITE        (1 << 1)
122 #define   DMA_CTRL_ENABLE       (1 << 0)
123 
124 /* DMA Flash Side Address */
125 #define R_DMA_FLASH_ADDR  (0x84 / 4)
126 
127 /* DMA DRAM Side Address */
128 #define R_DMA_DRAM_ADDR   (0x88 / 4)
129 
130 /* DMA Length Register */
131 #define R_DMA_LEN         (0x8C / 4)
132 
133 /* Checksum Calculation Result */
134 #define R_DMA_CHECKSUM    (0x90 / 4)
135 
136 /* Misc Control Register #2 */
137 #define R_TIMINGS         (0x94 / 4)
138 
139 /* SPI controller registers and bits */
140 #define R_SPI_CONF        (0x00 / 4)
141 #define   SPI_CONF_ENABLE_W0   0
142 #define R_SPI_CTRL0       (0x4 / 4)
143 #define R_SPI_MISC_CTRL   (0x10 / 4)
144 #define R_SPI_TIMINGS     (0x14 / 4)
145 
146 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
147 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
148 
149 #define ASPEED_SOC_SMC_FLASH_BASE   0x10000000
150 #define ASPEED_SOC_FMC_FLASH_BASE   0x20000000
151 #define ASPEED_SOC_SPI_FLASH_BASE   0x30000000
152 #define ASPEED_SOC_SPI2_FLASH_BASE  0x38000000
153 
154 /*
155  * DMA DRAM addresses should be 4 bytes aligned and the valid address
156  * range is 0x40000000 - 0x5FFFFFFF (AST2400)
157  *          0x80000000 - 0xBFFFFFFF (AST2500)
158  *
159  * DMA flash addresses should be 4 bytes aligned and the valid address
160  * range is 0x20000000 - 0x2FFFFFFF.
161  *
162  * DMA length is from 4 bytes to 32MB
163  *   0: 4 bytes
164  *   0x7FFFFF: 32M bytes
165  */
166 #define DMA_DRAM_ADDR(s, val)   ((s)->sdram_base | \
167                                  ((val) & (s)->ctrl->dma_dram_mask))
168 #define DMA_FLASH_ADDR(s, val)  ((s)->ctrl->flash_window_base | \
169                                 ((val) & (s)->ctrl->dma_flash_mask))
170 #define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
171 
172 /* Flash opcodes. */
173 #define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
174 
175 #define SNOOP_OFF         0xFF
176 #define SNOOP_START       0x0
177 
178 /*
179  * Default segments mapping addresses and size for each slave per
180  * controller. These can be changed when board is initialized with the
181  * Segment Address Registers.
182  */
183 static const AspeedSegments aspeed_segments_legacy[] = {
184     { 0x10000000, 32 * 1024 * 1024 },
185 };
186 
187 static const AspeedSegments aspeed_segments_fmc[] = {
188     { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
189     { 0x24000000, 32 * 1024 * 1024 },
190     { 0x26000000, 32 * 1024 * 1024 },
191     { 0x28000000, 32 * 1024 * 1024 },
192     { 0x2A000000, 32 * 1024 * 1024 }
193 };
194 
195 static const AspeedSegments aspeed_segments_spi[] = {
196     { 0x30000000, 64 * 1024 * 1024 },
197 };
198 
199 static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
200     { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
201     { 0x28000000,  32 * 1024 * 1024 },
202     { 0x2A000000,  32 * 1024 * 1024 },
203 };
204 
205 static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
206     { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
207     { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
208 };
209 
210 static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
211     { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
212     { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
213 };
214 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
215                                           const AspeedSegments *seg);
216 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
217                                       AspeedSegments *seg);
218 
219 static const AspeedSMCController controllers[] = {
220     {
221         .name              = "aspeed.smc-ast2400",
222         .r_conf            = R_CONF,
223         .r_ce_ctrl         = R_CE_CTRL,
224         .r_ctrl0           = R_CTRL0,
225         .r_timings         = R_TIMINGS,
226         .conf_enable_w0    = CONF_ENABLE_W0,
227         .max_slaves        = 5,
228         .segments          = aspeed_segments_legacy,
229         .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
230         .flash_window_size = 0x6000000,
231         .has_dma           = false,
232         .nregs             = ASPEED_SMC_R_SMC_MAX,
233         .segment_to_reg    = aspeed_smc_segment_to_reg,
234         .reg_to_segment    = aspeed_smc_reg_to_segment,
235     }, {
236         .name              = "aspeed.fmc-ast2400",
237         .r_conf            = R_CONF,
238         .r_ce_ctrl         = R_CE_CTRL,
239         .r_ctrl0           = R_CTRL0,
240         .r_timings         = R_TIMINGS,
241         .conf_enable_w0    = CONF_ENABLE_W0,
242         .max_slaves        = 5,
243         .segments          = aspeed_segments_fmc,
244         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
245         .flash_window_size = 0x10000000,
246         .has_dma           = true,
247         .dma_flash_mask    = 0x0FFFFFFC,
248         .dma_dram_mask     = 0x1FFFFFFC,
249         .nregs             = ASPEED_SMC_R_MAX,
250         .segment_to_reg    = aspeed_smc_segment_to_reg,
251         .reg_to_segment    = aspeed_smc_reg_to_segment,
252     }, {
253         .name              = "aspeed.spi1-ast2400",
254         .r_conf            = R_SPI_CONF,
255         .r_ce_ctrl         = 0xff,
256         .r_ctrl0           = R_SPI_CTRL0,
257         .r_timings         = R_SPI_TIMINGS,
258         .conf_enable_w0    = SPI_CONF_ENABLE_W0,
259         .max_slaves        = 1,
260         .segments          = aspeed_segments_spi,
261         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
262         .flash_window_size = 0x10000000,
263         .has_dma           = false,
264         .nregs             = ASPEED_SMC_R_SPI_MAX,
265         .segment_to_reg    = aspeed_smc_segment_to_reg,
266         .reg_to_segment    = aspeed_smc_reg_to_segment,
267     }, {
268         .name              = "aspeed.fmc-ast2500",
269         .r_conf            = R_CONF,
270         .r_ce_ctrl         = R_CE_CTRL,
271         .r_ctrl0           = R_CTRL0,
272         .r_timings         = R_TIMINGS,
273         .conf_enable_w0    = CONF_ENABLE_W0,
274         .max_slaves        = 3,
275         .segments          = aspeed_segments_ast2500_fmc,
276         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
277         .flash_window_size = 0x10000000,
278         .has_dma           = true,
279         .dma_flash_mask    = 0x0FFFFFFC,
280         .dma_dram_mask     = 0x3FFFFFFC,
281         .nregs             = ASPEED_SMC_R_MAX,
282         .segment_to_reg    = aspeed_smc_segment_to_reg,
283         .reg_to_segment    = aspeed_smc_reg_to_segment,
284     }, {
285         .name              = "aspeed.spi1-ast2500",
286         .r_conf            = R_CONF,
287         .r_ce_ctrl         = R_CE_CTRL,
288         .r_ctrl0           = R_CTRL0,
289         .r_timings         = R_TIMINGS,
290         .conf_enable_w0    = CONF_ENABLE_W0,
291         .max_slaves        = 2,
292         .segments          = aspeed_segments_ast2500_spi1,
293         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
294         .flash_window_size = 0x8000000,
295         .has_dma           = false,
296         .nregs             = ASPEED_SMC_R_MAX,
297         .segment_to_reg    = aspeed_smc_segment_to_reg,
298         .reg_to_segment    = aspeed_smc_reg_to_segment,
299     }, {
300         .name              = "aspeed.spi2-ast2500",
301         .r_conf            = R_CONF,
302         .r_ce_ctrl         = R_CE_CTRL,
303         .r_ctrl0           = R_CTRL0,
304         .r_timings         = R_TIMINGS,
305         .conf_enable_w0    = CONF_ENABLE_W0,
306         .max_slaves        = 2,
307         .segments          = aspeed_segments_ast2500_spi2,
308         .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
309         .flash_window_size = 0x8000000,
310         .has_dma           = false,
311         .nregs             = ASPEED_SMC_R_MAX,
312         .segment_to_reg    = aspeed_smc_segment_to_reg,
313         .reg_to_segment    = aspeed_smc_reg_to_segment,
314     },
315 };
316 
317 /*
318  * The Segment Registers of the AST2400 and AST2500 have a 8MB
319  * unit. The address range of a flash SPI slave is encoded with
320  * absolute addresses which should be part of the overall controller
321  * window.
322  */
323 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
324                                           const AspeedSegments *seg)
325 {
326     uint32_t reg = 0;
327     reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
328     reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
329     return reg;
330 }
331 
332 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
333                                       uint32_t reg, AspeedSegments *seg)
334 {
335     seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
336     seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
337 }
338 
339 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
340                                      const AspeedSegments *new,
341                                      int cs)
342 {
343     AspeedSegments seg;
344     int i;
345 
346     for (i = 0; i < s->ctrl->max_slaves; i++) {
347         if (i == cs) {
348             continue;
349         }
350 
351         s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
352 
353         if (new->addr + new->size > seg.addr &&
354             new->addr < seg.addr + seg.size) {
355             qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
356                           HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
357                           "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
358                           s->ctrl->name, cs, new->addr, new->addr + new->size,
359                           i, seg.addr, seg.addr + seg.size);
360             return true;
361         }
362     }
363     return false;
364 }
365 
366 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
367                                          uint64_t new)
368 {
369     AspeedSMCFlash *fl = &s->flashes[cs];
370     AspeedSegments seg;
371 
372     s->ctrl->reg_to_segment(s, new, &seg);
373 
374     /* The start address of CS0 is read-only */
375     if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
376         qemu_log_mask(LOG_GUEST_ERROR,
377                       "%s: Tried to change CS0 start address to 0x%"
378                       HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
379         seg.addr = s->ctrl->flash_window_base;
380         new = s->ctrl->segment_to_reg(s, &seg);
381     }
382 
383     /*
384      * The end address of the AST2500 spi controllers is also
385      * read-only.
386      */
387     if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
388          s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
389         cs == s->ctrl->max_slaves &&
390         seg.addr + seg.size != s->ctrl->segments[cs].addr +
391         s->ctrl->segments[cs].size) {
392         qemu_log_mask(LOG_GUEST_ERROR,
393                       "%s: Tried to change CS%d end address to 0x%"
394                       HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
395         seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
396             seg.addr;
397         new = s->ctrl->segment_to_reg(s, &seg);
398     }
399 
400     /* Keep the segment in the overall flash window */
401     if (seg.addr + seg.size <= s->ctrl->flash_window_base ||
402         seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size) {
403         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
404                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
405                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
406         return;
407     }
408 
409     /* Check start address vs. alignment */
410     if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
411         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
412                       "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
413                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
414     }
415 
416     /* And segments should not overlap (in the specs) */
417     aspeed_smc_flash_overlap(s, &seg, cs);
418 
419     /* All should be fine now to move the region */
420     memory_region_transaction_begin();
421     memory_region_set_size(&fl->mmio, seg.size);
422     memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
423     memory_region_set_enabled(&fl->mmio, true);
424     memory_region_transaction_commit();
425 
426     s->regs[R_SEG_ADDR0 + cs] = new;
427 }
428 
429 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
430                                               unsigned size)
431 {
432     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
433                   PRIx64 "\n", __func__, addr, size);
434     return 0;
435 }
436 
437 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
438                                            uint64_t data, unsigned size)
439 {
440     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
441                   PRIx64 "\n", __func__, addr, size, data);
442 }
443 
444 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
445     .read = aspeed_smc_flash_default_read,
446     .write = aspeed_smc_flash_default_write,
447     .endianness = DEVICE_LITTLE_ENDIAN,
448     .valid = {
449         .min_access_size = 1,
450         .max_access_size = 4,
451     },
452 };
453 
454 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
455 {
456     const AspeedSMCState *s = fl->controller;
457 
458     return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
459 }
460 
461 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
462 {
463     const AspeedSMCState *s = fl->controller;
464 
465     return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
466 }
467 
468 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
469 {
470     const AspeedSMCState *s = fl->controller;
471     int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
472 
473     /* In read mode, the default SPI command is READ (0x3). In other
474      * modes, the command should necessarily be defined */
475     if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
476         cmd = SPI_OP_READ;
477     }
478 
479     if (!cmd) {
480         qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
481                       __func__, aspeed_smc_flash_mode(fl));
482     }
483 
484     return cmd;
485 }
486 
487 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
488 {
489     const AspeedSMCState *s = fl->controller;
490 
491     if (s->ctrl->segments == aspeed_segments_spi) {
492         return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
493     } else {
494         return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
495     }
496 }
497 
498 static inline bool aspeed_smc_is_ce_stop_active(const AspeedSMCFlash *fl)
499 {
500     const AspeedSMCState *s = fl->controller;
501 
502     return s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE;
503 }
504 
505 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
506 {
507     AspeedSMCState *s = fl->controller;
508 
509     s->regs[s->r_ctrl0 + fl->id] &= ~CTRL_CE_STOP_ACTIVE;
510     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
511 }
512 
513 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
514 {
515     AspeedSMCState *s = fl->controller;
516 
517     s->regs[s->r_ctrl0 + fl->id] |= CTRL_CE_STOP_ACTIVE;
518     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
519 }
520 
521 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
522                                               uint32_t addr)
523 {
524     const AspeedSMCState *s = fl->controller;
525     AspeedSegments seg;
526 
527     s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
528     if ((addr % seg.size) != addr) {
529         qemu_log_mask(LOG_GUEST_ERROR,
530                       "%s: invalid address 0x%08x for CS%d segment : "
531                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
532                       s->ctrl->name, addr, fl->id, seg.addr,
533                       seg.addr + seg.size);
534         addr %= seg.size;
535     }
536 
537     return addr;
538 }
539 
540 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
541 {
542     const AspeedSMCState *s = fl->controller;
543     uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
544     uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
545     uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
546     uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
547 
548     if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
549         dummies /= 2;
550     }
551 
552     return dummies;
553 }
554 
555 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
556 {
557     const AspeedSMCState *s = fl->controller;
558     uint8_t cmd = aspeed_smc_flash_cmd(fl);
559     int i;
560 
561     /* Flash access can not exceed CS segment */
562     addr = aspeed_smc_check_segment_addr(fl, addr);
563 
564     ssi_transfer(s->spi, cmd);
565 
566     if (aspeed_smc_flash_is_4byte(fl)) {
567         ssi_transfer(s->spi, (addr >> 24) & 0xff);
568     }
569     ssi_transfer(s->spi, (addr >> 16) & 0xff);
570     ssi_transfer(s->spi, (addr >> 8) & 0xff);
571     ssi_transfer(s->spi, (addr & 0xff));
572 
573     /*
574      * Use fake transfers to model dummy bytes. The value should
575      * be configured to some non-zero value in fast read mode and
576      * zero in read mode. But, as the HW allows inconsistent
577      * settings, let's check for fast read mode.
578      */
579     if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
580         for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
581             ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
582         }
583     }
584 }
585 
586 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
587 {
588     AspeedSMCFlash *fl = opaque;
589     AspeedSMCState *s = fl->controller;
590     uint64_t ret = 0;
591     int i;
592 
593     switch (aspeed_smc_flash_mode(fl)) {
594     case CTRL_USERMODE:
595         for (i = 0; i < size; i++) {
596             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
597         }
598         break;
599     case CTRL_READMODE:
600     case CTRL_FREADMODE:
601         aspeed_smc_flash_select(fl);
602         aspeed_smc_flash_setup(fl, addr);
603 
604         for (i = 0; i < size; i++) {
605             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
606         }
607 
608         aspeed_smc_flash_unselect(fl);
609         break;
610     default:
611         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
612                       __func__, aspeed_smc_flash_mode(fl));
613     }
614 
615     return ret;
616 }
617 
618 /*
619  * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
620  * common include header.
621  */
622 typedef enum {
623     READ = 0x3,         READ_4 = 0x13,
624     FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
625     DOR = 0x3b,         DOR_4 = 0x3c,
626     QOR = 0x6b,         QOR_4 = 0x6c,
627     DIOR = 0xbb,        DIOR_4 = 0xbc,
628     QIOR = 0xeb,        QIOR_4 = 0xec,
629 
630     PP = 0x2,           PP_4 = 0x12,
631     DPP = 0xa2,
632     QPP = 0x32,         QPP_4 = 0x34,
633 } FlashCMD;
634 
635 static int aspeed_smc_num_dummies(uint8_t command)
636 {
637     switch (command) { /* check for dummies */
638     case READ: /* no dummy bytes/cycles */
639     case PP:
640     case DPP:
641     case QPP:
642     case READ_4:
643     case PP_4:
644     case QPP_4:
645         return 0;
646     case FAST_READ:
647     case DOR:
648     case QOR:
649     case DOR_4:
650     case QOR_4:
651         return 1;
652     case DIOR:
653     case FAST_READ_4:
654     case DIOR_4:
655         return 2;
656     case QIOR:
657     case QIOR_4:
658         return 4;
659     default:
660         return -1;
661     }
662 }
663 
664 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
665                                 unsigned size)
666 {
667     AspeedSMCState *s = fl->controller;
668     uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
669 
670     if (s->snoop_index == SNOOP_OFF) {
671         return false; /* Do nothing */
672 
673     } else if (s->snoop_index == SNOOP_START) {
674         uint8_t cmd = data & 0xff;
675         int ndummies = aspeed_smc_num_dummies(cmd);
676 
677         /*
678          * No dummy cycles are expected with the current command. Turn
679          * off snooping and let the transfer proceed normally.
680          */
681         if (ndummies <= 0) {
682             s->snoop_index = SNOOP_OFF;
683             return false;
684         }
685 
686         s->snoop_dummies = ndummies * 8;
687 
688     } else if (s->snoop_index >= addr_width + 1) {
689 
690         /* The SPI transfer has reached the dummy cycles sequence */
691         for (; s->snoop_dummies; s->snoop_dummies--) {
692             ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
693         }
694 
695         /* If no more dummy cycles are expected, turn off snooping */
696         if (!s->snoop_dummies) {
697             s->snoop_index = SNOOP_OFF;
698         } else {
699             s->snoop_index += size;
700         }
701 
702         /*
703          * Dummy cycles have been faked already. Ignore the current
704          * SPI transfer
705          */
706         return true;
707     }
708 
709     s->snoop_index += size;
710     return false;
711 }
712 
713 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
714                                    unsigned size)
715 {
716     AspeedSMCFlash *fl = opaque;
717     AspeedSMCState *s = fl->controller;
718     int i;
719 
720     if (!aspeed_smc_is_writable(fl)) {
721         qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
722                       HWADDR_PRIx "\n", __func__, addr);
723         return;
724     }
725 
726     switch (aspeed_smc_flash_mode(fl)) {
727     case CTRL_USERMODE:
728         if (aspeed_smc_do_snoop(fl, data, size)) {
729             break;
730         }
731 
732         for (i = 0; i < size; i++) {
733             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
734         }
735         break;
736     case CTRL_WRITEMODE:
737         aspeed_smc_flash_select(fl);
738         aspeed_smc_flash_setup(fl, addr);
739 
740         for (i = 0; i < size; i++) {
741             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
742         }
743 
744         aspeed_smc_flash_unselect(fl);
745         break;
746     default:
747         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
748                       __func__, aspeed_smc_flash_mode(fl));
749     }
750 }
751 
752 static const MemoryRegionOps aspeed_smc_flash_ops = {
753     .read = aspeed_smc_flash_read,
754     .write = aspeed_smc_flash_write,
755     .endianness = DEVICE_LITTLE_ENDIAN,
756     .valid = {
757         .min_access_size = 1,
758         .max_access_size = 4,
759     },
760 };
761 
762 static void aspeed_smc_flash_update_cs(AspeedSMCFlash *fl)
763 {
764     AspeedSMCState *s = fl->controller;
765 
766     s->snoop_index = aspeed_smc_is_ce_stop_active(fl) ? SNOOP_OFF : SNOOP_START;
767 
768     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
769 }
770 
771 static void aspeed_smc_reset(DeviceState *d)
772 {
773     AspeedSMCState *s = ASPEED_SMC(d);
774     int i;
775 
776     memset(s->regs, 0, sizeof s->regs);
777 
778     /* Unselect all slaves */
779     for (i = 0; i < s->num_cs; ++i) {
780         s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
781         qemu_set_irq(s->cs_lines[i], true);
782     }
783 
784     /* setup default segment register values for all */
785     for (i = 0; i < s->ctrl->max_slaves; ++i) {
786         s->regs[R_SEG_ADDR0 + i] =
787             s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]);
788     }
789 
790     /* HW strapping flash type for FMC controllers  */
791     if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
792         /* flash type is fixed to SPI for CE0 and CE1 */
793         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
794         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
795     }
796 
797     /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
798      * configuration of the palmetto-bmc machine */
799     if (s->ctrl->segments == aspeed_segments_fmc) {
800         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
801     }
802 
803     s->snoop_index = SNOOP_OFF;
804     s->snoop_dummies = 0;
805 }
806 
807 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
808 {
809     AspeedSMCState *s = ASPEED_SMC(opaque);
810 
811     addr >>= 2;
812 
813     if (addr == s->r_conf ||
814         addr == s->r_timings ||
815         addr == s->r_ce_ctrl ||
816         addr == R_INTR_CTRL ||
817         addr == R_DUMMY_DATA ||
818         (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
819         (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
820         (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
821         (s->ctrl->has_dma && addr == R_DMA_LEN) ||
822         (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
823         (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) ||
824         (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_slaves)) {
825         return s->regs[addr];
826     } else {
827         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
828                       __func__, addr);
829         return -1;
830     }
831 }
832 
833 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
834 {
835     /* HCLK/1 .. HCLK/16 */
836     const uint8_t hclk_divisors[] = {
837         15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
838     };
839     int i;
840 
841     for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
842         if (hclk_mask == hclk_divisors[i]) {
843             return i + 1;
844         }
845     }
846 
847     qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
848     return 0;
849 }
850 
851 /*
852  * When doing calibration, the SPI clock rate in the CE0 Control
853  * Register and the read delay cycles in the Read Timing Compensation
854  * Register are set using bit[11:4] of the DMA Control Register.
855  */
856 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
857 {
858     uint8_t delay =
859         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
860     uint8_t hclk_mask =
861         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
862     uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
863     uint32_t hclk_shift = (hclk_div - 1) << 2;
864     uint8_t cs;
865 
866     /*
867      * The Read Timing Compensation Register values apply to all CS on
868      * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
869      */
870     if (hclk_div && hclk_div < 6) {
871         s->regs[s->r_timings] &= ~(0xf << hclk_shift);
872         s->regs[s->r_timings] |= delay << hclk_shift;
873     }
874 
875     /*
876      * TODO: compute the CS from the DMA address and the segment
877      * registers. This is not really a problem for now because the
878      * Timing Register values apply to all CS and software uses CS0 to
879      * do calibration.
880      */
881     cs = 0;
882     s->regs[s->r_ctrl0 + cs] &=
883         ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
884     s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
885 }
886 
887 /*
888  * Emulate read errors in the DMA Checksum Register for high
889  * frequencies and optimistic settings of the Read Timing Compensation
890  * Register. This will help in tuning the SPI timing calibration
891  * algorithm.
892  */
893 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
894 {
895     uint8_t delay =
896         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
897     uint8_t hclk_mask =
898         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
899 
900     /*
901      * Typical values of a palmetto-bmc machine.
902      */
903     switch (aspeed_smc_hclk_divisor(hclk_mask)) {
904     case 4 ... 16:
905         return false;
906     case 3: /* at least one HCLK cycle delay */
907         return (delay & 0x7) < 1;
908     case 2: /* at least two HCLK cycle delay */
909         return (delay & 0x7) < 2;
910     case 1: /* (> 100MHz) is above the max freq of the controller */
911         return true;
912     default:
913         g_assert_not_reached();
914     }
915 }
916 
917 /*
918  * Accumulate the result of the reads to provide a checksum that will
919  * be used to validate the read timing settings.
920  */
921 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
922 {
923     MemTxResult result;
924     uint32_t data;
925 
926     if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
927         qemu_log_mask(LOG_GUEST_ERROR,
928                       "%s: invalid direction for DMA checksum\n",  __func__);
929         return;
930     }
931 
932     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
933         aspeed_smc_dma_calibration(s);
934     }
935 
936     while (s->regs[R_DMA_LEN]) {
937         data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
938                                     MEMTXATTRS_UNSPECIFIED, &result);
939         if (result != MEMTX_OK) {
940             qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
941                           __func__, s->regs[R_DMA_FLASH_ADDR]);
942             return;
943         }
944 
945         /*
946          * When the DMA is on-going, the DMA registers are updated
947          * with the current working addresses and length.
948          */
949         s->regs[R_DMA_CHECKSUM] += data;
950         s->regs[R_DMA_FLASH_ADDR] += 4;
951         s->regs[R_DMA_LEN] -= 4;
952     }
953 
954     if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
955         s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
956     }
957 
958 }
959 
960 static void aspeed_smc_dma_rw(AspeedSMCState *s)
961 {
962     MemTxResult result;
963     uint32_t data;
964 
965     while (s->regs[R_DMA_LEN]) {
966         if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
967             data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
968                                         MEMTXATTRS_UNSPECIFIED, &result);
969             if (result != MEMTX_OK) {
970                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
971                               __func__, s->regs[R_DMA_DRAM_ADDR]);
972                 return;
973             }
974 
975             address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
976                                  data, MEMTXATTRS_UNSPECIFIED, &result);
977             if (result != MEMTX_OK) {
978                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
979                               __func__, s->regs[R_DMA_FLASH_ADDR]);
980                 return;
981             }
982         } else {
983             data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
984                                         MEMTXATTRS_UNSPECIFIED, &result);
985             if (result != MEMTX_OK) {
986                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
987                               __func__, s->regs[R_DMA_FLASH_ADDR]);
988                 return;
989             }
990 
991             address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
992                                  data, MEMTXATTRS_UNSPECIFIED, &result);
993             if (result != MEMTX_OK) {
994                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
995                               __func__, s->regs[R_DMA_DRAM_ADDR]);
996                 return;
997             }
998         }
999 
1000         /*
1001          * When the DMA is on-going, the DMA registers are updated
1002          * with the current working addresses and length.
1003          */
1004         s->regs[R_DMA_FLASH_ADDR] += 4;
1005         s->regs[R_DMA_DRAM_ADDR] += 4;
1006         s->regs[R_DMA_LEN] -= 4;
1007         s->regs[R_DMA_CHECKSUM] += data;
1008     }
1009 }
1010 
1011 static void aspeed_smc_dma_stop(AspeedSMCState *s)
1012 {
1013     /*
1014      * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1015      * engine is idle
1016      */
1017     s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1018     s->regs[R_DMA_CHECKSUM] = 0;
1019 
1020     /*
1021      * Lower the DMA irq in any case. The IRQ control register could
1022      * have been cleared before disabling the DMA.
1023      */
1024     qemu_irq_lower(s->irq);
1025 }
1026 
1027 /*
1028  * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1029  * can start even if the result of the previous was not collected.
1030  */
1031 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1032 {
1033     return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1034         !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1035 }
1036 
1037 static void aspeed_smc_dma_done(AspeedSMCState *s)
1038 {
1039     s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1040     if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1041         qemu_irq_raise(s->irq);
1042     }
1043 }
1044 
1045 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1046 {
1047     if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1048         s->regs[R_DMA_CTRL] = dma_ctrl;
1049 
1050         aspeed_smc_dma_stop(s);
1051         return;
1052     }
1053 
1054     if (aspeed_smc_dma_in_progress(s)) {
1055         qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n",  __func__);
1056         return;
1057     }
1058 
1059     s->regs[R_DMA_CTRL] = dma_ctrl;
1060 
1061     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1062         aspeed_smc_dma_checksum(s);
1063     } else {
1064         aspeed_smc_dma_rw(s);
1065     }
1066 
1067     aspeed_smc_dma_done(s);
1068 }
1069 
1070 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1071                              unsigned int size)
1072 {
1073     AspeedSMCState *s = ASPEED_SMC(opaque);
1074     uint32_t value = data;
1075 
1076     addr >>= 2;
1077 
1078     if (addr == s->r_conf ||
1079         addr == s->r_timings ||
1080         addr == s->r_ce_ctrl) {
1081         s->regs[addr] = value;
1082     } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1083         int cs = addr - s->r_ctrl0;
1084         s->regs[addr] = value;
1085         aspeed_smc_flash_update_cs(&s->flashes[cs]);
1086     } else if (addr >= R_SEG_ADDR0 &&
1087                addr < R_SEG_ADDR0 + s->ctrl->max_slaves) {
1088         int cs = addr - R_SEG_ADDR0;
1089 
1090         if (value != s->regs[R_SEG_ADDR0 + cs]) {
1091             aspeed_smc_flash_set_segment(s, cs, value);
1092         }
1093     } else if (addr == R_DUMMY_DATA) {
1094         s->regs[addr] = value & 0xff;
1095     } else if (addr == R_INTR_CTRL) {
1096         s->regs[addr] = value;
1097     } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1098         aspeed_smc_dma_ctrl(s, value);
1099     } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1100         s->regs[addr] = DMA_DRAM_ADDR(s, value);
1101     } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1102         s->regs[addr] = DMA_FLASH_ADDR(s, value);
1103     } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1104         s->regs[addr] = DMA_LENGTH(value);
1105     } else {
1106         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1107                       __func__, addr);
1108         return;
1109     }
1110 }
1111 
1112 static const MemoryRegionOps aspeed_smc_ops = {
1113     .read = aspeed_smc_read,
1114     .write = aspeed_smc_write,
1115     .endianness = DEVICE_LITTLE_ENDIAN,
1116     .valid.unaligned = true,
1117 };
1118 
1119 
1120 /*
1121  * Initialize the custom address spaces for DMAs
1122  */
1123 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1124 {
1125     char *name;
1126 
1127     if (!s->dram_mr) {
1128         error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1129         return;
1130     }
1131 
1132     name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1133     address_space_init(&s->flash_as, &s->mmio_flash, name);
1134     g_free(name);
1135 
1136     name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1137     address_space_init(&s->dram_as, s->dram_mr, name);
1138     g_free(name);
1139 }
1140 
1141 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1142 {
1143     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1144     AspeedSMCState *s = ASPEED_SMC(dev);
1145     AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1146     int i;
1147     char name[32];
1148     hwaddr offset = 0;
1149 
1150     s->ctrl = mc->ctrl;
1151 
1152     /* keep a copy under AspeedSMCState to speed up accesses */
1153     s->r_conf = s->ctrl->r_conf;
1154     s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1155     s->r_ctrl0 = s->ctrl->r_ctrl0;
1156     s->r_timings = s->ctrl->r_timings;
1157     s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1158 
1159     /* Enforce some real HW limits */
1160     if (s->num_cs > s->ctrl->max_slaves) {
1161         qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1162                       __func__, s->ctrl->max_slaves);
1163         s->num_cs = s->ctrl->max_slaves;
1164     }
1165 
1166     /* DMA irq. Keep it first for the initialization in the SoC */
1167     sysbus_init_irq(sbd, &s->irq);
1168 
1169     s->spi = ssi_create_bus(dev, "spi");
1170 
1171     /* Setup cs_lines for slaves */
1172     s->cs_lines = g_new0(qemu_irq, s->num_cs);
1173     ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
1174 
1175     for (i = 0; i < s->num_cs; ++i) {
1176         sysbus_init_irq(sbd, &s->cs_lines[i]);
1177     }
1178 
1179     /* The memory region for the controller registers */
1180     memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1181                           s->ctrl->name, s->ctrl->nregs * 4);
1182     sysbus_init_mmio(sbd, &s->mmio);
1183 
1184     /*
1185      * The container memory region representing the address space
1186      * window in which the flash modules are mapped. The size and
1187      * address depends on the SoC model and controller type.
1188      */
1189     snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1190 
1191     memory_region_init_io(&s->mmio_flash, OBJECT(s),
1192                           &aspeed_smc_flash_default_ops, s, name,
1193                           s->ctrl->flash_window_size);
1194     sysbus_init_mmio(sbd, &s->mmio_flash);
1195 
1196     s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_slaves);
1197 
1198     /*
1199      * Let's create a sub memory region for each possible slave. All
1200      * have a configurable memory segment in the overall flash mapping
1201      * window of the controller but, there is not necessarily a flash
1202      * module behind to handle the memory accesses. This depends on
1203      * the board configuration.
1204      */
1205     for (i = 0; i < s->ctrl->max_slaves; ++i) {
1206         AspeedSMCFlash *fl = &s->flashes[i];
1207 
1208         snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1209 
1210         fl->id = i;
1211         fl->controller = s;
1212         fl->size = s->ctrl->segments[i].size;
1213         memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1214                               fl, name, fl->size);
1215         memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1216         offset += fl->size;
1217     }
1218 
1219     /* DMA support */
1220     if (s->ctrl->has_dma) {
1221         aspeed_smc_dma_setup(s, errp);
1222     }
1223 }
1224 
1225 static const VMStateDescription vmstate_aspeed_smc = {
1226     .name = "aspeed.smc",
1227     .version_id = 2,
1228     .minimum_version_id = 2,
1229     .fields = (VMStateField[]) {
1230         VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1231         VMSTATE_UINT8(snoop_index, AspeedSMCState),
1232         VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1233         VMSTATE_END_OF_LIST()
1234     }
1235 };
1236 
1237 static Property aspeed_smc_properties[] = {
1238     DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1239     DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1240     DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
1241     DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1242                      TYPE_MEMORY_REGION, MemoryRegion *),
1243     DEFINE_PROP_END_OF_LIST(),
1244 };
1245 
1246 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1247 {
1248     DeviceClass *dc = DEVICE_CLASS(klass);
1249     AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1250 
1251     dc->realize = aspeed_smc_realize;
1252     dc->reset = aspeed_smc_reset;
1253     dc->props = aspeed_smc_properties;
1254     dc->vmsd = &vmstate_aspeed_smc;
1255     mc->ctrl = data;
1256 }
1257 
1258 static const TypeInfo aspeed_smc_info = {
1259     .name           = TYPE_ASPEED_SMC,
1260     .parent         = TYPE_SYS_BUS_DEVICE,
1261     .instance_size  = sizeof(AspeedSMCState),
1262     .class_size     = sizeof(AspeedSMCClass),
1263     .abstract       = true,
1264 };
1265 
1266 static void aspeed_smc_register_types(void)
1267 {
1268     int i;
1269 
1270     type_register_static(&aspeed_smc_info);
1271     for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1272         TypeInfo ti = {
1273             .name       = controllers[i].name,
1274             .parent     = TYPE_ASPEED_SMC,
1275             .class_init = aspeed_smc_class_init,
1276             .class_data = (void *)&controllers[i],
1277         };
1278         type_register(&ti);
1279     }
1280 }
1281 
1282 type_init(aspeed_smc_register_types)
1283