1 /*
2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
3 *
4 * Copyright (C) 2016 IBM Corp.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "hw/block/flash.h"
27 #include "hw/sysbus.h"
28 #include "migration/vmstate.h"
29 #include "qemu/log.h"
30 #include "qemu/module.h"
31 #include "qemu/error-report.h"
32 #include "qapi/error.h"
33 #include "qemu/units.h"
34 #include "trace.h"
35
36 #include "hw/irq.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/ssi/aspeed_smc.h"
39
40 /* CE Type Setting Register */
41 #define R_CONF (0x00 / 4)
42 #define CONF_LEGACY_DISABLE (1 << 31)
43 #define CONF_ENABLE_W4 20
44 #define CONF_ENABLE_W3 19
45 #define CONF_ENABLE_W2 18
46 #define CONF_ENABLE_W1 17
47 #define CONF_ENABLE_W0 16
48 #define CONF_FLASH_TYPE4 8
49 #define CONF_FLASH_TYPE3 6
50 #define CONF_FLASH_TYPE2 4
51 #define CONF_FLASH_TYPE1 2
52 #define CONF_FLASH_TYPE0 0
53 #define CONF_FLASH_TYPE_NOR 0x0
54 #define CONF_FLASH_TYPE_NAND 0x1
55 #define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */
56
57 /* CE Control Register */
58 #define R_CE_CTRL (0x04 / 4)
59 #define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
60 #define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
61 #define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
62 #define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
63 #define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
64
65 /* Interrupt Control and Status Register */
66 #define R_INTR_CTRL (0x08 / 4)
67 #define INTR_CTRL_DMA_STATUS (1 << 11)
68 #define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
69 #define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
70 #define INTR_CTRL_DMA_EN (1 << 3)
71 #define INTR_CTRL_CMD_ABORT_EN (1 << 2)
72 #define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
73
74 /* Command Control Register */
75 #define R_CE_CMD_CTRL (0x0C / 4)
76 #define CTRL_ADDR_BYTE0_DISABLE_SHIFT 4
77 #define CTRL_DATA_BYTE0_DISABLE_SHIFT 0
78
79 #define aspeed_smc_addr_byte_enabled(s, i) \
80 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
81 #define aspeed_smc_data_byte_enabled(s, i) \
82 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
83
84 /* CEx Control Register */
85 #define R_CTRL0 (0x10 / 4)
86 #define CTRL_IO_QPI (1 << 31)
87 #define CTRL_IO_QUAD_DATA (1 << 30)
88 #define CTRL_IO_DUAL_DATA (1 << 29)
89 #define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
90 #define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */
91 #define CTRL_CMD_SHIFT 16
92 #define CTRL_CMD_MASK 0xff
93 #define CTRL_DUMMY_HIGH_SHIFT 14
94 #define CTRL_AST2400_SPI_4BYTE (1 << 13)
95 #define CE_CTRL_CLOCK_FREQ_SHIFT 8
96 #define CE_CTRL_CLOCK_FREQ_MASK 0xf
97 #define CE_CTRL_CLOCK_FREQ(div) \
98 (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
99 #define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
100 #define CTRL_CE_STOP_ACTIVE (1 << 2)
101 #define CTRL_CMD_MODE_MASK 0x3
102 #define CTRL_READMODE 0x0
103 #define CTRL_FREADMODE 0x1
104 #define CTRL_WRITEMODE 0x2
105 #define CTRL_USERMODE 0x3
106 #define R_CTRL1 (0x14 / 4)
107 #define R_CTRL2 (0x18 / 4)
108 #define R_CTRL3 (0x1C / 4)
109 #define R_CTRL4 (0x20 / 4)
110
111 /* CEx Segment Address Register */
112 #define R_SEG_ADDR0 (0x30 / 4)
113 #define SEG_END_SHIFT 24 /* 8MB units */
114 #define SEG_END_MASK 0xff
115 #define SEG_START_SHIFT 16 /* address bit [A29-A23] */
116 #define SEG_START_MASK 0xff
117 #define R_SEG_ADDR1 (0x34 / 4)
118 #define R_SEG_ADDR2 (0x38 / 4)
119 #define R_SEG_ADDR3 (0x3C / 4)
120 #define R_SEG_ADDR4 (0x40 / 4)
121
122 /* Misc Control Register #1 */
123 #define R_MISC_CTRL1 (0x50 / 4)
124
125 /* SPI dummy cycle data */
126 #define R_DUMMY_DATA (0x54 / 4)
127
128 /* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */
129 #define R_FMC_WDT2_CTRL (0x64 / 4)
130 #define FMC_WDT2_CTRL_ALT_BOOT_MODE BIT(6) /* O: 2 chips 1: 1 chip */
131 #define FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5)
132 #define FMC_WDT2_CTRL_BOOT_SOURCE BIT(4) /* O: primary 1: alternate */
133 #define FMC_WDT2_CTRL_EN BIT(0)
134
135 /* DMA DRAM Side Address High Part (AST2700) */
136 #define R_DMA_DRAM_ADDR_HIGH (0x7c / 4)
137
138 /* DMA Control/Status Register */
139 #define R_DMA_CTRL (0x80 / 4)
140 #define DMA_CTRL_REQUEST (1 << 31)
141 #define DMA_CTRL_GRANT (1 << 30)
142 #define DMA_CTRL_DELAY_MASK 0xf
143 #define DMA_CTRL_DELAY_SHIFT 8
144 #define DMA_CTRL_FREQ_MASK 0xf
145 #define DMA_CTRL_FREQ_SHIFT 4
146 #define DMA_CTRL_CALIB (1 << 3)
147 #define DMA_CTRL_CKSUM (1 << 2)
148 #define DMA_CTRL_WRITE (1 << 1)
149 #define DMA_CTRL_ENABLE (1 << 0)
150
151 /* DMA Flash Side Address */
152 #define R_DMA_FLASH_ADDR (0x84 / 4)
153
154 /* DMA DRAM Side Address */
155 #define R_DMA_DRAM_ADDR (0x88 / 4)
156
157 /* DMA Length Register */
158 #define R_DMA_LEN (0x8C / 4)
159
160 /* Checksum Calculation Result */
161 #define R_DMA_CHECKSUM (0x90 / 4)
162
163 /* Read Timing Compensation Register */
164 #define R_TIMINGS (0x94 / 4)
165
166 /* SPI controller registers and bits (AST2400) */
167 #define R_SPI_CONF (0x00 / 4)
168 #define SPI_CONF_ENABLE_W0 0
169 #define R_SPI_CTRL0 (0x4 / 4)
170 #define R_SPI_MISC_CTRL (0x10 / 4)
171 #define R_SPI_TIMINGS (0x14 / 4)
172
173 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
174 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
175
176 /*
177 * DMA DRAM addresses should be 4 bytes aligned and the valid address
178 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
179 * 0x80000000 - 0xBFFFFFFF (AST2500)
180 *
181 * DMA flash addresses should be 4 bytes aligned and the valid address
182 * range is 0x20000000 - 0x2FFFFFFF.
183 *
184 * DMA length is from 4 bytes to 32MB (AST2500)
185 * 0: 4 bytes
186 * 0x1FFFFFC: 32M bytes
187 *
188 * DMA length is from 1 byte to 32MB (AST2600, AST10x0 and AST2700)
189 * 0: 1 byte
190 * 0x1FFFFFF: 32M bytes
191 */
192 #define DMA_DRAM_ADDR(asc, val) ((val) & (asc)->dma_dram_mask)
193 #define DMA_DRAM_ADDR_HIGH(val) ((val) & 0xf)
194 #define DMA_FLASH_ADDR(asc, val) ((val) & (asc)->dma_flash_mask)
195 #define DMA_LENGTH(val) ((val) & 0x01FFFFFF)
196
197 /* Flash opcodes. */
198 #define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
199
200 #define SNOOP_OFF 0xFF
201 #define SNOOP_START 0x0
202
203 /*
204 * Default segments mapping addresses and size for each peripheral per
205 * controller. These can be changed when board is initialized with the
206 * Segment Address Registers.
207 */
208 static const AspeedSegments aspeed_2500_spi1_segments[];
209 static const AspeedSegments aspeed_2500_spi2_segments[];
210
211 #define ASPEED_SMC_FEATURE_DMA 0x1
212 #define ASPEED_SMC_FEATURE_DMA_GRANT 0x2
213 #define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4
214 #define ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH 0x08
215
aspeed_smc_has_dma(const AspeedSMCClass * asc)216 static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc)
217 {
218 return !!(asc->features & ASPEED_SMC_FEATURE_DMA);
219 }
220
aspeed_smc_has_wdt_control(const AspeedSMCClass * asc)221 static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc)
222 {
223 return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL);
224 }
225
aspeed_smc_has_dma64(const AspeedSMCClass * asc)226 static inline bool aspeed_smc_has_dma64(const AspeedSMCClass *asc)
227 {
228 return !!(asc->features & ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH);
229 }
230
231 #define aspeed_smc_error(fmt, ...) \
232 qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__)
233
aspeed_smc_flash_overlap(const AspeedSMCState * s,const AspeedSegments * new,int cs)234 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
235 const AspeedSegments *new,
236 int cs)
237 {
238 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
239 AspeedSegments seg;
240 int i;
241
242 for (i = 0; i < asc->cs_num_max; i++) {
243 if (i == cs) {
244 continue;
245 }
246
247 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
248
249 if (new->addr + new->size > seg.addr &&
250 new->addr < seg.addr + seg.size) {
251 aspeed_smc_error("new segment CS%d [ 0x%"
252 HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
253 "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
254 cs, new->addr, new->addr + new->size,
255 i, seg.addr, seg.addr + seg.size);
256 return true;
257 }
258 }
259 return false;
260 }
261
aspeed_smc_flash_set_segment_region(AspeedSMCState * s,int cs,uint64_t regval)262 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
263 uint64_t regval)
264 {
265 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
266 AspeedSMCFlash *fl = &s->flashes[cs];
267 AspeedSegments seg;
268
269 asc->reg_to_segment(s, regval, &seg);
270
271 memory_region_transaction_begin();
272 memory_region_set_size(&fl->mmio, seg.size);
273 memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base);
274 memory_region_set_enabled(&fl->mmio, !!seg.size);
275 memory_region_transaction_commit();
276
277 if (asc->segment_addr_mask) {
278 regval &= asc->segment_addr_mask;
279 }
280
281 s->regs[R_SEG_ADDR0 + cs] = regval;
282 }
283
aspeed_smc_flash_set_segment(AspeedSMCState * s,int cs,uint64_t new)284 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
285 uint64_t new)
286 {
287 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
288 AspeedSegments seg;
289
290 asc->reg_to_segment(s, new, &seg);
291
292 trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
293
294 /* The start address of CS0 is read-only */
295 if (cs == 0 && seg.addr != asc->flash_window_base) {
296 aspeed_smc_error("Tried to change CS0 start address to 0x%"
297 HWADDR_PRIx, seg.addr);
298 seg.addr = asc->flash_window_base;
299 new = asc->segment_to_reg(s, &seg);
300 }
301
302 /*
303 * The end address of the AST2500 spi controllers is also
304 * read-only.
305 */
306 if ((asc->segments == aspeed_2500_spi1_segments ||
307 asc->segments == aspeed_2500_spi2_segments) &&
308 cs == asc->cs_num_max &&
309 seg.addr + seg.size != asc->segments[cs].addr +
310 asc->segments[cs].size) {
311 aspeed_smc_error("Tried to change CS%d end address to 0x%"
312 HWADDR_PRIx, cs, seg.addr + seg.size);
313 seg.size = asc->segments[cs].addr + asc->segments[cs].size -
314 seg.addr;
315 new = asc->segment_to_reg(s, &seg);
316 }
317
318 /* Keep the segment in the overall flash window */
319 if (seg.size &&
320 (seg.addr + seg.size <= asc->flash_window_base ||
321 seg.addr > asc->flash_window_base + asc->flash_window_size)) {
322 aspeed_smc_error("new segment for CS%d is invalid : "
323 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
324 cs, seg.addr, seg.addr + seg.size);
325 return;
326 }
327
328 /* Check start address vs. alignment */
329 if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
330 aspeed_smc_error("new segment for CS%d is not "
331 "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
332 cs, seg.addr, seg.addr + seg.size);
333 }
334
335 /* And segments should not overlap (in the specs) */
336 aspeed_smc_flash_overlap(s, &seg, cs);
337
338 /* All should be fine now to move the region */
339 aspeed_smc_flash_set_segment_region(s, cs, new);
340 }
341
aspeed_smc_flash_default_read(void * opaque,hwaddr addr,unsigned size)342 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
343 unsigned size)
344 {
345 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u", addr, size);
346 return 0;
347 }
348
aspeed_smc_flash_default_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)349 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
350 uint64_t data, unsigned size)
351 {
352 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64,
353 addr, size, data);
354 }
355
356 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
357 .read = aspeed_smc_flash_default_read,
358 .write = aspeed_smc_flash_default_write,
359 .endianness = DEVICE_LITTLE_ENDIAN,
360 .valid = {
361 .min_access_size = 1,
362 .max_access_size = 8,
363 },
364 };
365
aspeed_smc_flash_mode(const AspeedSMCFlash * fl)366 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
367 {
368 const AspeedSMCState *s = fl->controller;
369
370 return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK;
371 }
372
aspeed_smc_is_writable(const AspeedSMCFlash * fl)373 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
374 {
375 const AspeedSMCState *s = fl->controller;
376
377 return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs));
378 }
379
aspeed_smc_flash_cmd(const AspeedSMCFlash * fl)380 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
381 {
382 const AspeedSMCState *s = fl->controller;
383 int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
384
385 /*
386 * In read mode, the default SPI command is READ (0x3). In other
387 * modes, the command should necessarily be defined
388 *
389 * TODO: add support for READ4 (0x13) on AST2600
390 */
391 if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
392 cmd = SPI_OP_READ;
393 }
394
395 if (!cmd) {
396 aspeed_smc_error("no command defined for mode %d",
397 aspeed_smc_flash_mode(fl));
398 }
399
400 return cmd;
401 }
402
aspeed_smc_flash_addr_width(const AspeedSMCFlash * fl)403 static inline int aspeed_smc_flash_addr_width(const AspeedSMCFlash *fl)
404 {
405 const AspeedSMCState *s = fl->controller;
406 AspeedSMCClass *asc = fl->asc;
407
408 if (asc->addr_width) {
409 return asc->addr_width(s);
410 } else {
411 return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs)) ? 4 : 3;
412 }
413 }
414
aspeed_smc_flash_do_select(AspeedSMCFlash * fl,bool unselect)415 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
416 {
417 AspeedSMCState *s = fl->controller;
418
419 trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : "");
420 s->unselect = unselect;
421 qemu_set_irq(s->cs_lines[fl->cs], unselect);
422 }
423
aspeed_smc_flash_select(AspeedSMCFlash * fl)424 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
425 {
426 aspeed_smc_flash_do_select(fl, false);
427 }
428
aspeed_smc_flash_unselect(AspeedSMCFlash * fl)429 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
430 {
431 aspeed_smc_flash_do_select(fl, true);
432 }
433
aspeed_smc_check_segment_addr(const AspeedSMCFlash * fl,uint32_t addr)434 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
435 uint32_t addr)
436 {
437 const AspeedSMCState *s = fl->controller;
438 AspeedSMCClass *asc = fl->asc;
439 AspeedSegments seg;
440
441 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg);
442 if ((addr % seg.size) != addr) {
443 aspeed_smc_error("invalid address 0x%08x for CS%d segment : "
444 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
445 addr, fl->cs, seg.addr, seg.addr + seg.size);
446 addr %= seg.size;
447 }
448
449 return addr;
450 }
451
aspeed_smc_flash_dummies(const AspeedSMCFlash * fl)452 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
453 {
454 const AspeedSMCState *s = fl->controller;
455 uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs];
456 uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
457 uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
458 uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
459
460 if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
461 dummies /= 2;
462 }
463
464 return dummies;
465 }
466
aspeed_smc_flash_setup(AspeedSMCFlash * fl,uint32_t addr)467 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
468 {
469 const AspeedSMCState *s = fl->controller;
470 uint8_t cmd = aspeed_smc_flash_cmd(fl);
471 int i = aspeed_smc_flash_addr_width(fl);
472
473 /* Flash access can not exceed CS segment */
474 addr = aspeed_smc_check_segment_addr(fl, addr);
475
476 ssi_transfer(s->spi, cmd);
477 while (i--) {
478 if (aspeed_smc_addr_byte_enabled(s, i)) {
479 ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
480 }
481 }
482
483 /*
484 * Use fake transfers to model dummy bytes. The value should
485 * be configured to some non-zero value in fast read mode and
486 * zero in read mode. But, as the HW allows inconsistent
487 * settings, let's check for fast read mode.
488 */
489 if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
490 for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
491 ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
492 }
493 }
494 }
495
aspeed_smc_flash_read(void * opaque,hwaddr addr,unsigned size)496 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
497 {
498 AspeedSMCFlash *fl = opaque;
499 AspeedSMCState *s = fl->controller;
500 uint64_t ret = 0;
501 int i;
502
503 switch (aspeed_smc_flash_mode(fl)) {
504 case CTRL_USERMODE:
505 for (i = 0; i < size; i++) {
506 ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
507 }
508 break;
509 case CTRL_READMODE:
510 case CTRL_FREADMODE:
511 aspeed_smc_flash_select(fl);
512 aspeed_smc_flash_setup(fl, addr);
513
514 for (i = 0; i < size; i++) {
515 ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
516 }
517
518 aspeed_smc_flash_unselect(fl);
519 break;
520 default:
521 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
522 }
523
524 trace_aspeed_smc_flash_read(fl->cs, addr, size, ret,
525 aspeed_smc_flash_mode(fl));
526 return ret;
527 }
528
529 /*
530 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
531 * common include header.
532 */
533 typedef enum {
534 READ = 0x3, READ_4 = 0x13,
535 FAST_READ = 0xb, FAST_READ_4 = 0x0c,
536 DOR = 0x3b, DOR_4 = 0x3c,
537 QOR = 0x6b, QOR_4 = 0x6c,
538 DIOR = 0xbb, DIOR_4 = 0xbc,
539 QIOR = 0xeb, QIOR_4 = 0xec,
540
541 PP = 0x2, PP_4 = 0x12,
542 DPP = 0xa2,
543 QPP = 0x32, QPP_4 = 0x34,
544 } FlashCMD;
545
aspeed_smc_num_dummies(uint8_t command)546 static int aspeed_smc_num_dummies(uint8_t command)
547 {
548 switch (command) { /* check for dummies */
549 case READ: /* no dummy bytes/cycles */
550 case PP:
551 case DPP:
552 case QPP:
553 case READ_4:
554 case PP_4:
555 case QPP_4:
556 return 0;
557 case FAST_READ:
558 case DOR:
559 case QOR:
560 case FAST_READ_4:
561 case DOR_4:
562 case QOR_4:
563 return 1;
564 case DIOR:
565 case DIOR_4:
566 return 2;
567 case QIOR:
568 case QIOR_4:
569 return 4;
570 default:
571 return -1;
572 }
573 }
574
aspeed_smc_do_snoop(AspeedSMCFlash * fl,uint64_t data,unsigned size)575 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
576 unsigned size)
577 {
578 AspeedSMCState *s = fl->controller;
579 uint8_t addr_width = aspeed_smc_flash_addr_width(fl);
580
581 trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies,
582 (uint8_t) data & 0xff);
583
584 if (s->snoop_index == SNOOP_OFF) {
585 return false; /* Do nothing */
586
587 } else if (s->snoop_index == SNOOP_START) {
588 uint8_t cmd = data & 0xff;
589 int ndummies = aspeed_smc_num_dummies(cmd);
590
591 /*
592 * No dummy cycles are expected with the current command. Turn
593 * off snooping and let the transfer proceed normally.
594 */
595 if (ndummies <= 0) {
596 s->snoop_index = SNOOP_OFF;
597 return false;
598 }
599
600 s->snoop_dummies = ndummies * 8;
601
602 } else if (s->snoop_index >= addr_width + 1) {
603
604 /* The SPI transfer has reached the dummy cycles sequence */
605 for (; s->snoop_dummies; s->snoop_dummies--) {
606 ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
607 }
608
609 /* If no more dummy cycles are expected, turn off snooping */
610 if (!s->snoop_dummies) {
611 s->snoop_index = SNOOP_OFF;
612 } else {
613 s->snoop_index += size;
614 }
615
616 /*
617 * Dummy cycles have been faked already. Ignore the current
618 * SPI transfer
619 */
620 return true;
621 }
622
623 s->snoop_index += size;
624 return false;
625 }
626
aspeed_smc_flash_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)627 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
628 unsigned size)
629 {
630 AspeedSMCFlash *fl = opaque;
631 AspeedSMCState *s = fl->controller;
632 int i;
633
634 trace_aspeed_smc_flash_write(fl->cs, addr, size, data,
635 aspeed_smc_flash_mode(fl));
636
637 if (!aspeed_smc_is_writable(fl)) {
638 aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr);
639 return;
640 }
641
642 switch (aspeed_smc_flash_mode(fl)) {
643 case CTRL_USERMODE:
644 if (aspeed_smc_do_snoop(fl, data, size)) {
645 break;
646 }
647
648 for (i = 0; i < size; i++) {
649 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
650 }
651 break;
652 case CTRL_WRITEMODE:
653 aspeed_smc_flash_select(fl);
654 aspeed_smc_flash_setup(fl, addr);
655
656 for (i = 0; i < size; i++) {
657 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
658 }
659
660 aspeed_smc_flash_unselect(fl);
661 break;
662 default:
663 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
664 }
665 }
666
667 static const MemoryRegionOps aspeed_smc_flash_ops = {
668 .read = aspeed_smc_flash_read,
669 .write = aspeed_smc_flash_write,
670 .endianness = DEVICE_LITTLE_ENDIAN,
671 .valid = {
672 .min_access_size = 1,
673 .max_access_size = 8,
674 },
675 };
676
aspeed_smc_flash_update_ctrl(AspeedSMCFlash * fl,uint32_t value)677 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
678 {
679 AspeedSMCState *s = fl->controller;
680 bool unselect = false;
681 uint32_t old_mode;
682 uint32_t new_mode;
683
684 old_mode = s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK;
685 new_mode = value & CTRL_CMD_MODE_MASK;
686
687 if (old_mode == CTRL_USERMODE) {
688 if (new_mode != CTRL_USERMODE) {
689 unselect = true;
690 }
691
692 /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
693 if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) &&
694 value & CTRL_CE_STOP_ACTIVE) {
695 unselect = true;
696 }
697 } else {
698 if (new_mode != CTRL_USERMODE) {
699 unselect = true;
700 }
701 }
702
703 s->regs[s->r_ctrl0 + fl->cs] = value;
704
705 if (unselect != s->unselect) {
706 s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
707 aspeed_smc_flash_do_select(fl, unselect);
708 }
709 }
710
aspeed_smc_reset(DeviceState * d)711 static void aspeed_smc_reset(DeviceState *d)
712 {
713 AspeedSMCState *s = ASPEED_SMC(d);
714 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
715 int i;
716
717 if (asc->resets) {
718 memcpy(s->regs, asc->resets, sizeof s->regs);
719 } else {
720 memset(s->regs, 0, sizeof s->regs);
721 }
722
723 for (i = 0; i < asc->cs_num_max; i++) {
724 DeviceState *dev = ssi_get_cs(s->spi, i);
725 if (dev) {
726 Object *o = OBJECT(dev);
727
728 if (!object_dynamic_cast(o, TYPE_M25P80)) {
729 warn_report("Aspeed SMC %s.%d : Invalid %s device type",
730 BUS(s->spi)->name, i, object_get_typename(o));
731 continue;
732 }
733
734 qemu_irq cs_line = qdev_get_gpio_in_named(dev, SSI_GPIO_CS, 0);
735 qdev_connect_gpio_out_named(DEVICE(s), "cs", i, cs_line);
736 }
737 }
738
739 /* Unselect all peripherals */
740 for (i = 0; i < asc->cs_num_max; ++i) {
741 s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
742 qemu_set_irq(s->cs_lines[i], true);
743 }
744
745 s->unselect = true;
746
747 /* setup the default segment register values and regions for all */
748 for (i = 0; i < asc->cs_num_max; ++i) {
749 aspeed_smc_flash_set_segment_region(s, i,
750 asc->segment_to_reg(s, &asc->segments[i]));
751 }
752
753 s->snoop_index = SNOOP_OFF;
754 s->snoop_dummies = 0;
755 }
756
aspeed_smc_read(void * opaque,hwaddr addr,unsigned int size)757 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
758 {
759 AspeedSMCState *s = ASPEED_SMC(opaque);
760 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque);
761
762 addr >>= 2;
763
764 if (addr == s->r_conf ||
765 (addr >= s->r_timings &&
766 addr < s->r_timings + asc->nregs_timings) ||
767 addr == s->r_ce_ctrl ||
768 addr == R_CE_CMD_CTRL ||
769 addr == R_INTR_CTRL ||
770 addr == R_DUMMY_DATA ||
771 (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) ||
772 (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) ||
773 (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) ||
774 (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) ||
775 (aspeed_smc_has_dma(asc) && aspeed_smc_has_dma64(asc) &&
776 addr == R_DMA_DRAM_ADDR_HIGH) ||
777 (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) ||
778 (aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) ||
779 (addr >= R_SEG_ADDR0 &&
780 addr < R_SEG_ADDR0 + asc->cs_num_max) ||
781 (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max)) {
782
783 trace_aspeed_smc_read(addr << 2, size, s->regs[addr]);
784
785 return s->regs[addr];
786 } else {
787 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
788 __func__, addr);
789 return -1;
790 }
791 }
792
aspeed_smc_hclk_divisor(uint8_t hclk_mask)793 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
794 {
795 /* HCLK/1 .. HCLK/16 */
796 const uint8_t hclk_divisors[] = {
797 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
798 };
799 int i;
800
801 for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
802 if (hclk_mask == hclk_divisors[i]) {
803 return i + 1;
804 }
805 }
806
807 g_assert_not_reached();
808 }
809
810 /*
811 * When doing calibration, the SPI clock rate in the CE0 Control
812 * Register and the read delay cycles in the Read Timing Compensation
813 * Register are set using bit[11:4] of the DMA Control Register.
814 */
aspeed_smc_dma_calibration(AspeedSMCState * s)815 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
816 {
817 uint8_t delay =
818 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
819 uint8_t hclk_mask =
820 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
821 uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
822 uint32_t hclk_shift = (hclk_div - 1) << 2;
823 uint8_t cs;
824
825 /*
826 * The Read Timing Compensation Register values apply to all CS on
827 * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
828 */
829 if (hclk_div && hclk_div < 6) {
830 s->regs[s->r_timings] &= ~(0xf << hclk_shift);
831 s->regs[s->r_timings] |= delay << hclk_shift;
832 }
833
834 /*
835 * TODO: compute the CS from the DMA address and the segment
836 * registers. This is not really a problem for now because the
837 * Timing Register values apply to all CS and software uses CS0 to
838 * do calibration.
839 */
840 cs = 0;
841 s->regs[s->r_ctrl0 + cs] &=
842 ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
843 s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
844 }
845
846 /*
847 * Emulate read errors in the DMA Checksum Register for high
848 * frequencies and optimistic settings of the Read Timing Compensation
849 * Register. This will help in tuning the SPI timing calibration
850 * algorithm.
851 */
aspeed_smc_inject_read_failure(AspeedSMCState * s)852 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
853 {
854 uint8_t delay =
855 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
856 uint8_t hclk_mask =
857 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
858
859 /*
860 * Typical values of a palmetto-bmc machine.
861 */
862 switch (aspeed_smc_hclk_divisor(hclk_mask)) {
863 case 4 ... 16:
864 return false;
865 case 3: /* at least one HCLK cycle delay */
866 return (delay & 0x7) < 1;
867 case 2: /* at least two HCLK cycle delay */
868 return (delay & 0x7) < 2;
869 case 1: /* (> 100MHz) is above the max freq of the controller */
870 return true;
871 default:
872 g_assert_not_reached();
873 }
874 }
875
aspeed_smc_dma_dram_addr(AspeedSMCState * s)876 static uint64_t aspeed_smc_dma_dram_addr(AspeedSMCState *s)
877 {
878 return s->regs[R_DMA_DRAM_ADDR] |
879 ((uint64_t) s->regs[R_DMA_DRAM_ADDR_HIGH] << 32);
880 }
881
aspeed_smc_dma_len(AspeedSMCState * s)882 static uint32_t aspeed_smc_dma_len(AspeedSMCState *s)
883 {
884 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
885
886 return QEMU_ALIGN_UP(s->regs[R_DMA_LEN] + asc->dma_start_length, 4);
887 }
888
889 /*
890 * Accumulate the result of the reads to provide a checksum that will
891 * be used to validate the read timing settings.
892 */
aspeed_smc_dma_checksum(AspeedSMCState * s)893 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
894 {
895 MemTxResult result;
896 uint32_t dma_len;
897 uint32_t data;
898
899 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
900 aspeed_smc_error("invalid direction for DMA checksum");
901 return;
902 }
903
904 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
905 aspeed_smc_dma_calibration(s);
906 }
907
908 dma_len = aspeed_smc_dma_len(s);
909
910 while (dma_len) {
911 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
912 MEMTXATTRS_UNSPECIFIED, &result);
913 if (result != MEMTX_OK) {
914 aspeed_smc_error("Flash read failed @%08x",
915 s->regs[R_DMA_FLASH_ADDR]);
916 return;
917 }
918 trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
919
920 /*
921 * When the DMA is on-going, the DMA registers are updated
922 * with the current working addresses and length.
923 */
924 s->regs[R_DMA_CHECKSUM] += data;
925 s->regs[R_DMA_FLASH_ADDR] += 4;
926 dma_len -= 4;
927 s->regs[R_DMA_LEN] = dma_len;
928 }
929
930 if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
931 s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
932 }
933
934 }
935
aspeed_smc_dma_rw(AspeedSMCState * s)936 static void aspeed_smc_dma_rw(AspeedSMCState *s)
937 {
938 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
939 uint64_t dma_dram_offset;
940 uint64_t dma_dram_addr;
941 MemTxResult result;
942 uint32_t dma_len;
943 uint32_t data;
944
945 dma_len = aspeed_smc_dma_len(s);
946 dma_dram_addr = aspeed_smc_dma_dram_addr(s);
947
948 if (aspeed_smc_has_dma64(asc)) {
949 dma_dram_offset = dma_dram_addr - s->dram_base;
950 } else {
951 dma_dram_offset = dma_dram_addr;
952 }
953
954 trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
955 "write" : "read",
956 s->regs[R_DMA_FLASH_ADDR],
957 dma_dram_offset,
958 dma_len);
959 while (dma_len) {
960 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
961 data = address_space_ldl_le(&s->dram_as, dma_dram_offset,
962 MEMTXATTRS_UNSPECIFIED, &result);
963 if (result != MEMTX_OK) {
964 aspeed_smc_error("DRAM read failed @%" PRIx64,
965 dma_dram_offset);
966 return;
967 }
968
969 address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
970 data, MEMTXATTRS_UNSPECIFIED, &result);
971 if (result != MEMTX_OK) {
972 aspeed_smc_error("Flash write failed @%08x",
973 s->regs[R_DMA_FLASH_ADDR]);
974 return;
975 }
976 } else {
977 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
978 MEMTXATTRS_UNSPECIFIED, &result);
979 if (result != MEMTX_OK) {
980 aspeed_smc_error("Flash read failed @%08x",
981 s->regs[R_DMA_FLASH_ADDR]);
982 return;
983 }
984
985 address_space_stl_le(&s->dram_as, dma_dram_offset,
986 data, MEMTXATTRS_UNSPECIFIED, &result);
987 if (result != MEMTX_OK) {
988 aspeed_smc_error("DRAM write failed @%" PRIx64,
989 dma_dram_offset);
990 return;
991 }
992 }
993
994 /*
995 * When the DMA is on-going, the DMA registers are updated
996 * with the current working addresses and length.
997 */
998 dma_dram_offset += 4;
999 dma_dram_addr += 4;
1000
1001 s->regs[R_DMA_DRAM_ADDR_HIGH] = dma_dram_addr >> 32;
1002 s->regs[R_DMA_DRAM_ADDR] = dma_dram_addr & 0xffffffff;
1003 s->regs[R_DMA_FLASH_ADDR] += 4;
1004 dma_len -= 4;
1005 s->regs[R_DMA_LEN] = dma_len;
1006 s->regs[R_DMA_CHECKSUM] += data;
1007 }
1008 }
1009
aspeed_smc_dma_stop(AspeedSMCState * s)1010 static void aspeed_smc_dma_stop(AspeedSMCState *s)
1011 {
1012 /*
1013 * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1014 * engine is idle
1015 */
1016 s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1017 s->regs[R_DMA_CHECKSUM] = 0;
1018
1019 /*
1020 * Lower the DMA irq in any case. The IRQ control register could
1021 * have been cleared before disabling the DMA.
1022 */
1023 qemu_irq_lower(s->irq);
1024 }
1025
1026 /*
1027 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1028 * can start even if the result of the previous was not collected.
1029 */
aspeed_smc_dma_in_progress(AspeedSMCState * s)1030 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1031 {
1032 return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1033 !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1034 }
1035
aspeed_smc_dma_done(AspeedSMCState * s)1036 static void aspeed_smc_dma_done(AspeedSMCState *s)
1037 {
1038 s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1039 if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1040 qemu_irq_raise(s->irq);
1041 }
1042 }
1043
aspeed_smc_dma_ctrl(AspeedSMCState * s,uint32_t dma_ctrl)1044 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1045 {
1046 if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1047 s->regs[R_DMA_CTRL] = dma_ctrl;
1048
1049 aspeed_smc_dma_stop(s);
1050 return;
1051 }
1052
1053 if (aspeed_smc_dma_in_progress(s)) {
1054 aspeed_smc_error("DMA in progress !");
1055 return;
1056 }
1057
1058 s->regs[R_DMA_CTRL] = dma_ctrl;
1059
1060 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1061 aspeed_smc_dma_checksum(s);
1062 } else {
1063 aspeed_smc_dma_rw(s);
1064 }
1065
1066 aspeed_smc_dma_done(s);
1067 }
1068
aspeed_smc_dma_granted(AspeedSMCState * s)1069 static inline bool aspeed_smc_dma_granted(AspeedSMCState *s)
1070 {
1071 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1072
1073 if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) {
1074 return true;
1075 }
1076
1077 if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) {
1078 aspeed_smc_error("DMA not granted");
1079 return false;
1080 }
1081
1082 return true;
1083 }
1084
aspeed_2600_smc_dma_ctrl(AspeedSMCState * s,uint32_t dma_ctrl)1085 static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1086 {
1087 /* Preserve DMA bits */
1088 dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1089
1090 if (dma_ctrl == 0xAEED0000) {
1091 /* automatically grant request */
1092 s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1093 return;
1094 }
1095
1096 /* clear request */
1097 if (dma_ctrl == 0xDEEA0000) {
1098 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1099 return;
1100 }
1101
1102 if (!aspeed_smc_dma_granted(s)) {
1103 aspeed_smc_error("DMA not granted");
1104 return;
1105 }
1106
1107 aspeed_smc_dma_ctrl(s, dma_ctrl);
1108 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1109 }
1110
aspeed_smc_write(void * opaque,hwaddr addr,uint64_t data,unsigned int size)1111 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1112 unsigned int size)
1113 {
1114 AspeedSMCState *s = ASPEED_SMC(opaque);
1115 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1116 uint32_t value = data;
1117
1118 trace_aspeed_smc_write(addr, size, data);
1119
1120 addr >>= 2;
1121
1122 if (addr == s->r_conf ||
1123 (addr >= s->r_timings &&
1124 addr < s->r_timings + asc->nregs_timings) ||
1125 addr == s->r_ce_ctrl) {
1126 s->regs[addr] = value;
1127 } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max) {
1128 int cs = addr - s->r_ctrl0;
1129 aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1130 } else if (addr >= R_SEG_ADDR0 &&
1131 addr < R_SEG_ADDR0 + asc->cs_num_max) {
1132 int cs = addr - R_SEG_ADDR0;
1133
1134 if (value != s->regs[R_SEG_ADDR0 + cs]) {
1135 aspeed_smc_flash_set_segment(s, cs, value);
1136 }
1137 } else if (addr == R_CE_CMD_CTRL) {
1138 s->regs[addr] = value & 0xff;
1139 } else if (addr == R_DUMMY_DATA) {
1140 s->regs[addr] = value & 0xff;
1141 } else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) {
1142 s->regs[addr] = value & FMC_WDT2_CTRL_EN;
1143 } else if (addr == R_INTR_CTRL) {
1144 s->regs[addr] = value;
1145 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) {
1146 asc->dma_ctrl(s, value);
1147 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR &&
1148 aspeed_smc_dma_granted(s)) {
1149 s->regs[addr] = DMA_DRAM_ADDR(asc, value);
1150 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR &&
1151 aspeed_smc_dma_granted(s)) {
1152 s->regs[addr] = DMA_FLASH_ADDR(asc, value);
1153 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN &&
1154 aspeed_smc_dma_granted(s)) {
1155 s->regs[addr] = DMA_LENGTH(value);
1156 } else if (aspeed_smc_has_dma(asc) && aspeed_smc_has_dma64(asc) &&
1157 addr == R_DMA_DRAM_ADDR_HIGH) {
1158 s->regs[addr] = DMA_DRAM_ADDR_HIGH(value);
1159 } else {
1160 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1161 __func__, addr);
1162 return;
1163 }
1164 }
1165
1166 static const MemoryRegionOps aspeed_smc_ops = {
1167 .read = aspeed_smc_read,
1168 .write = aspeed_smc_write,
1169 .endianness = DEVICE_LITTLE_ENDIAN,
1170 };
1171
aspeed_smc_instance_init(Object * obj)1172 static void aspeed_smc_instance_init(Object *obj)
1173 {
1174 AspeedSMCState *s = ASPEED_SMC(obj);
1175 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1176 int i;
1177
1178 for (i = 0; i < asc->cs_num_max; i++) {
1179 object_initialize_child(obj, "flash[*]", &s->flashes[i],
1180 TYPE_ASPEED_SMC_FLASH);
1181 }
1182 }
1183
1184 /*
1185 * Initialize the custom address spaces for DMAs
1186 */
aspeed_smc_dma_setup(AspeedSMCState * s,Error ** errp)1187 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1188 {
1189 if (!s->dram_mr) {
1190 error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1191 return;
1192 }
1193
1194 address_space_init(&s->flash_as, &s->mmio_flash,
1195 TYPE_ASPEED_SMC ".dma-flash");
1196 address_space_init(&s->dram_as, s->dram_mr,
1197 TYPE_ASPEED_SMC ".dma-dram");
1198 }
1199
aspeed_smc_realize(DeviceState * dev,Error ** errp)1200 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1201 {
1202 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1203 AspeedSMCState *s = ASPEED_SMC(dev);
1204 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1205 int i;
1206 hwaddr offset = 0;
1207
1208 /* keep a copy under AspeedSMCState to speed up accesses */
1209 s->r_conf = asc->r_conf;
1210 s->r_ce_ctrl = asc->r_ce_ctrl;
1211 s->r_ctrl0 = asc->r_ctrl0;
1212 s->r_timings = asc->r_timings;
1213 s->conf_enable_w0 = asc->conf_enable_w0;
1214
1215 /* DMA irq. Keep it first for the initialization in the SoC */
1216 sysbus_init_irq(sbd, &s->irq);
1217
1218 s->spi = ssi_create_bus(dev, NULL);
1219
1220 /* Setup cs_lines for peripherals */
1221 s->cs_lines = g_new0(qemu_irq, asc->cs_num_max);
1222 qdev_init_gpio_out_named(DEVICE(s), s->cs_lines, "cs", asc->cs_num_max);
1223
1224 /* The memory region for the controller registers */
1225 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1226 TYPE_ASPEED_SMC, asc->nregs * 4);
1227 sysbus_init_mmio(sbd, &s->mmio);
1228
1229 /*
1230 * The container memory region representing the address space
1231 * window in which the flash modules are mapped. The size and
1232 * address depends on the SoC model and controller type.
1233 */
1234 memory_region_init(&s->mmio_flash_container, OBJECT(s),
1235 TYPE_ASPEED_SMC ".container",
1236 asc->flash_window_size);
1237 sysbus_init_mmio(sbd, &s->mmio_flash_container);
1238
1239 memory_region_init_io(&s->mmio_flash, OBJECT(s),
1240 &aspeed_smc_flash_default_ops, s,
1241 TYPE_ASPEED_SMC ".flash",
1242 asc->flash_window_size);
1243 memory_region_add_subregion(&s->mmio_flash_container, 0x0,
1244 &s->mmio_flash);
1245
1246 /*
1247 * Let's create a sub memory region for each possible peripheral. All
1248 * have a configurable memory segment in the overall flash mapping
1249 * window of the controller but, there is not necessarily a flash
1250 * module behind to handle the memory accesses. This depends on
1251 * the board configuration.
1252 */
1253 for (i = 0; i < asc->cs_num_max; ++i) {
1254 AspeedSMCFlash *fl = &s->flashes[i];
1255
1256 if (!object_property_set_link(OBJECT(fl), "controller", OBJECT(s),
1257 errp)) {
1258 return;
1259 }
1260 if (!object_property_set_uint(OBJECT(fl), "cs", i, errp)) {
1261 return;
1262 }
1263 if (!sysbus_realize(SYS_BUS_DEVICE(fl), errp)) {
1264 return;
1265 }
1266
1267 memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1268 offset += asc->segments[i].size;
1269 }
1270
1271 /* DMA support */
1272 if (aspeed_smc_has_dma(asc)) {
1273 aspeed_smc_dma_setup(s, errp);
1274 }
1275 }
1276
1277 static const VMStateDescription vmstate_aspeed_smc = {
1278 .name = "aspeed.smc",
1279 .version_id = 3,
1280 .minimum_version_id = 2,
1281 .fields = (const VMStateField[]) {
1282 VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1283 VMSTATE_UINT8(snoop_index, AspeedSMCState),
1284 VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1285 VMSTATE_BOOL_V(unselect, AspeedSMCState, 3),
1286 VMSTATE_END_OF_LIST()
1287 }
1288 };
1289
1290 static const Property aspeed_smc_properties[] = {
1291 DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1292 DEFINE_PROP_UINT64("dram-base", AspeedSMCState, dram_base, 0),
1293 DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1294 TYPE_MEMORY_REGION, MemoryRegion *),
1295 };
1296
aspeed_smc_class_init(ObjectClass * klass,const void * data)1297 static void aspeed_smc_class_init(ObjectClass *klass, const void *data)
1298 {
1299 DeviceClass *dc = DEVICE_CLASS(klass);
1300
1301 dc->realize = aspeed_smc_realize;
1302 device_class_set_legacy_reset(dc, aspeed_smc_reset);
1303 device_class_set_props(dc, aspeed_smc_properties);
1304 dc->vmsd = &vmstate_aspeed_smc;
1305 }
1306
1307 static const TypeInfo aspeed_smc_info = {
1308 .name = TYPE_ASPEED_SMC,
1309 .parent = TYPE_SYS_BUS_DEVICE,
1310 .instance_init = aspeed_smc_instance_init,
1311 .instance_size = sizeof(AspeedSMCState),
1312 .class_size = sizeof(AspeedSMCClass),
1313 .class_init = aspeed_smc_class_init,
1314 .abstract = true,
1315 };
1316
aspeed_smc_flash_realize(DeviceState * dev,Error ** errp)1317 static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp)
1318 {
1319 AspeedSMCFlash *s = ASPEED_SMC_FLASH(dev);
1320 g_autofree char *name = g_strdup_printf(TYPE_ASPEED_SMC_FLASH ".%d", s->cs);
1321
1322 if (!s->controller) {
1323 error_setg(errp, TYPE_ASPEED_SMC_FLASH ": 'controller' link not set");
1324 return;
1325 }
1326
1327 s->asc = ASPEED_SMC_GET_CLASS(s->controller);
1328
1329 /*
1330 * Use the default segment value to size the memory region. This
1331 * can be changed by FW at runtime.
1332 */
1333 memory_region_init_io(&s->mmio, OBJECT(s), s->asc->reg_ops,
1334 s, name, s->asc->segments[s->cs].size);
1335 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
1336 }
1337
1338 static const Property aspeed_smc_flash_properties[] = {
1339 DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0),
1340 DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC,
1341 AspeedSMCState *),
1342 };
1343
aspeed_smc_flash_class_init(ObjectClass * klass,const void * data)1344 static void aspeed_smc_flash_class_init(ObjectClass *klass, const void *data)
1345 {
1346 DeviceClass *dc = DEVICE_CLASS(klass);
1347
1348 dc->desc = "Aspeed SMC Flash device region";
1349 dc->realize = aspeed_smc_flash_realize;
1350 device_class_set_props(dc, aspeed_smc_flash_properties);
1351 }
1352
1353 static const TypeInfo aspeed_smc_flash_info = {
1354 .name = TYPE_ASPEED_SMC_FLASH,
1355 .parent = TYPE_SYS_BUS_DEVICE,
1356 .instance_size = sizeof(AspeedSMCFlash),
1357 .class_init = aspeed_smc_flash_class_init,
1358 };
1359
1360 /*
1361 * The Segment Registers of the AST2400 and AST2500 have a 8MB
1362 * unit. The address range of a flash SPI peripheral is encoded with
1363 * absolute addresses which should be part of the overall controller
1364 * window.
1365 */
aspeed_smc_segment_to_reg(const AspeedSMCState * s,const AspeedSegments * seg)1366 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
1367 const AspeedSegments *seg)
1368 {
1369 uint32_t reg = 0;
1370 reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
1371 reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
1372 return reg;
1373 }
1374
aspeed_smc_reg_to_segment(const AspeedSMCState * s,uint32_t reg,AspeedSegments * seg)1375 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
1376 uint32_t reg, AspeedSegments *seg)
1377 {
1378 seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
1379 seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
1380 }
1381
1382 static const AspeedSegments aspeed_2400_smc_segments[] = {
1383 { 0x10000000, 32 * MiB },
1384 };
1385
aspeed_2400_smc_class_init(ObjectClass * klass,const void * data)1386 static void aspeed_2400_smc_class_init(ObjectClass *klass, const void *data)
1387 {
1388 DeviceClass *dc = DEVICE_CLASS(klass);
1389 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1390
1391 dc->desc = "Aspeed 2400 SMC Controller";
1392 asc->r_conf = R_CONF;
1393 asc->r_ce_ctrl = R_CE_CTRL;
1394 asc->r_ctrl0 = R_CTRL0;
1395 asc->r_timings = R_TIMINGS;
1396 asc->nregs_timings = 1;
1397 asc->conf_enable_w0 = CONF_ENABLE_W0;
1398 asc->cs_num_max = 1;
1399 asc->segments = aspeed_2400_smc_segments;
1400 asc->flash_window_base = 0x10000000;
1401 asc->flash_window_size = 0x6000000;
1402 asc->features = 0x0;
1403 asc->nregs = ASPEED_SMC_R_SMC_MAX;
1404 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1405 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1406 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1407 asc->reg_ops = &aspeed_smc_flash_ops;
1408 }
1409
1410 static const TypeInfo aspeed_2400_smc_info = {
1411 .name = "aspeed.smc-ast2400",
1412 .parent = TYPE_ASPEED_SMC,
1413 .class_init = aspeed_2400_smc_class_init,
1414 };
1415
1416 static const uint32_t aspeed_2400_fmc_resets[ASPEED_SMC_R_MAX] = {
1417 /*
1418 * CE0 and CE1 types are HW strapped in SCU70. Do it here to
1419 * simplify the model.
1420 */
1421 [R_CONF] = CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0,
1422 };
1423
1424 static const AspeedSegments aspeed_2400_fmc_segments[] = {
1425 { 0x20000000, 64 * MiB }, /* start address is readonly */
1426 { 0x24000000, 32 * MiB },
1427 { 0x26000000, 32 * MiB },
1428 { 0x28000000, 32 * MiB },
1429 { 0x2A000000, 32 * MiB }
1430 };
1431
aspeed_2400_fmc_class_init(ObjectClass * klass,const void * data)1432 static void aspeed_2400_fmc_class_init(ObjectClass *klass, const void *data)
1433 {
1434 DeviceClass *dc = DEVICE_CLASS(klass);
1435 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1436
1437 dc->desc = "Aspeed 2400 FMC Controller";
1438 asc->r_conf = R_CONF;
1439 asc->r_ce_ctrl = R_CE_CTRL;
1440 asc->r_ctrl0 = R_CTRL0;
1441 asc->r_timings = R_TIMINGS;
1442 asc->nregs_timings = 1;
1443 asc->conf_enable_w0 = CONF_ENABLE_W0;
1444 asc->cs_num_max = 5;
1445 asc->segments = aspeed_2400_fmc_segments;
1446 asc->segment_addr_mask = 0xffff0000;
1447 asc->resets = aspeed_2400_fmc_resets;
1448 asc->flash_window_base = 0x20000000;
1449 asc->flash_window_size = 0x10000000;
1450 asc->features = ASPEED_SMC_FEATURE_DMA;
1451 asc->dma_flash_mask = 0x0FFFFFFC;
1452 asc->dma_dram_mask = 0x1FFFFFFC;
1453 asc->dma_start_length = 4;
1454 asc->nregs = ASPEED_SMC_R_MAX;
1455 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1456 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1457 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1458 asc->reg_ops = &aspeed_smc_flash_ops;
1459 }
1460
1461 static const TypeInfo aspeed_2400_fmc_info = {
1462 .name = "aspeed.fmc-ast2400",
1463 .parent = TYPE_ASPEED_SMC,
1464 .class_init = aspeed_2400_fmc_class_init,
1465 };
1466
1467 static const AspeedSegments aspeed_2400_spi1_segments[] = {
1468 { 0x30000000, 64 * MiB },
1469 };
1470
aspeed_2400_spi1_addr_width(const AspeedSMCState * s)1471 static int aspeed_2400_spi1_addr_width(const AspeedSMCState *s)
1472 {
1473 return s->regs[R_SPI_CTRL0] & CTRL_AST2400_SPI_4BYTE ? 4 : 3;
1474 }
1475
aspeed_2400_spi1_class_init(ObjectClass * klass,const void * data)1476 static void aspeed_2400_spi1_class_init(ObjectClass *klass, const void *data)
1477 {
1478 DeviceClass *dc = DEVICE_CLASS(klass);
1479 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1480
1481 dc->desc = "Aspeed 2400 SPI1 Controller";
1482 asc->r_conf = R_SPI_CONF;
1483 asc->r_ce_ctrl = 0xff;
1484 asc->r_ctrl0 = R_SPI_CTRL0;
1485 asc->r_timings = R_SPI_TIMINGS;
1486 asc->nregs_timings = 1;
1487 asc->conf_enable_w0 = SPI_CONF_ENABLE_W0;
1488 asc->cs_num_max = 1;
1489 asc->segments = aspeed_2400_spi1_segments;
1490 asc->flash_window_base = 0x30000000;
1491 asc->flash_window_size = 0x10000000;
1492 asc->features = 0x0;
1493 asc->nregs = ASPEED_SMC_R_SPI_MAX;
1494 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1495 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1496 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1497 asc->addr_width = aspeed_2400_spi1_addr_width;
1498 asc->reg_ops = &aspeed_smc_flash_ops;
1499 }
1500
1501 static const TypeInfo aspeed_2400_spi1_info = {
1502 .name = "aspeed.spi1-ast2400",
1503 .parent = TYPE_ASPEED_SMC,
1504 .class_init = aspeed_2400_spi1_class_init,
1505 };
1506
1507 static const uint32_t aspeed_2500_fmc_resets[ASPEED_SMC_R_MAX] = {
1508 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1509 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1510 };
1511
1512 static const AspeedSegments aspeed_2500_fmc_segments[] = {
1513 { 0x20000000, 128 * MiB }, /* start address is readonly */
1514 { 0x28000000, 32 * MiB },
1515 { 0x2A000000, 32 * MiB },
1516 };
1517
aspeed_2500_fmc_class_init(ObjectClass * klass,const void * data)1518 static void aspeed_2500_fmc_class_init(ObjectClass *klass, const void *data)
1519 {
1520 DeviceClass *dc = DEVICE_CLASS(klass);
1521 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1522
1523 dc->desc = "Aspeed 2500 FMC Controller";
1524 asc->r_conf = R_CONF;
1525 asc->r_ce_ctrl = R_CE_CTRL;
1526 asc->r_ctrl0 = R_CTRL0;
1527 asc->r_timings = R_TIMINGS;
1528 asc->nregs_timings = 1;
1529 asc->conf_enable_w0 = CONF_ENABLE_W0;
1530 asc->cs_num_max = 3;
1531 asc->segments = aspeed_2500_fmc_segments;
1532 asc->segment_addr_mask = 0xffff0000;
1533 asc->resets = aspeed_2500_fmc_resets;
1534 asc->flash_window_base = 0x20000000;
1535 asc->flash_window_size = 0x10000000;
1536 asc->features = ASPEED_SMC_FEATURE_DMA;
1537 asc->dma_flash_mask = 0x0FFFFFFC;
1538 asc->dma_dram_mask = 0x3FFFFFFC;
1539 asc->dma_start_length = 4;
1540 asc->nregs = ASPEED_SMC_R_MAX;
1541 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1542 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1543 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1544 asc->reg_ops = &aspeed_smc_flash_ops;
1545 }
1546
1547 static const TypeInfo aspeed_2500_fmc_info = {
1548 .name = "aspeed.fmc-ast2500",
1549 .parent = TYPE_ASPEED_SMC,
1550 .class_init = aspeed_2500_fmc_class_init,
1551 };
1552
1553 static const AspeedSegments aspeed_2500_spi1_segments[] = {
1554 { 0x30000000, 32 * MiB }, /* start address is readonly */
1555 { 0x32000000, 96 * MiB }, /* end address is readonly */
1556 };
1557
aspeed_2500_spi1_class_init(ObjectClass * klass,const void * data)1558 static void aspeed_2500_spi1_class_init(ObjectClass *klass, const void *data)
1559 {
1560 DeviceClass *dc = DEVICE_CLASS(klass);
1561 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1562
1563 dc->desc = "Aspeed 2500 SPI1 Controller";
1564 asc->r_conf = R_CONF;
1565 asc->r_ce_ctrl = R_CE_CTRL;
1566 asc->r_ctrl0 = R_CTRL0;
1567 asc->r_timings = R_TIMINGS;
1568 asc->nregs_timings = 1;
1569 asc->conf_enable_w0 = CONF_ENABLE_W0;
1570 asc->cs_num_max = 2;
1571 asc->segments = aspeed_2500_spi1_segments;
1572 asc->segment_addr_mask = 0xffff0000;
1573 asc->flash_window_base = 0x30000000;
1574 asc->flash_window_size = 0x8000000;
1575 asc->features = 0x0;
1576 asc->nregs = ASPEED_SMC_R_MAX;
1577 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1578 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1579 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1580 asc->reg_ops = &aspeed_smc_flash_ops;
1581 }
1582
1583 static const TypeInfo aspeed_2500_spi1_info = {
1584 .name = "aspeed.spi1-ast2500",
1585 .parent = TYPE_ASPEED_SMC,
1586 .class_init = aspeed_2500_spi1_class_init,
1587 };
1588
1589 static const AspeedSegments aspeed_2500_spi2_segments[] = {
1590 { 0x38000000, 32 * MiB }, /* start address is readonly */
1591 { 0x3A000000, 96 * MiB }, /* end address is readonly */
1592 };
1593
aspeed_2500_spi2_class_init(ObjectClass * klass,const void * data)1594 static void aspeed_2500_spi2_class_init(ObjectClass *klass, const void *data)
1595 {
1596 DeviceClass *dc = DEVICE_CLASS(klass);
1597 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1598
1599 dc->desc = "Aspeed 2500 SPI2 Controller";
1600 asc->r_conf = R_CONF;
1601 asc->r_ce_ctrl = R_CE_CTRL;
1602 asc->r_ctrl0 = R_CTRL0;
1603 asc->r_timings = R_TIMINGS;
1604 asc->nregs_timings = 1;
1605 asc->conf_enable_w0 = CONF_ENABLE_W0;
1606 asc->cs_num_max = 2;
1607 asc->segments = aspeed_2500_spi2_segments;
1608 asc->segment_addr_mask = 0xffff0000;
1609 asc->flash_window_base = 0x38000000;
1610 asc->flash_window_size = 0x8000000;
1611 asc->features = 0x0;
1612 asc->nregs = ASPEED_SMC_R_MAX;
1613 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1614 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1615 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1616 asc->reg_ops = &aspeed_smc_flash_ops;
1617 }
1618
1619 static const TypeInfo aspeed_2500_spi2_info = {
1620 .name = "aspeed.spi2-ast2500",
1621 .parent = TYPE_ASPEED_SMC,
1622 .class_init = aspeed_2500_spi2_class_init,
1623 };
1624
1625 /*
1626 * The Segment Registers of the AST2600 have a 1MB unit. The address
1627 * range of a flash SPI peripheral is encoded with offsets in the overall
1628 * controller window. The previous SoC AST2400 and AST2500 used
1629 * absolute addresses. Only bits [27:20] are relevant and the end
1630 * address is an upper bound limit.
1631 */
1632 #define AST2600_SEG_ADDR_MASK 0x0ff00000
1633
aspeed_2600_smc_segment_to_reg(const AspeedSMCState * s,const AspeedSegments * seg)1634 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
1635 const AspeedSegments *seg)
1636 {
1637 uint32_t reg = 0;
1638
1639 /* Disabled segments have a nil register */
1640 if (!seg->size) {
1641 return 0;
1642 }
1643
1644 reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
1645 reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
1646 return reg;
1647 }
1648
aspeed_2600_smc_reg_to_segment(const AspeedSMCState * s,uint32_t reg,AspeedSegments * seg)1649 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
1650 uint32_t reg, AspeedSegments *seg)
1651 {
1652 uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
1653 uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
1654 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1655
1656 if (reg) {
1657 seg->addr = asc->flash_window_base + start_offset;
1658 seg->size = end_offset + MiB - start_offset;
1659 } else {
1660 seg->addr = asc->flash_window_base;
1661 seg->size = 0;
1662 }
1663 }
1664
1665 static const uint32_t aspeed_2600_fmc_resets[ASPEED_SMC_R_MAX] = {
1666 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1667 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1 |
1668 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2),
1669 };
1670
1671 static const AspeedSegments aspeed_2600_fmc_segments[] = {
1672 { 0x0, 128 * MiB }, /* start address is readonly */
1673 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1674 { 0x0, 0 }, /* disabled */
1675 };
1676
aspeed_2600_fmc_class_init(ObjectClass * klass,const void * data)1677 static void aspeed_2600_fmc_class_init(ObjectClass *klass, const void *data)
1678 {
1679 DeviceClass *dc = DEVICE_CLASS(klass);
1680 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1681
1682 dc->desc = "Aspeed 2600 FMC Controller";
1683 asc->r_conf = R_CONF;
1684 asc->r_ce_ctrl = R_CE_CTRL;
1685 asc->r_ctrl0 = R_CTRL0;
1686 asc->r_timings = R_TIMINGS;
1687 asc->nregs_timings = 1;
1688 asc->conf_enable_w0 = CONF_ENABLE_W0;
1689 asc->cs_num_max = 3;
1690 asc->segments = aspeed_2600_fmc_segments;
1691 asc->segment_addr_mask = 0x0ff00ff0;
1692 asc->resets = aspeed_2600_fmc_resets;
1693 asc->flash_window_base = 0x20000000;
1694 asc->flash_window_size = 0x10000000;
1695 asc->features = ASPEED_SMC_FEATURE_DMA |
1696 ASPEED_SMC_FEATURE_WDT_CONTROL;
1697 asc->dma_flash_mask = 0x0FFFFFFC;
1698 asc->dma_dram_mask = 0x3FFFFFFC;
1699 asc->dma_start_length = 1;
1700 asc->nregs = ASPEED_SMC_R_MAX;
1701 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1702 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1703 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1704 asc->reg_ops = &aspeed_smc_flash_ops;
1705 }
1706
1707 static const TypeInfo aspeed_2600_fmc_info = {
1708 .name = "aspeed.fmc-ast2600",
1709 .parent = TYPE_ASPEED_SMC,
1710 .class_init = aspeed_2600_fmc_class_init,
1711 };
1712
1713 static const AspeedSegments aspeed_2600_spi1_segments[] = {
1714 { 0x0, 128 * MiB }, /* start address is readonly */
1715 { 0x0, 0 }, /* disabled */
1716 };
1717
aspeed_2600_spi1_class_init(ObjectClass * klass,const void * data)1718 static void aspeed_2600_spi1_class_init(ObjectClass *klass, const void *data)
1719 {
1720 DeviceClass *dc = DEVICE_CLASS(klass);
1721 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1722
1723 dc->desc = "Aspeed 2600 SPI1 Controller";
1724 asc->r_conf = R_CONF;
1725 asc->r_ce_ctrl = R_CE_CTRL;
1726 asc->r_ctrl0 = R_CTRL0;
1727 asc->r_timings = R_TIMINGS;
1728 asc->nregs_timings = 2;
1729 asc->conf_enable_w0 = CONF_ENABLE_W0;
1730 asc->cs_num_max = 2;
1731 asc->segments = aspeed_2600_spi1_segments;
1732 asc->segment_addr_mask = 0x0ff00ff0;
1733 asc->flash_window_base = 0x30000000;
1734 asc->flash_window_size = 0x10000000;
1735 asc->features = ASPEED_SMC_FEATURE_DMA |
1736 ASPEED_SMC_FEATURE_DMA_GRANT;
1737 asc->dma_flash_mask = 0x0FFFFFFC;
1738 asc->dma_dram_mask = 0x3FFFFFFC;
1739 asc->dma_start_length = 1;
1740 asc->nregs = ASPEED_SMC_R_MAX;
1741 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1742 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1743 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1744 asc->reg_ops = &aspeed_smc_flash_ops;
1745 }
1746
1747 static const TypeInfo aspeed_2600_spi1_info = {
1748 .name = "aspeed.spi1-ast2600",
1749 .parent = TYPE_ASPEED_SMC,
1750 .class_init = aspeed_2600_spi1_class_init,
1751 };
1752
1753 static const AspeedSegments aspeed_2600_spi2_segments[] = {
1754 { 0x0, 128 * MiB }, /* start address is readonly */
1755 { 0x0, 0 }, /* disabled */
1756 { 0x0, 0 }, /* disabled */
1757 };
1758
aspeed_2600_spi2_class_init(ObjectClass * klass,const void * data)1759 static void aspeed_2600_spi2_class_init(ObjectClass *klass, const void *data)
1760 {
1761 DeviceClass *dc = DEVICE_CLASS(klass);
1762 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1763
1764 dc->desc = "Aspeed 2600 SPI2 Controller";
1765 asc->r_conf = R_CONF;
1766 asc->r_ce_ctrl = R_CE_CTRL;
1767 asc->r_ctrl0 = R_CTRL0;
1768 asc->r_timings = R_TIMINGS;
1769 asc->nregs_timings = 3;
1770 asc->conf_enable_w0 = CONF_ENABLE_W0;
1771 asc->cs_num_max = 3;
1772 asc->segments = aspeed_2600_spi2_segments;
1773 asc->segment_addr_mask = 0x0ff00ff0;
1774 asc->flash_window_base = 0x50000000;
1775 asc->flash_window_size = 0x10000000;
1776 asc->features = ASPEED_SMC_FEATURE_DMA |
1777 ASPEED_SMC_FEATURE_DMA_GRANT;
1778 asc->dma_flash_mask = 0x0FFFFFFC;
1779 asc->dma_dram_mask = 0x3FFFFFFC;
1780 asc->dma_start_length = 1;
1781 asc->nregs = ASPEED_SMC_R_MAX;
1782 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1783 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1784 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1785 asc->reg_ops = &aspeed_smc_flash_ops;
1786 }
1787
1788 static const TypeInfo aspeed_2600_spi2_info = {
1789 .name = "aspeed.spi2-ast2600",
1790 .parent = TYPE_ASPEED_SMC,
1791 .class_init = aspeed_2600_spi2_class_init,
1792 };
1793
1794 /*
1795 * The FMC Segment Registers of the AST1030 have a 512KB unit.
1796 * Only bits [27:19] are used for decoding.
1797 */
1798 #define AST1030_SEG_ADDR_MASK 0x0ff80000
1799
aspeed_1030_smc_segment_to_reg(const AspeedSMCState * s,const AspeedSegments * seg)1800 static uint32_t aspeed_1030_smc_segment_to_reg(const AspeedSMCState *s,
1801 const AspeedSegments *seg)
1802 {
1803 uint32_t reg = 0;
1804
1805 /* Disabled segments have a nil register */
1806 if (!seg->size) {
1807 return 0;
1808 }
1809
1810 reg |= (seg->addr & AST1030_SEG_ADDR_MASK) >> 16; /* start offset */
1811 reg |= (seg->addr + seg->size - 1) & AST1030_SEG_ADDR_MASK; /* end offset */
1812 return reg;
1813 }
1814
aspeed_1030_smc_reg_to_segment(const AspeedSMCState * s,uint32_t reg,AspeedSegments * seg)1815 static void aspeed_1030_smc_reg_to_segment(const AspeedSMCState *s,
1816 uint32_t reg, AspeedSegments *seg)
1817 {
1818 uint32_t start_offset = (reg << 16) & AST1030_SEG_ADDR_MASK;
1819 uint32_t end_offset = reg & AST1030_SEG_ADDR_MASK;
1820 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1821
1822 if (reg) {
1823 seg->addr = asc->flash_window_base + start_offset;
1824 seg->size = end_offset + (512 * KiB) - start_offset;
1825 } else {
1826 seg->addr = asc->flash_window_base;
1827 seg->size = 0;
1828 }
1829 }
1830
1831 static const uint32_t aspeed_1030_fmc_resets[ASPEED_SMC_R_MAX] = {
1832 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1833 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1834 };
1835
1836 static const AspeedSegments aspeed_1030_fmc_segments[] = {
1837 { 0x0, 128 * MiB }, /* start address is readonly */
1838 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1839 { 0x0, 0 }, /* disabled */
1840 };
1841
aspeed_1030_fmc_class_init(ObjectClass * klass,const void * data)1842 static void aspeed_1030_fmc_class_init(ObjectClass *klass, const void *data)
1843 {
1844 DeviceClass *dc = DEVICE_CLASS(klass);
1845 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1846
1847 dc->desc = "Aspeed 1030 FMC Controller";
1848 asc->r_conf = R_CONF;
1849 asc->r_ce_ctrl = R_CE_CTRL;
1850 asc->r_ctrl0 = R_CTRL0;
1851 asc->r_timings = R_TIMINGS;
1852 asc->nregs_timings = 2;
1853 asc->conf_enable_w0 = CONF_ENABLE_W0;
1854 asc->cs_num_max = 2;
1855 asc->segments = aspeed_1030_fmc_segments;
1856 asc->segment_addr_mask = 0x0ff80ff8;
1857 asc->resets = aspeed_1030_fmc_resets;
1858 asc->flash_window_base = 0x80000000;
1859 asc->flash_window_size = 0x10000000;
1860 asc->features = ASPEED_SMC_FEATURE_DMA;
1861 asc->dma_flash_mask = 0x0FFFFFFC;
1862 asc->dma_dram_mask = 0x000BFFFC;
1863 asc->dma_start_length = 1;
1864 asc->nregs = ASPEED_SMC_R_MAX;
1865 asc->segment_to_reg = aspeed_1030_smc_segment_to_reg;
1866 asc->reg_to_segment = aspeed_1030_smc_reg_to_segment;
1867 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1868 asc->reg_ops = &aspeed_smc_flash_ops;
1869 }
1870
1871 static const TypeInfo aspeed_1030_fmc_info = {
1872 .name = "aspeed.fmc-ast1030",
1873 .parent = TYPE_ASPEED_SMC,
1874 .class_init = aspeed_1030_fmc_class_init,
1875 };
1876
1877 static const AspeedSegments aspeed_1030_spi1_segments[] = {
1878 { 0x0, 128 * MiB }, /* start address is readonly */
1879 { 0x0, 0 }, /* disabled */
1880 };
1881
aspeed_1030_spi1_class_init(ObjectClass * klass,const void * data)1882 static void aspeed_1030_spi1_class_init(ObjectClass *klass, const void *data)
1883 {
1884 DeviceClass *dc = DEVICE_CLASS(klass);
1885 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1886
1887 dc->desc = "Aspeed 1030 SPI1 Controller";
1888 asc->r_conf = R_CONF;
1889 asc->r_ce_ctrl = R_CE_CTRL;
1890 asc->r_ctrl0 = R_CTRL0;
1891 asc->r_timings = R_TIMINGS;
1892 asc->nregs_timings = 2;
1893 asc->conf_enable_w0 = CONF_ENABLE_W0;
1894 asc->cs_num_max = 2;
1895 asc->segments = aspeed_1030_spi1_segments;
1896 asc->segment_addr_mask = 0x0ff00ff0;
1897 asc->flash_window_base = 0x90000000;
1898 asc->flash_window_size = 0x10000000;
1899 asc->features = ASPEED_SMC_FEATURE_DMA;
1900 asc->dma_flash_mask = 0x0FFFFFFC;
1901 asc->dma_dram_mask = 0x000BFFFC;
1902 asc->dma_start_length = 1;
1903 asc->nregs = ASPEED_SMC_R_MAX;
1904 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1905 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1906 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1907 asc->reg_ops = &aspeed_smc_flash_ops;
1908 }
1909
1910 static const TypeInfo aspeed_1030_spi1_info = {
1911 .name = "aspeed.spi1-ast1030",
1912 .parent = TYPE_ASPEED_SMC,
1913 .class_init = aspeed_1030_spi1_class_init,
1914 };
1915 static const AspeedSegments aspeed_1030_spi2_segments[] = {
1916 { 0x0, 128 * MiB }, /* start address is readonly */
1917 { 0x0, 0 }, /* disabled */
1918 };
1919
aspeed_1030_spi2_class_init(ObjectClass * klass,const void * data)1920 static void aspeed_1030_spi2_class_init(ObjectClass *klass, const void *data)
1921 {
1922 DeviceClass *dc = DEVICE_CLASS(klass);
1923 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1924
1925 dc->desc = "Aspeed 1030 SPI2 Controller";
1926 asc->r_conf = R_CONF;
1927 asc->r_ce_ctrl = R_CE_CTRL;
1928 asc->r_ctrl0 = R_CTRL0;
1929 asc->r_timings = R_TIMINGS;
1930 asc->nregs_timings = 2;
1931 asc->conf_enable_w0 = CONF_ENABLE_W0;
1932 asc->cs_num_max = 2;
1933 asc->segments = aspeed_1030_spi2_segments;
1934 asc->segment_addr_mask = 0x0ff00ff0;
1935 asc->flash_window_base = 0xb0000000;
1936 asc->flash_window_size = 0x10000000;
1937 asc->features = ASPEED_SMC_FEATURE_DMA;
1938 asc->dma_flash_mask = 0x0FFFFFFC;
1939 asc->dma_dram_mask = 0x000BFFFC;
1940 asc->dma_start_length = 1;
1941 asc->nregs = ASPEED_SMC_R_MAX;
1942 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1943 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1944 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1945 asc->reg_ops = &aspeed_smc_flash_ops;
1946 }
1947
1948 static const TypeInfo aspeed_1030_spi2_info = {
1949 .name = "aspeed.spi2-ast1030",
1950 .parent = TYPE_ASPEED_SMC,
1951 .class_init = aspeed_1030_spi2_class_init,
1952 };
1953
1954 /*
1955 * The FMC Segment Registers of the AST2700 have a 64KB unit.
1956 * Only bits [31:16] are used for decoding.
1957 */
1958 #define AST2700_SEG_ADDR_MASK 0xffff0000
1959
aspeed_2700_smc_segment_to_reg(const AspeedSMCState * s,const AspeedSegments * seg)1960 static uint32_t aspeed_2700_smc_segment_to_reg(const AspeedSMCState *s,
1961 const AspeedSegments *seg)
1962 {
1963 uint32_t reg = 0;
1964
1965 /* Disabled segments have a nil register */
1966 if (!seg->size) {
1967 return 0;
1968 }
1969
1970 reg |= (seg->addr & AST2700_SEG_ADDR_MASK) >> 16; /* start offset */
1971 reg |= (seg->addr + seg->size - 1) & AST2700_SEG_ADDR_MASK; /* end offset */
1972 return reg;
1973 }
1974
aspeed_2700_smc_reg_to_segment(const AspeedSMCState * s,uint32_t reg,AspeedSegments * seg)1975 static void aspeed_2700_smc_reg_to_segment(const AspeedSMCState *s,
1976 uint32_t reg, AspeedSegments *seg)
1977 {
1978 uint32_t start_offset = (reg << 16) & AST2700_SEG_ADDR_MASK;
1979 uint32_t end_offset = reg & AST2700_SEG_ADDR_MASK;
1980 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1981
1982 if (reg) {
1983 seg->addr = asc->flash_window_base + start_offset;
1984 seg->size = end_offset + (64 * KiB) - start_offset;
1985 } else {
1986 seg->addr = asc->flash_window_base;
1987 seg->size = 0;
1988 }
1989 }
1990
1991 static const uint32_t aspeed_2700_fmc_resets[ASPEED_SMC_R_MAX] = {
1992 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1993 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1994 [R_CE_CTRL] = 0x0000aa00,
1995 [R_CTRL0] = 0x406b0641,
1996 [R_CTRL1] = 0x00000400,
1997 [R_CTRL2] = 0x00000400,
1998 [R_CTRL3] = 0x00000400,
1999 [R_SEG_ADDR0] = 0x08000000,
2000 [R_SEG_ADDR1] = 0x10000800,
2001 [R_SEG_ADDR2] = 0x00000000,
2002 [R_SEG_ADDR3] = 0x00000000,
2003 [R_DUMMY_DATA] = 0x00010000,
2004 [R_DMA_DRAM_ADDR_HIGH] = 0x00000000,
2005 [R_TIMINGS] = 0x007b0000,
2006 };
2007
2008 static const MemoryRegionOps aspeed_2700_smc_flash_ops = {
2009 .read = aspeed_smc_flash_read,
2010 .write = aspeed_smc_flash_write,
2011 .endianness = DEVICE_LITTLE_ENDIAN,
2012 .valid = {
2013 .min_access_size = 1,
2014 .max_access_size = 8,
2015 },
2016 };
2017
2018 static const AspeedSegments aspeed_2700_fmc_segments[] = {
2019 { 0x0, 128 * MiB }, /* start address is readonly */
2020 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
2021 { 256 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
2022 { 0x0, 0 }, /* disabled */
2023 };
2024
aspeed_2700_fmc_class_init(ObjectClass * klass,const void * data)2025 static void aspeed_2700_fmc_class_init(ObjectClass *klass, const void *data)
2026 {
2027 DeviceClass *dc = DEVICE_CLASS(klass);
2028 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
2029
2030 dc->desc = "Aspeed 2700 FMC Controller";
2031 asc->r_conf = R_CONF;
2032 asc->r_ce_ctrl = R_CE_CTRL;
2033 asc->r_ctrl0 = R_CTRL0;
2034 asc->r_timings = R_TIMINGS;
2035 asc->nregs_timings = 3;
2036 asc->conf_enable_w0 = CONF_ENABLE_W0;
2037 asc->cs_num_max = 3;
2038 asc->segments = aspeed_2700_fmc_segments;
2039 asc->segment_addr_mask = 0xffffffff;
2040 asc->resets = aspeed_2700_fmc_resets;
2041 asc->flash_window_base = 0x100000000;
2042 asc->flash_window_size = 1 * GiB;
2043 asc->features = ASPEED_SMC_FEATURE_DMA |
2044 ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH;
2045 asc->dma_flash_mask = 0x2FFFFFFC;
2046 asc->dma_dram_mask = 0xFFFFFFFC;
2047 asc->dma_start_length = 1;
2048 asc->nregs = ASPEED_SMC_R_MAX;
2049 asc->segment_to_reg = aspeed_2700_smc_segment_to_reg;
2050 asc->reg_to_segment = aspeed_2700_smc_reg_to_segment;
2051 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
2052 asc->reg_ops = &aspeed_2700_smc_flash_ops;
2053 }
2054
2055 static const TypeInfo aspeed_2700_fmc_info = {
2056 .name = "aspeed.fmc-ast2700",
2057 .parent = TYPE_ASPEED_SMC,
2058 .class_init = aspeed_2700_fmc_class_init,
2059 };
2060
2061 static const AspeedSegments aspeed_2700_spi0_segments[] = {
2062 { 0x0, 128 * MiB }, /* start address is readonly */
2063 { 128 * MiB, 128 * MiB }, /* start address is readonly */
2064 { 0x0, 0 }, /* disabled */
2065 };
2066
aspeed_2700_spi0_class_init(ObjectClass * klass,const void * data)2067 static void aspeed_2700_spi0_class_init(ObjectClass *klass, const void *data)
2068 {
2069 DeviceClass *dc = DEVICE_CLASS(klass);
2070 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
2071
2072 dc->desc = "Aspeed 2700 SPI0 Controller";
2073 asc->r_conf = R_CONF;
2074 asc->r_ce_ctrl = R_CE_CTRL;
2075 asc->r_ctrl0 = R_CTRL0;
2076 asc->r_timings = R_TIMINGS;
2077 asc->nregs_timings = 2;
2078 asc->conf_enable_w0 = CONF_ENABLE_W0;
2079 asc->cs_num_max = 2;
2080 asc->segments = aspeed_2700_spi0_segments;
2081 asc->segment_addr_mask = 0xffffffff;
2082 asc->flash_window_base = 0x180000000;
2083 asc->flash_window_size = 1 * GiB;
2084 asc->features = ASPEED_SMC_FEATURE_DMA |
2085 ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH;
2086 asc->dma_flash_mask = 0x2FFFFFFC;
2087 asc->dma_dram_mask = 0xFFFFFFFC;
2088 asc->dma_start_length = 1;
2089 asc->nregs = ASPEED_SMC_R_MAX;
2090 asc->segment_to_reg = aspeed_2700_smc_segment_to_reg;
2091 asc->reg_to_segment = aspeed_2700_smc_reg_to_segment;
2092 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
2093 asc->reg_ops = &aspeed_2700_smc_flash_ops;
2094 }
2095
2096 static const TypeInfo aspeed_2700_spi0_info = {
2097 .name = "aspeed.spi0-ast2700",
2098 .parent = TYPE_ASPEED_SMC,
2099 .class_init = aspeed_2700_spi0_class_init,
2100 };
2101
2102 static const AspeedSegments aspeed_2700_spi1_segments[] = {
2103 { 0x0, 128 * MiB }, /* start address is readonly */
2104 { 0x0, 0 }, /* disabled */
2105 };
2106
aspeed_2700_spi1_class_init(ObjectClass * klass,const void * data)2107 static void aspeed_2700_spi1_class_init(ObjectClass *klass, const void *data)
2108 {
2109 DeviceClass *dc = DEVICE_CLASS(klass);
2110 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
2111
2112 dc->desc = "Aspeed 2700 SPI1 Controller";
2113 asc->r_conf = R_CONF;
2114 asc->r_ce_ctrl = R_CE_CTRL;
2115 asc->r_ctrl0 = R_CTRL0;
2116 asc->r_timings = R_TIMINGS;
2117 asc->nregs_timings = 2;
2118 asc->conf_enable_w0 = CONF_ENABLE_W0;
2119 asc->cs_num_max = 2;
2120 asc->segments = aspeed_2700_spi1_segments;
2121 asc->segment_addr_mask = 0xffffffff;
2122 asc->flash_window_base = 0x200000000;
2123 asc->flash_window_size = 1 * GiB;
2124 asc->features = ASPEED_SMC_FEATURE_DMA |
2125 ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH;
2126 asc->dma_flash_mask = 0x2FFFFFFC;
2127 asc->dma_dram_mask = 0xFFFFFFFC;
2128 asc->dma_start_length = 1;
2129 asc->nregs = ASPEED_SMC_R_MAX;
2130 asc->segment_to_reg = aspeed_2700_smc_segment_to_reg;
2131 asc->reg_to_segment = aspeed_2700_smc_reg_to_segment;
2132 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
2133 asc->reg_ops = &aspeed_2700_smc_flash_ops;
2134 }
2135
2136 static const TypeInfo aspeed_2700_spi1_info = {
2137 .name = "aspeed.spi1-ast2700",
2138 .parent = TYPE_ASPEED_SMC,
2139 .class_init = aspeed_2700_spi1_class_init,
2140 };
2141
2142 static const AspeedSegments aspeed_2700_spi2_segments[] = {
2143 { 0x0, 128 * MiB }, /* start address is readonly */
2144 { 0x0, 0 }, /* disabled */
2145 };
2146
aspeed_2700_spi2_class_init(ObjectClass * klass,const void * data)2147 static void aspeed_2700_spi2_class_init(ObjectClass *klass, const void *data)
2148 {
2149 DeviceClass *dc = DEVICE_CLASS(klass);
2150 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
2151
2152 dc->desc = "Aspeed 2700 SPI2 Controller";
2153 asc->r_conf = R_CONF;
2154 asc->r_ce_ctrl = R_CE_CTRL;
2155 asc->r_ctrl0 = R_CTRL0;
2156 asc->r_timings = R_TIMINGS;
2157 asc->nregs_timings = 2;
2158 asc->conf_enable_w0 = CONF_ENABLE_W0;
2159 asc->cs_num_max = 2;
2160 asc->segments = aspeed_2700_spi2_segments;
2161 asc->segment_addr_mask = 0xffffffff;
2162 asc->flash_window_base = 0x280000000;
2163 asc->flash_window_size = 1 * GiB;
2164 asc->features = ASPEED_SMC_FEATURE_DMA |
2165 ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH;
2166 asc->dma_flash_mask = 0x0FFFFFFC;
2167 asc->dma_dram_mask = 0xFFFFFFFC;
2168 asc->dma_start_length = 1;
2169 asc->nregs = ASPEED_SMC_R_MAX;
2170 asc->segment_to_reg = aspeed_2700_smc_segment_to_reg;
2171 asc->reg_to_segment = aspeed_2700_smc_reg_to_segment;
2172 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
2173 asc->reg_ops = &aspeed_2700_smc_flash_ops;
2174 }
2175
2176 static const TypeInfo aspeed_2700_spi2_info = {
2177 .name = "aspeed.spi2-ast2700",
2178 .parent = TYPE_ASPEED_SMC,
2179 .class_init = aspeed_2700_spi2_class_init,
2180 };
2181
aspeed_smc_register_types(void)2182 static void aspeed_smc_register_types(void)
2183 {
2184 type_register_static(&aspeed_smc_flash_info);
2185 type_register_static(&aspeed_smc_info);
2186 type_register_static(&aspeed_2400_smc_info);
2187 type_register_static(&aspeed_2400_fmc_info);
2188 type_register_static(&aspeed_2400_spi1_info);
2189 type_register_static(&aspeed_2500_fmc_info);
2190 type_register_static(&aspeed_2500_spi1_info);
2191 type_register_static(&aspeed_2500_spi2_info);
2192 type_register_static(&aspeed_2600_fmc_info);
2193 type_register_static(&aspeed_2600_spi1_info);
2194 type_register_static(&aspeed_2600_spi2_info);
2195 type_register_static(&aspeed_1030_fmc_info);
2196 type_register_static(&aspeed_1030_spi1_info);
2197 type_register_static(&aspeed_1030_spi2_info);
2198 type_register_static(&aspeed_2700_fmc_info);
2199 type_register_static(&aspeed_2700_spi0_info);
2200 type_register_static(&aspeed_2700_spi1_info);
2201 type_register_static(&aspeed_2700_spi2_info);
2202 }
2203
2204 type_init(aspeed_smc_register_types)
2205