xref: /qemu/hw/ssi/aspeed_smc.c (revision bd6ce9a6ed99889803b044510dc753ed6ac7bfeb)
1 /*
2  * ASPEED AST2400 SMC Controller (SPI Flash Only)
3  *
4  * Copyright (C) 2016 IBM Corp.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/units.h"
34 #include "trace.h"
35 
36 #include "hw/irq.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/ssi/aspeed_smc.h"
39 
40 /* CE Type Setting Register */
41 #define R_CONF            (0x00 / 4)
42 #define   CONF_LEGACY_DISABLE  (1 << 31)
43 #define   CONF_ENABLE_W4       20
44 #define   CONF_ENABLE_W3       19
45 #define   CONF_ENABLE_W2       18
46 #define   CONF_ENABLE_W1       17
47 #define   CONF_ENABLE_W0       16
48 #define   CONF_FLASH_TYPE4     8
49 #define   CONF_FLASH_TYPE3     6
50 #define   CONF_FLASH_TYPE2     4
51 #define   CONF_FLASH_TYPE1     2
52 #define   CONF_FLASH_TYPE0     0
53 #define      CONF_FLASH_TYPE_NOR   0x0
54 #define      CONF_FLASH_TYPE_NAND  0x1
55 #define      CONF_FLASH_TYPE_SPI   0x2 /* AST2600 is SPI only */
56 
57 /* CE Control Register */
58 #define R_CE_CTRL            (0x04 / 4)
59 #define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
60 #define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
61 #define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
62 #define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
63 #define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
64 
65 /* Interrupt Control and Status Register */
66 #define R_INTR_CTRL       (0x08 / 4)
67 #define   INTR_CTRL_DMA_STATUS            (1 << 11)
68 #define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
69 #define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
70 #define   INTR_CTRL_DMA_EN                (1 << 3)
71 #define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
72 #define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
73 
74 /* CEx Control Register */
75 #define R_CTRL0           (0x10 / 4)
76 #define   CTRL_IO_QPI              (1 << 31)
77 #define   CTRL_IO_QUAD_DATA        (1 << 30)
78 #define   CTRL_IO_DUAL_DATA        (1 << 29)
79 #define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
80 #define   CTRL_IO_QUAD_ADDR_DATA   (1 << 28) /* Includes dummies */
81 #define   CTRL_CMD_SHIFT           16
82 #define   CTRL_CMD_MASK            0xff
83 #define   CTRL_DUMMY_HIGH_SHIFT    14
84 #define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
85 #define CE_CTRL_CLOCK_FREQ_SHIFT   8
86 #define CE_CTRL_CLOCK_FREQ_MASK    0xf
87 #define CE_CTRL_CLOCK_FREQ(div)                                         \
88     (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
89 #define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
90 #define   CTRL_CE_STOP_ACTIVE      (1 << 2)
91 #define   CTRL_CMD_MODE_MASK       0x3
92 #define     CTRL_READMODE          0x0
93 #define     CTRL_FREADMODE         0x1
94 #define     CTRL_WRITEMODE         0x2
95 #define     CTRL_USERMODE          0x3
96 #define R_CTRL1           (0x14 / 4)
97 #define R_CTRL2           (0x18 / 4)
98 #define R_CTRL3           (0x1C / 4)
99 #define R_CTRL4           (0x20 / 4)
100 
101 /* CEx Segment Address Register */
102 #define R_SEG_ADDR0       (0x30 / 4)
103 #define   SEG_END_SHIFT        24   /* 8MB units */
104 #define   SEG_END_MASK         0xff
105 #define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
106 #define   SEG_START_MASK       0xff
107 #define R_SEG_ADDR1       (0x34 / 4)
108 #define R_SEG_ADDR2       (0x38 / 4)
109 #define R_SEG_ADDR3       (0x3C / 4)
110 #define R_SEG_ADDR4       (0x40 / 4)
111 
112 /* Misc Control Register #1 */
113 #define R_MISC_CTRL1      (0x50 / 4)
114 
115 /* SPI dummy cycle data */
116 #define R_DUMMY_DATA      (0x54 / 4)
117 
118 /* DMA Control/Status Register */
119 #define R_DMA_CTRL        (0x80 / 4)
120 #define   DMA_CTRL_DELAY_MASK   0xf
121 #define   DMA_CTRL_DELAY_SHIFT  8
122 #define   DMA_CTRL_FREQ_MASK    0xf
123 #define   DMA_CTRL_FREQ_SHIFT   4
124 #define   DMA_CTRL_CALIB        (1 << 3)
125 #define   DMA_CTRL_CKSUM        (1 << 2)
126 #define   DMA_CTRL_WRITE        (1 << 1)
127 #define   DMA_CTRL_ENABLE       (1 << 0)
128 
129 /* DMA Flash Side Address */
130 #define R_DMA_FLASH_ADDR  (0x84 / 4)
131 
132 /* DMA DRAM Side Address */
133 #define R_DMA_DRAM_ADDR   (0x88 / 4)
134 
135 /* DMA Length Register */
136 #define R_DMA_LEN         (0x8C / 4)
137 
138 /* Checksum Calculation Result */
139 #define R_DMA_CHECKSUM    (0x90 / 4)
140 
141 /* Read Timing Compensation Register */
142 #define R_TIMINGS         (0x94 / 4)
143 
144 /* SPI controller registers and bits (AST2400) */
145 #define R_SPI_CONF        (0x00 / 4)
146 #define   SPI_CONF_ENABLE_W0   0
147 #define R_SPI_CTRL0       (0x4 / 4)
148 #define R_SPI_MISC_CTRL   (0x10 / 4)
149 #define R_SPI_TIMINGS     (0x14 / 4)
150 
151 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
152 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
153 
154 #define ASPEED_SOC_SMC_FLASH_BASE   0x10000000
155 #define ASPEED_SOC_FMC_FLASH_BASE   0x20000000
156 #define ASPEED_SOC_SPI_FLASH_BASE   0x30000000
157 #define ASPEED_SOC_SPI2_FLASH_BASE  0x38000000
158 
159 /*
160  * DMA DRAM addresses should be 4 bytes aligned and the valid address
161  * range is 0x40000000 - 0x5FFFFFFF (AST2400)
162  *          0x80000000 - 0xBFFFFFFF (AST2500)
163  *
164  * DMA flash addresses should be 4 bytes aligned and the valid address
165  * range is 0x20000000 - 0x2FFFFFFF.
166  *
167  * DMA length is from 4 bytes to 32MB
168  *   0: 4 bytes
169  *   0x7FFFFF: 32M bytes
170  */
171 #define DMA_DRAM_ADDR(s, val)   ((s)->sdram_base | \
172                                  ((val) & (s)->ctrl->dma_dram_mask))
173 #define DMA_FLASH_ADDR(s, val)  ((s)->ctrl->flash_window_base | \
174                                 ((val) & (s)->ctrl->dma_flash_mask))
175 #define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
176 
177 /* Flash opcodes. */
178 #define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
179 
180 #define SNOOP_OFF         0xFF
181 #define SNOOP_START       0x0
182 
183 /*
184  * Default segments mapping addresses and size for each slave per
185  * controller. These can be changed when board is initialized with the
186  * Segment Address Registers.
187  */
188 static const AspeedSegments aspeed_segments_legacy[] = {
189     { 0x10000000, 32 * 1024 * 1024 },
190 };
191 
192 static const AspeedSegments aspeed_segments_fmc[] = {
193     { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
194     { 0x24000000, 32 * 1024 * 1024 },
195     { 0x26000000, 32 * 1024 * 1024 },
196     { 0x28000000, 32 * 1024 * 1024 },
197     { 0x2A000000, 32 * 1024 * 1024 }
198 };
199 
200 static const AspeedSegments aspeed_segments_spi[] = {
201     { 0x30000000, 64 * 1024 * 1024 },
202 };
203 
204 static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
205     { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
206     { 0x28000000,  32 * 1024 * 1024 },
207     { 0x2A000000,  32 * 1024 * 1024 },
208 };
209 
210 static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
211     { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
212     { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
213 };
214 
215 static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
216     { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
217     { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
218 };
219 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
220                                           const AspeedSegments *seg);
221 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
222                                       AspeedSegments *seg);
223 
224 /*
225  * AST2600 definitions
226  */
227 #define ASPEED26_SOC_FMC_FLASH_BASE   0x20000000
228 #define ASPEED26_SOC_SPI_FLASH_BASE   0x30000000
229 #define ASPEED26_SOC_SPI2_FLASH_BASE  0x50000000
230 
231 static const AspeedSegments aspeed_segments_ast2600_fmc[] = {
232     { 0x0, 128 * MiB }, /* start address is readonly */
233     { 0x0, 0 }, /* disabled */
234     { 0x0, 0 }, /* disabled */
235 };
236 
237 static const AspeedSegments aspeed_segments_ast2600_spi1[] = {
238     { 0x0, 128 * MiB }, /* start address is readonly */
239     { 0x0, 0 }, /* disabled */
240 };
241 
242 static const AspeedSegments aspeed_segments_ast2600_spi2[] = {
243     { 0x0, 128 * MiB }, /* start address is readonly */
244     { 0x0, 0 }, /* disabled */
245     { 0x0, 0 }, /* disabled */
246 };
247 
248 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
249                                                const AspeedSegments *seg);
250 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
251                                            uint32_t reg, AspeedSegments *seg);
252 
253 static const AspeedSMCController controllers[] = {
254     {
255         .name              = "aspeed.smc-ast2400",
256         .r_conf            = R_CONF,
257         .r_ce_ctrl         = R_CE_CTRL,
258         .r_ctrl0           = R_CTRL0,
259         .r_timings         = R_TIMINGS,
260         .nregs_timings     = 1,
261         .conf_enable_w0    = CONF_ENABLE_W0,
262         .max_slaves        = 5,
263         .segments          = aspeed_segments_legacy,
264         .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
265         .flash_window_size = 0x6000000,
266         .has_dma           = false,
267         .nregs             = ASPEED_SMC_R_SMC_MAX,
268         .segment_to_reg    = aspeed_smc_segment_to_reg,
269         .reg_to_segment    = aspeed_smc_reg_to_segment,
270     }, {
271         .name              = "aspeed.fmc-ast2400",
272         .r_conf            = R_CONF,
273         .r_ce_ctrl         = R_CE_CTRL,
274         .r_ctrl0           = R_CTRL0,
275         .r_timings         = R_TIMINGS,
276         .nregs_timings     = 1,
277         .conf_enable_w0    = CONF_ENABLE_W0,
278         .max_slaves        = 5,
279         .segments          = aspeed_segments_fmc,
280         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
281         .flash_window_size = 0x10000000,
282         .has_dma           = true,
283         .dma_flash_mask    = 0x0FFFFFFC,
284         .dma_dram_mask     = 0x1FFFFFFC,
285         .nregs             = ASPEED_SMC_R_MAX,
286         .segment_to_reg    = aspeed_smc_segment_to_reg,
287         .reg_to_segment    = aspeed_smc_reg_to_segment,
288     }, {
289         .name              = "aspeed.spi1-ast2400",
290         .r_conf            = R_SPI_CONF,
291         .r_ce_ctrl         = 0xff,
292         .r_ctrl0           = R_SPI_CTRL0,
293         .r_timings         = R_SPI_TIMINGS,
294         .nregs_timings     = 1,
295         .conf_enable_w0    = SPI_CONF_ENABLE_W0,
296         .max_slaves        = 1,
297         .segments          = aspeed_segments_spi,
298         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
299         .flash_window_size = 0x10000000,
300         .has_dma           = false,
301         .nregs             = ASPEED_SMC_R_SPI_MAX,
302         .segment_to_reg    = aspeed_smc_segment_to_reg,
303         .reg_to_segment    = aspeed_smc_reg_to_segment,
304     }, {
305         .name              = "aspeed.fmc-ast2500",
306         .r_conf            = R_CONF,
307         .r_ce_ctrl         = R_CE_CTRL,
308         .r_ctrl0           = R_CTRL0,
309         .r_timings         = R_TIMINGS,
310         .nregs_timings     = 1,
311         .conf_enable_w0    = CONF_ENABLE_W0,
312         .max_slaves        = 3,
313         .segments          = aspeed_segments_ast2500_fmc,
314         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
315         .flash_window_size = 0x10000000,
316         .has_dma           = true,
317         .dma_flash_mask    = 0x0FFFFFFC,
318         .dma_dram_mask     = 0x3FFFFFFC,
319         .nregs             = ASPEED_SMC_R_MAX,
320         .segment_to_reg    = aspeed_smc_segment_to_reg,
321         .reg_to_segment    = aspeed_smc_reg_to_segment,
322     }, {
323         .name              = "aspeed.spi1-ast2500",
324         .r_conf            = R_CONF,
325         .r_ce_ctrl         = R_CE_CTRL,
326         .r_ctrl0           = R_CTRL0,
327         .r_timings         = R_TIMINGS,
328         .nregs_timings     = 1,
329         .conf_enable_w0    = CONF_ENABLE_W0,
330         .max_slaves        = 2,
331         .segments          = aspeed_segments_ast2500_spi1,
332         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
333         .flash_window_size = 0x8000000,
334         .has_dma           = false,
335         .nregs             = ASPEED_SMC_R_MAX,
336         .segment_to_reg    = aspeed_smc_segment_to_reg,
337         .reg_to_segment    = aspeed_smc_reg_to_segment,
338     }, {
339         .name              = "aspeed.spi2-ast2500",
340         .r_conf            = R_CONF,
341         .r_ce_ctrl         = R_CE_CTRL,
342         .r_ctrl0           = R_CTRL0,
343         .r_timings         = R_TIMINGS,
344         .nregs_timings     = 1,
345         .conf_enable_w0    = CONF_ENABLE_W0,
346         .max_slaves        = 2,
347         .segments          = aspeed_segments_ast2500_spi2,
348         .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
349         .flash_window_size = 0x8000000,
350         .has_dma           = false,
351         .nregs             = ASPEED_SMC_R_MAX,
352         .segment_to_reg    = aspeed_smc_segment_to_reg,
353         .reg_to_segment    = aspeed_smc_reg_to_segment,
354     }, {
355         .name              = "aspeed.fmc-ast2600",
356         .r_conf            = R_CONF,
357         .r_ce_ctrl         = R_CE_CTRL,
358         .r_ctrl0           = R_CTRL0,
359         .r_timings         = R_TIMINGS,
360         .nregs_timings     = 1,
361         .conf_enable_w0    = CONF_ENABLE_W0,
362         .max_slaves        = 3,
363         .segments          = aspeed_segments_ast2600_fmc,
364         .flash_window_base = ASPEED26_SOC_FMC_FLASH_BASE,
365         .flash_window_size = 0x10000000,
366         .has_dma           = true,
367         .nregs             = ASPEED_SMC_R_MAX,
368         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
369         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
370     }, {
371         .name              = "aspeed.spi1-ast2600",
372         .r_conf            = R_CONF,
373         .r_ce_ctrl         = R_CE_CTRL,
374         .r_ctrl0           = R_CTRL0,
375         .r_timings         = R_TIMINGS,
376         .nregs_timings     = 2,
377         .conf_enable_w0    = CONF_ENABLE_W0,
378         .max_slaves        = 2,
379         .segments          = aspeed_segments_ast2600_spi1,
380         .flash_window_base = ASPEED26_SOC_SPI_FLASH_BASE,
381         .flash_window_size = 0x10000000,
382         .has_dma           = false,
383         .nregs             = ASPEED_SMC_R_MAX,
384         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
385         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
386     }, {
387         .name              = "aspeed.spi2-ast2600",
388         .r_conf            = R_CONF,
389         .r_ce_ctrl         = R_CE_CTRL,
390         .r_ctrl0           = R_CTRL0,
391         .r_timings         = R_TIMINGS,
392         .nregs_timings     = 3,
393         .conf_enable_w0    = CONF_ENABLE_W0,
394         .max_slaves        = 3,
395         .segments          = aspeed_segments_ast2600_spi2,
396         .flash_window_base = ASPEED26_SOC_SPI2_FLASH_BASE,
397         .flash_window_size = 0x10000000,
398         .has_dma           = false,
399         .nregs             = ASPEED_SMC_R_MAX,
400         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
401         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
402     },
403 };
404 
405 /*
406  * The Segment Registers of the AST2400 and AST2500 have a 8MB
407  * unit. The address range of a flash SPI slave is encoded with
408  * absolute addresses which should be part of the overall controller
409  * window.
410  */
411 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
412                                           const AspeedSegments *seg)
413 {
414     uint32_t reg = 0;
415     reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
416     reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
417     return reg;
418 }
419 
420 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
421                                       uint32_t reg, AspeedSegments *seg)
422 {
423     seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
424     seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
425 }
426 
427 /*
428  * The Segment Registers of the AST2600 have a 1MB unit. The address
429  * range of a flash SPI slave is encoded with offsets in the overall
430  * controller window. The previous SoC AST2400 and AST2500 used
431  * absolute addresses. Only bits [27:20] are relevant and the end
432  * address is an upper bound limit.
433  */
434 #define AST2600_SEG_ADDR_MASK 0x0ff00000
435 
436 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
437                                                const AspeedSegments *seg)
438 {
439     uint32_t reg = 0;
440 
441     /* Disabled segments have a nil register */
442     if (!seg->size) {
443         return 0;
444     }
445 
446     reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
447     reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
448     return reg;
449 }
450 
451 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
452                                            uint32_t reg, AspeedSegments *seg)
453 {
454     uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
455     uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
456 
457     if (reg) {
458         seg->addr = s->ctrl->flash_window_base + start_offset;
459         seg->size = end_offset + MiB - start_offset;
460     } else {
461         seg->addr = s->ctrl->flash_window_base;
462         seg->size = 0;
463     }
464 }
465 
466 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
467                                      const AspeedSegments *new,
468                                      int cs)
469 {
470     AspeedSegments seg;
471     int i;
472 
473     for (i = 0; i < s->ctrl->max_slaves; i++) {
474         if (i == cs) {
475             continue;
476         }
477 
478         s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
479 
480         if (new->addr + new->size > seg.addr &&
481             new->addr < seg.addr + seg.size) {
482             qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
483                           HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
484                           "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
485                           s->ctrl->name, cs, new->addr, new->addr + new->size,
486                           i, seg.addr, seg.addr + seg.size);
487             return true;
488         }
489     }
490     return false;
491 }
492 
493 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
494                                                 uint64_t regval)
495 {
496     AspeedSMCFlash *fl = &s->flashes[cs];
497     AspeedSegments seg;
498 
499     s->ctrl->reg_to_segment(s, regval, &seg);
500 
501     memory_region_transaction_begin();
502     memory_region_set_size(&fl->mmio, seg.size);
503     memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
504     memory_region_set_enabled(&fl->mmio, !!seg.size);
505     memory_region_transaction_commit();
506 
507     s->regs[R_SEG_ADDR0 + cs] = regval;
508 }
509 
510 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
511                                          uint64_t new)
512 {
513     AspeedSegments seg;
514 
515     s->ctrl->reg_to_segment(s, new, &seg);
516 
517     trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
518 
519     /* The start address of CS0 is read-only */
520     if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
521         qemu_log_mask(LOG_GUEST_ERROR,
522                       "%s: Tried to change CS0 start address to 0x%"
523                       HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
524         seg.addr = s->ctrl->flash_window_base;
525         new = s->ctrl->segment_to_reg(s, &seg);
526     }
527 
528     /*
529      * The end address of the AST2500 spi controllers is also
530      * read-only.
531      */
532     if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
533          s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
534         cs == s->ctrl->max_slaves &&
535         seg.addr + seg.size != s->ctrl->segments[cs].addr +
536         s->ctrl->segments[cs].size) {
537         qemu_log_mask(LOG_GUEST_ERROR,
538                       "%s: Tried to change CS%d end address to 0x%"
539                       HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
540         seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
541             seg.addr;
542         new = s->ctrl->segment_to_reg(s, &seg);
543     }
544 
545     /* Keep the segment in the overall flash window */
546     if (seg.size &&
547         (seg.addr + seg.size <= s->ctrl->flash_window_base ||
548          seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size)) {
549         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
550                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
551                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
552         return;
553     }
554 
555     /* Check start address vs. alignment */
556     if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
557         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
558                       "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
559                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
560     }
561 
562     /* And segments should not overlap (in the specs) */
563     aspeed_smc_flash_overlap(s, &seg, cs);
564 
565     /* All should be fine now to move the region */
566     aspeed_smc_flash_set_segment_region(s, cs, new);
567 }
568 
569 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
570                                               unsigned size)
571 {
572     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
573                   PRIx64 "\n", __func__, addr, size);
574     return 0;
575 }
576 
577 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
578                                            uint64_t data, unsigned size)
579 {
580     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
581                   PRIx64 "\n", __func__, addr, size, data);
582 }
583 
584 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
585     .read = aspeed_smc_flash_default_read,
586     .write = aspeed_smc_flash_default_write,
587     .endianness = DEVICE_LITTLE_ENDIAN,
588     .valid = {
589         .min_access_size = 1,
590         .max_access_size = 4,
591     },
592 };
593 
594 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
595 {
596     const AspeedSMCState *s = fl->controller;
597 
598     return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
599 }
600 
601 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
602 {
603     const AspeedSMCState *s = fl->controller;
604 
605     return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
606 }
607 
608 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
609 {
610     const AspeedSMCState *s = fl->controller;
611     int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
612 
613     /*
614      * In read mode, the default SPI command is READ (0x3). In other
615      * modes, the command should necessarily be defined
616      *
617      * TODO: add support for READ4 (0x13) on AST2600
618      */
619     if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
620         cmd = SPI_OP_READ;
621     }
622 
623     if (!cmd) {
624         qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
625                       __func__, aspeed_smc_flash_mode(fl));
626     }
627 
628     return cmd;
629 }
630 
631 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
632 {
633     const AspeedSMCState *s = fl->controller;
634 
635     if (s->ctrl->segments == aspeed_segments_spi) {
636         return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
637     } else {
638         return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
639     }
640 }
641 
642 static inline bool aspeed_smc_is_ce_stop_active(const AspeedSMCFlash *fl)
643 {
644     const AspeedSMCState *s = fl->controller;
645 
646     return s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE;
647 }
648 
649 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
650 {
651     AspeedSMCState *s = fl->controller;
652 
653     s->regs[s->r_ctrl0 + fl->id] &= ~CTRL_CE_STOP_ACTIVE;
654     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
655 }
656 
657 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
658 {
659     AspeedSMCState *s = fl->controller;
660 
661     s->regs[s->r_ctrl0 + fl->id] |= CTRL_CE_STOP_ACTIVE;
662     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
663 }
664 
665 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
666                                               uint32_t addr)
667 {
668     const AspeedSMCState *s = fl->controller;
669     AspeedSegments seg;
670 
671     s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
672     if ((addr % seg.size) != addr) {
673         qemu_log_mask(LOG_GUEST_ERROR,
674                       "%s: invalid address 0x%08x for CS%d segment : "
675                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
676                       s->ctrl->name, addr, fl->id, seg.addr,
677                       seg.addr + seg.size);
678         addr %= seg.size;
679     }
680 
681     return addr;
682 }
683 
684 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
685 {
686     const AspeedSMCState *s = fl->controller;
687     uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
688     uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
689     uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
690     uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
691 
692     if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
693         dummies /= 2;
694     }
695 
696     return dummies;
697 }
698 
699 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
700 {
701     const AspeedSMCState *s = fl->controller;
702     uint8_t cmd = aspeed_smc_flash_cmd(fl);
703     int i;
704 
705     /* Flash access can not exceed CS segment */
706     addr = aspeed_smc_check_segment_addr(fl, addr);
707 
708     ssi_transfer(s->spi, cmd);
709 
710     if (aspeed_smc_flash_is_4byte(fl)) {
711         ssi_transfer(s->spi, (addr >> 24) & 0xff);
712     }
713     ssi_transfer(s->spi, (addr >> 16) & 0xff);
714     ssi_transfer(s->spi, (addr >> 8) & 0xff);
715     ssi_transfer(s->spi, (addr & 0xff));
716 
717     /*
718      * Use fake transfers to model dummy bytes. The value should
719      * be configured to some non-zero value in fast read mode and
720      * zero in read mode. But, as the HW allows inconsistent
721      * settings, let's check for fast read mode.
722      */
723     if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
724         for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
725             ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
726         }
727     }
728 }
729 
730 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
731 {
732     AspeedSMCFlash *fl = opaque;
733     AspeedSMCState *s = fl->controller;
734     uint64_t ret = 0;
735     int i;
736 
737     switch (aspeed_smc_flash_mode(fl)) {
738     case CTRL_USERMODE:
739         for (i = 0; i < size; i++) {
740             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
741         }
742         break;
743     case CTRL_READMODE:
744     case CTRL_FREADMODE:
745         aspeed_smc_flash_select(fl);
746         aspeed_smc_flash_setup(fl, addr);
747 
748         for (i = 0; i < size; i++) {
749             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
750         }
751 
752         aspeed_smc_flash_unselect(fl);
753         break;
754     default:
755         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
756                       __func__, aspeed_smc_flash_mode(fl));
757     }
758 
759     trace_aspeed_smc_flash_read(fl->id, addr, size, ret,
760                                 aspeed_smc_flash_mode(fl));
761     return ret;
762 }
763 
764 /*
765  * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
766  * common include header.
767  */
768 typedef enum {
769     READ = 0x3,         READ_4 = 0x13,
770     FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
771     DOR = 0x3b,         DOR_4 = 0x3c,
772     QOR = 0x6b,         QOR_4 = 0x6c,
773     DIOR = 0xbb,        DIOR_4 = 0xbc,
774     QIOR = 0xeb,        QIOR_4 = 0xec,
775 
776     PP = 0x2,           PP_4 = 0x12,
777     DPP = 0xa2,
778     QPP = 0x32,         QPP_4 = 0x34,
779 } FlashCMD;
780 
781 static int aspeed_smc_num_dummies(uint8_t command)
782 {
783     switch (command) { /* check for dummies */
784     case READ: /* no dummy bytes/cycles */
785     case PP:
786     case DPP:
787     case QPP:
788     case READ_4:
789     case PP_4:
790     case QPP_4:
791         return 0;
792     case FAST_READ:
793     case DOR:
794     case QOR:
795     case DOR_4:
796     case QOR_4:
797         return 1;
798     case DIOR:
799     case FAST_READ_4:
800     case DIOR_4:
801         return 2;
802     case QIOR:
803     case QIOR_4:
804         return 4;
805     default:
806         return -1;
807     }
808 }
809 
810 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
811                                 unsigned size)
812 {
813     AspeedSMCState *s = fl->controller;
814     uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
815 
816     trace_aspeed_smc_do_snoop(fl->id, s->snoop_index, s->snoop_dummies,
817                               (uint8_t) data & 0xff);
818 
819     if (s->snoop_index == SNOOP_OFF) {
820         return false; /* Do nothing */
821 
822     } else if (s->snoop_index == SNOOP_START) {
823         uint8_t cmd = data & 0xff;
824         int ndummies = aspeed_smc_num_dummies(cmd);
825 
826         /*
827          * No dummy cycles are expected with the current command. Turn
828          * off snooping and let the transfer proceed normally.
829          */
830         if (ndummies <= 0) {
831             s->snoop_index = SNOOP_OFF;
832             return false;
833         }
834 
835         s->snoop_dummies = ndummies * 8;
836 
837     } else if (s->snoop_index >= addr_width + 1) {
838 
839         /* The SPI transfer has reached the dummy cycles sequence */
840         for (; s->snoop_dummies; s->snoop_dummies--) {
841             ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
842         }
843 
844         /* If no more dummy cycles are expected, turn off snooping */
845         if (!s->snoop_dummies) {
846             s->snoop_index = SNOOP_OFF;
847         } else {
848             s->snoop_index += size;
849         }
850 
851         /*
852          * Dummy cycles have been faked already. Ignore the current
853          * SPI transfer
854          */
855         return true;
856     }
857 
858     s->snoop_index += size;
859     return false;
860 }
861 
862 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
863                                    unsigned size)
864 {
865     AspeedSMCFlash *fl = opaque;
866     AspeedSMCState *s = fl->controller;
867     int i;
868 
869     trace_aspeed_smc_flash_write(fl->id, addr, size, data,
870                                  aspeed_smc_flash_mode(fl));
871 
872     if (!aspeed_smc_is_writable(fl)) {
873         qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
874                       HWADDR_PRIx "\n", __func__, addr);
875         return;
876     }
877 
878     switch (aspeed_smc_flash_mode(fl)) {
879     case CTRL_USERMODE:
880         if (aspeed_smc_do_snoop(fl, data, size)) {
881             break;
882         }
883 
884         for (i = 0; i < size; i++) {
885             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
886         }
887         break;
888     case CTRL_WRITEMODE:
889         aspeed_smc_flash_select(fl);
890         aspeed_smc_flash_setup(fl, addr);
891 
892         for (i = 0; i < size; i++) {
893             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
894         }
895 
896         aspeed_smc_flash_unselect(fl);
897         break;
898     default:
899         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
900                       __func__, aspeed_smc_flash_mode(fl));
901     }
902 }
903 
904 static const MemoryRegionOps aspeed_smc_flash_ops = {
905     .read = aspeed_smc_flash_read,
906     .write = aspeed_smc_flash_write,
907     .endianness = DEVICE_LITTLE_ENDIAN,
908     .valid = {
909         .min_access_size = 1,
910         .max_access_size = 4,
911     },
912 };
913 
914 static void aspeed_smc_flash_update_cs(AspeedSMCFlash *fl)
915 {
916     AspeedSMCState *s = fl->controller;
917 
918     s->snoop_index = aspeed_smc_is_ce_stop_active(fl) ? SNOOP_OFF : SNOOP_START;
919 
920     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
921 }
922 
923 static void aspeed_smc_reset(DeviceState *d)
924 {
925     AspeedSMCState *s = ASPEED_SMC(d);
926     int i;
927 
928     memset(s->regs, 0, sizeof s->regs);
929 
930     /* Unselect all slaves */
931     for (i = 0; i < s->num_cs; ++i) {
932         s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
933         qemu_set_irq(s->cs_lines[i], true);
934     }
935 
936     /* setup the default segment register values and regions for all */
937     for (i = 0; i < s->ctrl->max_slaves; ++i) {
938         aspeed_smc_flash_set_segment_region(s, i,
939                     s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]));
940     }
941 
942     /* HW strapping flash type for the AST2600 controllers  */
943     if (s->ctrl->segments == aspeed_segments_ast2600_fmc) {
944         /* flash type is fixed to SPI for all */
945         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
946         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
947         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
948     }
949 
950     /* HW strapping flash type for FMC controllers  */
951     if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
952         /* flash type is fixed to SPI for CE0 and CE1 */
953         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
954         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
955     }
956 
957     /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
958      * configuration of the palmetto-bmc machine */
959     if (s->ctrl->segments == aspeed_segments_fmc) {
960         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
961     }
962 
963     s->snoop_index = SNOOP_OFF;
964     s->snoop_dummies = 0;
965 }
966 
967 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
968 {
969     AspeedSMCState *s = ASPEED_SMC(opaque);
970 
971     addr >>= 2;
972 
973     if (addr == s->r_conf ||
974         (addr >= s->r_timings &&
975          addr < s->r_timings + s->ctrl->nregs_timings) ||
976         addr == s->r_ce_ctrl ||
977         addr == R_INTR_CTRL ||
978         addr == R_DUMMY_DATA ||
979         (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
980         (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
981         (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
982         (s->ctrl->has_dma && addr == R_DMA_LEN) ||
983         (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
984         (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) ||
985         (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_slaves)) {
986 
987         trace_aspeed_smc_read(addr, size, s->regs[addr]);
988 
989         return s->regs[addr];
990     } else {
991         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
992                       __func__, addr);
993         return -1;
994     }
995 }
996 
997 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
998 {
999     /* HCLK/1 .. HCLK/16 */
1000     const uint8_t hclk_divisors[] = {
1001         15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
1002     };
1003     int i;
1004 
1005     for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
1006         if (hclk_mask == hclk_divisors[i]) {
1007             return i + 1;
1008         }
1009     }
1010 
1011     qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
1012     return 0;
1013 }
1014 
1015 /*
1016  * When doing calibration, the SPI clock rate in the CE0 Control
1017  * Register and the read delay cycles in the Read Timing Compensation
1018  * Register are set using bit[11:4] of the DMA Control Register.
1019  */
1020 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
1021 {
1022     uint8_t delay =
1023         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1024     uint8_t hclk_mask =
1025         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1026     uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
1027     uint32_t hclk_shift = (hclk_div - 1) << 2;
1028     uint8_t cs;
1029 
1030     /*
1031      * The Read Timing Compensation Register values apply to all CS on
1032      * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
1033      */
1034     if (hclk_div && hclk_div < 6) {
1035         s->regs[s->r_timings] &= ~(0xf << hclk_shift);
1036         s->regs[s->r_timings] |= delay << hclk_shift;
1037     }
1038 
1039     /*
1040      * TODO: compute the CS from the DMA address and the segment
1041      * registers. This is not really a problem for now because the
1042      * Timing Register values apply to all CS and software uses CS0 to
1043      * do calibration.
1044      */
1045     cs = 0;
1046     s->regs[s->r_ctrl0 + cs] &=
1047         ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
1048     s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
1049 }
1050 
1051 /*
1052  * Emulate read errors in the DMA Checksum Register for high
1053  * frequencies and optimistic settings of the Read Timing Compensation
1054  * Register. This will help in tuning the SPI timing calibration
1055  * algorithm.
1056  */
1057 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
1058 {
1059     uint8_t delay =
1060         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1061     uint8_t hclk_mask =
1062         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1063 
1064     /*
1065      * Typical values of a palmetto-bmc machine.
1066      */
1067     switch (aspeed_smc_hclk_divisor(hclk_mask)) {
1068     case 4 ... 16:
1069         return false;
1070     case 3: /* at least one HCLK cycle delay */
1071         return (delay & 0x7) < 1;
1072     case 2: /* at least two HCLK cycle delay */
1073         return (delay & 0x7) < 2;
1074     case 1: /* (> 100MHz) is above the max freq of the controller */
1075         return true;
1076     default:
1077         g_assert_not_reached();
1078     }
1079 }
1080 
1081 /*
1082  * Accumulate the result of the reads to provide a checksum that will
1083  * be used to validate the read timing settings.
1084  */
1085 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
1086 {
1087     MemTxResult result;
1088     uint32_t data;
1089 
1090     if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1091         qemu_log_mask(LOG_GUEST_ERROR,
1092                       "%s: invalid direction for DMA checksum\n",  __func__);
1093         return;
1094     }
1095 
1096     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
1097         aspeed_smc_dma_calibration(s);
1098     }
1099 
1100     while (s->regs[R_DMA_LEN]) {
1101         data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1102                                     MEMTXATTRS_UNSPECIFIED, &result);
1103         if (result != MEMTX_OK) {
1104             qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1105                           __func__, s->regs[R_DMA_FLASH_ADDR]);
1106             return;
1107         }
1108         trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
1109 
1110         /*
1111          * When the DMA is on-going, the DMA registers are updated
1112          * with the current working addresses and length.
1113          */
1114         s->regs[R_DMA_CHECKSUM] += data;
1115         s->regs[R_DMA_FLASH_ADDR] += 4;
1116         s->regs[R_DMA_LEN] -= 4;
1117     }
1118 
1119     if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
1120         s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
1121     }
1122 
1123 }
1124 
1125 static void aspeed_smc_dma_rw(AspeedSMCState *s)
1126 {
1127     MemTxResult result;
1128     uint32_t data;
1129 
1130     while (s->regs[R_DMA_LEN]) {
1131         if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1132             data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1133                                         MEMTXATTRS_UNSPECIFIED, &result);
1134             if (result != MEMTX_OK) {
1135                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
1136                               __func__, s->regs[R_DMA_DRAM_ADDR]);
1137                 return;
1138             }
1139 
1140             address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1141                                  data, MEMTXATTRS_UNSPECIFIED, &result);
1142             if (result != MEMTX_OK) {
1143                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
1144                               __func__, s->regs[R_DMA_FLASH_ADDR]);
1145                 return;
1146             }
1147         } else {
1148             data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1149                                         MEMTXATTRS_UNSPECIFIED, &result);
1150             if (result != MEMTX_OK) {
1151                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1152                               __func__, s->regs[R_DMA_FLASH_ADDR]);
1153                 return;
1154             }
1155 
1156             address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1157                                  data, MEMTXATTRS_UNSPECIFIED, &result);
1158             if (result != MEMTX_OK) {
1159                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
1160                               __func__, s->regs[R_DMA_DRAM_ADDR]);
1161                 return;
1162             }
1163         }
1164 
1165         /*
1166          * When the DMA is on-going, the DMA registers are updated
1167          * with the current working addresses and length.
1168          */
1169         s->regs[R_DMA_FLASH_ADDR] += 4;
1170         s->regs[R_DMA_DRAM_ADDR] += 4;
1171         s->regs[R_DMA_LEN] -= 4;
1172         s->regs[R_DMA_CHECKSUM] += data;
1173     }
1174 }
1175 
1176 static void aspeed_smc_dma_stop(AspeedSMCState *s)
1177 {
1178     /*
1179      * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1180      * engine is idle
1181      */
1182     s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1183     s->regs[R_DMA_CHECKSUM] = 0;
1184 
1185     /*
1186      * Lower the DMA irq in any case. The IRQ control register could
1187      * have been cleared before disabling the DMA.
1188      */
1189     qemu_irq_lower(s->irq);
1190 }
1191 
1192 /*
1193  * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1194  * can start even if the result of the previous was not collected.
1195  */
1196 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1197 {
1198     return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1199         !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1200 }
1201 
1202 static void aspeed_smc_dma_done(AspeedSMCState *s)
1203 {
1204     s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1205     if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1206         qemu_irq_raise(s->irq);
1207     }
1208 }
1209 
1210 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1211 {
1212     if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1213         s->regs[R_DMA_CTRL] = dma_ctrl;
1214 
1215         aspeed_smc_dma_stop(s);
1216         return;
1217     }
1218 
1219     if (aspeed_smc_dma_in_progress(s)) {
1220         qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n",  __func__);
1221         return;
1222     }
1223 
1224     s->regs[R_DMA_CTRL] = dma_ctrl;
1225 
1226     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1227         aspeed_smc_dma_checksum(s);
1228     } else {
1229         aspeed_smc_dma_rw(s);
1230     }
1231 
1232     aspeed_smc_dma_done(s);
1233 }
1234 
1235 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1236                              unsigned int size)
1237 {
1238     AspeedSMCState *s = ASPEED_SMC(opaque);
1239     uint32_t value = data;
1240 
1241     addr >>= 2;
1242 
1243     trace_aspeed_smc_write(addr, size, data);
1244 
1245     if (addr == s->r_conf ||
1246         (addr >= s->r_timings &&
1247          addr < s->r_timings + s->ctrl->nregs_timings) ||
1248         addr == s->r_ce_ctrl) {
1249         s->regs[addr] = value;
1250     } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1251         int cs = addr - s->r_ctrl0;
1252         s->regs[addr] = value;
1253         aspeed_smc_flash_update_cs(&s->flashes[cs]);
1254     } else if (addr >= R_SEG_ADDR0 &&
1255                addr < R_SEG_ADDR0 + s->ctrl->max_slaves) {
1256         int cs = addr - R_SEG_ADDR0;
1257 
1258         if (value != s->regs[R_SEG_ADDR0 + cs]) {
1259             aspeed_smc_flash_set_segment(s, cs, value);
1260         }
1261     } else if (addr == R_DUMMY_DATA) {
1262         s->regs[addr] = value & 0xff;
1263     } else if (addr == R_INTR_CTRL) {
1264         s->regs[addr] = value;
1265     } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1266         aspeed_smc_dma_ctrl(s, value);
1267     } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1268         s->regs[addr] = DMA_DRAM_ADDR(s, value);
1269     } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1270         s->regs[addr] = DMA_FLASH_ADDR(s, value);
1271     } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1272         s->regs[addr] = DMA_LENGTH(value);
1273     } else {
1274         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1275                       __func__, addr);
1276         return;
1277     }
1278 }
1279 
1280 static const MemoryRegionOps aspeed_smc_ops = {
1281     .read = aspeed_smc_read,
1282     .write = aspeed_smc_write,
1283     .endianness = DEVICE_LITTLE_ENDIAN,
1284     .valid.unaligned = true,
1285 };
1286 
1287 
1288 /*
1289  * Initialize the custom address spaces for DMAs
1290  */
1291 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1292 {
1293     char *name;
1294 
1295     if (!s->dram_mr) {
1296         error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1297         return;
1298     }
1299 
1300     name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1301     address_space_init(&s->flash_as, &s->mmio_flash, name);
1302     g_free(name);
1303 
1304     name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1305     address_space_init(&s->dram_as, s->dram_mr, name);
1306     g_free(name);
1307 }
1308 
1309 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1310 {
1311     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1312     AspeedSMCState *s = ASPEED_SMC(dev);
1313     AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1314     int i;
1315     char name[32];
1316     hwaddr offset = 0;
1317 
1318     s->ctrl = mc->ctrl;
1319 
1320     /* keep a copy under AspeedSMCState to speed up accesses */
1321     s->r_conf = s->ctrl->r_conf;
1322     s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1323     s->r_ctrl0 = s->ctrl->r_ctrl0;
1324     s->r_timings = s->ctrl->r_timings;
1325     s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1326 
1327     /* Enforce some real HW limits */
1328     if (s->num_cs > s->ctrl->max_slaves) {
1329         qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1330                       __func__, s->ctrl->max_slaves);
1331         s->num_cs = s->ctrl->max_slaves;
1332     }
1333 
1334     /* DMA irq. Keep it first for the initialization in the SoC */
1335     sysbus_init_irq(sbd, &s->irq);
1336 
1337     s->spi = ssi_create_bus(dev, "spi");
1338 
1339     /* Setup cs_lines for slaves */
1340     s->cs_lines = g_new0(qemu_irq, s->num_cs);
1341     ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
1342 
1343     for (i = 0; i < s->num_cs; ++i) {
1344         sysbus_init_irq(sbd, &s->cs_lines[i]);
1345     }
1346 
1347     /* The memory region for the controller registers */
1348     memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1349                           s->ctrl->name, s->ctrl->nregs * 4);
1350     sysbus_init_mmio(sbd, &s->mmio);
1351 
1352     /*
1353      * The container memory region representing the address space
1354      * window in which the flash modules are mapped. The size and
1355      * address depends on the SoC model and controller type.
1356      */
1357     snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1358 
1359     memory_region_init_io(&s->mmio_flash, OBJECT(s),
1360                           &aspeed_smc_flash_default_ops, s, name,
1361                           s->ctrl->flash_window_size);
1362     sysbus_init_mmio(sbd, &s->mmio_flash);
1363 
1364     s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_slaves);
1365 
1366     /*
1367      * Let's create a sub memory region for each possible slave. All
1368      * have a configurable memory segment in the overall flash mapping
1369      * window of the controller but, there is not necessarily a flash
1370      * module behind to handle the memory accesses. This depends on
1371      * the board configuration.
1372      */
1373     for (i = 0; i < s->ctrl->max_slaves; ++i) {
1374         AspeedSMCFlash *fl = &s->flashes[i];
1375 
1376         snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1377 
1378         fl->id = i;
1379         fl->controller = s;
1380         fl->size = s->ctrl->segments[i].size;
1381         memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1382                               fl, name, fl->size);
1383         memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1384         offset += fl->size;
1385     }
1386 
1387     /* DMA support */
1388     if (s->ctrl->has_dma) {
1389         aspeed_smc_dma_setup(s, errp);
1390     }
1391 }
1392 
1393 static const VMStateDescription vmstate_aspeed_smc = {
1394     .name = "aspeed.smc",
1395     .version_id = 2,
1396     .minimum_version_id = 2,
1397     .fields = (VMStateField[]) {
1398         VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1399         VMSTATE_UINT8(snoop_index, AspeedSMCState),
1400         VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1401         VMSTATE_END_OF_LIST()
1402     }
1403 };
1404 
1405 static Property aspeed_smc_properties[] = {
1406     DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1407     DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1408     DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
1409     DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1410                      TYPE_MEMORY_REGION, MemoryRegion *),
1411     DEFINE_PROP_END_OF_LIST(),
1412 };
1413 
1414 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1415 {
1416     DeviceClass *dc = DEVICE_CLASS(klass);
1417     AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1418 
1419     dc->realize = aspeed_smc_realize;
1420     dc->reset = aspeed_smc_reset;
1421     device_class_set_props(dc, aspeed_smc_properties);
1422     dc->vmsd = &vmstate_aspeed_smc;
1423     mc->ctrl = data;
1424 }
1425 
1426 static const TypeInfo aspeed_smc_info = {
1427     .name           = TYPE_ASPEED_SMC,
1428     .parent         = TYPE_SYS_BUS_DEVICE,
1429     .instance_size  = sizeof(AspeedSMCState),
1430     .class_size     = sizeof(AspeedSMCClass),
1431     .abstract       = true,
1432 };
1433 
1434 static void aspeed_smc_register_types(void)
1435 {
1436     int i;
1437 
1438     type_register_static(&aspeed_smc_info);
1439     for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1440         TypeInfo ti = {
1441             .name       = controllers[i].name,
1442             .parent     = TYPE_ASPEED_SMC,
1443             .class_init = aspeed_smc_class_init,
1444             .class_data = (void *)&controllers[i],
1445         };
1446         type_register(&ti);
1447     }
1448 }
1449 
1450 type_init(aspeed_smc_register_types)
1451