xref: /qemu/hw/riscv/boot.c (revision 70ce076fa6dff60585c229a4b641b13e64bf03cf)
1 /*
2  * QEMU RISC-V Boot Helper
3  *
4  * Copyright (c) 2017 SiFive, Inc.
5  * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "exec/cpu-defs.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/riscv/boot.h"
28 #include "hw/riscv/boot_opensbi.h"
29 #include "elf.h"
30 #include "system/device_tree.h"
31 #include "system/qtest.h"
32 #include "system/kvm.h"
33 #include "system/reset.h"
34 
35 #include <libfdt.h>
36 
37 bool riscv_is_32bit(RISCVHartArrayState *harts)
38 {
39     RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(&harts->harts[0]);
40     return mcc->misa_mxl_max == MXL_RV32;
41 }
42 
43 /*
44  * Return the per-socket PLIC hart topology configuration string
45  * (caller must free with g_free())
46  */
47 char *riscv_plic_hart_config_string(int hart_count)
48 {
49     g_autofree const char **vals = g_new(const char *, hart_count + 1);
50     int i;
51 
52     for (i = 0; i < hart_count; i++) {
53         CPUState *cs = qemu_get_cpu(i);
54         CPURISCVState *env = &RISCV_CPU(cs)->env;
55 
56         if (kvm_enabled()) {
57             vals[i] = "S";
58         } else if (riscv_has_ext(env, RVS)) {
59             vals[i] = "MS";
60         } else {
61             vals[i] = "M";
62         }
63     }
64     vals[i] = NULL;
65 
66     /* g_strjoinv() obliges us to cast away const here */
67     return g_strjoinv(",", (char **)vals);
68 }
69 
70 void riscv_boot_info_init(RISCVBootInfo *info, RISCVHartArrayState *harts)
71 {
72     info->kernel_size = 0;
73     info->initrd_size = 0;
74     info->is_32bit = riscv_is_32bit(harts);
75 }
76 
77 target_ulong riscv_calc_kernel_start_addr(RISCVBootInfo *info,
78                                           target_ulong firmware_end_addr) {
79     if (info->is_32bit) {
80         return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
81     } else {
82         return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
83     }
84 }
85 
86 const char *riscv_default_firmware_name(RISCVHartArrayState *harts)
87 {
88     if (riscv_is_32bit(harts)) {
89         return RISCV32_BIOS_BIN;
90     }
91 
92     return RISCV64_BIOS_BIN;
93 }
94 
95 static char *riscv_find_bios(const char *bios_filename)
96 {
97     char *filename;
98 
99     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename);
100     if (filename == NULL) {
101         if (!qtest_enabled()) {
102             /*
103              * We only ship OpenSBI binary bios images in the QEMU source.
104              * For machines that use images other than the default bios,
105              * running QEMU test will complain hence let's suppress the error
106              * report for QEMU testing.
107              */
108             error_report("Unable to find the RISC-V BIOS \"%s\"",
109                          bios_filename);
110             exit(1);
111         }
112     }
113 
114     return filename;
115 }
116 
117 char *riscv_find_firmware(const char *firmware_filename,
118                           const char *default_machine_firmware)
119 {
120     char *filename = NULL;
121 
122     if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) {
123         /*
124          * The user didn't specify -bios, or has specified "-bios default".
125          * That means we are going to load the OpenSBI binary included in
126          * the QEMU source.
127          */
128         filename = riscv_find_bios(default_machine_firmware);
129     } else if (strcmp(firmware_filename, "none")) {
130         filename = riscv_find_bios(firmware_filename);
131     }
132 
133     return filename;
134 }
135 
136 target_ulong riscv_find_and_load_firmware(MachineState *machine,
137                                           const char *default_machine_firmware,
138                                           hwaddr *firmware_load_addr,
139                                           symbol_fn_t sym_cb)
140 {
141     char *firmware_filename;
142     target_ulong firmware_end_addr = *firmware_load_addr;
143 
144     firmware_filename = riscv_find_firmware(machine->firmware,
145                                             default_machine_firmware);
146 
147     if (firmware_filename) {
148         /* If not "none" load the firmware */
149         firmware_end_addr = riscv_load_firmware(firmware_filename,
150                                                 firmware_load_addr, sym_cb);
151         g_free(firmware_filename);
152     }
153 
154     return firmware_end_addr;
155 }
156 
157 target_ulong riscv_load_firmware(const char *firmware_filename,
158                                  hwaddr *firmware_load_addr,
159                                  symbol_fn_t sym_cb)
160 {
161     uint64_t firmware_entry, firmware_end;
162     ssize_t firmware_size;
163 
164     g_assert(firmware_filename != NULL);
165 
166     if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
167                          &firmware_entry, NULL, &firmware_end, NULL,
168                          0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
169         *firmware_load_addr = firmware_entry;
170         return firmware_end;
171     }
172 
173     firmware_size = load_image_targphys_as(firmware_filename,
174                                            *firmware_load_addr,
175                                            current_machine->ram_size, NULL);
176 
177     if (firmware_size > 0) {
178         return *firmware_load_addr + firmware_size;
179     }
180 
181     error_report("could not load firmware '%s'", firmware_filename);
182     exit(1);
183 }
184 
185 static void riscv_load_initrd(MachineState *machine, RISCVBootInfo *info)
186 {
187     const char *filename = machine->initrd_filename;
188     uint64_t mem_size = machine->ram_size;
189     void *fdt = machine->fdt;
190     hwaddr start, end;
191     ssize_t size;
192 
193     g_assert(filename != NULL);
194 
195     /*
196      * We want to put the initrd far enough into RAM that when the
197      * kernel is uncompressed it will not clobber the initrd. However
198      * on boards without much RAM we must ensure that we still leave
199      * enough room for a decent sized initrd, and on boards with large
200      * amounts of RAM, we put the initrd at 512MB to allow large kernels
201      * to boot.
202      * So for boards with less than 1GB of RAM we put the initrd
203      * halfway into RAM, and for boards with 1GB of RAM or more we put
204      * the initrd at 512MB.
205      */
206     start = info->image_low_addr + MIN(mem_size / 2, 512 * MiB);
207 
208     size = load_ramdisk(filename, start, mem_size - start);
209     if (size == -1) {
210         size = load_image_targphys(filename, start, mem_size - start);
211         if (size == -1) {
212             error_report("could not load ramdisk '%s'", filename);
213             exit(1);
214         }
215     }
216 
217     info->initrd_start = start;
218     info->initrd_size = size;
219 
220     /* Some RISC-V machines (e.g. opentitan) don't have a fdt. */
221     if (fdt) {
222         end = start + size;
223         qemu_fdt_setprop_u64(fdt, "/chosen", "linux,initrd-start", start);
224         qemu_fdt_setprop_u64(fdt, "/chosen", "linux,initrd-end", end);
225     }
226 }
227 
228 void riscv_load_kernel(MachineState *machine,
229                        RISCVBootInfo *info,
230                        target_ulong kernel_start_addr,
231                        bool load_initrd,
232                        symbol_fn_t sym_cb)
233 {
234     const char *kernel_filename = machine->kernel_filename;
235     ssize_t kernel_size;
236     void *fdt = machine->fdt;
237 
238     g_assert(kernel_filename != NULL);
239 
240     /*
241      * NB: Use low address not ELF entry point to ensure that the fw_dynamic
242      * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
243      * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
244      * the (expected) load address load address. This allows kernels to have
245      * separate SBI and ELF entry points (used by FreeBSD, for example).
246      */
247     kernel_size = load_elf_ram_sym(kernel_filename, NULL, NULL, NULL, NULL,
248                                    &info->image_low_addr, &info->image_high_addr,
249                                    NULL, ELFDATA2LSB, EM_RISCV,
250                                    1, 0, NULL, true, sym_cb);
251     if (kernel_size > 0) {
252         info->kernel_size = kernel_size;
253         goto out;
254     }
255 
256     kernel_size = load_uimage_as(kernel_filename, &info->image_low_addr,
257                                  NULL, NULL, NULL, NULL, NULL);
258     if (kernel_size > 0) {
259         info->kernel_size = kernel_size;
260         info->image_high_addr = info->image_low_addr + kernel_size;
261         goto out;
262     }
263 
264     kernel_size = load_image_targphys_as(kernel_filename, kernel_start_addr,
265                                          current_machine->ram_size, NULL);
266     if (kernel_size > 0) {
267         info->kernel_size = kernel_size;
268         info->image_low_addr = kernel_start_addr;
269         info->image_high_addr = info->image_low_addr + kernel_size;
270         goto out;
271     }
272 
273     error_report("could not load kernel '%s'", kernel_filename);
274     exit(1);
275 
276 out:
277     /*
278      * For 32 bit CPUs 'image_low_addr' can be sign-extended by
279      * load_elf_ram_sym().
280      */
281     if (info->is_32bit) {
282         info->image_low_addr = extract64(info->image_low_addr, 0, 32);
283     }
284 
285     if (load_initrd && machine->initrd_filename) {
286         riscv_load_initrd(machine, info);
287     }
288 
289     if (fdt && machine->kernel_cmdline && *machine->kernel_cmdline) {
290         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
291                                 machine->kernel_cmdline);
292     }
293 }
294 
295 /*
296  * This function makes an assumption that the DRAM interval
297  * 'dram_base' + 'dram_size' is contiguous.
298  *
299  * Considering that 'dram_end' is the lowest value between
300  * the end of the DRAM block and MachineState->ram_size, the
301  * FDT location will vary according to 'dram_base':
302  *
303  * - if 'dram_base' is less that 3072 MiB, the FDT will be
304  * put at the lowest value between 3072 MiB and 'dram_end';
305  *
306  * - if 'dram_base' is higher than 3072 MiB, the FDT will be
307  * put at 'dram_end'.
308  *
309  * The FDT is fdt_packed() during the calculation.
310  */
311 uint64_t riscv_compute_fdt_addr(hwaddr dram_base, hwaddr dram_size,
312                                 MachineState *ms, RISCVBootInfo *info)
313 {
314     int ret = fdt_pack(ms->fdt);
315     hwaddr dram_end, temp;
316     int fdtsize;
317     uint64_t dtb_start, dtb_start_limit;
318 
319     /* Should only fail if we've built a corrupted tree */
320     g_assert(ret == 0);
321 
322     fdtsize = fdt_totalsize(ms->fdt);
323     if (fdtsize <= 0) {
324         error_report("invalid device-tree");
325         exit(1);
326     }
327 
328     if (info->initrd_size) {
329         /* If initrd is successfully loaded, place DTB after it. */
330         dtb_start_limit = info->initrd_start + info->initrd_size;
331     } else if (info->kernel_size) {
332         /* If only kernel is successfully loaded, place DTB after it. */
333         dtb_start_limit = info->image_high_addr;
334     } else {
335         /* Otherwise, do not check DTB overlapping */
336         dtb_start_limit = 0;
337     }
338 
339     /*
340      * A dram_size == 0, usually from a MemMapEntry[].size element,
341      * means that the DRAM block goes all the way to ms->ram_size.
342      */
343     dram_end = dram_base;
344     dram_end += dram_size ? MIN(ms->ram_size, dram_size) : ms->ram_size;
345 
346     /*
347      * We should put fdt as far as possible to avoid kernel/initrd overwriting
348      * its content. But it should be addressable by 32 bit system as well in RV32.
349      * Thus, put it near to the end of dram in RV64, and put it near to the end
350      * of dram or 3GB whichever is lesser in RV32.
351      */
352     if (!info->is_32bit) {
353         temp = dram_end;
354     } else {
355         temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
356     }
357 
358     dtb_start = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
359 
360     if (dtb_start_limit && (dtb_start < dtb_start_limit)) {
361         error_report("No enough memory to place DTB after kernel/initrd");
362         exit(1);
363     }
364 
365     return dtb_start;
366 }
367 
368 /*
369  * 'fdt_addr' is received as hwaddr because boards might put
370  * the FDT beyond 32-bit addressing boundary.
371  */
372 void riscv_load_fdt(hwaddr fdt_addr, void *fdt)
373 {
374     uint32_t fdtsize = fdt_totalsize(fdt);
375 
376     /* copy in the device tree */
377     qemu_fdt_dumpdtb(fdt, fdtsize);
378 
379     rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
380                           &address_space_memory);
381     qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
382                         rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
383 }
384 
385 void riscv_rom_copy_firmware_info(MachineState *machine,
386                                   RISCVHartArrayState *harts,
387                                   hwaddr rom_base, hwaddr rom_size,
388                                   uint32_t reset_vec_size,
389                                   uint64_t kernel_entry)
390 {
391     struct fw_dynamic_info32 dinfo32;
392     struct fw_dynamic_info dinfo;
393     size_t dinfo_len;
394 
395     if (riscv_is_32bit(harts)) {
396         dinfo32.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
397         dinfo32.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
398         dinfo32.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
399         dinfo32.next_addr = cpu_to_le32(kernel_entry);
400         dinfo32.options = 0;
401         dinfo32.boot_hart = 0;
402         dinfo_len = sizeof(dinfo32);
403     } else {
404         dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
405         dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
406         dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
407         dinfo.next_addr = cpu_to_le64(kernel_entry);
408         dinfo.options = 0;
409         dinfo.boot_hart = 0;
410         dinfo_len = sizeof(dinfo);
411     }
412 
413     /**
414      * copy the dynamic firmware info. This information is specific to
415      * OpenSBI but doesn't break any other firmware as long as they don't
416      * expect any certain value in "a2" register.
417      */
418     if (dinfo_len > (rom_size - reset_vec_size)) {
419         error_report("not enough space to store dynamic firmware info");
420         exit(1);
421     }
422 
423     rom_add_blob_fixed_as("mrom.finfo",
424                            riscv_is_32bit(harts) ?
425                            (void *)&dinfo32 : (void *)&dinfo,
426                            dinfo_len,
427                            rom_base + reset_vec_size,
428                            &address_space_memory);
429 }
430 
431 void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
432                                hwaddr start_addr,
433                                hwaddr rom_base, hwaddr rom_size,
434                                uint64_t kernel_entry,
435                                uint64_t fdt_load_addr)
436 {
437     int i;
438     uint32_t start_addr_hi32 = 0x00000000;
439     uint32_t fdt_load_addr_hi32 = 0x00000000;
440 
441     if (!riscv_is_32bit(harts)) {
442         start_addr_hi32 = start_addr >> 32;
443         fdt_load_addr_hi32 = fdt_load_addr >> 32;
444     }
445     /* reset vector */
446     uint32_t reset_vec[10] = {
447         0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(fw_dyn) */
448         0x02828613,                  /*     addi   a2, t0, %pcrel_lo(1b) */
449         0xf1402573,                  /*     csrr   a0, mhartid  */
450         0,
451         0,
452         0x00028067,                  /*     jr     t0 */
453         start_addr,                  /* start: .dword */
454         start_addr_hi32,
455         fdt_load_addr,               /* fdt_laddr: .dword */
456         fdt_load_addr_hi32,
457                                      /* fw_dyn: */
458     };
459     if (riscv_is_32bit(harts)) {
460         reset_vec[3] = 0x0202a583;   /*     lw     a1, 32(t0) */
461         reset_vec[4] = 0x0182a283;   /*     lw     t0, 24(t0) */
462     } else {
463         reset_vec[3] = 0x0202b583;   /*     ld     a1, 32(t0) */
464         reset_vec[4] = 0x0182b283;   /*     ld     t0, 24(t0) */
465     }
466 
467     if (!harts->harts[0].cfg.ext_zicsr) {
468         /*
469          * The Zicsr extension has been disabled, so let's ensure we don't
470          * run the CSR instruction. Let's fill the address with a non
471          * compressed nop.
472          */
473         reset_vec[2] = 0x00000013;   /*     addi   x0, x0, 0 */
474     }
475 
476     /* copy in the reset vector in little_endian byte order */
477     for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
478         reset_vec[i] = cpu_to_le32(reset_vec[i]);
479     }
480     rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
481                           rom_base, &address_space_memory);
482     riscv_rom_copy_firmware_info(machine, harts,
483                                  rom_base, rom_size,
484                                  sizeof(reset_vec),
485                                  kernel_entry);
486 }
487 
488 void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
489 {
490     CPUState *cs;
491 
492     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
493         RISCVCPU *riscv_cpu = RISCV_CPU(cs);
494         riscv_cpu->env.kernel_addr = kernel_addr;
495         riscv_cpu->env.fdt_addr = fdt_addr;
496     }
497 }
498 
499 void riscv_setup_firmware_boot(MachineState *machine)
500 {
501     if (machine->kernel_filename) {
502         FWCfgState *fw_cfg;
503         fw_cfg = fw_cfg_find();
504 
505         assert(fw_cfg);
506         /*
507          * Expose the kernel, the command line, and the initrd in fw_cfg.
508          * We don't process them here at all, it's all left to the
509          * firmware.
510          */
511         load_image_to_fw_cfg(fw_cfg,
512                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
513                              machine->kernel_filename,
514                              true);
515         load_image_to_fw_cfg(fw_cfg,
516                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
517                              machine->initrd_filename, false);
518 
519         if (machine->kernel_cmdline) {
520             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
521                            strlen(machine->kernel_cmdline) + 1);
522             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
523                               machine->kernel_cmdline);
524         }
525     }
526 }
527