xref: /qemu/hw/ppc/pnv_core.c (revision 06b40d250ecfa1633209c2e431a7a38acfd03a98)
1 /*
2  * QEMU PowerPC PowerNV CPU Core model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public License
8  * as published by the Free Software Foundation; either version 2.1 of
9  * the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "system/reset.h"
22 #include "qapi/error.h"
23 #include "qemu/log.h"
24 #include "qemu/module.h"
25 #include "target/ppc/cpu.h"
26 #include "hw/ppc/ppc.h"
27 #include "hw/ppc/pnv.h"
28 #include "hw/ppc/pnv_chip.h"
29 #include "hw/ppc/pnv_core.h"
30 #include "hw/ppc/pnv_xscom.h"
31 #include "hw/ppc/xics.h"
32 #include "hw/qdev-properties.h"
33 #include "helper_regs.h"
34 
pnv_core_cpu_typename(PnvCore * pc)35 static const char *pnv_core_cpu_typename(PnvCore *pc)
36 {
37     const char *core_type = object_class_get_name(object_get_class(OBJECT(pc)));
38     int len = strlen(core_type) - strlen(PNV_CORE_TYPE_SUFFIX);
39     char *s = g_strdup_printf(POWERPC_CPU_TYPE_NAME("%.*s"), len, core_type);
40     const char *cpu_type = object_class_get_name(object_class_by_name(s));
41     g_free(s);
42     return cpu_type;
43 }
44 
pnv_core_cpu_reset(PnvCore * pc,PowerPCCPU * cpu)45 static void pnv_core_cpu_reset(PnvCore *pc, PowerPCCPU *cpu)
46 {
47     CPUState *cs = CPU(cpu);
48     CPUPPCState *env = &cpu->env;
49     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
50 
51     cpu_reset(cs);
52 
53     /*
54      * the skiboot firmware elects a primary thread to initialize the
55      * system and it can be any.
56      */
57     env->gpr[3] = PNV_FDT_ADDR;
58     env->nip = 0x10;
59     env->msr |= MSR_HVB; /* Hypervisor mode */
60     env->spr[SPR_HRMOR] = pc->hrmor;
61     if (pc->big_core) {
62         /* Clear "small core" bit on Power9/10 (this is set in default PVR) */
63         env->spr[SPR_PVR] &= ~PPC_BIT(51);
64     }
65     hreg_compute_hflags(env);
66     ppc_maybe_interrupt(env);
67 
68     cpu_ppc_tb_reset(env);
69 
70     pcc->intc_reset(pc->chip, cpu);
71 }
72 
73 /*
74  * These values are read by the PowerNV HW monitors under Linux
75  */
76 #define PNV_XSCOM_EX_DTS_RESULT0     0x50000
77 #define PNV_XSCOM_EX_DTS_RESULT1     0x50001
78 
pnv_core_power8_xscom_read(void * opaque,hwaddr addr,unsigned int width)79 static uint64_t pnv_core_power8_xscom_read(void *opaque, hwaddr addr,
80                                            unsigned int width)
81 {
82     uint32_t offset = addr >> 3;
83     uint64_t val = 0;
84 
85     /* The result should be 38 C */
86     switch (offset) {
87     case PNV_XSCOM_EX_DTS_RESULT0:
88         val = 0x26f024f023f0000ull;
89         break;
90     case PNV_XSCOM_EX_DTS_RESULT1:
91         val = 0x24f000000000000ull;
92         break;
93     default:
94         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
95                       offset);
96     }
97 
98     return val;
99 }
100 
pnv_core_power8_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned int width)101 static void pnv_core_power8_xscom_write(void *opaque, hwaddr addr, uint64_t val,
102                                         unsigned int width)
103 {
104     uint32_t offset = addr >> 3;
105 
106     qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
107                   offset);
108 }
109 
110 static const MemoryRegionOps pnv_core_power8_xscom_ops = {
111     .read = pnv_core_power8_xscom_read,
112     .write = pnv_core_power8_xscom_write,
113     .valid.min_access_size = 8,
114     .valid.max_access_size = 8,
115     .impl.min_access_size = 8,
116     .impl.max_access_size = 8,
117     .endianness = DEVICE_BIG_ENDIAN,
118 };
119 
120 
121 /*
122  * POWER9 core controls
123  */
124 #define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP 0xf010d
125 #define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR 0xf010a
126 
127 #define PNV9_XSCOM_EC_CORE_THREAD_STATE    0x10ab3
128 
pnv_core_power9_xscom_read(void * opaque,hwaddr addr,unsigned int width)129 static uint64_t pnv_core_power9_xscom_read(void *opaque, hwaddr addr,
130                                            unsigned int width)
131 {
132     uint32_t offset = addr >> 3;
133     uint64_t val = 0;
134 
135     /* The result should be 38 C */
136     switch (offset) {
137     case PNV_XSCOM_EX_DTS_RESULT0:
138         val = 0x26f024f023f0000ull;
139         break;
140     case PNV_XSCOM_EX_DTS_RESULT1:
141         val = 0x24f000000000000ull;
142         break;
143     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP:
144     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR:
145         val = 0x0;
146         break;
147     case PNV9_XSCOM_EC_CORE_THREAD_STATE:
148         val = 0;
149         break;
150     default:
151         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
152                       offset);
153     }
154 
155     return val;
156 }
157 
pnv_core_power9_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned int width)158 static void pnv_core_power9_xscom_write(void *opaque, hwaddr addr, uint64_t val,
159                                         unsigned int width)
160 {
161     uint32_t offset = addr >> 3;
162 
163     switch (offset) {
164     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP:
165     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR:
166         break;
167     default:
168         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
169                       offset);
170     }
171 }
172 
173 static const MemoryRegionOps pnv_core_power9_xscom_ops = {
174     .read = pnv_core_power9_xscom_read,
175     .write = pnv_core_power9_xscom_write,
176     .valid.min_access_size = 8,
177     .valid.max_access_size = 8,
178     .impl.min_access_size = 8,
179     .impl.max_access_size = 8,
180     .endianness = DEVICE_BIG_ENDIAN,
181 };
182 
183 /*
184  * POWER10 core controls
185  */
186 
187 #define PNV10_XSCOM_EC_CORE_THREAD_STATE    0x412
188 #define PNV10_XSCOM_EC_CORE_THREAD_INFO     0x413
189 #define PNV10_XSCOM_EC_CORE_DIRECT_CONTROLS 0x449
190 #define PNV10_XSCOM_EC_CORE_RAS_STATUS      0x454
191 
pnv_core_power10_xscom_read(void * opaque,hwaddr addr,unsigned int width)192 static uint64_t pnv_core_power10_xscom_read(void *opaque, hwaddr addr,
193                                            unsigned int width)
194 {
195     PnvCore *pc = PNV_CORE(opaque);
196     int nr_threads = CPU_CORE(pc)->nr_threads;
197     int i;
198     uint32_t offset = addr >> 3;
199     uint64_t val = 0;
200 
201     switch (offset) {
202     case PNV10_XSCOM_EC_CORE_THREAD_STATE:
203         for (i = 0; i < nr_threads; i++) {
204             PowerPCCPU *cpu = pc->threads[i];
205             CPUState *cs = CPU(cpu);
206 
207             if (cs->halted) {
208                 val |= PPC_BIT(56 + i);
209             }
210         }
211         if (pc->lpar_per_core) {
212             val |= PPC_BIT(62);
213         }
214         break;
215     case PNV10_XSCOM_EC_CORE_THREAD_INFO:
216         break;
217     case PNV10_XSCOM_EC_CORE_RAS_STATUS:
218         for (i = 0; i < nr_threads; i++) {
219             PowerPCCPU *cpu = pc->threads[i];
220             CPUPPCState *env = &cpu->env;
221             if (env->quiesced) {
222                 val |= PPC_BIT(0 + 8 * i) | PPC_BIT(1 + 8 * i);
223             }
224         }
225         break;
226     default:
227         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
228                       offset);
229     }
230 
231     return val;
232 }
233 
pnv_core_power10_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned int width)234 static void pnv_core_power10_xscom_write(void *opaque, hwaddr addr,
235                                          uint64_t val, unsigned int width)
236 {
237     PnvCore *pc = PNV_CORE(opaque);
238     int nr_threads = CPU_CORE(pc)->nr_threads;
239     int i;
240     uint32_t offset = addr >> 3;
241 
242     switch (offset) {
243     case PNV10_XSCOM_EC_CORE_DIRECT_CONTROLS:
244         for (i = 0; i < nr_threads; i++) {
245             PowerPCCPU *cpu = pc->threads[i];
246             CPUState *cs = CPU(cpu);
247             CPUPPCState *env = &cpu->env;
248 
249             if (val & PPC_BIT(7 + 8 * i)) { /* stop */
250                 val &= ~PPC_BIT(7 + 8 * i);
251                 env->quiesced = true;
252                 ppc_maybe_interrupt(env);
253                 cpu_pause(cs);
254             }
255             if (val & PPC_BIT(6 + 8 * i)) { /* start */
256                 val &= ~PPC_BIT(6 + 8 * i);
257                 env->quiesced = false;
258                 ppc_maybe_interrupt(env);
259                 cpu_resume(cs);
260             }
261             if (val & PPC_BIT(4 + 8 * i)) { /* sreset */
262                 val &= ~PPC_BIT(4 + 8 * i);
263                 env->quiesced = false;
264                 ppc_maybe_interrupt(env);
265                 pnv_cpu_do_nmi_resume(cs);
266             }
267             if (val & PPC_BIT(3 + 8 * i)) { /* clear maint */
268                 env->quiesced = false;
269                 ppc_maybe_interrupt(env);
270                 /*
271                  * Hardware has very particular cases for where clear maint
272                  * must be used and where start must be used to resume a
273                  * thread. These are not modelled exactly, just treat
274                  * this and start the same.
275                  */
276                 val &= ~PPC_BIT(3 + 8 * i);
277                 cpu_resume(cs);
278             }
279         }
280         if (val) {
281             qemu_log_mask(LOG_UNIMP, "%s: unimp bits in DIRECT_CONTROLS "
282                                      "0x%016" PRIx64 "\n", __func__, val);
283         }
284         break;
285 
286     default:
287         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
288                       offset);
289     }
290 }
291 
292 static const MemoryRegionOps pnv_core_power10_xscom_ops = {
293     .read = pnv_core_power10_xscom_read,
294     .write = pnv_core_power10_xscom_write,
295     .valid.min_access_size = 8,
296     .valid.max_access_size = 8,
297     .impl.min_access_size = 8,
298     .impl.max_access_size = 8,
299     .endianness = DEVICE_BIG_ENDIAN,
300 };
301 
pnv_core_cpu_realize(PnvCore * pc,PowerPCCPU * cpu,Error ** errp,int thread_index)302 static void pnv_core_cpu_realize(PnvCore *pc, PowerPCCPU *cpu, Error **errp,
303                                  int thread_index)
304 {
305     CPUPPCState *env = &cpu->env;
306     int core_hwid;
307     ppc_spr_t *pir_spr = &env->spr_cb[SPR_PIR];
308     ppc_spr_t *tir_spr = &env->spr_cb[SPR_TIR];
309     uint32_t pir, tir;
310     Error *local_err = NULL;
311     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
312 
313     if (!qdev_realize(DEVICE(cpu), NULL, errp)) {
314         return;
315     }
316 
317     pcc->intc_create(pc->chip, cpu, &local_err);
318     if (local_err) {
319         error_propagate(errp, local_err);
320         return;
321     }
322 
323     core_hwid = object_property_get_uint(OBJECT(pc), "hwid", &error_abort);
324 
325     pcc->get_pir_tir(pc->chip, core_hwid, thread_index, &pir, &tir);
326     pir_spr->default_value = pir;
327     tir_spr->default_value = tir;
328 
329     env->chip_index = pc->chip->chip_id;
330 
331     if (pc->big_core) {
332         /* 2 "small cores" get the same core index for SMT operations */
333         env->core_index = core_hwid >> 1;
334     } else {
335         env->core_index = core_hwid;
336     }
337 
338     if (pc->lpar_per_core) {
339         cpu_ppc_set_1lpar(cpu);
340     }
341 
342     /* Set time-base frequency to 512 MHz */
343     cpu_ppc_tb_init(env, PNV_TIMEBASE_FREQ);
344 }
345 
pnv_core_reset(void * dev)346 static void pnv_core_reset(void *dev)
347 {
348     CPUCore *cc = CPU_CORE(dev);
349     PnvCore *pc = PNV_CORE(dev);
350     int i;
351 
352     for (i = 0; i < cc->nr_threads; i++) {
353         pnv_core_cpu_reset(pc, pc->threads[i]);
354     }
355 }
356 
pnv_core_realize(DeviceState * dev,Error ** errp)357 static void pnv_core_realize(DeviceState *dev, Error **errp)
358 {
359     PnvCore *pc = PNV_CORE(OBJECT(dev));
360     PnvCoreClass *pcc = PNV_CORE_GET_CLASS(pc);
361     CPUCore *cc = CPU_CORE(OBJECT(dev));
362     const char *typename = pnv_core_cpu_typename(pc);
363     Error *local_err = NULL;
364     void *obj;
365     int i, j;
366     char name[32];
367 
368     assert(pc->chip);
369 
370     pc->threads = g_new(PowerPCCPU *, cc->nr_threads);
371     for (i = 0; i < cc->nr_threads; i++) {
372         PowerPCCPU *cpu;
373         PnvCPUState *pnv_cpu;
374 
375         obj = object_new(typename);
376         cpu = POWERPC_CPU(obj);
377 
378         pc->threads[i] = POWERPC_CPU(obj);
379         if (cc->nr_threads > 1) {
380             cpu->env.has_smt_siblings = true;
381         }
382 
383         snprintf(name, sizeof(name), "thread[%d]", i);
384         object_property_add_child(OBJECT(pc), name, obj);
385 
386         cpu->machine_data = g_new0(PnvCPUState, 1);
387         pnv_cpu = pnv_cpu_state(cpu);
388         pnv_cpu->pnv_core = pc;
389 
390         object_unref(obj);
391     }
392 
393     for (j = 0; j < cc->nr_threads; j++) {
394         pnv_core_cpu_realize(pc, pc->threads[j], &local_err, j);
395         if (local_err) {
396             goto err;
397         }
398     }
399 
400     snprintf(name, sizeof(name), "xscom-core.%d", cc->core_id);
401     pnv_xscom_region_init(&pc->xscom_regs, OBJECT(dev), pcc->xscom_ops,
402                           pc, name, pcc->xscom_size);
403 
404     qemu_register_reset(pnv_core_reset, pc);
405     return;
406 
407 err:
408     while (--i >= 0) {
409         obj = OBJECT(pc->threads[i]);
410         object_unparent(obj);
411     }
412     g_free(pc->threads);
413     error_propagate(errp, local_err);
414 }
415 
pnv_core_cpu_unrealize(PnvCore * pc,PowerPCCPU * cpu)416 static void pnv_core_cpu_unrealize(PnvCore *pc, PowerPCCPU *cpu)
417 {
418     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
419     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
420 
421     pcc->intc_destroy(pc->chip, cpu);
422     cpu_remove_sync(CPU(cpu));
423     cpu->machine_data = NULL;
424     g_free(pnv_cpu);
425     object_unparent(OBJECT(cpu));
426 }
427 
pnv_core_unrealize(DeviceState * dev)428 static void pnv_core_unrealize(DeviceState *dev)
429 {
430     PnvCore *pc = PNV_CORE(dev);
431     CPUCore *cc = CPU_CORE(dev);
432     int i;
433 
434     qemu_unregister_reset(pnv_core_reset, pc);
435 
436     for (i = 0; i < cc->nr_threads; i++) {
437         pnv_core_cpu_unrealize(pc, pc->threads[i]);
438     }
439     g_free(pc->threads);
440 }
441 
442 static const Property pnv_core_properties[] = {
443     DEFINE_PROP_UINT32("hwid", PnvCore, hwid, 0),
444     DEFINE_PROP_UINT64("hrmor", PnvCore, hrmor, 0),
445     DEFINE_PROP_BOOL("big-core", PnvCore, big_core, false),
446     DEFINE_PROP_BOOL("quirk-tb-big-core", PnvCore, tod_state.big_core_quirk,
447                      false),
448     DEFINE_PROP_BOOL("lpar-per-core", PnvCore, lpar_per_core, false),
449     DEFINE_PROP_LINK("chip", PnvCore, chip, TYPE_PNV_CHIP, PnvChip *),
450 };
451 
pnv_core_power8_class_init(ObjectClass * oc,const void * data)452 static void pnv_core_power8_class_init(ObjectClass *oc, const void *data)
453 {
454     PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
455 
456     pcc->xscom_ops = &pnv_core_power8_xscom_ops;
457     pcc->xscom_size = PNV_XSCOM_EX_SIZE;
458 }
459 
pnv_core_power9_class_init(ObjectClass * oc,const void * data)460 static void pnv_core_power9_class_init(ObjectClass *oc, const void *data)
461 {
462     PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
463 
464     pcc->xscom_ops = &pnv_core_power9_xscom_ops;
465     pcc->xscom_size = PNV_XSCOM_EX_SIZE;
466 }
467 
pnv_core_power10_class_init(ObjectClass * oc,const void * data)468 static void pnv_core_power10_class_init(ObjectClass *oc, const void *data)
469 {
470     PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
471 
472     pcc->xscom_ops = &pnv_core_power10_xscom_ops;
473     pcc->xscom_size = PNV10_XSCOM_EC_SIZE;
474 }
475 
pnv_core_class_init(ObjectClass * oc,const void * data)476 static void pnv_core_class_init(ObjectClass *oc, const void *data)
477 {
478     DeviceClass *dc = DEVICE_CLASS(oc);
479 
480     dc->realize = pnv_core_realize;
481     dc->unrealize = pnv_core_unrealize;
482     device_class_set_props(dc, pnv_core_properties);
483     dc->user_creatable = false;
484 }
485 
486 #define DEFINE_PNV_CORE_TYPE(family, cpu_model) \
487     {                                           \
488         .parent = TYPE_PNV_CORE,                \
489         .name = PNV_CORE_TYPE_NAME(cpu_model),  \
490         .class_init = pnv_core_##family##_class_init, \
491     }
492 
493 static const TypeInfo pnv_core_infos[] = {
494     {
495         .name           = TYPE_PNV_CORE,
496         .parent         = TYPE_CPU_CORE,
497         .instance_size  = sizeof(PnvCore),
498         .class_size     = sizeof(PnvCoreClass),
499         .class_init = pnv_core_class_init,
500         .abstract       = true,
501     },
502     DEFINE_PNV_CORE_TYPE(power8, "power8e_v2.1"),
503     DEFINE_PNV_CORE_TYPE(power8, "power8_v2.0"),
504     DEFINE_PNV_CORE_TYPE(power8, "power8nvl_v1.0"),
505     DEFINE_PNV_CORE_TYPE(power9, "power9_v2.2"),
506     DEFINE_PNV_CORE_TYPE(power10, "power10_v2.0"),
507 };
508 
DEFINE_TYPES(pnv_core_infos)509 DEFINE_TYPES(pnv_core_infos)
510 
511 /*
512  * POWER9 Quads
513  */
514 
515 #define P9X_EX_NCU_SPEC_BAR                     0x11010
516 
517 static uint64_t pnv_quad_power9_xscom_read(void *opaque, hwaddr addr,
518                                            unsigned int width)
519 {
520     uint32_t offset = addr >> 3;
521     uint64_t val = -1;
522 
523     switch (offset) {
524     case P9X_EX_NCU_SPEC_BAR:
525     case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */
526         val = 0;
527         break;
528     default:
529         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
530                       offset);
531     }
532 
533     return val;
534 }
535 
pnv_quad_power9_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned int width)536 static void pnv_quad_power9_xscom_write(void *opaque, hwaddr addr, uint64_t val,
537                                         unsigned int width)
538 {
539     uint32_t offset = addr >> 3;
540 
541     switch (offset) {
542     case P9X_EX_NCU_SPEC_BAR:
543     case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */
544         break;
545     default:
546         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
547                   offset);
548     }
549 }
550 
551 static const MemoryRegionOps pnv_quad_power9_xscom_ops = {
552     .read = pnv_quad_power9_xscom_read,
553     .write = pnv_quad_power9_xscom_write,
554     .valid.min_access_size = 8,
555     .valid.max_access_size = 8,
556     .impl.min_access_size = 8,
557     .impl.max_access_size = 8,
558     .endianness = DEVICE_BIG_ENDIAN,
559 };
560 
561 /*
562  * POWER10 Quads
563  */
564 
pnv_quad_power10_xscom_read(void * opaque,hwaddr addr,unsigned int width)565 static uint64_t pnv_quad_power10_xscom_read(void *opaque, hwaddr addr,
566                                             unsigned int width)
567 {
568     uint32_t offset = addr >> 3;
569     uint64_t val = -1;
570 
571     switch (offset) {
572     default:
573         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
574                       offset);
575     }
576 
577     return val;
578 }
579 
pnv_quad_power10_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned int width)580 static void pnv_quad_power10_xscom_write(void *opaque, hwaddr addr,
581                                          uint64_t val, unsigned int width)
582 {
583     uint32_t offset = addr >> 3;
584 
585     switch (offset) {
586     default:
587         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
588                       offset);
589     }
590 }
591 
592 static const MemoryRegionOps pnv_quad_power10_xscom_ops = {
593     .read = pnv_quad_power10_xscom_read,
594     .write = pnv_quad_power10_xscom_write,
595     .valid.min_access_size = 8,
596     .valid.max_access_size = 8,
597     .impl.min_access_size = 8,
598     .impl.max_access_size = 8,
599     .endianness = DEVICE_BIG_ENDIAN,
600 };
601 
602 #define P10_QME_SPWU_HYP 0x83c
603 #define P10_QME_SSH_HYP  0x82c
604 
pnv_qme_power10_xscom_read(void * opaque,hwaddr addr,unsigned int width)605 static uint64_t pnv_qme_power10_xscom_read(void *opaque, hwaddr addr,
606                                             unsigned int width)
607 {
608     PnvQuad *eq = PNV_QUAD(opaque);
609     uint32_t offset = addr >> 3;
610     uint64_t val = -1;
611 
612     /*
613      * Forth nibble selects the core within a quad, mask it to process read
614      * for any core.
615      */
616     switch (offset & ~PPC_BITMASK32(16, 19)) {
617     case P10_QME_SSH_HYP:
618         val = 0;
619         if (eq->special_wakeup_done) {
620             val |= PPC_BIT(1); /* SPWU DONE */
621             val |= PPC_BIT(4); /* SSH SPWU DONE */
622         }
623         break;
624     default:
625         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
626                       offset);
627     }
628 
629     return val;
630 }
631 
pnv_qme_power10_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned int width)632 static void pnv_qme_power10_xscom_write(void *opaque, hwaddr addr,
633                                          uint64_t val, unsigned int width)
634 {
635     PnvQuad *eq = PNV_QUAD(opaque);
636     uint32_t offset = addr >> 3;
637     bool set;
638     int i;
639 
640     switch (offset & ~PPC_BITMASK32(16, 19)) {
641     case P10_QME_SPWU_HYP:
642         set = !!(val & PPC_BIT(0));
643         eq->special_wakeup_done = set;
644         for (i = 0; i < 4; i++) {
645             /* These bits select cores in the quad */
646             if (offset & PPC_BIT32(16 + i)) {
647                 eq->special_wakeup[i] = set;
648             }
649         }
650         break;
651     default:
652         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
653                       offset);
654     }
655 }
656 
657 static const MemoryRegionOps pnv_qme_power10_xscom_ops = {
658     .read = pnv_qme_power10_xscom_read,
659     .write = pnv_qme_power10_xscom_write,
660     .valid.min_access_size = 8,
661     .valid.max_access_size = 8,
662     .impl.min_access_size = 8,
663     .impl.max_access_size = 8,
664     .endianness = DEVICE_BIG_ENDIAN,
665 };
666 
pnv_quad_power9_realize(DeviceState * dev,Error ** errp)667 static void pnv_quad_power9_realize(DeviceState *dev, Error **errp)
668 {
669     PnvQuad *eq = PNV_QUAD(dev);
670     PnvQuadClass *pqc = PNV_QUAD_GET_CLASS(eq);
671     char name[32];
672 
673     snprintf(name, sizeof(name), "xscom-quad.%d", eq->quad_id);
674     pnv_xscom_region_init(&eq->xscom_regs, OBJECT(dev),
675                           pqc->xscom_ops,
676                           eq, name,
677                           pqc->xscom_size);
678 }
679 
pnv_quad_power10_realize(DeviceState * dev,Error ** errp)680 static void pnv_quad_power10_realize(DeviceState *dev, Error **errp)
681 {
682     PnvQuad *eq = PNV_QUAD(dev);
683     PnvQuadClass *pqc = PNV_QUAD_GET_CLASS(eq);
684     char name[32];
685 
686     snprintf(name, sizeof(name), "xscom-quad.%d", eq->quad_id);
687     pnv_xscom_region_init(&eq->xscom_regs, OBJECT(dev),
688                           pqc->xscom_ops,
689                           eq, name,
690                           pqc->xscom_size);
691 
692     snprintf(name, sizeof(name), "xscom-qme.%d", eq->quad_id);
693     pnv_xscom_region_init(&eq->xscom_qme_regs, OBJECT(dev),
694                           pqc->xscom_qme_ops,
695                           eq, name,
696                           pqc->xscom_qme_size);
697 }
698 
699 static const Property pnv_quad_properties[] = {
700     DEFINE_PROP_UINT32("quad-id", PnvQuad, quad_id, 0),
701 };
702 
pnv_quad_power9_class_init(ObjectClass * oc,const void * data)703 static void pnv_quad_power9_class_init(ObjectClass *oc, const void *data)
704 {
705     PnvQuadClass *pqc = PNV_QUAD_CLASS(oc);
706     DeviceClass *dc = DEVICE_CLASS(oc);
707 
708     dc->realize = pnv_quad_power9_realize;
709 
710     pqc->xscom_ops = &pnv_quad_power9_xscom_ops;
711     pqc->xscom_size = PNV9_XSCOM_EQ_SIZE;
712 }
713 
pnv_quad_power10_class_init(ObjectClass * oc,const void * data)714 static void pnv_quad_power10_class_init(ObjectClass *oc, const void *data)
715 {
716     PnvQuadClass *pqc = PNV_QUAD_CLASS(oc);
717     DeviceClass *dc = DEVICE_CLASS(oc);
718 
719     dc->realize = pnv_quad_power10_realize;
720 
721     pqc->xscom_ops = &pnv_quad_power10_xscom_ops;
722     pqc->xscom_size = PNV10_XSCOM_EQ_SIZE;
723 
724     pqc->xscom_qme_ops = &pnv_qme_power10_xscom_ops;
725     pqc->xscom_qme_size = PNV10_XSCOM_QME_SIZE;
726 }
727 
pnv_quad_class_init(ObjectClass * oc,const void * data)728 static void pnv_quad_class_init(ObjectClass *oc, const void *data)
729 {
730     DeviceClass *dc = DEVICE_CLASS(oc);
731 
732     device_class_set_props(dc, pnv_quad_properties);
733     dc->user_creatable = false;
734 }
735 
736 static const TypeInfo pnv_quad_infos[] = {
737     {
738         .name          = TYPE_PNV_QUAD,
739         .parent        = TYPE_DEVICE,
740         .instance_size = sizeof(PnvQuad),
741         .class_size    = sizeof(PnvQuadClass),
742         .class_init    = pnv_quad_class_init,
743         .abstract      = true,
744     },
745     {
746         .parent = TYPE_PNV_QUAD,
747         .name = PNV_QUAD_TYPE_NAME("power9"),
748         .class_init = pnv_quad_power9_class_init,
749     },
750     {
751         .parent = TYPE_PNV_QUAD,
752         .name = PNV_QUAD_TYPE_NAME("power10"),
753         .class_init = pnv_quad_power10_class_init,
754     },
755 };
756 
757 DEFINE_TYPES(pnv_quad_infos);
758