xref: /qemu/hw/i386/fw_cfg.c (revision 71119ed3651622e1c531d1294839e9f3341adaf5)
1 /*
2  * QEMU fw_cfg helpers (X86 specific)
3  *
4  * Copyright (c) 2019 Red Hat, Inc.
5  *
6  * Author:
7  *   Philippe Mathieu-Daudé <philmd@redhat.com>
8  *
9  * SPDX-License-Identifier: GPL-2.0-or-later
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "system/numa.h"
17 #include "hw/acpi/acpi.h"
18 #include "hw/acpi/aml-build.h"
19 #include "hw/firmware/smbios.h"
20 #include "hw/i386/fw_cfg.h"
21 #include "hw/timer/hpet.h"
22 #include "hw/nvram/fw_cfg.h"
23 #include "e820_memory_layout.h"
24 #include "kvm/kvm_i386.h"
25 #include "qapi/error.h"
26 #include CONFIG_DEVICES
27 #include "target/i386/cpu.h"
28 
29 #if !defined(CONFIG_HPET)
30 struct hpet_fw_config hpet_fw_cfg = {.count = UINT8_MAX};
31 #endif
32 
fw_cfg_arch_key_name(uint16_t key)33 const char *fw_cfg_arch_key_name(uint16_t key)
34 {
35     static const struct {
36         uint16_t key;
37         const char *name;
38     } fw_cfg_arch_wellknown_keys[] = {
39         {FW_CFG_ACPI_TABLES, "acpi_tables"},
40         {FW_CFG_SMBIOS_ENTRIES, "smbios_entries"},
41         {FW_CFG_IRQ0_OVERRIDE, "irq0_override"},
42         {FW_CFG_HPET, "hpet"},
43     };
44 
45     for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
46         if (fw_cfg_arch_wellknown_keys[i].key == key) {
47             return fw_cfg_arch_wellknown_keys[i].name;
48         }
49     }
50     return NULL;
51 }
52 
53 /* Add etc/e820 late, once all regions should be present */
fw_cfg_add_e820(FWCfgState * fw_cfg)54 void fw_cfg_add_e820(FWCfgState *fw_cfg)
55 {
56     struct e820_entry *table;
57     int nr_e820 = e820_get_table(&table);
58 
59     fw_cfg_add_file(fw_cfg, "etc/e820", table, nr_e820 * sizeof(*table));
60 }
61 
fw_cfg_build_smbios(PCMachineState * pcms,FWCfgState * fw_cfg,SmbiosEntryPointType ep_type)62 void fw_cfg_build_smbios(PCMachineState *pcms, FWCfgState *fw_cfg,
63                          SmbiosEntryPointType ep_type)
64 {
65 #ifdef CONFIG_SMBIOS
66     uint8_t *smbios_tables, *smbios_anchor;
67     size_t smbios_tables_len, smbios_anchor_len;
68     struct smbios_phys_mem_area *mem_array;
69     unsigned i, array_count;
70     MachineState *ms = MACHINE(pcms);
71     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
72     MachineClass *mc = MACHINE_GET_CLASS(pcms);
73     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
74     int nr_e820;
75 
76     if (pcmc->smbios_defaults) {
77         /* These values are guest ABI, do not change */
78         smbios_set_defaults("QEMU", mc->desc, mc->name);
79     }
80 
81     /* tell smbios about cpuid version and features */
82     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
83 
84     if (pcmc->smbios_legacy_mode) {
85         smbios_tables = smbios_get_table_legacy(&smbios_tables_len,
86                                                 &error_fatal);
87         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
88                          smbios_tables, smbios_tables_len);
89         return;
90     }
91 
92     /* build the array of physical mem area from e820 table */
93     nr_e820 = e820_get_table(NULL);
94     mem_array = g_malloc0(sizeof(*mem_array) * nr_e820);
95     for (i = 0, array_count = 0; i < nr_e820; i++) {
96         uint64_t addr, len;
97 
98         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
99             mem_array[array_count].address = addr;
100             mem_array[array_count].length = len;
101             array_count++;
102         }
103     }
104     smbios_get_tables(ms, ep_type, mem_array, array_count,
105                       &smbios_tables, &smbios_tables_len,
106                       &smbios_anchor, &smbios_anchor_len,
107                       &error_fatal);
108     g_free(mem_array);
109 
110     if (smbios_anchor) {
111         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
112                         smbios_tables, smbios_tables_len);
113         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
114                         smbios_anchor, smbios_anchor_len);
115     }
116 #endif
117 }
118 
fw_cfg_arch_create(MachineState * ms,uint16_t boot_cpus,uint16_t apic_id_limit)119 FWCfgState *fw_cfg_arch_create(MachineState *ms,
120                                       uint16_t boot_cpus,
121                                       uint16_t apic_id_limit)
122 {
123     FWCfgState *fw_cfg;
124     uint64_t *numa_fw_cfg;
125     int i;
126     MachineClass *mc = MACHINE_GET_CLASS(ms);
127     const CPUArchIdList *cpus = mc->possible_cpu_arch_ids(ms);
128     int nb_numa_nodes = ms->numa_state->num_nodes;
129 
130     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4,
131                                 &address_space_memory);
132     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, boot_cpus);
133 
134     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
135      *
136      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
137      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
138      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
139      * for CPU hotplug also uses APIC ID and not "CPU index".
140      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
141      * but the "limit to the APIC ID values SeaBIOS may see".
142      *
143      * So for compatibility reasons with old BIOSes we are stuck with
144      * "etc/max-cpus" actually being apic_id_limit
145      */
146     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, apic_id_limit);
147     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, ms->ram_size);
148     if (acpi_builtin()) {
149         fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
150                          acpi_tables, acpi_tables_len);
151     }
152     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, 1);
153 
154     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_fw_cfg, sizeof(hpet_fw_cfg));
155     /* allocate memory for the NUMA channel: one (64bit) word for the number
156      * of nodes, one word for each VCPU->node and one word for each node to
157      * hold the amount of memory.
158      */
159     numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
160     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
161     for (i = 0; i < cpus->len; i++) {
162         unsigned int apic_id = cpus->cpus[i].arch_id;
163         assert(apic_id < apic_id_limit);
164         numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
165     }
166     for (i = 0; i < nb_numa_nodes; i++) {
167         numa_fw_cfg[apic_id_limit + 1 + i] =
168             cpu_to_le64(ms->numa_state->nodes[i].node_mem);
169     }
170     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
171                      (1 + apic_id_limit + nb_numa_nodes) *
172                      sizeof(*numa_fw_cfg));
173 
174     return fw_cfg;
175 }
176 
fw_cfg_build_feature_control(MachineState * ms,FWCfgState * fw_cfg)177 void fw_cfg_build_feature_control(MachineState *ms, FWCfgState *fw_cfg)
178 {
179     X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
180     CPUX86State *env = &cpu->env;
181     uint32_t unused, ebx, ecx, edx;
182     uint64_t feature_control_bits = 0;
183     uint64_t *val;
184 
185     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
186     if (ecx & CPUID_EXT_VMX) {
187         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
188     }
189 
190     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
191         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
192         (env->mcg_cap & MCG_LMCE_P)) {
193         feature_control_bits |= FEATURE_CONTROL_LMCE;
194     }
195 
196     if (env->cpuid_level >= 7) {
197         cpu_x86_cpuid(env, 0x7, 0, &unused, &ebx, &ecx, &unused);
198         if (ebx & CPUID_7_0_EBX_SGX) {
199             feature_control_bits |= FEATURE_CONTROL_SGX;
200         }
201         if (ecx & CPUID_7_0_ECX_SGX_LC) {
202             feature_control_bits |= FEATURE_CONTROL_SGX_LC;
203         }
204     }
205 
206     if (!feature_control_bits) {
207         return;
208     }
209 
210     val = g_malloc(sizeof(*val));
211     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
212     fw_cfg_add_file(fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
213 }
214 
215 #ifdef CONFIG_ACPI
fw_cfg_add_acpi_dsdt(Aml * scope,FWCfgState * fw_cfg)216 void fw_cfg_add_acpi_dsdt(Aml *scope, FWCfgState *fw_cfg)
217 {
218     /*
219      * when using port i/o, the 8-bit data register *always* overlaps
220      * with half of the 16-bit control register. Hence, the total size
221      * of the i/o region used is FW_CFG_CTL_SIZE; when using DMA, the
222      * DMA control register is located at FW_CFG_DMA_IO_BASE + 4
223      */
224     Object *obj = OBJECT(fw_cfg);
225     uint8_t io_size = object_property_get_bool(obj, "dma_enabled", NULL) ?
226         ROUND_UP(FW_CFG_CTL_SIZE, 4) + sizeof(dma_addr_t) :
227         FW_CFG_CTL_SIZE;
228     Aml *dev = aml_device("FWCF");
229     Aml *crs = aml_resource_template();
230 
231     aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
232 
233     /* device present, functioning, decoding, not shown in UI */
234     aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
235 
236     aml_append(crs,
237         aml_io(AML_DECODE16, FW_CFG_IO_BASE, FW_CFG_IO_BASE, 0x01, io_size));
238 
239     aml_append(dev, aml_name_decl("_CRS", crs));
240     aml_append(scope, dev);
241 }
242 #endif
243