1 /* 2 * CPU thread main loop - common bits for user and system mode emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "exec/cpu-common.h" 23 #include "hw/core/cpu.h" 24 #include "qemu/lockable.h" 25 #include "trace/trace-root.h" 26 27 QemuMutex qemu_cpu_list_lock; 28 static QemuCond exclusive_cond; 29 static QemuCond exclusive_resume; 30 static QemuCond qemu_work_cond; 31 32 /* >= 1 if a thread is inside start_exclusive/end_exclusive. Written 33 * under qemu_cpu_list_lock, read with atomic operations. 34 */ 35 static int pending_cpus; 36 37 void qemu_init_cpu_list(void) 38 { 39 /* This is needed because qemu_init_cpu_list is also called by the 40 * child process in a fork. */ 41 pending_cpus = 0; 42 43 qemu_mutex_init(&qemu_cpu_list_lock); 44 qemu_cond_init(&exclusive_cond); 45 qemu_cond_init(&exclusive_resume); 46 qemu_cond_init(&qemu_work_cond); 47 } 48 49 void cpu_list_lock(void) 50 { 51 qemu_mutex_lock(&qemu_cpu_list_lock); 52 } 53 54 void cpu_list_unlock(void) 55 { 56 qemu_mutex_unlock(&qemu_cpu_list_lock); 57 } 58 59 60 int cpu_get_free_index(void) 61 { 62 CPUState *some_cpu; 63 int max_cpu_index = 0; 64 65 CPU_FOREACH(some_cpu) { 66 if (some_cpu->cpu_index >= max_cpu_index) { 67 max_cpu_index = some_cpu->cpu_index + 1; 68 } 69 } 70 return max_cpu_index; 71 } 72 73 CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue); 74 static unsigned int cpu_list_generation_id; 75 76 unsigned int cpu_list_generation_id_get(void) 77 { 78 return cpu_list_generation_id; 79 } 80 81 void cpu_list_add(CPUState *cpu) 82 { 83 static bool cpu_index_auto_assigned; 84 85 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 86 if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) { 87 cpu_index_auto_assigned = true; 88 cpu->cpu_index = cpu_get_free_index(); 89 assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX); 90 } else { 91 assert(!cpu_index_auto_assigned); 92 } 93 QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node); 94 cpu_list_generation_id++; 95 } 96 97 void cpu_list_remove(CPUState *cpu) 98 { 99 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 100 if (!QTAILQ_IN_USE(cpu, node)) { 101 /* there is nothing to undo since cpu_exec_init() hasn't been called */ 102 return; 103 } 104 105 QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node); 106 cpu->cpu_index = UNASSIGNED_CPU_INDEX; 107 cpu_list_generation_id++; 108 } 109 110 CPUState *qemu_get_cpu(int index) 111 { 112 CPUState *cpu; 113 114 CPU_FOREACH(cpu) { 115 if (cpu->cpu_index == index) { 116 return cpu; 117 } 118 } 119 120 return NULL; 121 } 122 123 /* current CPU in the current thread. It is only valid inside cpu_exec() */ 124 __thread CPUState *current_cpu; 125 126 struct qemu_work_item { 127 QSIMPLEQ_ENTRY(qemu_work_item) node; 128 run_on_cpu_func func; 129 run_on_cpu_data data; 130 bool free, exclusive, done; 131 }; 132 133 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi) 134 { 135 qemu_mutex_lock(&cpu->work_mutex); 136 QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node); 137 wi->done = false; 138 qemu_mutex_unlock(&cpu->work_mutex); 139 140 qemu_cpu_kick(cpu); 141 } 142 143 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 144 QemuMutex *mutex) 145 { 146 struct qemu_work_item wi; 147 148 if (qemu_cpu_is_self(cpu)) { 149 func(cpu, data); 150 return; 151 } 152 153 wi.func = func; 154 wi.data = data; 155 wi.done = false; 156 wi.free = false; 157 wi.exclusive = false; 158 159 queue_work_on_cpu(cpu, &wi); 160 while (!qatomic_load_acquire(&wi.done)) { 161 CPUState *self_cpu = current_cpu; 162 163 qemu_cond_wait(&qemu_work_cond, mutex); 164 current_cpu = self_cpu; 165 } 166 } 167 168 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) 169 { 170 struct qemu_work_item *wi; 171 172 wi = g_new0(struct qemu_work_item, 1); 173 wi->func = func; 174 wi->data = data; 175 wi->free = true; 176 177 queue_work_on_cpu(cpu, wi); 178 } 179 180 /* Wait for pending exclusive operations to complete. The CPU list lock 181 must be held. */ 182 static inline void exclusive_idle(void) 183 { 184 while (pending_cpus) { 185 qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock); 186 } 187 } 188 189 /* Start an exclusive operation. 190 Must only be called from outside cpu_exec. */ 191 void start_exclusive(void) 192 { 193 CPUState *other_cpu; 194 int running_cpus; 195 196 /* Ensure we are not running, or start_exclusive will be blocked. */ 197 g_assert(!current_cpu->running); 198 199 if (current_cpu->exclusive_context_count) { 200 current_cpu->exclusive_context_count++; 201 return; 202 } 203 204 qemu_mutex_lock(&qemu_cpu_list_lock); 205 exclusive_idle(); 206 207 /* Make all other cpus stop executing. */ 208 qatomic_set(&pending_cpus, 1); 209 210 /* Write pending_cpus before reading other_cpu->running. */ 211 smp_mb(); 212 running_cpus = 0; 213 CPU_FOREACH(other_cpu) { 214 if (qatomic_read(&other_cpu->running)) { 215 other_cpu->has_waiter = true; 216 running_cpus++; 217 qemu_cpu_kick(other_cpu); 218 } 219 } 220 221 qatomic_set(&pending_cpus, running_cpus + 1); 222 while (pending_cpus > 1) { 223 qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock); 224 } 225 226 /* Can release mutex, no one will enter another exclusive 227 * section until end_exclusive resets pending_cpus to 0. 228 */ 229 qemu_mutex_unlock(&qemu_cpu_list_lock); 230 231 current_cpu->exclusive_context_count = 1; 232 } 233 234 /* Finish an exclusive operation. */ 235 void end_exclusive(void) 236 { 237 current_cpu->exclusive_context_count--; 238 if (current_cpu->exclusive_context_count) { 239 return; 240 } 241 242 qemu_mutex_lock(&qemu_cpu_list_lock); 243 qatomic_set(&pending_cpus, 0); 244 qemu_cond_broadcast(&exclusive_resume); 245 qemu_mutex_unlock(&qemu_cpu_list_lock); 246 } 247 248 /* Wait for exclusive ops to finish, and begin cpu execution. */ 249 void cpu_exec_start(CPUState *cpu) 250 { 251 qatomic_set(&cpu->running, true); 252 253 /* Write cpu->running before reading pending_cpus. */ 254 smp_mb(); 255 256 /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1. 257 * After taking the lock we'll see cpu->has_waiter == true and run---not 258 * for long because start_exclusive kicked us. cpu_exec_end will 259 * decrement pending_cpus and signal the waiter. 260 * 261 * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1. 262 * This includes the case when an exclusive item is running now. 263 * Then we'll see cpu->has_waiter == false and wait for the item to 264 * complete. 265 * 266 * 3. pending_cpus == 0. Then start_exclusive is definitely going to 267 * see cpu->running == true, and it will kick the CPU. 268 */ 269 if (unlikely(qatomic_read(&pending_cpus))) { 270 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 271 if (!cpu->has_waiter) { 272 /* Not counted in pending_cpus, let the exclusive item 273 * run. Since we have the lock, just set cpu->running to true 274 * while holding it; no need to check pending_cpus again. 275 */ 276 qatomic_set(&cpu->running, false); 277 exclusive_idle(); 278 /* Now pending_cpus is zero. */ 279 qatomic_set(&cpu->running, true); 280 } else { 281 /* Counted in pending_cpus, go ahead and release the 282 * waiter at cpu_exec_end. 283 */ 284 } 285 } 286 } 287 288 /* Mark cpu as not executing, and release pending exclusive ops. */ 289 void cpu_exec_end(CPUState *cpu) 290 { 291 qatomic_set(&cpu->running, false); 292 293 /* Write cpu->running before reading pending_cpus. */ 294 smp_mb(); 295 296 /* 1. start_exclusive saw cpu->running == true. Then it will increment 297 * pending_cpus and wait for exclusive_cond. After taking the lock 298 * we'll see cpu->has_waiter == true. 299 * 300 * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1. 301 * This includes the case when an exclusive item started after setting 302 * cpu->running to false and before we read pending_cpus. Then we'll see 303 * cpu->has_waiter == false and not touch pending_cpus. The next call to 304 * cpu_exec_start will run exclusive_idle if still necessary, thus waiting 305 * for the item to complete. 306 * 307 * 3. pending_cpus == 0. Then start_exclusive is definitely going to 308 * see cpu->running == false, and it can ignore this CPU until the 309 * next cpu_exec_start. 310 */ 311 if (unlikely(qatomic_read(&pending_cpus))) { 312 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 313 if (cpu->has_waiter) { 314 cpu->has_waiter = false; 315 qatomic_set(&pending_cpus, pending_cpus - 1); 316 if (pending_cpus == 1) { 317 qemu_cond_signal(&exclusive_cond); 318 } 319 } 320 } 321 } 322 323 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, 324 run_on_cpu_data data) 325 { 326 struct qemu_work_item *wi; 327 328 wi = g_new0(struct qemu_work_item, 1); 329 wi->func = func; 330 wi->data = data; 331 wi->free = true; 332 wi->exclusive = true; 333 334 queue_work_on_cpu(cpu, wi); 335 } 336 337 void free_queued_cpu_work(CPUState *cpu) 338 { 339 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { 340 struct qemu_work_item *wi = QSIMPLEQ_FIRST(&cpu->work_list); 341 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); 342 if (wi->free) { 343 g_free(wi); 344 } 345 } 346 } 347 348 void process_queued_cpu_work(CPUState *cpu) 349 { 350 struct qemu_work_item *wi; 351 352 qemu_mutex_lock(&cpu->work_mutex); 353 if (QSIMPLEQ_EMPTY(&cpu->work_list)) { 354 qemu_mutex_unlock(&cpu->work_mutex); 355 return; 356 } 357 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { 358 wi = QSIMPLEQ_FIRST(&cpu->work_list); 359 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); 360 qemu_mutex_unlock(&cpu->work_mutex); 361 if (wi->exclusive) { 362 /* Running work items outside the BQL avoids the following deadlock: 363 * 1) start_exclusive() is called with the BQL taken while another 364 * CPU is running; 2) cpu_exec in the other CPU tries to takes the 365 * BQL, so it goes to sleep; start_exclusive() is sleeping too, so 366 * neither CPU can proceed. 367 */ 368 bql_unlock(); 369 start_exclusive(); 370 wi->func(cpu, wi->data); 371 end_exclusive(); 372 bql_lock(); 373 } else { 374 wi->func(cpu, wi->data); 375 } 376 qemu_mutex_lock(&cpu->work_mutex); 377 if (wi->free) { 378 g_free(wi); 379 } else { 380 qatomic_store_release(&wi->done, true); 381 } 382 } 383 qemu_mutex_unlock(&cpu->work_mutex); 384 qemu_cond_broadcast(&qemu_work_cond); 385 } 386 387 /* Add a breakpoint. */ 388 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 389 CPUBreakpoint **breakpoint) 390 { 391 CPUClass *cc = CPU_GET_CLASS(cpu); 392 CPUBreakpoint *bp; 393 394 if (cc->gdb_adjust_breakpoint) { 395 pc = cc->gdb_adjust_breakpoint(cpu, pc); 396 } 397 398 bp = g_malloc(sizeof(*bp)); 399 400 bp->pc = pc; 401 bp->flags = flags; 402 403 /* keep all GDB-injected breakpoints in front */ 404 if (flags & BP_GDB) { 405 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); 406 } else { 407 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); 408 } 409 410 if (breakpoint) { 411 *breakpoint = bp; 412 } 413 414 trace_breakpoint_insert(cpu->cpu_index, pc, flags); 415 return 0; 416 } 417 418 /* Remove a specific breakpoint. */ 419 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) 420 { 421 CPUClass *cc = CPU_GET_CLASS(cpu); 422 CPUBreakpoint *bp; 423 424 if (cc->gdb_adjust_breakpoint) { 425 pc = cc->gdb_adjust_breakpoint(cpu, pc); 426 } 427 428 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 429 if (bp->pc == pc && bp->flags == flags) { 430 cpu_breakpoint_remove_by_ref(cpu, bp); 431 return 0; 432 } 433 } 434 return -ENOENT; 435 } 436 437 /* Remove a specific breakpoint by reference. */ 438 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp) 439 { 440 QTAILQ_REMOVE(&cpu->breakpoints, bp, entry); 441 442 trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags); 443 g_free(bp); 444 } 445 446 /* Remove all matching breakpoints. */ 447 void cpu_breakpoint_remove_all(CPUState *cpu, int mask) 448 { 449 CPUBreakpoint *bp, *next; 450 451 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { 452 if (bp->flags & mask) { 453 cpu_breakpoint_remove_by_ref(cpu, bp); 454 } 455 } 456 } 457