1 /*
2 * CPU thread main loop - common bits for user and system mode emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "exec/cpu-common.h"
23 #include "hw/core/cpu.h"
24 #include "qemu/lockable.h"
25 #include "trace/trace-root.h"
26
27 QemuMutex qemu_cpu_list_lock;
28 static QemuCond exclusive_cond;
29 static QemuCond exclusive_resume;
30 static QemuCond qemu_work_cond;
31
32 /* >= 1 if a thread is inside start_exclusive/end_exclusive. Written
33 * under qemu_cpu_list_lock, read with atomic operations.
34 */
35 static int pending_cpus;
36
qemu_init_cpu_list(void)37 void qemu_init_cpu_list(void)
38 {
39 /* This is needed because qemu_init_cpu_list is also called by the
40 * child process in a fork. */
41 pending_cpus = 0;
42
43 qemu_mutex_init(&qemu_cpu_list_lock);
44 qemu_cond_init(&exclusive_cond);
45 qemu_cond_init(&exclusive_resume);
46 qemu_cond_init(&qemu_work_cond);
47 }
48
cpu_list_lock(void)49 void cpu_list_lock(void)
50 {
51 qemu_mutex_lock(&qemu_cpu_list_lock);
52 }
53
cpu_list_unlock(void)54 void cpu_list_unlock(void)
55 {
56 qemu_mutex_unlock(&qemu_cpu_list_lock);
57 }
58
59
cpu_get_free_index(void)60 int cpu_get_free_index(void)
61 {
62 CPUState *some_cpu;
63 int max_cpu_index = 0;
64
65 CPU_FOREACH(some_cpu) {
66 if (some_cpu->cpu_index >= max_cpu_index) {
67 max_cpu_index = some_cpu->cpu_index + 1;
68 }
69 }
70 return max_cpu_index;
71 }
72
73 CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue);
74 static unsigned int cpu_list_generation_id;
75
cpu_list_generation_id_get(void)76 unsigned int cpu_list_generation_id_get(void)
77 {
78 return cpu_list_generation_id;
79 }
80
cpu_list_add(CPUState * cpu)81 void cpu_list_add(CPUState *cpu)
82 {
83 static bool cpu_index_auto_assigned;
84
85 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
86 if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
87 cpu_index_auto_assigned = true;
88 cpu->cpu_index = cpu_get_free_index();
89 assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
90 } else {
91 assert(!cpu_index_auto_assigned);
92 }
93 QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node);
94 cpu_list_generation_id++;
95 }
96
cpu_list_remove(CPUState * cpu)97 void cpu_list_remove(CPUState *cpu)
98 {
99 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
100 if (!QTAILQ_IN_USE(cpu, node)) {
101 /* there is nothing to undo since cpu_exec_init() hasn't been called */
102 return;
103 }
104
105 QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node);
106 cpu->cpu_index = UNASSIGNED_CPU_INDEX;
107 cpu_list_generation_id++;
108 }
109
qemu_get_cpu(int index)110 CPUState *qemu_get_cpu(int index)
111 {
112 CPUState *cpu;
113
114 CPU_FOREACH(cpu) {
115 if (cpu->cpu_index == index) {
116 return cpu;
117 }
118 }
119
120 return NULL;
121 }
122
123 /* current CPU in the current thread. It is only valid inside cpu_exec() */
124 __thread CPUState *current_cpu;
125
126 struct qemu_work_item {
127 QSIMPLEQ_ENTRY(qemu_work_item) node;
128 run_on_cpu_func func;
129 run_on_cpu_data data;
130 bool free, exclusive, done;
131 };
132
queue_work_on_cpu(CPUState * cpu,struct qemu_work_item * wi)133 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
134 {
135 qemu_mutex_lock(&cpu->work_mutex);
136 QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node);
137 wi->done = false;
138 qemu_mutex_unlock(&cpu->work_mutex);
139
140 qemu_cpu_kick(cpu);
141 }
142
do_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data,QemuMutex * mutex)143 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
144 QemuMutex *mutex)
145 {
146 struct qemu_work_item wi;
147
148 if (qemu_cpu_is_self(cpu)) {
149 func(cpu, data);
150 return;
151 }
152
153 wi.func = func;
154 wi.data = data;
155 wi.done = false;
156 wi.free = false;
157 wi.exclusive = false;
158
159 queue_work_on_cpu(cpu, &wi);
160 while (!qatomic_load_acquire(&wi.done)) {
161 CPUState *self_cpu = current_cpu;
162
163 qemu_cond_wait(&qemu_work_cond, mutex);
164 current_cpu = self_cpu;
165 }
166 }
167
async_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data)168 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
169 {
170 struct qemu_work_item *wi;
171
172 wi = g_new0(struct qemu_work_item, 1);
173 wi->func = func;
174 wi->data = data;
175 wi->free = true;
176
177 queue_work_on_cpu(cpu, wi);
178 }
179
180 /* Wait for pending exclusive operations to complete. The CPU list lock
181 must be held. */
exclusive_idle(void)182 static inline void exclusive_idle(void)
183 {
184 while (pending_cpus) {
185 qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
186 }
187 }
188
189 /* Start an exclusive operation.
190 Must only be called from outside cpu_exec. */
start_exclusive(void)191 void start_exclusive(void)
192 {
193 CPUState *other_cpu;
194 int running_cpus;
195
196 /* Ensure we are not running, or start_exclusive will be blocked. */
197 g_assert(!current_cpu->running);
198
199 if (current_cpu->exclusive_context_count) {
200 current_cpu->exclusive_context_count++;
201 return;
202 }
203
204 qemu_mutex_lock(&qemu_cpu_list_lock);
205 exclusive_idle();
206
207 /* Make all other cpus stop executing. */
208 qatomic_set(&pending_cpus, 1);
209
210 /* Write pending_cpus before reading other_cpu->running. */
211 smp_mb();
212 running_cpus = 0;
213 CPU_FOREACH(other_cpu) {
214 if (qatomic_read(&other_cpu->running)) {
215 other_cpu->has_waiter = true;
216 running_cpus++;
217 qemu_cpu_kick(other_cpu);
218 }
219 }
220
221 qatomic_set(&pending_cpus, running_cpus + 1);
222 while (pending_cpus > 1) {
223 qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
224 }
225
226 /* Can release mutex, no one will enter another exclusive
227 * section until end_exclusive resets pending_cpus to 0.
228 */
229 qemu_mutex_unlock(&qemu_cpu_list_lock);
230
231 current_cpu->exclusive_context_count = 1;
232 }
233
234 /* Finish an exclusive operation. */
end_exclusive(void)235 void end_exclusive(void)
236 {
237 current_cpu->exclusive_context_count--;
238 if (current_cpu->exclusive_context_count) {
239 return;
240 }
241
242 qemu_mutex_lock(&qemu_cpu_list_lock);
243 qatomic_set(&pending_cpus, 0);
244 qemu_cond_broadcast(&exclusive_resume);
245 qemu_mutex_unlock(&qemu_cpu_list_lock);
246 }
247
248 /* Wait for exclusive ops to finish, and begin cpu execution. */
cpu_exec_start(CPUState * cpu)249 void cpu_exec_start(CPUState *cpu)
250 {
251 qatomic_set(&cpu->running, true);
252
253 /* Write cpu->running before reading pending_cpus. */
254 smp_mb();
255
256 /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
257 * After taking the lock we'll see cpu->has_waiter == true and run---not
258 * for long because start_exclusive kicked us. cpu_exec_end will
259 * decrement pending_cpus and signal the waiter.
260 *
261 * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
262 * This includes the case when an exclusive item is running now.
263 * Then we'll see cpu->has_waiter == false and wait for the item to
264 * complete.
265 *
266 * 3. pending_cpus == 0. Then start_exclusive is definitely going to
267 * see cpu->running == true, and it will kick the CPU.
268 */
269 if (unlikely(qatomic_read(&pending_cpus))) {
270 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
271 if (!cpu->has_waiter) {
272 /* Not counted in pending_cpus, let the exclusive item
273 * run. Since we have the lock, just set cpu->running to true
274 * while holding it; no need to check pending_cpus again.
275 */
276 qatomic_set(&cpu->running, false);
277 exclusive_idle();
278 /* Now pending_cpus is zero. */
279 qatomic_set(&cpu->running, true);
280 } else {
281 /* Counted in pending_cpus, go ahead and release the
282 * waiter at cpu_exec_end.
283 */
284 }
285 }
286 }
287
288 /* Mark cpu as not executing, and release pending exclusive ops. */
cpu_exec_end(CPUState * cpu)289 void cpu_exec_end(CPUState *cpu)
290 {
291 qatomic_set(&cpu->running, false);
292
293 /* Write cpu->running before reading pending_cpus. */
294 smp_mb();
295
296 /* 1. start_exclusive saw cpu->running == true. Then it will increment
297 * pending_cpus and wait for exclusive_cond. After taking the lock
298 * we'll see cpu->has_waiter == true.
299 *
300 * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
301 * This includes the case when an exclusive item started after setting
302 * cpu->running to false and before we read pending_cpus. Then we'll see
303 * cpu->has_waiter == false and not touch pending_cpus. The next call to
304 * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
305 * for the item to complete.
306 *
307 * 3. pending_cpus == 0. Then start_exclusive is definitely going to
308 * see cpu->running == false, and it can ignore this CPU until the
309 * next cpu_exec_start.
310 */
311 if (unlikely(qatomic_read(&pending_cpus))) {
312 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
313 if (cpu->has_waiter) {
314 cpu->has_waiter = false;
315 qatomic_set(&pending_cpus, pending_cpus - 1);
316 if (pending_cpus == 1) {
317 qemu_cond_signal(&exclusive_cond);
318 }
319 }
320 }
321 }
322
async_safe_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data)323 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
324 run_on_cpu_data data)
325 {
326 struct qemu_work_item *wi;
327
328 wi = g_new0(struct qemu_work_item, 1);
329 wi->func = func;
330 wi->data = data;
331 wi->free = true;
332 wi->exclusive = true;
333
334 queue_work_on_cpu(cpu, wi);
335 }
336
free_queued_cpu_work(CPUState * cpu)337 void free_queued_cpu_work(CPUState *cpu)
338 {
339 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
340 struct qemu_work_item *wi = QSIMPLEQ_FIRST(&cpu->work_list);
341 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
342 if (wi->free) {
343 g_free(wi);
344 }
345 }
346 }
347
process_queued_cpu_work(CPUState * cpu)348 void process_queued_cpu_work(CPUState *cpu)
349 {
350 struct qemu_work_item *wi;
351
352 qemu_mutex_lock(&cpu->work_mutex);
353 if (QSIMPLEQ_EMPTY(&cpu->work_list)) {
354 qemu_mutex_unlock(&cpu->work_mutex);
355 return;
356 }
357 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
358 wi = QSIMPLEQ_FIRST(&cpu->work_list);
359 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
360 qemu_mutex_unlock(&cpu->work_mutex);
361 if (wi->exclusive) {
362 /* Running work items outside the BQL avoids the following deadlock:
363 * 1) start_exclusive() is called with the BQL taken while another
364 * CPU is running; 2) cpu_exec in the other CPU tries to takes the
365 * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
366 * neither CPU can proceed.
367 */
368 bql_unlock();
369 start_exclusive();
370 wi->func(cpu, wi->data);
371 end_exclusive();
372 bql_lock();
373 } else {
374 wi->func(cpu, wi->data);
375 }
376 qemu_mutex_lock(&cpu->work_mutex);
377 if (wi->free) {
378 g_free(wi);
379 } else {
380 qatomic_store_release(&wi->done, true);
381 }
382 }
383 qemu_mutex_unlock(&cpu->work_mutex);
384 qemu_cond_broadcast(&qemu_work_cond);
385 }
386
387 /* Add a breakpoint. */
cpu_breakpoint_insert(CPUState * cpu,vaddr pc,int flags,CPUBreakpoint ** breakpoint)388 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
389 CPUBreakpoint **breakpoint)
390 {
391 CPUBreakpoint *bp;
392
393 if (cpu->cc->gdb_adjust_breakpoint) {
394 pc = cpu->cc->gdb_adjust_breakpoint(cpu, pc);
395 }
396
397 bp = g_malloc(sizeof(*bp));
398
399 bp->pc = pc;
400 bp->flags = flags;
401
402 /* keep all GDB-injected breakpoints in front */
403 if (flags & BP_GDB) {
404 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
405 } else {
406 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
407 }
408
409 if (breakpoint) {
410 *breakpoint = bp;
411 }
412
413 trace_breakpoint_insert(cpu->cpu_index, pc, flags);
414 return 0;
415 }
416
417 /* Remove a specific breakpoint. */
cpu_breakpoint_remove(CPUState * cpu,vaddr pc,int flags)418 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
419 {
420 CPUBreakpoint *bp;
421
422 if (cpu->cc->gdb_adjust_breakpoint) {
423 pc = cpu->cc->gdb_adjust_breakpoint(cpu, pc);
424 }
425
426 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
427 if (bp->pc == pc && bp->flags == flags) {
428 cpu_breakpoint_remove_by_ref(cpu, bp);
429 return 0;
430 }
431 }
432 return -ENOENT;
433 }
434
435 /* Remove a specific breakpoint by reference. */
cpu_breakpoint_remove_by_ref(CPUState * cpu,CPUBreakpoint * bp)436 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp)
437 {
438 QTAILQ_REMOVE(&cpu->breakpoints, bp, entry);
439
440 trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags);
441 g_free(bp);
442 }
443
444 /* Remove all matching breakpoints. */
cpu_breakpoint_remove_all(CPUState * cpu,int mask)445 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
446 {
447 CPUBreakpoint *bp, *next;
448
449 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
450 if (bp->flags & mask) {
451 cpu_breakpoint_remove_by_ref(cpu, bp);
452 }
453 }
454 }
455