xref: /qemu/cpu-common.c (revision 0c0fcc2052915c629daa2469bfae620da18b2394)
1 /*
2  * CPU thread main loop - common bits for user and system mode emulation
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "exec/cpu-common.h"
23 #include "hw/core/cpu.h"
24 #include "sysemu/cpus.h"
25 #include "qemu/lockable.h"
26 
27 static QemuMutex qemu_cpu_list_lock;
28 static QemuCond exclusive_cond;
29 static QemuCond exclusive_resume;
30 static QemuCond qemu_work_cond;
31 
32 /* >= 1 if a thread is inside start_exclusive/end_exclusive.  Written
33  * under qemu_cpu_list_lock, read with atomic operations.
34  */
35 static int pending_cpus;
36 
37 void qemu_init_cpu_list(void)
38 {
39     /* This is needed because qemu_init_cpu_list is also called by the
40      * child process in a fork.  */
41     pending_cpus = 0;
42 
43     qemu_mutex_init(&qemu_cpu_list_lock);
44     qemu_cond_init(&exclusive_cond);
45     qemu_cond_init(&exclusive_resume);
46     qemu_cond_init(&qemu_work_cond);
47 }
48 
49 void cpu_list_lock(void)
50 {
51     qemu_mutex_lock(&qemu_cpu_list_lock);
52 }
53 
54 void cpu_list_unlock(void)
55 {
56     qemu_mutex_unlock(&qemu_cpu_list_lock);
57 }
58 
59 static bool cpu_index_auto_assigned;
60 
61 static int cpu_get_free_index(void)
62 {
63     CPUState *some_cpu;
64     int max_cpu_index = 0;
65 
66     cpu_index_auto_assigned = true;
67     CPU_FOREACH(some_cpu) {
68         if (some_cpu->cpu_index >= max_cpu_index) {
69             max_cpu_index = some_cpu->cpu_index + 1;
70         }
71     }
72     return max_cpu_index;
73 }
74 
75 void cpu_list_add(CPUState *cpu)
76 {
77     QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
78     if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
79         cpu->cpu_index = cpu_get_free_index();
80         assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
81     } else {
82         assert(!cpu_index_auto_assigned);
83     }
84     QTAILQ_INSERT_TAIL_RCU(&cpus, cpu, node);
85 }
86 
87 void cpu_list_remove(CPUState *cpu)
88 {
89     QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
90     if (!QTAILQ_IN_USE(cpu, node)) {
91         /* there is nothing to undo since cpu_exec_init() hasn't been called */
92         return;
93     }
94 
95     QTAILQ_REMOVE_RCU(&cpus, cpu, node);
96     cpu->cpu_index = UNASSIGNED_CPU_INDEX;
97 }
98 
99 struct qemu_work_item {
100     QSIMPLEQ_ENTRY(qemu_work_item) node;
101     run_on_cpu_func func;
102     run_on_cpu_data data;
103     bool free, exclusive, done;
104 };
105 
106 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
107 {
108     qemu_mutex_lock(&cpu->work_mutex);
109     QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node);
110     wi->done = false;
111     qemu_mutex_unlock(&cpu->work_mutex);
112 
113     qemu_cpu_kick(cpu);
114 }
115 
116 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
117                    QemuMutex *mutex)
118 {
119     struct qemu_work_item wi;
120 
121     if (qemu_cpu_is_self(cpu)) {
122         func(cpu, data);
123         return;
124     }
125 
126     wi.func = func;
127     wi.data = data;
128     wi.done = false;
129     wi.free = false;
130     wi.exclusive = false;
131 
132     queue_work_on_cpu(cpu, &wi);
133     while (!atomic_mb_read(&wi.done)) {
134         CPUState *self_cpu = current_cpu;
135 
136         qemu_cond_wait(&qemu_work_cond, mutex);
137         current_cpu = self_cpu;
138     }
139 }
140 
141 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
142 {
143     struct qemu_work_item *wi;
144 
145     wi = g_malloc0(sizeof(struct qemu_work_item));
146     wi->func = func;
147     wi->data = data;
148     wi->free = true;
149 
150     queue_work_on_cpu(cpu, wi);
151 }
152 
153 /* Wait for pending exclusive operations to complete.  The CPU list lock
154    must be held.  */
155 static inline void exclusive_idle(void)
156 {
157     while (pending_cpus) {
158         qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
159     }
160 }
161 
162 /* Start an exclusive operation.
163    Must only be called from outside cpu_exec.  */
164 void start_exclusive(void)
165 {
166     CPUState *other_cpu;
167     int running_cpus;
168 
169     qemu_mutex_lock(&qemu_cpu_list_lock);
170     exclusive_idle();
171 
172     /* Make all other cpus stop executing.  */
173     atomic_set(&pending_cpus, 1);
174 
175     /* Write pending_cpus before reading other_cpu->running.  */
176     smp_mb();
177     running_cpus = 0;
178     CPU_FOREACH(other_cpu) {
179         if (atomic_read(&other_cpu->running)) {
180             other_cpu->has_waiter = true;
181             running_cpus++;
182             qemu_cpu_kick(other_cpu);
183         }
184     }
185 
186     atomic_set(&pending_cpus, running_cpus + 1);
187     while (pending_cpus > 1) {
188         qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
189     }
190 
191     /* Can release mutex, no one will enter another exclusive
192      * section until end_exclusive resets pending_cpus to 0.
193      */
194     qemu_mutex_unlock(&qemu_cpu_list_lock);
195 
196     current_cpu->in_exclusive_context = true;
197 }
198 
199 /* Finish an exclusive operation.  */
200 void end_exclusive(void)
201 {
202     current_cpu->in_exclusive_context = false;
203 
204     qemu_mutex_lock(&qemu_cpu_list_lock);
205     atomic_set(&pending_cpus, 0);
206     qemu_cond_broadcast(&exclusive_resume);
207     qemu_mutex_unlock(&qemu_cpu_list_lock);
208 }
209 
210 /* Wait for exclusive ops to finish, and begin cpu execution.  */
211 void cpu_exec_start(CPUState *cpu)
212 {
213     atomic_set(&cpu->running, true);
214 
215     /* Write cpu->running before reading pending_cpus.  */
216     smp_mb();
217 
218     /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
219      * After taking the lock we'll see cpu->has_waiter == true and run---not
220      * for long because start_exclusive kicked us.  cpu_exec_end will
221      * decrement pending_cpus and signal the waiter.
222      *
223      * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
224      * This includes the case when an exclusive item is running now.
225      * Then we'll see cpu->has_waiter == false and wait for the item to
226      * complete.
227      *
228      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
229      * see cpu->running == true, and it will kick the CPU.
230      */
231     if (unlikely(atomic_read(&pending_cpus))) {
232         QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
233         if (!cpu->has_waiter) {
234             /* Not counted in pending_cpus, let the exclusive item
235              * run.  Since we have the lock, just set cpu->running to true
236              * while holding it; no need to check pending_cpus again.
237              */
238             atomic_set(&cpu->running, false);
239             exclusive_idle();
240             /* Now pending_cpus is zero.  */
241             atomic_set(&cpu->running, true);
242         } else {
243             /* Counted in pending_cpus, go ahead and release the
244              * waiter at cpu_exec_end.
245              */
246         }
247     }
248 }
249 
250 /* Mark cpu as not executing, and release pending exclusive ops.  */
251 void cpu_exec_end(CPUState *cpu)
252 {
253     atomic_set(&cpu->running, false);
254 
255     /* Write cpu->running before reading pending_cpus.  */
256     smp_mb();
257 
258     /* 1. start_exclusive saw cpu->running == true.  Then it will increment
259      * pending_cpus and wait for exclusive_cond.  After taking the lock
260      * we'll see cpu->has_waiter == true.
261      *
262      * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
263      * This includes the case when an exclusive item started after setting
264      * cpu->running to false and before we read pending_cpus.  Then we'll see
265      * cpu->has_waiter == false and not touch pending_cpus.  The next call to
266      * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
267      * for the item to complete.
268      *
269      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
270      * see cpu->running == false, and it can ignore this CPU until the
271      * next cpu_exec_start.
272      */
273     if (unlikely(atomic_read(&pending_cpus))) {
274         QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
275         if (cpu->has_waiter) {
276             cpu->has_waiter = false;
277             atomic_set(&pending_cpus, pending_cpus - 1);
278             if (pending_cpus == 1) {
279                 qemu_cond_signal(&exclusive_cond);
280             }
281         }
282     }
283 }
284 
285 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
286                            run_on_cpu_data data)
287 {
288     struct qemu_work_item *wi;
289 
290     wi = g_malloc0(sizeof(struct qemu_work_item));
291     wi->func = func;
292     wi->data = data;
293     wi->free = true;
294     wi->exclusive = true;
295 
296     queue_work_on_cpu(cpu, wi);
297 }
298 
299 void process_queued_cpu_work(CPUState *cpu)
300 {
301     struct qemu_work_item *wi;
302 
303     qemu_mutex_lock(&cpu->work_mutex);
304     if (QSIMPLEQ_EMPTY(&cpu->work_list)) {
305         qemu_mutex_unlock(&cpu->work_mutex);
306         return;
307     }
308     while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
309         wi = QSIMPLEQ_FIRST(&cpu->work_list);
310         QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
311         qemu_mutex_unlock(&cpu->work_mutex);
312         if (wi->exclusive) {
313             /* Running work items outside the BQL avoids the following deadlock:
314              * 1) start_exclusive() is called with the BQL taken while another
315              * CPU is running; 2) cpu_exec in the other CPU tries to takes the
316              * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
317              * neither CPU can proceed.
318              */
319             qemu_mutex_unlock_iothread();
320             start_exclusive();
321             wi->func(cpu, wi->data);
322             end_exclusive();
323             qemu_mutex_lock_iothread();
324         } else {
325             wi->func(cpu, wi->data);
326         }
327         qemu_mutex_lock(&cpu->work_mutex);
328         if (wi->free) {
329             g_free(wi);
330         } else {
331             atomic_mb_set(&wi->done, true);
332         }
333     }
334     qemu_mutex_unlock(&cpu->work_mutex);
335     qemu_cond_broadcast(&qemu_work_cond);
336 }
337