1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * vma_internal.h
4 *
5 * Header providing userland wrappers and shims for the functionality provided
6 * by mm/vma_internal.h.
7 *
8 * We make the header guard the same as mm/vma_internal.h, so if this shim
9 * header is included, it precludes the inclusion of the kernel one.
10 */
11
12 #ifndef __MM_VMA_INTERNAL_H
13 #define __MM_VMA_INTERNAL_H
14
15 #define __private
16 #define __bitwise
17 #define __randomize_layout
18
19 #define CONFIG_MMU
20 #define CONFIG_PER_VMA_LOCK
21
22 #include <stdlib.h>
23
24 #include <linux/list.h>
25 #include <linux/maple_tree.h>
26 #include <linux/mm.h>
27 #include <linux/rbtree.h>
28 #include <linux/refcount.h>
29
30 extern unsigned long stack_guard_gap;
31 #ifdef CONFIG_MMU
32 extern unsigned long mmap_min_addr;
33 extern unsigned long dac_mmap_min_addr;
34 #else
35 #define mmap_min_addr 0UL
36 #define dac_mmap_min_addr 0UL
37 #endif
38
39 #define VM_WARN_ON(_expr) (WARN_ON(_expr))
40 #define VM_WARN_ON_ONCE(_expr) (WARN_ON_ONCE(_expr))
41 #define VM_WARN_ON_VMG(_expr, _vmg) (WARN_ON(_expr))
42 #define VM_BUG_ON(_expr) (BUG_ON(_expr))
43 #define VM_BUG_ON_VMA(_expr, _vma) (BUG_ON(_expr))
44
45 #define MMF_HAS_MDWE 28
46
47 #define VM_NONE 0x00000000
48 #define VM_READ 0x00000001
49 #define VM_WRITE 0x00000002
50 #define VM_EXEC 0x00000004
51 #define VM_SHARED 0x00000008
52 #define VM_MAYREAD 0x00000010
53 #define VM_MAYWRITE 0x00000020
54 #define VM_MAYEXEC 0x00000040
55 #define VM_GROWSDOWN 0x00000100
56 #define VM_PFNMAP 0x00000400
57 #define VM_LOCKED 0x00002000
58 #define VM_IO 0x00004000
59 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
60 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
61 #define VM_DONTEXPAND 0x00040000
62 #define VM_LOCKONFAULT 0x00080000
63 #define VM_ACCOUNT 0x00100000
64 #define VM_NORESERVE 0x00200000
65 #define VM_MIXEDMAP 0x10000000
66 #define VM_STACK VM_GROWSDOWN
67 #define VM_SHADOW_STACK VM_NONE
68 #define VM_SOFTDIRTY 0
69 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
70 #define VM_GROWSUP VM_NONE
71
72 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
73 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
74
75 #ifdef CONFIG_STACK_GROWSUP
76 #define VM_STACK VM_GROWSUP
77 #define VM_STACK_EARLY VM_GROWSDOWN
78 #else
79 #define VM_STACK VM_GROWSDOWN
80 #define VM_STACK_EARLY 0
81 #endif
82
83 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
84 #define TASK_SIZE_LOW DEFAULT_MAP_WINDOW
85 #define TASK_SIZE_MAX DEFAULT_MAP_WINDOW
86 #define STACK_TOP TASK_SIZE_LOW
87 #define STACK_TOP_MAX TASK_SIZE_MAX
88
89 /* This mask represents all the VMA flag bits used by mlock */
90 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
91
92 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
93
94 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
95 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
96
97 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_TSK_EXEC
98
99 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
100
101 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
102 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
103 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
104
105 #define RLIMIT_STACK 3 /* max stack size */
106 #define RLIMIT_MEMLOCK 8 /* max locked-in-memory address space */
107
108 #define CAP_IPC_LOCK 14
109
110 #ifdef CONFIG_64BIT
111 #define VM_SEALED_BIT 42
112 #define VM_SEALED BIT(VM_SEALED_BIT)
113 #else
114 #define VM_SEALED VM_NONE
115 #endif
116
117 #define FIRST_USER_ADDRESS 0UL
118 #define USER_PGTABLES_CEILING 0UL
119
120 #define vma_policy(vma) NULL
121
122 #define down_write_nest_lock(sem, nest_lock)
123
124 #define pgprot_val(x) ((x).pgprot)
125 #define __pgprot(x) ((pgprot_t) { (x) } )
126
127 #define for_each_vma(__vmi, __vma) \
128 while (((__vma) = vma_next(&(__vmi))) != NULL)
129
130 /* The MM code likes to work with exclusive end addresses */
131 #define for_each_vma_range(__vmi, __vma, __end) \
132 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
133
134 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
135
136 #define PHYS_PFN(x) ((unsigned long)((x) >> PAGE_SHIFT))
137
138 #define test_and_set_bit(nr, addr) __test_and_set_bit(nr, addr)
139 #define test_and_clear_bit(nr, addr) __test_and_clear_bit(nr, addr)
140
141 #define TASK_SIZE ((1ul << 47)-PAGE_SIZE)
142
143 #define AS_MM_ALL_LOCKS 2
144
145 /* We hardcode this for now. */
146 #define sysctl_max_map_count 0x1000000UL
147
148 #define pgoff_t unsigned long
149 typedef unsigned long pgprotval_t;
150 typedef struct pgprot { pgprotval_t pgprot; } pgprot_t;
151 typedef unsigned long vm_flags_t;
152 typedef __bitwise unsigned int vm_fault_t;
153
154 /*
155 * The shared stubs do not implement this, it amounts to an fprintf(STDERR,...)
156 * either way :)
157 */
158 #define pr_warn_once pr_err
159
160 #define data_race(expr) expr
161
162 #define ASSERT_EXCLUSIVE_WRITER(x)
163
164 /**
165 * swap - swap values of @a and @b
166 * @a: first value
167 * @b: second value
168 */
169 #define swap(a, b) \
170 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
171
172 struct kref {
173 refcount_t refcount;
174 };
175
176 /*
177 * Define the task command name length as enum, then it can be visible to
178 * BPF programs.
179 */
180 enum {
181 TASK_COMM_LEN = 16,
182 };
183
184 /*
185 * Flags for bug emulation.
186 *
187 * These occupy the top three bytes.
188 */
189 enum {
190 READ_IMPLIES_EXEC = 0x0400000,
191 };
192
193 struct task_struct {
194 char comm[TASK_COMM_LEN];
195 pid_t pid;
196 struct mm_struct *mm;
197
198 /* Used for emulating ABI behavior of previous Linux versions: */
199 unsigned int personality;
200 };
201
202 struct task_struct *get_current(void);
203 #define current get_current()
204
205 struct anon_vma {
206 struct anon_vma *root;
207 struct rb_root_cached rb_root;
208
209 /* Test fields. */
210 bool was_cloned;
211 bool was_unlinked;
212 };
213
214 struct anon_vma_chain {
215 struct anon_vma *anon_vma;
216 struct list_head same_vma;
217 };
218
219 struct anon_vma_name {
220 struct kref kref;
221 /* The name needs to be at the end because it is dynamically sized. */
222 char name[];
223 };
224
225 struct vma_iterator {
226 struct ma_state mas;
227 };
228
229 #define VMA_ITERATOR(name, __mm, __addr) \
230 struct vma_iterator name = { \
231 .mas = { \
232 .tree = &(__mm)->mm_mt, \
233 .index = __addr, \
234 .node = NULL, \
235 .status = ma_start, \
236 }, \
237 }
238
239 struct address_space {
240 struct rb_root_cached i_mmap;
241 unsigned long flags;
242 atomic_t i_mmap_writable;
243 };
244
245 struct vm_userfaultfd_ctx {};
246 struct mempolicy {};
247 struct mmu_gather {};
248 struct mutex {};
249 #define DEFINE_MUTEX(mutexname) \
250 struct mutex mutexname = {}
251
252 struct mm_struct {
253 struct maple_tree mm_mt;
254 int map_count; /* number of VMAs */
255 unsigned long total_vm; /* Total pages mapped */
256 unsigned long locked_vm; /* Pages that have PG_mlocked set */
257 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
258 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
259 unsigned long stack_vm; /* VM_STACK */
260
261 unsigned long def_flags;
262
263 unsigned long flags; /* Must use atomic bitops to access */
264 };
265
266 struct vm_area_struct;
267
268 /*
269 * Describes a VMA that is about to be mmap()'ed. Drivers may choose to
270 * manipulate mutable fields which will cause those fields to be updated in the
271 * resultant VMA.
272 *
273 * Helper functions are not required for manipulating any field.
274 */
275 struct vm_area_desc {
276 /* Immutable state. */
277 struct mm_struct *mm;
278 unsigned long start;
279 unsigned long end;
280
281 /* Mutable fields. Populated with initial state. */
282 pgoff_t pgoff;
283 struct file *file;
284 vm_flags_t vm_flags;
285 pgprot_t page_prot;
286
287 /* Write-only fields. */
288 const struct vm_operations_struct *vm_ops;
289 void *private_data;
290 };
291
292 struct file_operations {
293 int (*mmap)(struct file *, struct vm_area_struct *);
294 int (*mmap_prepare)(struct vm_area_desc *);
295 };
296
297 struct file {
298 struct address_space *f_mapping;
299 const struct file_operations *f_op;
300 };
301
302 #define VMA_LOCK_OFFSET 0x40000000
303
304 typedef struct { unsigned long v; } freeptr_t;
305
306 struct vm_area_struct {
307 /* The first cache line has the info for VMA tree walking. */
308
309 union {
310 struct {
311 /* VMA covers [vm_start; vm_end) addresses within mm */
312 unsigned long vm_start;
313 unsigned long vm_end;
314 };
315 freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */
316 };
317
318 struct mm_struct *vm_mm; /* The address space we belong to. */
319 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
320
321 /*
322 * Flags, see mm.h.
323 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
324 */
325 union {
326 const vm_flags_t vm_flags;
327 vm_flags_t __private __vm_flags;
328 };
329
330 #ifdef CONFIG_PER_VMA_LOCK
331 /*
332 * Can only be written (using WRITE_ONCE()) while holding both:
333 * - mmap_lock (in write mode)
334 * - vm_refcnt bit at VMA_LOCK_OFFSET is set
335 * Can be read reliably while holding one of:
336 * - mmap_lock (in read or write mode)
337 * - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1
338 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
339 * while holding nothing (except RCU to keep the VMA struct allocated).
340 *
341 * This sequence counter is explicitly allowed to overflow; sequence
342 * counter reuse can only lead to occasional unnecessary use of the
343 * slowpath.
344 */
345 unsigned int vm_lock_seq;
346 #endif
347
348 /*
349 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
350 * list, after a COW of one of the file pages. A MAP_SHARED vma
351 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
352 * or brk vma (with NULL file) can only be in an anon_vma list.
353 */
354 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
355 * page_table_lock */
356 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
357
358 /* Function pointers to deal with this struct. */
359 const struct vm_operations_struct *vm_ops;
360
361 /* Information about our backing store: */
362 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
363 units */
364 struct file * vm_file; /* File we map to (can be NULL). */
365 void * vm_private_data; /* was vm_pte (shared mem) */
366
367 #ifdef CONFIG_SWAP
368 atomic_long_t swap_readahead_info;
369 #endif
370 #ifndef CONFIG_MMU
371 struct vm_region *vm_region; /* NOMMU mapping region */
372 #endif
373 #ifdef CONFIG_NUMA
374 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
375 #endif
376 #ifdef CONFIG_NUMA_BALANCING
377 struct vma_numab_state *numab_state; /* NUMA Balancing state */
378 #endif
379 #ifdef CONFIG_PER_VMA_LOCK
380 /* Unstable RCU readers are allowed to read this. */
381 refcount_t vm_refcnt;
382 #endif
383 /*
384 * For areas with an address space and backing store,
385 * linkage into the address_space->i_mmap interval tree.
386 *
387 */
388 struct {
389 struct rb_node rb;
390 unsigned long rb_subtree_last;
391 } shared;
392 #ifdef CONFIG_ANON_VMA_NAME
393 /*
394 * For private and shared anonymous mappings, a pointer to a null
395 * terminated string containing the name given to the vma, or NULL if
396 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
397 */
398 struct anon_vma_name *anon_name;
399 #endif
400 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
401 } __randomize_layout;
402
403 struct vm_fault {};
404
405 struct vm_operations_struct {
406 void (*open)(struct vm_area_struct * area);
407 /**
408 * @close: Called when the VMA is being removed from the MM.
409 * Context: User context. May sleep. Caller holds mmap_lock.
410 */
411 void (*close)(struct vm_area_struct * area);
412 /* Called any time before splitting to check if it's allowed */
413 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
414 int (*mremap)(struct vm_area_struct *area);
415 /*
416 * Called by mprotect() to make driver-specific permission
417 * checks before mprotect() is finalised. The VMA must not
418 * be modified. Returns 0 if mprotect() can proceed.
419 */
420 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
421 unsigned long end, unsigned long newflags);
422 vm_fault_t (*fault)(struct vm_fault *vmf);
423 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
424 vm_fault_t (*map_pages)(struct vm_fault *vmf,
425 pgoff_t start_pgoff, pgoff_t end_pgoff);
426 unsigned long (*pagesize)(struct vm_area_struct * area);
427
428 /* notification that a previously read-only page is about to become
429 * writable, if an error is returned it will cause a SIGBUS */
430 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
431
432 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
433 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
434
435 /* called by access_process_vm when get_user_pages() fails, typically
436 * for use by special VMAs. See also generic_access_phys() for a generic
437 * implementation useful for any iomem mapping.
438 */
439 int (*access)(struct vm_area_struct *vma, unsigned long addr,
440 void *buf, int len, int write);
441
442 /* Called by the /proc/PID/maps code to ask the vma whether it
443 * has a special name. Returning non-NULL will also cause this
444 * vma to be dumped unconditionally. */
445 const char *(*name)(struct vm_area_struct *vma);
446
447 #ifdef CONFIG_NUMA
448 /*
449 * set_policy() op must add a reference to any non-NULL @new mempolicy
450 * to hold the policy upon return. Caller should pass NULL @new to
451 * remove a policy and fall back to surrounding context--i.e. do not
452 * install a MPOL_DEFAULT policy, nor the task or system default
453 * mempolicy.
454 */
455 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
456
457 /*
458 * get_policy() op must add reference [mpol_get()] to any policy at
459 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
460 * in mm/mempolicy.c will do this automatically.
461 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
462 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
463 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
464 * must return NULL--i.e., do not "fallback" to task or system default
465 * policy.
466 */
467 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
468 unsigned long addr, pgoff_t *ilx);
469 #endif
470 /*
471 * Called by vm_normal_page() for special PTEs to find the
472 * page for @addr. This is useful if the default behavior
473 * (using pte_page()) would not find the correct page.
474 */
475 struct page *(*find_special_page)(struct vm_area_struct *vma,
476 unsigned long addr);
477 };
478
479 struct vm_unmapped_area_info {
480 #define VM_UNMAPPED_AREA_TOPDOWN 1
481 unsigned long flags;
482 unsigned long length;
483 unsigned long low_limit;
484 unsigned long high_limit;
485 unsigned long align_mask;
486 unsigned long align_offset;
487 unsigned long start_gap;
488 };
489
490 struct pagetable_move_control {
491 struct vm_area_struct *old; /* Source VMA. */
492 struct vm_area_struct *new; /* Destination VMA. */
493 unsigned long old_addr; /* Address from which the move begins. */
494 unsigned long old_end; /* Exclusive address at which old range ends. */
495 unsigned long new_addr; /* Address to move page tables to. */
496 unsigned long len_in; /* Bytes to remap specified by user. */
497
498 bool need_rmap_locks; /* Do rmap locks need to be taken? */
499 bool for_stack; /* Is this an early temp stack being moved? */
500 };
501
502 #define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_) \
503 struct pagetable_move_control name = { \
504 .old = old_, \
505 .new = new_, \
506 .old_addr = old_addr_, \
507 .old_end = (old_addr_) + (len_), \
508 .new_addr = new_addr_, \
509 .len_in = len_, \
510 }
511
512 struct kmem_cache_args {
513 /**
514 * @align: The required alignment for the objects.
515 *
516 * %0 means no specific alignment is requested.
517 */
518 unsigned int align;
519 /**
520 * @useroffset: Usercopy region offset.
521 *
522 * %0 is a valid offset, when @usersize is non-%0
523 */
524 unsigned int useroffset;
525 /**
526 * @usersize: Usercopy region size.
527 *
528 * %0 means no usercopy region is specified.
529 */
530 unsigned int usersize;
531 /**
532 * @freeptr_offset: Custom offset for the free pointer
533 * in &SLAB_TYPESAFE_BY_RCU caches
534 *
535 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer
536 * outside of the object. This might cause the object to grow in size.
537 * Cache creators that have a reason to avoid this can specify a custom
538 * free pointer offset in their struct where the free pointer will be
539 * placed.
540 *
541 * Note that placing the free pointer inside the object requires the
542 * caller to ensure that no fields are invalidated that are required to
543 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for
544 * details).
545 *
546 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset
547 * is specified, %use_freeptr_offset must be set %true.
548 *
549 * Note that @ctor currently isn't supported with custom free pointers
550 * as a @ctor requires an external free pointer.
551 */
552 unsigned int freeptr_offset;
553 /**
554 * @use_freeptr_offset: Whether a @freeptr_offset is used.
555 */
556 bool use_freeptr_offset;
557 /**
558 * @ctor: A constructor for the objects.
559 *
560 * The constructor is invoked for each object in a newly allocated slab
561 * page. It is the cache user's responsibility to free object in the
562 * same state as after calling the constructor, or deal appropriately
563 * with any differences between a freshly constructed and a reallocated
564 * object.
565 *
566 * %NULL means no constructor.
567 */
568 void (*ctor)(void *);
569 };
570
vma_iter_invalidate(struct vma_iterator * vmi)571 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
572 {
573 mas_pause(&vmi->mas);
574 }
575
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)576 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
577 {
578 return __pgprot(pgprot_val(oldprot) | pgprot_val(newprot));
579 }
580
vm_get_page_prot(vm_flags_t vm_flags)581 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
582 {
583 return __pgprot(vm_flags);
584 }
585
is_shared_maywrite(vm_flags_t vm_flags)586 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
587 {
588 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
589 (VM_SHARED | VM_MAYWRITE);
590 }
591
vma_is_shared_maywrite(struct vm_area_struct * vma)592 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
593 {
594 return is_shared_maywrite(vma->vm_flags);
595 }
596
vma_next(struct vma_iterator * vmi)597 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
598 {
599 /*
600 * Uses mas_find() to get the first VMA when the iterator starts.
601 * Calling mas_next() could skip the first entry.
602 */
603 return mas_find(&vmi->mas, ULONG_MAX);
604 }
605
606 /*
607 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these
608 * assertions should be made either under mmap_write_lock or when the object
609 * has been isolated under mmap_write_lock, ensuring no competing writers.
610 */
vma_assert_attached(struct vm_area_struct * vma)611 static inline void vma_assert_attached(struct vm_area_struct *vma)
612 {
613 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt));
614 }
615
vma_assert_detached(struct vm_area_struct * vma)616 static inline void vma_assert_detached(struct vm_area_struct *vma)
617 {
618 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt));
619 }
620
621 static inline void vma_assert_write_locked(struct vm_area_struct *);
vma_mark_attached(struct vm_area_struct * vma)622 static inline void vma_mark_attached(struct vm_area_struct *vma)
623 {
624 vma_assert_write_locked(vma);
625 vma_assert_detached(vma);
626 refcount_set_release(&vma->vm_refcnt, 1);
627 }
628
vma_mark_detached(struct vm_area_struct * vma)629 static inline void vma_mark_detached(struct vm_area_struct *vma)
630 {
631 vma_assert_write_locked(vma);
632 vma_assert_attached(vma);
633 /* We are the only writer, so no need to use vma_refcount_put(). */
634 if (unlikely(!refcount_dec_and_test(&vma->vm_refcnt))) {
635 /*
636 * Reader must have temporarily raised vm_refcnt but it will
637 * drop it without using the vma since vma is write-locked.
638 */
639 }
640 }
641
642 extern const struct vm_operations_struct vma_dummy_vm_ops;
643
644 extern unsigned long rlimit(unsigned int limit);
645
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)646 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
647 {
648 memset(vma, 0, sizeof(*vma));
649 vma->vm_mm = mm;
650 vma->vm_ops = &vma_dummy_vm_ops;
651 INIT_LIST_HEAD(&vma->anon_vma_chain);
652 vma->vm_lock_seq = UINT_MAX;
653 }
654
655 struct kmem_cache {
656 const char *name;
657 size_t object_size;
658 struct kmem_cache_args *args;
659 };
660
__kmem_cache_create(const char * name,size_t object_size,struct kmem_cache_args * args)661 static inline struct kmem_cache *__kmem_cache_create(const char *name,
662 size_t object_size,
663 struct kmem_cache_args *args)
664 {
665 struct kmem_cache *ret = malloc(sizeof(struct kmem_cache));
666
667 ret->name = name;
668 ret->object_size = object_size;
669 ret->args = args;
670
671 return ret;
672 }
673
674 #define kmem_cache_create(__name, __object_size, __args, ...) \
675 __kmem_cache_create((__name), (__object_size), (__args))
676
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)677 static inline void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
678 {
679 (void)gfpflags;
680
681 return calloc(s->object_size, 1);
682 }
683
kmem_cache_free(struct kmem_cache * s,void * x)684 static inline void kmem_cache_free(struct kmem_cache *s, void *x)
685 {
686 free(x);
687 }
688
689 /*
690 * These are defined in vma.h, but sadly vm_stat_account() is referenced by
691 * kernel/fork.c, so we have to these broadly available there, and temporarily
692 * define them here to resolve the dependency cycle.
693 */
694
695 #define is_exec_mapping(flags) \
696 ((flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC)
697
698 #define is_stack_mapping(flags) \
699 (((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK))
700
701 #define is_data_mapping(flags) \
702 ((flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE)
703
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)704 static inline void vm_stat_account(struct mm_struct *mm, vm_flags_t flags,
705 long npages)
706 {
707 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
708
709 if (is_exec_mapping(flags))
710 mm->exec_vm += npages;
711 else if (is_stack_mapping(flags))
712 mm->stack_vm += npages;
713 else if (is_data_mapping(flags))
714 mm->data_vm += npages;
715 }
716
717 #undef is_exec_mapping
718 #undef is_stack_mapping
719 #undef is_data_mapping
720
721 /* Currently stubbed but we may later wish to un-stub. */
722 static inline void vm_acct_memory(long pages);
vm_unacct_memory(long pages)723 static inline void vm_unacct_memory(long pages)
724 {
725 vm_acct_memory(-pages);
726 }
727
mapping_allow_writable(struct address_space * mapping)728 static inline void mapping_allow_writable(struct address_space *mapping)
729 {
730 atomic_inc(&mapping->i_mmap_writable);
731 }
732
vma_set_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)733 static inline void vma_set_range(struct vm_area_struct *vma,
734 unsigned long start, unsigned long end,
735 pgoff_t pgoff)
736 {
737 vma->vm_start = start;
738 vma->vm_end = end;
739 vma->vm_pgoff = pgoff;
740 }
741
742 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)743 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
744 {
745 return mas_find(&vmi->mas, max - 1);
746 }
747
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)748 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
749 unsigned long start, unsigned long end, gfp_t gfp)
750 {
751 __mas_set_range(&vmi->mas, start, end - 1);
752 mas_store_gfp(&vmi->mas, NULL, gfp);
753 if (unlikely(mas_is_err(&vmi->mas)))
754 return -ENOMEM;
755
756 return 0;
757 }
758
759 static inline void mmap_assert_locked(struct mm_struct *);
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)760 static inline struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
761 unsigned long start_addr,
762 unsigned long end_addr)
763 {
764 unsigned long index = start_addr;
765
766 mmap_assert_locked(mm);
767 return mt_find(&mm->mm_mt, &index, end_addr - 1);
768 }
769
770 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)771 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
772 {
773 return mtree_load(&mm->mm_mt, addr);
774 }
775
vma_prev(struct vma_iterator * vmi)776 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
777 {
778 return mas_prev(&vmi->mas, 0);
779 }
780
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)781 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
782 {
783 mas_set(&vmi->mas, addr);
784 }
785
vma_is_anonymous(struct vm_area_struct * vma)786 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
787 {
788 return !vma->vm_ops;
789 }
790
791 /* Defined in vma.h, so temporarily define here to avoid circular dependency. */
792 #define vma_iter_load(vmi) \
793 mas_walk(&(vmi)->mas)
794
795 static inline struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)796 find_vma_prev(struct mm_struct *mm, unsigned long addr,
797 struct vm_area_struct **pprev)
798 {
799 struct vm_area_struct *vma;
800 VMA_ITERATOR(vmi, mm, addr);
801
802 vma = vma_iter_load(&vmi);
803 *pprev = vma_prev(&vmi);
804 if (!vma)
805 vma = vma_next(&vmi);
806 return vma;
807 }
808
809 #undef vma_iter_load
810
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)811 static inline void vma_iter_init(struct vma_iterator *vmi,
812 struct mm_struct *mm, unsigned long addr)
813 {
814 mas_init(&vmi->mas, &mm->mm_mt, addr);
815 }
816
817 /* Stubbed functions. */
818
anon_vma_name(struct vm_area_struct * vma)819 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
820 {
821 return NULL;
822 }
823
is_mergeable_vm_userfaultfd_ctx(struct vm_area_struct * vma,struct vm_userfaultfd_ctx vm_ctx)824 static inline bool is_mergeable_vm_userfaultfd_ctx(struct vm_area_struct *vma,
825 struct vm_userfaultfd_ctx vm_ctx)
826 {
827 return true;
828 }
829
anon_vma_name_eq(struct anon_vma_name * anon_name1,struct anon_vma_name * anon_name2)830 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
831 struct anon_vma_name *anon_name2)
832 {
833 return true;
834 }
835
might_sleep(void)836 static inline void might_sleep(void)
837 {
838 }
839
vma_pages(struct vm_area_struct * vma)840 static inline unsigned long vma_pages(struct vm_area_struct *vma)
841 {
842 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
843 }
844
fput(struct file *)845 static inline void fput(struct file *)
846 {
847 }
848
mpol_put(struct mempolicy *)849 static inline void mpol_put(struct mempolicy *)
850 {
851 }
852
lru_add_drain(void)853 static inline void lru_add_drain(void)
854 {
855 }
856
tlb_gather_mmu(struct mmu_gather *,struct mm_struct *)857 static inline void tlb_gather_mmu(struct mmu_gather *, struct mm_struct *)
858 {
859 }
860
update_hiwater_rss(struct mm_struct *)861 static inline void update_hiwater_rss(struct mm_struct *)
862 {
863 }
864
update_hiwater_vm(struct mm_struct *)865 static inline void update_hiwater_vm(struct mm_struct *)
866 {
867 }
868
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)869 static inline void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
870 struct vm_area_struct *vma, unsigned long start_addr,
871 unsigned long end_addr, unsigned long tree_end,
872 bool mm_wr_locked)
873 {
874 (void)tlb;
875 (void)mas;
876 (void)vma;
877 (void)start_addr;
878 (void)end_addr;
879 (void)tree_end;
880 (void)mm_wr_locked;
881 }
882
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)883 static inline void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
884 struct vm_area_struct *vma, unsigned long floor,
885 unsigned long ceiling, bool mm_wr_locked)
886 {
887 (void)tlb;
888 (void)mas;
889 (void)vma;
890 (void)floor;
891 (void)ceiling;
892 (void)mm_wr_locked;
893 }
894
mapping_unmap_writable(struct address_space *)895 static inline void mapping_unmap_writable(struct address_space *)
896 {
897 }
898
flush_dcache_mmap_lock(struct address_space *)899 static inline void flush_dcache_mmap_lock(struct address_space *)
900 {
901 }
902
tlb_finish_mmu(struct mmu_gather *)903 static inline void tlb_finish_mmu(struct mmu_gather *)
904 {
905 }
906
get_file(struct file * f)907 static inline struct file *get_file(struct file *f)
908 {
909 return f;
910 }
911
vma_dup_policy(struct vm_area_struct *,struct vm_area_struct *)912 static inline int vma_dup_policy(struct vm_area_struct *, struct vm_area_struct *)
913 {
914 return 0;
915 }
916
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)917 static inline int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
918 {
919 /* For testing purposes. We indicate that an anon_vma has been cloned. */
920 if (src->anon_vma != NULL) {
921 dst->anon_vma = src->anon_vma;
922 dst->anon_vma->was_cloned = true;
923 }
924
925 return 0;
926 }
927
vma_start_write(struct vm_area_struct * vma)928 static inline void vma_start_write(struct vm_area_struct *vma)
929 {
930 /* Used to indicate to tests that a write operation has begun. */
931 vma->vm_lock_seq++;
932 }
933
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct vm_area_struct * next)934 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma,
935 unsigned long start,
936 unsigned long end,
937 struct vm_area_struct *next)
938 {
939 (void)vma;
940 (void)start;
941 (void)end;
942 (void)next;
943 }
944
hugetlb_split(struct vm_area_struct *,unsigned long)945 static inline void hugetlb_split(struct vm_area_struct *, unsigned long) {}
946
vma_iter_free(struct vma_iterator * vmi)947 static inline void vma_iter_free(struct vma_iterator *vmi)
948 {
949 mas_destroy(&vmi->mas);
950 }
951
952 static inline
vma_iter_next_range(struct vma_iterator * vmi)953 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
954 {
955 return mas_next_range(&vmi->mas, ULONG_MAX);
956 }
957
vm_acct_memory(long pages)958 static inline void vm_acct_memory(long pages)
959 {
960 }
961
vma_interval_tree_insert(struct vm_area_struct *,struct rb_root_cached *)962 static inline void vma_interval_tree_insert(struct vm_area_struct *,
963 struct rb_root_cached *)
964 {
965 }
966
vma_interval_tree_remove(struct vm_area_struct *,struct rb_root_cached *)967 static inline void vma_interval_tree_remove(struct vm_area_struct *,
968 struct rb_root_cached *)
969 {
970 }
971
flush_dcache_mmap_unlock(struct address_space *)972 static inline void flush_dcache_mmap_unlock(struct address_space *)
973 {
974 }
975
anon_vma_interval_tree_insert(struct anon_vma_chain *,struct rb_root_cached *)976 static inline void anon_vma_interval_tree_insert(struct anon_vma_chain*,
977 struct rb_root_cached *)
978 {
979 }
980
anon_vma_interval_tree_remove(struct anon_vma_chain *,struct rb_root_cached *)981 static inline void anon_vma_interval_tree_remove(struct anon_vma_chain*,
982 struct rb_root_cached *)
983 {
984 }
985
uprobe_mmap(struct vm_area_struct *)986 static inline void uprobe_mmap(struct vm_area_struct *)
987 {
988 }
989
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)990 static inline void uprobe_munmap(struct vm_area_struct *vma,
991 unsigned long start, unsigned long end)
992 {
993 (void)vma;
994 (void)start;
995 (void)end;
996 }
997
i_mmap_lock_write(struct address_space *)998 static inline void i_mmap_lock_write(struct address_space *)
999 {
1000 }
1001
anon_vma_lock_write(struct anon_vma *)1002 static inline void anon_vma_lock_write(struct anon_vma *)
1003 {
1004 }
1005
vma_assert_write_locked(struct vm_area_struct *)1006 static inline void vma_assert_write_locked(struct vm_area_struct *)
1007 {
1008 }
1009
unlink_anon_vmas(struct vm_area_struct * vma)1010 static inline void unlink_anon_vmas(struct vm_area_struct *vma)
1011 {
1012 /* For testing purposes, indicate that the anon_vma was unlinked. */
1013 vma->anon_vma->was_unlinked = true;
1014 }
1015
anon_vma_unlock_write(struct anon_vma *)1016 static inline void anon_vma_unlock_write(struct anon_vma *)
1017 {
1018 }
1019
i_mmap_unlock_write(struct address_space *)1020 static inline void i_mmap_unlock_write(struct address_space *)
1021 {
1022 }
1023
anon_vma_merge(struct vm_area_struct *,struct vm_area_struct *)1024 static inline void anon_vma_merge(struct vm_area_struct *,
1025 struct vm_area_struct *)
1026 {
1027 }
1028
userfaultfd_unmap_prep(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * unmaps)1029 static inline int userfaultfd_unmap_prep(struct vm_area_struct *vma,
1030 unsigned long start,
1031 unsigned long end,
1032 struct list_head *unmaps)
1033 {
1034 (void)vma;
1035 (void)start;
1036 (void)end;
1037 (void)unmaps;
1038
1039 return 0;
1040 }
1041
mmap_write_downgrade(struct mm_struct *)1042 static inline void mmap_write_downgrade(struct mm_struct *)
1043 {
1044 }
1045
mmap_read_unlock(struct mm_struct *)1046 static inline void mmap_read_unlock(struct mm_struct *)
1047 {
1048 }
1049
mmap_write_unlock(struct mm_struct *)1050 static inline void mmap_write_unlock(struct mm_struct *)
1051 {
1052 }
1053
mmap_write_lock_killable(struct mm_struct *)1054 static inline int mmap_write_lock_killable(struct mm_struct *)
1055 {
1056 return 0;
1057 }
1058
can_modify_mm(struct mm_struct * mm,unsigned long start,unsigned long end)1059 static inline bool can_modify_mm(struct mm_struct *mm,
1060 unsigned long start,
1061 unsigned long end)
1062 {
1063 (void)mm;
1064 (void)start;
1065 (void)end;
1066
1067 return true;
1068 }
1069
arch_unmap(struct mm_struct * mm,unsigned long start,unsigned long end)1070 static inline void arch_unmap(struct mm_struct *mm,
1071 unsigned long start,
1072 unsigned long end)
1073 {
1074 (void)mm;
1075 (void)start;
1076 (void)end;
1077 }
1078
mmap_assert_locked(struct mm_struct *)1079 static inline void mmap_assert_locked(struct mm_struct *)
1080 {
1081 }
1082
mpol_equal(struct mempolicy *,struct mempolicy *)1083 static inline bool mpol_equal(struct mempolicy *, struct mempolicy *)
1084 {
1085 return true;
1086 }
1087
khugepaged_enter_vma(struct vm_area_struct * vma,vm_flags_t vm_flags)1088 static inline void khugepaged_enter_vma(struct vm_area_struct *vma,
1089 vm_flags_t vm_flags)
1090 {
1091 (void)vma;
1092 (void)vm_flags;
1093 }
1094
mapping_can_writeback(struct address_space *)1095 static inline bool mapping_can_writeback(struct address_space *)
1096 {
1097 return true;
1098 }
1099
is_vm_hugetlb_page(struct vm_area_struct *)1100 static inline bool is_vm_hugetlb_page(struct vm_area_struct *)
1101 {
1102 return false;
1103 }
1104
vma_soft_dirty_enabled(struct vm_area_struct *)1105 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *)
1106 {
1107 return false;
1108 }
1109
userfaultfd_wp(struct vm_area_struct *)1110 static inline bool userfaultfd_wp(struct vm_area_struct *)
1111 {
1112 return false;
1113 }
1114
mmap_assert_write_locked(struct mm_struct *)1115 static inline void mmap_assert_write_locked(struct mm_struct *)
1116 {
1117 }
1118
mutex_lock(struct mutex *)1119 static inline void mutex_lock(struct mutex *)
1120 {
1121 }
1122
mutex_unlock(struct mutex *)1123 static inline void mutex_unlock(struct mutex *)
1124 {
1125 }
1126
mutex_is_locked(struct mutex *)1127 static inline bool mutex_is_locked(struct mutex *)
1128 {
1129 return true;
1130 }
1131
signal_pending(void *)1132 static inline bool signal_pending(void *)
1133 {
1134 return false;
1135 }
1136
is_file_hugepages(struct file *)1137 static inline bool is_file_hugepages(struct file *)
1138 {
1139 return false;
1140 }
1141
security_vm_enough_memory_mm(struct mm_struct *,long)1142 static inline int security_vm_enough_memory_mm(struct mm_struct *, long)
1143 {
1144 return 0;
1145 }
1146
may_expand_vm(struct mm_struct *,vm_flags_t,unsigned long)1147 static inline bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long)
1148 {
1149 return true;
1150 }
1151
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)1152 static inline void vm_flags_init(struct vm_area_struct *vma,
1153 vm_flags_t flags)
1154 {
1155 vma->__vm_flags = flags;
1156 }
1157
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)1158 static inline void vm_flags_set(struct vm_area_struct *vma,
1159 vm_flags_t flags)
1160 {
1161 vma_start_write(vma);
1162 vma->__vm_flags |= flags;
1163 }
1164
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)1165 static inline void vm_flags_clear(struct vm_area_struct *vma,
1166 vm_flags_t flags)
1167 {
1168 vma_start_write(vma);
1169 vma->__vm_flags &= ~flags;
1170 }
1171
shmem_zero_setup(struct vm_area_struct *)1172 static inline int shmem_zero_setup(struct vm_area_struct *)
1173 {
1174 return 0;
1175 }
1176
vma_set_anonymous(struct vm_area_struct * vma)1177 static inline void vma_set_anonymous(struct vm_area_struct *vma)
1178 {
1179 vma->vm_ops = NULL;
1180 }
1181
ksm_add_vma(struct vm_area_struct *)1182 static inline void ksm_add_vma(struct vm_area_struct *)
1183 {
1184 }
1185
perf_event_mmap(struct vm_area_struct *)1186 static inline void perf_event_mmap(struct vm_area_struct *)
1187 {
1188 }
1189
vma_is_dax(struct vm_area_struct *)1190 static inline bool vma_is_dax(struct vm_area_struct *)
1191 {
1192 return false;
1193 }
1194
get_gate_vma(struct mm_struct *)1195 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *)
1196 {
1197 return NULL;
1198 }
1199
1200 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1201
1202 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)1203 static inline void vma_set_page_prot(struct vm_area_struct *vma)
1204 {
1205 vm_flags_t vm_flags = vma->vm_flags;
1206 pgprot_t vm_page_prot;
1207
1208 /* testing: we inline vm_pgprot_modify() to avoid clash with vma.h. */
1209 vm_page_prot = pgprot_modify(vma->vm_page_prot, vm_get_page_prot(vm_flags));
1210
1211 if (vma_wants_writenotify(vma, vm_page_prot)) {
1212 vm_flags &= ~VM_SHARED;
1213 /* testing: we inline vm_pgprot_modify() to avoid clash with vma.h. */
1214 vm_page_prot = pgprot_modify(vm_page_prot, vm_get_page_prot(vm_flags));
1215 }
1216 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
1217 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
1218 }
1219
arch_validate_flags(vm_flags_t)1220 static inline bool arch_validate_flags(vm_flags_t)
1221 {
1222 return true;
1223 }
1224
vma_close(struct vm_area_struct *)1225 static inline void vma_close(struct vm_area_struct *)
1226 {
1227 }
1228
mmap_file(struct file *,struct vm_area_struct *)1229 static inline int mmap_file(struct file *, struct vm_area_struct *)
1230 {
1231 return 0;
1232 }
1233
stack_guard_start_gap(struct vm_area_struct * vma)1234 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
1235 {
1236 if (vma->vm_flags & VM_GROWSDOWN)
1237 return stack_guard_gap;
1238
1239 /* See reasoning around the VM_SHADOW_STACK definition */
1240 if (vma->vm_flags & VM_SHADOW_STACK)
1241 return PAGE_SIZE;
1242
1243 return 0;
1244 }
1245
vm_start_gap(struct vm_area_struct * vma)1246 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
1247 {
1248 unsigned long gap = stack_guard_start_gap(vma);
1249 unsigned long vm_start = vma->vm_start;
1250
1251 vm_start -= gap;
1252 if (vm_start > vma->vm_start)
1253 vm_start = 0;
1254 return vm_start;
1255 }
1256
vm_end_gap(struct vm_area_struct * vma)1257 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
1258 {
1259 unsigned long vm_end = vma->vm_end;
1260
1261 if (vma->vm_flags & VM_GROWSUP) {
1262 vm_end += stack_guard_gap;
1263 if (vm_end < vma->vm_end)
1264 vm_end = -PAGE_SIZE;
1265 }
1266 return vm_end;
1267 }
1268
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)1269 static inline int is_hugepage_only_range(struct mm_struct *mm,
1270 unsigned long addr, unsigned long len)
1271 {
1272 return 0;
1273 }
1274
vma_is_accessible(struct vm_area_struct * vma)1275 static inline bool vma_is_accessible(struct vm_area_struct *vma)
1276 {
1277 return vma->vm_flags & VM_ACCESS_FLAGS;
1278 }
1279
capable(int cap)1280 static inline bool capable(int cap)
1281 {
1282 return true;
1283 }
1284
mlock_future_ok(struct mm_struct * mm,vm_flags_t vm_flags,unsigned long bytes)1285 static inline bool mlock_future_ok(struct mm_struct *mm, vm_flags_t vm_flags,
1286 unsigned long bytes)
1287 {
1288 unsigned long locked_pages, limit_pages;
1289
1290 if (!(vm_flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1291 return true;
1292
1293 locked_pages = bytes >> PAGE_SHIFT;
1294 locked_pages += mm->locked_vm;
1295
1296 limit_pages = rlimit(RLIMIT_MEMLOCK);
1297 limit_pages >>= PAGE_SHIFT;
1298
1299 return locked_pages <= limit_pages;
1300 }
1301
__anon_vma_prepare(struct vm_area_struct * vma)1302 static inline int __anon_vma_prepare(struct vm_area_struct *vma)
1303 {
1304 struct anon_vma *anon_vma = calloc(1, sizeof(struct anon_vma));
1305
1306 if (!anon_vma)
1307 return -ENOMEM;
1308
1309 anon_vma->root = anon_vma;
1310 vma->anon_vma = anon_vma;
1311
1312 return 0;
1313 }
1314
anon_vma_prepare(struct vm_area_struct * vma)1315 static inline int anon_vma_prepare(struct vm_area_struct *vma)
1316 {
1317 if (likely(vma->anon_vma))
1318 return 0;
1319
1320 return __anon_vma_prepare(vma);
1321 }
1322
userfaultfd_unmap_complete(struct mm_struct * mm,struct list_head * uf)1323 static inline void userfaultfd_unmap_complete(struct mm_struct *mm,
1324 struct list_head *uf)
1325 {
1326 }
1327
1328 /*
1329 * Denies creating a writable executable mapping or gaining executable permissions.
1330 *
1331 * This denies the following:
1332 *
1333 * a) mmap(PROT_WRITE | PROT_EXEC)
1334 *
1335 * b) mmap(PROT_WRITE)
1336 * mprotect(PROT_EXEC)
1337 *
1338 * c) mmap(PROT_WRITE)
1339 * mprotect(PROT_READ)
1340 * mprotect(PROT_EXEC)
1341 *
1342 * But allows the following:
1343 *
1344 * d) mmap(PROT_READ | PROT_EXEC)
1345 * mmap(PROT_READ | PROT_EXEC | PROT_BTI)
1346 *
1347 * This is only applicable if the user has set the Memory-Deny-Write-Execute
1348 * (MDWE) protection mask for the current process.
1349 *
1350 * @old specifies the VMA flags the VMA originally possessed, and @new the ones
1351 * we propose to set.
1352 *
1353 * Return: false if proposed change is OK, true if not ok and should be denied.
1354 */
map_deny_write_exec(unsigned long old,unsigned long new)1355 static inline bool map_deny_write_exec(unsigned long old, unsigned long new)
1356 {
1357 /* If MDWE is disabled, we have nothing to deny. */
1358 if (!test_bit(MMF_HAS_MDWE, ¤t->mm->flags))
1359 return false;
1360
1361 /* If the new VMA is not executable, we have nothing to deny. */
1362 if (!(new & VM_EXEC))
1363 return false;
1364
1365 /* Under MDWE we do not accept newly writably executable VMAs... */
1366 if (new & VM_WRITE)
1367 return true;
1368
1369 /* ...nor previously non-executable VMAs becoming executable. */
1370 if (!(old & VM_EXEC))
1371 return true;
1372
1373 return false;
1374 }
1375
mapping_map_writable(struct address_space * mapping)1376 static inline int mapping_map_writable(struct address_space *mapping)
1377 {
1378 int c = atomic_read(&mapping->i_mmap_writable);
1379
1380 /* Derived from the raw_atomic_inc_unless_negative() implementation. */
1381 do {
1382 if (c < 0)
1383 return -EPERM;
1384 } while (!__sync_bool_compare_and_swap(&mapping->i_mmap_writable, c, c+1));
1385
1386 return 0;
1387 }
1388
move_page_tables(struct pagetable_move_control * pmc)1389 static inline unsigned long move_page_tables(struct pagetable_move_control *pmc)
1390 {
1391 (void)pmc;
1392
1393 return 0;
1394 }
1395
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1396 static inline void free_pgd_range(struct mmu_gather *tlb,
1397 unsigned long addr, unsigned long end,
1398 unsigned long floor, unsigned long ceiling)
1399 {
1400 (void)tlb;
1401 (void)addr;
1402 (void)end;
1403 (void)floor;
1404 (void)ceiling;
1405 }
1406
ksm_execve(struct mm_struct * mm)1407 static inline int ksm_execve(struct mm_struct *mm)
1408 {
1409 (void)mm;
1410
1411 return 0;
1412 }
1413
ksm_exit(struct mm_struct * mm)1414 static inline void ksm_exit(struct mm_struct *mm)
1415 {
1416 (void)mm;
1417 }
1418
vma_lock_init(struct vm_area_struct * vma,bool reset_refcnt)1419 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt)
1420 {
1421 (void)vma;
1422 (void)reset_refcnt;
1423 }
1424
vma_numab_state_init(struct vm_area_struct * vma)1425 static inline void vma_numab_state_init(struct vm_area_struct *vma)
1426 {
1427 (void)vma;
1428 }
1429
vma_numab_state_free(struct vm_area_struct * vma)1430 static inline void vma_numab_state_free(struct vm_area_struct *vma)
1431 {
1432 (void)vma;
1433 }
1434
dup_anon_vma_name(struct vm_area_struct * orig_vma,struct vm_area_struct * new_vma)1435 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
1436 struct vm_area_struct *new_vma)
1437 {
1438 (void)orig_vma;
1439 (void)new_vma;
1440 }
1441
free_anon_vma_name(struct vm_area_struct * vma)1442 static inline void free_anon_vma_name(struct vm_area_struct *vma)
1443 {
1444 (void)vma;
1445 }
1446
1447 /* Declared in vma.h. */
1448 static inline void set_vma_from_desc(struct vm_area_struct *vma,
1449 struct vm_area_desc *desc);
1450
1451 static inline struct vm_area_desc *vma_to_desc(struct vm_area_struct *vma,
1452 struct vm_area_desc *desc);
1453
compat_vma_mmap_prepare(struct file * file,struct vm_area_struct * vma)1454 static int compat_vma_mmap_prepare(struct file *file,
1455 struct vm_area_struct *vma)
1456 {
1457 struct vm_area_desc desc;
1458 int err;
1459
1460 err = file->f_op->mmap_prepare(vma_to_desc(vma, &desc));
1461 if (err)
1462 return err;
1463 set_vma_from_desc(vma, &desc);
1464
1465 return 0;
1466 }
1467
1468 /* Did the driver provide valid mmap hook configuration? */
can_mmap_file(struct file * file)1469 static inline bool can_mmap_file(struct file *file)
1470 {
1471 bool has_mmap = file->f_op->mmap;
1472 bool has_mmap_prepare = file->f_op->mmap_prepare;
1473
1474 /* Hooks are mutually exclusive. */
1475 if (WARN_ON_ONCE(has_mmap && has_mmap_prepare))
1476 return false;
1477 if (!has_mmap && !has_mmap_prepare)
1478 return false;
1479
1480 return true;
1481 }
1482
vfs_mmap(struct file * file,struct vm_area_struct * vma)1483 static inline int vfs_mmap(struct file *file, struct vm_area_struct *vma)
1484 {
1485 if (file->f_op->mmap_prepare)
1486 return compat_vma_mmap_prepare(file, vma);
1487
1488 return file->f_op->mmap(file, vma);
1489 }
1490
vfs_mmap_prepare(struct file * file,struct vm_area_desc * desc)1491 static inline int vfs_mmap_prepare(struct file *file, struct vm_area_desc *desc)
1492 {
1493 return file->f_op->mmap_prepare(desc);
1494 }
1495
fixup_hugetlb_reservations(struct vm_area_struct * vma)1496 static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma)
1497 {
1498 (void)vma;
1499 }
1500
vma_set_file(struct vm_area_struct * vma,struct file * file)1501 static inline void vma_set_file(struct vm_area_struct *vma, struct file *file)
1502 {
1503 /* Changing an anonymous vma with this is illegal */
1504 get_file(file);
1505 swap(vma->vm_file, file);
1506 fput(file);
1507 }
1508
shmem_file(struct file *)1509 static inline bool shmem_file(struct file *)
1510 {
1511 return false;
1512 }
1513
ksm_vma_flags(const struct mm_struct *,const struct file *,vm_flags_t vm_flags)1514 static inline vm_flags_t ksm_vma_flags(const struct mm_struct *, const struct file *,
1515 vm_flags_t vm_flags)
1516 {
1517 return vm_flags;
1518 }
1519
1520 #endif /* __MM_VMA_INTERNAL_H */
1521