xref: /linux/tools/testing/selftests/kvm/access_tracking_perf_test.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * access_tracking_perf_test
4  *
5  * Copyright (C) 2021, Google, Inc.
6  *
7  * This test measures the performance effects of KVM's access tracking.
8  * Access tracking is driven by the MMU notifiers test_young, clear_young, and
9  * clear_flush_young. These notifiers do not have a direct userspace API,
10  * however the clear_young notifier can be triggered either by
11  *   1. marking a pages as idle in /sys/kernel/mm/page_idle/bitmap OR
12  *   2. adding a new MGLRU generation using the lru_gen debugfs file.
13  * This test leverages page_idle to enable access tracking on guest memory
14  * unless MGLRU is enabled, in which case MGLRU is used.
15  *
16  * To measure performance this test runs a VM with a configurable number of
17  * vCPUs that each touch every page in disjoint regions of memory. Performance
18  * is measured in the time it takes all vCPUs to finish touching their
19  * predefined region.
20  *
21  * Note that a deterministic correctness test of access tracking is not possible
22  * by using page_idle or MGLRU aging as it exists today. This is for a few
23  * reasons:
24  *
25  * 1. page_idle and MGLRU only issue clear_young notifiers, which lack a TLB flush.
26  *    This means subsequent guest accesses are not guaranteed to see page table
27  *    updates made by KVM until some time in the future.
28  *
29  * 2. page_idle only operates on LRU pages. Newly allocated pages are not
30  *    immediately allocated to LRU lists. Instead they are held in a "pagevec",
31  *    which is drained to LRU lists some time in the future. There is no
32  *    userspace API to force this drain to occur.
33  *
34  * These limitations are worked around in this test by using a large enough
35  * region of memory for each vCPU such that the number of translations cached in
36  * the TLB and the number of pages held in pagevecs are a small fraction of the
37  * overall workload. And if either of those conditions are not true (for example
38  * in nesting, where TLB size is unlimited) this test will print a warning
39  * rather than silently passing.
40  */
41 #include <inttypes.h>
42 #include <limits.h>
43 #include <pthread.h>
44 #include <sys/mman.h>
45 #include <sys/types.h>
46 #include <sys/stat.h>
47 
48 #include "kvm_util.h"
49 #include "test_util.h"
50 #include "memstress.h"
51 #include "guest_modes.h"
52 #include "processor.h"
53 
54 #include "cgroup_util.h"
55 #include "lru_gen_util.h"
56 
57 static const char *TEST_MEMCG_NAME = "access_tracking_perf_test";
58 
59 /* Global variable used to synchronize all of the vCPU threads. */
60 static int iteration;
61 
62 /* The cgroup memory controller root. Needed for lru_gen-based aging. */
63 char cgroup_root[PATH_MAX];
64 
65 /* Defines what vCPU threads should do during a given iteration. */
66 static enum {
67 	/* Run the vCPU to access all its memory. */
68 	ITERATION_ACCESS_MEMORY,
69 	/* Mark the vCPU's memory idle in page_idle. */
70 	ITERATION_MARK_IDLE,
71 } iteration_work;
72 
73 /* The iteration that was last completed by each vCPU. */
74 static int vcpu_last_completed_iteration[KVM_MAX_VCPUS];
75 
76 /* Whether to overlap the regions of memory vCPUs access. */
77 static bool overlap_memory_access;
78 
79 /*
80  * If the test should only warn if there are too many idle pages (i.e., it is
81  * expected).
82  * -1: Not yet set.
83  *  0: We do not expect too many idle pages, so FAIL if too many idle pages.
84  *  1: Having too many idle pages is expected, so merely print a warning if
85  *     too many idle pages are found.
86  */
87 static int idle_pages_warn_only = -1;
88 
89 /* Whether or not to use MGLRU instead of page_idle for access tracking */
90 static bool use_lru_gen;
91 
92 /* Total number of pages to expect in the memcg after touching everything */
93 static long test_pages;
94 
95 /* Last generation we found the pages in */
96 static int lru_gen_last_gen = -1;
97 
98 struct test_params {
99 	/* The backing source for the region of memory. */
100 	enum vm_mem_backing_src_type backing_src;
101 
102 	/* The amount of memory to allocate for each vCPU. */
103 	uint64_t vcpu_memory_bytes;
104 
105 	/* The number of vCPUs to create in the VM. */
106 	int nr_vcpus;
107 };
108 
pread_uint64(int fd,const char * filename,uint64_t index)109 static uint64_t pread_uint64(int fd, const char *filename, uint64_t index)
110 {
111 	uint64_t value;
112 	off_t offset = index * sizeof(value);
113 
114 	TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value),
115 		    "pread from %s offset 0x%" PRIx64 " failed!",
116 		    filename, offset);
117 
118 	return value;
119 
120 }
121 
122 #define PAGEMAP_PRESENT (1ULL << 63)
123 #define PAGEMAP_PFN_MASK ((1ULL << 55) - 1)
124 
lookup_pfn(int pagemap_fd,struct kvm_vm * vm,uint64_t gva)125 static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva)
126 {
127 	uint64_t hva = (uint64_t) addr_gva2hva(vm, gva);
128 	uint64_t entry;
129 	uint64_t pfn;
130 
131 	entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize());
132 	if (!(entry & PAGEMAP_PRESENT))
133 		return 0;
134 
135 	pfn = entry & PAGEMAP_PFN_MASK;
136 	__TEST_REQUIRE(pfn, "Looking up PFNs requires CAP_SYS_ADMIN");
137 
138 	return pfn;
139 }
140 
is_page_idle(int page_idle_fd,uint64_t pfn)141 static bool is_page_idle(int page_idle_fd, uint64_t pfn)
142 {
143 	uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64);
144 
145 	return !!((bits >> (pfn % 64)) & 1);
146 }
147 
mark_page_idle(int page_idle_fd,uint64_t pfn)148 static void mark_page_idle(int page_idle_fd, uint64_t pfn)
149 {
150 	uint64_t bits = 1ULL << (pfn % 64);
151 
152 	TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8,
153 		    "Set page_idle bits for PFN 0x%" PRIx64, pfn);
154 }
155 
too_many_idle_pages(long idle_pages,long total_pages,int vcpu_idx)156 static void too_many_idle_pages(long idle_pages, long total_pages, int vcpu_idx)
157 {
158 	char prefix[18] = {};
159 
160 	if (vcpu_idx >= 0)
161 		snprintf(prefix, 18, "vCPU%d: ", vcpu_idx);
162 
163 	TEST_ASSERT(idle_pages_warn_only,
164 		    "%sToo many pages still idle (%lu out of %lu)",
165 		    prefix, idle_pages, total_pages);
166 
167 	printf("WARNING: %sToo many pages still idle (%lu out of %lu), "
168 	       "this will affect performance results.\n",
169 	       prefix, idle_pages, total_pages);
170 }
171 
pageidle_mark_vcpu_memory_idle(struct kvm_vm * vm,struct memstress_vcpu_args * vcpu_args)172 static void pageidle_mark_vcpu_memory_idle(struct kvm_vm *vm,
173 					   struct memstress_vcpu_args *vcpu_args)
174 {
175 	int vcpu_idx = vcpu_args->vcpu_idx;
176 	uint64_t base_gva = vcpu_args->gva;
177 	uint64_t pages = vcpu_args->pages;
178 	uint64_t page;
179 	uint64_t still_idle = 0;
180 	uint64_t no_pfn = 0;
181 	int page_idle_fd;
182 	int pagemap_fd;
183 
184 	/* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */
185 	if (overlap_memory_access && vcpu_idx)
186 		return;
187 
188 	page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
189 	TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle.");
190 
191 	pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
192 	TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap.");
193 
194 	for (page = 0; page < pages; page++) {
195 		uint64_t gva = base_gva + page * memstress_args.guest_page_size;
196 		uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva);
197 
198 		if (!pfn) {
199 			no_pfn++;
200 			continue;
201 		}
202 
203 		if (is_page_idle(page_idle_fd, pfn)) {
204 			still_idle++;
205 			continue;
206 		}
207 
208 		mark_page_idle(page_idle_fd, pfn);
209 	}
210 
211 	/*
212 	 * Assumption: Less than 1% of pages are going to be swapped out from
213 	 * under us during this test.
214 	 */
215 	TEST_ASSERT(no_pfn < pages / 100,
216 		    "vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.",
217 		    vcpu_idx, no_pfn, pages);
218 
219 	/*
220 	 * Check that at least 90% of memory has been marked idle (the rest
221 	 * might not be marked idle because the pages have not yet made it to an
222 	 * LRU list or the translations are still cached in the TLB). 90% is
223 	 * arbitrary; high enough that we ensure most memory access went through
224 	 * access tracking but low enough as to not make the test too brittle
225 	 * over time and across architectures.
226 	 */
227 	if (still_idle >= pages / 10)
228 		too_many_idle_pages(still_idle, pages,
229 				    overlap_memory_access ? -1 : vcpu_idx);
230 
231 	close(page_idle_fd);
232 	close(pagemap_fd);
233 }
234 
find_generation(struct memcg_stats * stats,long total_pages)235 int find_generation(struct memcg_stats *stats, long total_pages)
236 {
237 	/*
238 	 * For finding the generation that contains our pages, use the same
239 	 * 90% threshold that page_idle uses.
240 	 */
241 	int gen = lru_gen_find_generation(stats, total_pages * 9 / 10);
242 
243 	if (gen >= 0)
244 		return gen;
245 
246 	if (!idle_pages_warn_only) {
247 		TEST_FAIL("Could not find a generation with 90%% of guest memory (%ld pages).",
248 			   total_pages * 9 / 10);
249 		return gen;
250 	}
251 
252 	/*
253 	 * We couldn't find a generation with 90% of guest memory, which can
254 	 * happen if access tracking is unreliable. Simply look for a majority
255 	 * of pages.
256 	 */
257 	puts("WARNING: Couldn't find a generation with 90% of guest memory. "
258 	     "Performance results may not be accurate.");
259 	gen = lru_gen_find_generation(stats, total_pages / 2);
260 	TEST_ASSERT(gen >= 0,
261 		    "Could not find a generation with 50%% of guest memory (%ld pages).",
262 		    total_pages / 2);
263 	return gen;
264 }
265 
lru_gen_mark_memory_idle(struct kvm_vm * vm)266 static void lru_gen_mark_memory_idle(struct kvm_vm *vm)
267 {
268 	struct timespec ts_start;
269 	struct timespec ts_elapsed;
270 	struct memcg_stats stats;
271 	int new_gen;
272 
273 	/* Make a new generation */
274 	clock_gettime(CLOCK_MONOTONIC, &ts_start);
275 	lru_gen_do_aging(&stats, TEST_MEMCG_NAME);
276 	ts_elapsed = timespec_elapsed(ts_start);
277 
278 	/* Check the generation again */
279 	new_gen = find_generation(&stats, test_pages);
280 
281 	/*
282 	 * This function should only be invoked with newly-accessed pages,
283 	 * so pages should always move to a newer generation.
284 	 */
285 	if (new_gen <= lru_gen_last_gen) {
286 		/* We did not move to a newer generation. */
287 		long idle_pages = lru_gen_sum_memcg_stats_for_gen(lru_gen_last_gen,
288 								  &stats);
289 
290 		too_many_idle_pages(min_t(long, idle_pages, test_pages),
291 				    test_pages, -1);
292 	}
293 	pr_info("%-30s: %ld.%09lds\n",
294 		"Mark memory idle (lru_gen)", ts_elapsed.tv_sec,
295 		ts_elapsed.tv_nsec);
296 	lru_gen_last_gen = new_gen;
297 }
298 
assert_ucall(struct kvm_vcpu * vcpu,uint64_t expected_ucall)299 static void assert_ucall(struct kvm_vcpu *vcpu, uint64_t expected_ucall)
300 {
301 	struct ucall uc;
302 	uint64_t actual_ucall = get_ucall(vcpu, &uc);
303 
304 	TEST_ASSERT(expected_ucall == actual_ucall,
305 		    "Guest exited unexpectedly (expected ucall %" PRIu64
306 		    ", got %" PRIu64 ")",
307 		    expected_ucall, actual_ucall);
308 }
309 
spin_wait_for_next_iteration(int * current_iteration)310 static bool spin_wait_for_next_iteration(int *current_iteration)
311 {
312 	int last_iteration = *current_iteration;
313 
314 	do {
315 		if (READ_ONCE(memstress_args.stop_vcpus))
316 			return false;
317 
318 		*current_iteration = READ_ONCE(iteration);
319 	} while (last_iteration == *current_iteration);
320 
321 	return true;
322 }
323 
vcpu_thread_main(struct memstress_vcpu_args * vcpu_args)324 static void vcpu_thread_main(struct memstress_vcpu_args *vcpu_args)
325 {
326 	struct kvm_vcpu *vcpu = vcpu_args->vcpu;
327 	struct kvm_vm *vm = memstress_args.vm;
328 	int vcpu_idx = vcpu_args->vcpu_idx;
329 	int current_iteration = 0;
330 
331 	while (spin_wait_for_next_iteration(&current_iteration)) {
332 		switch (READ_ONCE(iteration_work)) {
333 		case ITERATION_ACCESS_MEMORY:
334 			vcpu_run(vcpu);
335 			assert_ucall(vcpu, UCALL_SYNC);
336 			break;
337 		case ITERATION_MARK_IDLE:
338 			pageidle_mark_vcpu_memory_idle(vm, vcpu_args);
339 			break;
340 		}
341 
342 		vcpu_last_completed_iteration[vcpu_idx] = current_iteration;
343 	}
344 }
345 
spin_wait_for_vcpu(int vcpu_idx,int target_iteration)346 static void spin_wait_for_vcpu(int vcpu_idx, int target_iteration)
347 {
348 	while (READ_ONCE(vcpu_last_completed_iteration[vcpu_idx]) !=
349 	       target_iteration) {
350 		continue;
351 	}
352 }
353 
354 /* The type of memory accesses to perform in the VM. */
355 enum access_type {
356 	ACCESS_READ,
357 	ACCESS_WRITE,
358 };
359 
run_iteration(struct kvm_vm * vm,int nr_vcpus,const char * description)360 static void run_iteration(struct kvm_vm *vm, int nr_vcpus, const char *description)
361 {
362 	struct timespec ts_start;
363 	struct timespec ts_elapsed;
364 	int next_iteration, i;
365 
366 	/* Kick off the vCPUs by incrementing iteration. */
367 	next_iteration = ++iteration;
368 
369 	clock_gettime(CLOCK_MONOTONIC, &ts_start);
370 
371 	/* Wait for all vCPUs to finish the iteration. */
372 	for (i = 0; i < nr_vcpus; i++)
373 		spin_wait_for_vcpu(i, next_iteration);
374 
375 	ts_elapsed = timespec_elapsed(ts_start);
376 	pr_info("%-30s: %ld.%09lds\n",
377 		description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec);
378 }
379 
access_memory(struct kvm_vm * vm,int nr_vcpus,enum access_type access,const char * description)380 static void access_memory(struct kvm_vm *vm, int nr_vcpus,
381 			  enum access_type access, const char *description)
382 {
383 	memstress_set_write_percent(vm, (access == ACCESS_READ) ? 0 : 100);
384 	iteration_work = ITERATION_ACCESS_MEMORY;
385 	run_iteration(vm, nr_vcpus, description);
386 }
387 
mark_memory_idle(struct kvm_vm * vm,int nr_vcpus)388 static void mark_memory_idle(struct kvm_vm *vm, int nr_vcpus)
389 {
390 	if (use_lru_gen)
391 		return lru_gen_mark_memory_idle(vm);
392 
393 	/*
394 	 * Even though this parallelizes the work across vCPUs, this is still a
395 	 * very slow operation because page_idle forces the test to mark one pfn
396 	 * at a time and the clear_young notifier may serialize on the KVM MMU
397 	 * lock.
398 	 */
399 	pr_debug("Marking VM memory idle (slow)...\n");
400 	iteration_work = ITERATION_MARK_IDLE;
401 	run_iteration(vm, nr_vcpus, "Mark memory idle (page_idle)");
402 }
403 
run_test(enum vm_guest_mode mode,void * arg)404 static void run_test(enum vm_guest_mode mode, void *arg)
405 {
406 	struct test_params *params = arg;
407 	struct kvm_vm *vm;
408 	int nr_vcpus = params->nr_vcpus;
409 
410 	vm = memstress_create_vm(mode, nr_vcpus, params->vcpu_memory_bytes, 1,
411 				 params->backing_src, !overlap_memory_access);
412 
413 	/*
414 	 * If guest_page_size is larger than the host's page size, the
415 	 * guest (memstress) will only fault in a subset of the host's pages.
416 	 */
417 	test_pages = params->nr_vcpus * params->vcpu_memory_bytes /
418 		      max(memstress_args.guest_page_size,
419 			  (uint64_t)getpagesize());
420 
421 	memstress_start_vcpu_threads(nr_vcpus, vcpu_thread_main);
422 
423 	pr_info("\n");
424 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Populating memory");
425 
426 	if (use_lru_gen) {
427 		struct memcg_stats stats;
428 
429 		/*
430 		 * Do a page table scan now. Following initial population, aging
431 		 * may not cause the pages to move to a newer generation. Do
432 		 * an aging pass now so that future aging passes always move
433 		 * pages to a newer generation.
434 		 */
435 		printf("Initial aging pass (lru_gen)\n");
436 		lru_gen_do_aging(&stats, TEST_MEMCG_NAME);
437 		TEST_ASSERT(lru_gen_sum_memcg_stats(&stats) >= test_pages,
438 			    "Not all pages accounted for (looking for %ld). "
439 			    "Was the memcg set up correctly?", test_pages);
440 		access_memory(vm, nr_vcpus, ACCESS_WRITE, "Re-populating memory");
441 		lru_gen_read_memcg_stats(&stats, TEST_MEMCG_NAME);
442 		lru_gen_last_gen = find_generation(&stats, test_pages);
443 	}
444 
445 	/* As a control, read and write to the populated memory first. */
446 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to populated memory");
447 	access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from populated memory");
448 
449 	/* Repeat on memory that has been marked as idle. */
450 	mark_memory_idle(vm, nr_vcpus);
451 	access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to idle memory");
452 	mark_memory_idle(vm, nr_vcpus);
453 	access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from idle memory");
454 
455 	memstress_join_vcpu_threads(nr_vcpus);
456 	memstress_destroy_vm(vm);
457 }
458 
access_tracking_unreliable(void)459 static int access_tracking_unreliable(void)
460 {
461 #ifdef __x86_64__
462 	/*
463 	 * When running nested, the TLB size may be effectively unlimited (for
464 	 * example, this is the case when running on KVM L0), and KVM doesn't
465 	 * explicitly flush the TLB when aging SPTEs.  As a result, more pages
466 	 * are cached and the guest won't see the "idle" bit cleared.
467 	 */
468 	if (this_cpu_has(X86_FEATURE_HYPERVISOR)) {
469 		puts("Skipping idle page count sanity check, because the test is run nested");
470 		return 1;
471 	}
472 #endif
473 	/*
474 	 * When NUMA balancing is enabled, guest memory will be unmapped to get
475 	 * NUMA faults, dropping the Accessed bits.
476 	 */
477 	if (is_numa_balancing_enabled()) {
478 		puts("Skipping idle page count sanity check, because NUMA balancing is enabled");
479 		return 1;
480 	}
481 	return 0;
482 }
483 
run_test_for_each_guest_mode(const char * cgroup,void * arg)484 static int run_test_for_each_guest_mode(const char *cgroup, void *arg)
485 {
486 	for_each_guest_mode(run_test, arg);
487 	return 0;
488 }
489 
help(char * name)490 static void help(char *name)
491 {
492 	puts("");
493 	printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o]  [-s mem_type]\n",
494 	       name);
495 	puts("");
496 	printf(" -h: Display this help message.");
497 	guest_modes_help();
498 	printf(" -b: specify the size of the memory region which should be\n"
499 	       "     dirtied by each vCPU. e.g. 10M or 3G.\n"
500 	       "     (default: 1G)\n");
501 	printf(" -v: specify the number of vCPUs to run.\n");
502 	printf(" -o: Overlap guest memory accesses instead of partitioning\n"
503 	       "     them into a separate region of memory for each vCPU.\n");
504 	printf(" -w: Control whether the test warns or fails if more than 10%%\n"
505 	       "     of pages are still seen as idle/old after accessing guest\n"
506 	       "     memory.  >0 == warn only, 0 == fail, <0 == auto.  For auto\n"
507 	       "     mode, the test fails by default, but switches to warn only\n"
508 	       "     if NUMA balancing is enabled or the test detects it's running\n"
509 	       "     in a VM.\n");
510 	backing_src_help("-s");
511 	puts("");
512 	exit(0);
513 }
514 
destroy_cgroup(char * cg)515 void destroy_cgroup(char *cg)
516 {
517 	printf("Destroying cgroup: %s\n", cg);
518 }
519 
main(int argc,char * argv[])520 int main(int argc, char *argv[])
521 {
522 	struct test_params params = {
523 		.backing_src = DEFAULT_VM_MEM_SRC,
524 		.vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE,
525 		.nr_vcpus = 1,
526 	};
527 	char *new_cg = NULL;
528 	int page_idle_fd;
529 	int opt;
530 
531 	guest_modes_append_default();
532 
533 	while ((opt = getopt(argc, argv, "hm:b:v:os:w:")) != -1) {
534 		switch (opt) {
535 		case 'm':
536 			guest_modes_cmdline(optarg);
537 			break;
538 		case 'b':
539 			params.vcpu_memory_bytes = parse_size(optarg);
540 			break;
541 		case 'v':
542 			params.nr_vcpus = atoi_positive("Number of vCPUs", optarg);
543 			break;
544 		case 'o':
545 			overlap_memory_access = true;
546 			break;
547 		case 's':
548 			params.backing_src = parse_backing_src_type(optarg);
549 			break;
550 		case 'w':
551 			idle_pages_warn_only =
552 				atoi_non_negative("Idle pages warning",
553 						  optarg);
554 			break;
555 		case 'h':
556 		default:
557 			help(argv[0]);
558 			break;
559 		}
560 	}
561 
562 	if (idle_pages_warn_only == -1)
563 		idle_pages_warn_only = access_tracking_unreliable();
564 
565 	if (lru_gen_usable()) {
566 		bool cg_created = true;
567 		int ret;
568 
569 		puts("Using lru_gen for aging");
570 		use_lru_gen = true;
571 
572 		if (cg_find_controller_root(cgroup_root, sizeof(cgroup_root), "memory"))
573 			ksft_exit_skip("Cannot find memory cgroup controller\n");
574 
575 		new_cg = cg_name(cgroup_root, TEST_MEMCG_NAME);
576 		printf("Creating cgroup: %s\n", new_cg);
577 		if (cg_create(new_cg)) {
578 			if (errno == EEXIST) {
579 				printf("Found existing cgroup");
580 				cg_created = false;
581 			} else {
582 				ksft_exit_skip("could not create new cgroup: %s\n", new_cg);
583 			}
584 		}
585 
586 		/*
587 		 * This will fork off a new process to run the test within
588 		 * a new memcg, so we need to properly propagate the return
589 		 * value up.
590 		 */
591 		ret = cg_run(new_cg, &run_test_for_each_guest_mode, &params);
592 		if (cg_created)
593 			cg_destroy(new_cg);
594 		if (ret < 0)
595 			TEST_FAIL("child did not spawn or was abnormally killed");
596 		if (ret)
597 			return ret;
598 	} else {
599 		page_idle_fd = __open_path_or_exit("/sys/kernel/mm/page_idle/bitmap", O_RDWR,
600 						   "Is CONFIG_IDLE_PAGE_TRACKING enabled?");
601 		close(page_idle_fd);
602 
603 		puts("Using page_idle for aging");
604 		run_test_for_each_guest_mode(NULL, &params);
605 	}
606 
607 	return 0;
608 }
609