1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 - 2025 Intel Corporation 9 * 10 * Permission to use, copy, modify, and/or distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 24 /** 25 * DOC: Wireless regulatory infrastructure 26 * 27 * The usual implementation is for a driver to read a device EEPROM to 28 * determine which regulatory domain it should be operating under, then 29 * looking up the allowable channels in a driver-local table and finally 30 * registering those channels in the wiphy structure. 31 * 32 * Another set of compliance enforcement is for drivers to use their 33 * own compliance limits which can be stored on the EEPROM. The host 34 * driver or firmware may ensure these are used. 35 * 36 * In addition to all this we provide an extra layer of regulatory 37 * conformance. For drivers which do not have any regulatory 38 * information CRDA provides the complete regulatory solution. 39 * For others it provides a community effort on further restrictions 40 * to enhance compliance. 41 * 42 * Note: When number of rules --> infinity we will not be able to 43 * index on alpha2 any more, instead we'll probably have to 44 * rely on some SHA1 checksum of the regdomain for example. 45 * 46 */ 47 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 49 50 #include <linux/kernel.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/list.h> 54 #include <linux/ctype.h> 55 #include <linux/nl80211.h> 56 #include <linux/platform_device.h> 57 #include <linux/verification.h> 58 #include <linux/moduleparam.h> 59 #include <linux/firmware.h> 60 #include <linux/units.h> 61 62 #include <net/cfg80211.h> 63 #include "core.h" 64 #include "reg.h" 65 #include "rdev-ops.h" 66 #include "nl80211.h" 67 68 /* 69 * Grace period we give before making sure all current interfaces reside on 70 * channels allowed by the current regulatory domain. 71 */ 72 #define REG_ENFORCE_GRACE_MS 60000 73 74 /** 75 * enum reg_request_treatment - regulatory request treatment 76 * 77 * @REG_REQ_OK: continue processing the regulatory request 78 * @REG_REQ_IGNORE: ignore the regulatory request 79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 80 * be intersected with the current one. 81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 82 * regulatory settings, and no further processing is required. 83 */ 84 enum reg_request_treatment { 85 REG_REQ_OK, 86 REG_REQ_IGNORE, 87 REG_REQ_INTERSECT, 88 REG_REQ_ALREADY_SET, 89 }; 90 91 static struct regulatory_request core_request_world = { 92 .initiator = NL80211_REGDOM_SET_BY_CORE, 93 .alpha2[0] = '0', 94 .alpha2[1] = '0', 95 .intersect = false, 96 .processed = true, 97 .country_ie_env = ENVIRON_ANY, 98 }; 99 100 /* 101 * Receipt of information from last regulatory request, 102 * protected by RTNL (and can be accessed with RCU protection) 103 */ 104 static struct regulatory_request __rcu *last_request = 105 (void __force __rcu *)&core_request_world; 106 107 /* To trigger userspace events and load firmware */ 108 static struct platform_device *reg_pdev; 109 110 /* 111 * Central wireless core regulatory domains, we only need two, 112 * the current one and a world regulatory domain in case we have no 113 * information to give us an alpha2. 114 * (protected by RTNL, can be read under RCU) 115 */ 116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 117 118 /* 119 * Number of devices that registered to the core 120 * that support cellular base station regulatory hints 121 * (protected by RTNL) 122 */ 123 static int reg_num_devs_support_basehint; 124 125 /* 126 * State variable indicating if the platform on which the devices 127 * are attached is operating in an indoor environment. The state variable 128 * is relevant for all registered devices. 129 */ 130 static bool reg_is_indoor; 131 static DEFINE_SPINLOCK(reg_indoor_lock); 132 133 /* Used to track the userspace process controlling the indoor setting */ 134 static u32 reg_is_indoor_portid; 135 136 static void restore_regulatory_settings(bool reset_user, bool cached); 137 static void print_regdomain(const struct ieee80211_regdomain *rd); 138 static void reg_process_hint(struct regulatory_request *reg_request); 139 140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 141 { 142 return rcu_dereference_rtnl(cfg80211_regdomain); 143 } 144 145 /* 146 * Returns the regulatory domain associated with the wiphy. 147 * 148 * Requires any of RTNL, wiphy mutex or RCU protection. 149 */ 150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 151 { 152 return rcu_dereference_check(wiphy->regd, 153 lockdep_is_held(&wiphy->mtx) || 154 lockdep_rtnl_is_held()); 155 } 156 EXPORT_SYMBOL(get_wiphy_regdom); 157 158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 159 { 160 switch (dfs_region) { 161 case NL80211_DFS_UNSET: 162 return "unset"; 163 case NL80211_DFS_FCC: 164 return "FCC"; 165 case NL80211_DFS_ETSI: 166 return "ETSI"; 167 case NL80211_DFS_JP: 168 return "JP"; 169 } 170 return "Unknown"; 171 } 172 173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 174 { 175 const struct ieee80211_regdomain *regd = NULL; 176 const struct ieee80211_regdomain *wiphy_regd = NULL; 177 enum nl80211_dfs_regions dfs_region; 178 179 rcu_read_lock(); 180 regd = get_cfg80211_regdom(); 181 dfs_region = regd->dfs_region; 182 183 if (!wiphy) 184 goto out; 185 186 wiphy_regd = get_wiphy_regdom(wiphy); 187 if (!wiphy_regd) 188 goto out; 189 190 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 191 dfs_region = wiphy_regd->dfs_region; 192 goto out; 193 } 194 195 if (wiphy_regd->dfs_region == regd->dfs_region) 196 goto out; 197 198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", 199 dev_name(&wiphy->dev), 200 reg_dfs_region_str(wiphy_regd->dfs_region), 201 reg_dfs_region_str(regd->dfs_region)); 202 203 out: 204 rcu_read_unlock(); 205 206 return dfs_region; 207 } 208 209 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 210 { 211 if (!r) 212 return; 213 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 214 } 215 216 static struct regulatory_request *get_last_request(void) 217 { 218 return rcu_dereference_rtnl(last_request); 219 } 220 221 /* Used to queue up regulatory hints */ 222 static LIST_HEAD(reg_requests_list); 223 static DEFINE_SPINLOCK(reg_requests_lock); 224 225 /* Used to queue up beacon hints for review */ 226 static LIST_HEAD(reg_pending_beacons); 227 static DEFINE_SPINLOCK(reg_pending_beacons_lock); 228 229 /* Used to keep track of processed beacon hints */ 230 static LIST_HEAD(reg_beacon_list); 231 232 struct reg_beacon { 233 struct list_head list; 234 struct ieee80211_channel chan; 235 }; 236 237 static void reg_check_chans_work(struct work_struct *work); 238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); 239 240 static void reg_todo(struct work_struct *work); 241 static DECLARE_WORK(reg_work, reg_todo); 242 243 /* We keep a static world regulatory domain in case of the absence of CRDA */ 244 static const struct ieee80211_regdomain world_regdom = { 245 .n_reg_rules = 8, 246 .alpha2 = "00", 247 .reg_rules = { 248 /* IEEE 802.11b/g, channels 1..11 */ 249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 250 /* IEEE 802.11b/g, channels 12..13. */ 251 REG_RULE(2467-10, 2472+10, 20, 6, 20, 252 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), 253 /* IEEE 802.11 channel 14 - Only JP enables 254 * this and for 802.11b only */ 255 REG_RULE(2484-10, 2484+10, 20, 6, 20, 256 NL80211_RRF_NO_IR | 257 NL80211_RRF_NO_OFDM), 258 /* IEEE 802.11a, channel 36..48 */ 259 REG_RULE(5180-10, 5240+10, 80, 6, 20, 260 NL80211_RRF_NO_IR | 261 NL80211_RRF_AUTO_BW), 262 263 /* IEEE 802.11a, channel 52..64 - DFS required */ 264 REG_RULE(5260-10, 5320+10, 80, 6, 20, 265 NL80211_RRF_NO_IR | 266 NL80211_RRF_AUTO_BW | 267 NL80211_RRF_DFS), 268 269 /* IEEE 802.11a, channel 100..144 - DFS required */ 270 REG_RULE(5500-10, 5720+10, 160, 6, 20, 271 NL80211_RRF_NO_IR | 272 NL80211_RRF_DFS), 273 274 /* IEEE 802.11a, channel 149..165 */ 275 REG_RULE(5745-10, 5825+10, 80, 6, 20, 276 NL80211_RRF_NO_IR), 277 278 /* IEEE 802.11ad (60GHz), channels 1..3 */ 279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 280 } 281 }; 282 283 /* protected by RTNL */ 284 static const struct ieee80211_regdomain *cfg80211_world_regdom = 285 &world_regdom; 286 287 static char *ieee80211_regdom = "00"; 288 static char user_alpha2[2]; 289 static const struct ieee80211_regdomain *cfg80211_user_regdom; 290 291 module_param(ieee80211_regdom, charp, 0444); 292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 293 294 static void reg_free_request(struct regulatory_request *request) 295 { 296 if (request == &core_request_world) 297 return; 298 299 if (request != get_last_request()) 300 kfree(request); 301 } 302 303 static void reg_free_last_request(void) 304 { 305 struct regulatory_request *lr = get_last_request(); 306 307 if (lr != &core_request_world && lr) 308 kfree_rcu(lr, rcu_head); 309 } 310 311 static void reg_update_last_request(struct regulatory_request *request) 312 { 313 struct regulatory_request *lr; 314 315 lr = get_last_request(); 316 if (lr == request) 317 return; 318 319 reg_free_last_request(); 320 rcu_assign_pointer(last_request, request); 321 } 322 323 static void reset_regdomains(bool full_reset, 324 const struct ieee80211_regdomain *new_regdom) 325 { 326 const struct ieee80211_regdomain *r; 327 328 ASSERT_RTNL(); 329 330 r = get_cfg80211_regdom(); 331 332 /* avoid freeing static information or freeing something twice */ 333 if (r == cfg80211_world_regdom) 334 r = NULL; 335 if (cfg80211_world_regdom == &world_regdom) 336 cfg80211_world_regdom = NULL; 337 if (r == &world_regdom) 338 r = NULL; 339 340 rcu_free_regdom(r); 341 rcu_free_regdom(cfg80211_world_regdom); 342 343 cfg80211_world_regdom = &world_regdom; 344 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 345 346 if (!full_reset) 347 return; 348 349 reg_update_last_request(&core_request_world); 350 } 351 352 /* 353 * Dynamic world regulatory domain requested by the wireless 354 * core upon initialization 355 */ 356 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 357 { 358 struct regulatory_request *lr; 359 360 lr = get_last_request(); 361 362 WARN_ON(!lr); 363 364 reset_regdomains(false, rd); 365 366 cfg80211_world_regdom = rd; 367 } 368 369 bool is_world_regdom(const char *alpha2) 370 { 371 if (!alpha2) 372 return false; 373 return alpha2[0] == '0' && alpha2[1] == '0'; 374 } 375 376 static bool is_alpha2_set(const char *alpha2) 377 { 378 if (!alpha2) 379 return false; 380 return alpha2[0] && alpha2[1]; 381 } 382 383 static bool is_unknown_alpha2(const char *alpha2) 384 { 385 if (!alpha2) 386 return false; 387 /* 388 * Special case where regulatory domain was built by driver 389 * but a specific alpha2 cannot be determined 390 */ 391 return alpha2[0] == '9' && alpha2[1] == '9'; 392 } 393 394 static bool is_intersected_alpha2(const char *alpha2) 395 { 396 if (!alpha2) 397 return false; 398 /* 399 * Special case where regulatory domain is the 400 * result of an intersection between two regulatory domain 401 * structures 402 */ 403 return alpha2[0] == '9' && alpha2[1] == '8'; 404 } 405 406 static bool is_an_alpha2(const char *alpha2) 407 { 408 if (!alpha2) 409 return false; 410 return isascii(alpha2[0]) && isalpha(alpha2[0]) && 411 isascii(alpha2[1]) && isalpha(alpha2[1]); 412 } 413 414 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 415 { 416 if (!alpha2_x || !alpha2_y) 417 return false; 418 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 419 } 420 421 static bool regdom_changes(const char *alpha2) 422 { 423 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 424 425 if (!r) 426 return true; 427 return !alpha2_equal(r->alpha2, alpha2); 428 } 429 430 /* 431 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 432 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 433 * has ever been issued. 434 */ 435 static bool is_user_regdom_saved(void) 436 { 437 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 438 return false; 439 440 /* This would indicate a mistake on the design */ 441 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 442 "Unexpected user alpha2: %c%c\n", 443 user_alpha2[0], user_alpha2[1])) 444 return false; 445 446 return true; 447 } 448 449 static const struct ieee80211_regdomain * 450 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 451 { 452 struct ieee80211_regdomain *regd; 453 unsigned int i; 454 455 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), 456 GFP_KERNEL); 457 if (!regd) 458 return ERR_PTR(-ENOMEM); 459 460 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 461 462 for (i = 0; i < src_regd->n_reg_rules; i++) 463 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 464 sizeof(struct ieee80211_reg_rule)); 465 466 return regd; 467 } 468 469 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) 470 { 471 ASSERT_RTNL(); 472 473 if (!IS_ERR(cfg80211_user_regdom)) 474 kfree(cfg80211_user_regdom); 475 cfg80211_user_regdom = reg_copy_regd(rd); 476 } 477 478 struct reg_regdb_apply_request { 479 struct list_head list; 480 const struct ieee80211_regdomain *regdom; 481 }; 482 483 static LIST_HEAD(reg_regdb_apply_list); 484 static DEFINE_MUTEX(reg_regdb_apply_mutex); 485 486 static void reg_regdb_apply(struct work_struct *work) 487 { 488 struct reg_regdb_apply_request *request; 489 490 rtnl_lock(); 491 492 mutex_lock(®_regdb_apply_mutex); 493 while (!list_empty(®_regdb_apply_list)) { 494 request = list_first_entry(®_regdb_apply_list, 495 struct reg_regdb_apply_request, 496 list); 497 list_del(&request->list); 498 499 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); 500 kfree(request); 501 } 502 mutex_unlock(®_regdb_apply_mutex); 503 504 rtnl_unlock(); 505 } 506 507 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); 508 509 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) 510 { 511 struct reg_regdb_apply_request *request; 512 513 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); 514 if (!request) { 515 kfree(regdom); 516 return -ENOMEM; 517 } 518 519 request->regdom = regdom; 520 521 mutex_lock(®_regdb_apply_mutex); 522 list_add_tail(&request->list, ®_regdb_apply_list); 523 mutex_unlock(®_regdb_apply_mutex); 524 525 schedule_work(®_regdb_work); 526 return 0; 527 } 528 529 #ifdef CONFIG_CFG80211_CRDA_SUPPORT 530 /* Max number of consecutive attempts to communicate with CRDA */ 531 #define REG_MAX_CRDA_TIMEOUTS 10 532 533 static u32 reg_crda_timeouts; 534 535 static void crda_timeout_work(struct work_struct *work); 536 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); 537 538 static void crda_timeout_work(struct work_struct *work) 539 { 540 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 541 rtnl_lock(); 542 reg_crda_timeouts++; 543 restore_regulatory_settings(true, false); 544 rtnl_unlock(); 545 } 546 547 static void cancel_crda_timeout(void) 548 { 549 cancel_delayed_work(&crda_timeout); 550 } 551 552 static void cancel_crda_timeout_sync(void) 553 { 554 cancel_delayed_work_sync(&crda_timeout); 555 } 556 557 static void reset_crda_timeouts(void) 558 { 559 reg_crda_timeouts = 0; 560 } 561 562 /* 563 * This lets us keep regulatory code which is updated on a regulatory 564 * basis in userspace. 565 */ 566 static int call_crda(const char *alpha2) 567 { 568 char country[12]; 569 char *env[] = { country, NULL }; 570 int ret; 571 572 snprintf(country, sizeof(country), "COUNTRY=%c%c", 573 alpha2[0], alpha2[1]); 574 575 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { 576 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); 577 return -EINVAL; 578 } 579 580 if (!is_world_regdom((char *) alpha2)) 581 pr_debug("Calling CRDA for country: %c%c\n", 582 alpha2[0], alpha2[1]); 583 else 584 pr_debug("Calling CRDA to update world regulatory domain\n"); 585 586 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 587 if (ret) 588 return ret; 589 590 queue_delayed_work(system_power_efficient_wq, 591 &crda_timeout, msecs_to_jiffies(3142)); 592 return 0; 593 } 594 #else 595 static inline void cancel_crda_timeout(void) {} 596 static inline void cancel_crda_timeout_sync(void) {} 597 static inline void reset_crda_timeouts(void) {} 598 static inline int call_crda(const char *alpha2) 599 { 600 return -ENODATA; 601 } 602 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ 603 604 /* code to directly load a firmware database through request_firmware */ 605 static const struct fwdb_header *regdb; 606 607 struct fwdb_country { 608 u8 alpha2[2]; 609 __be16 coll_ptr; 610 /* this struct cannot be extended */ 611 } __packed __aligned(4); 612 613 struct fwdb_collection { 614 u8 len; 615 u8 n_rules; 616 u8 dfs_region; 617 /* no optional data yet */ 618 /* aligned to 2, then followed by __be16 array of rule pointers */ 619 } __packed __aligned(4); 620 621 enum fwdb_flags { 622 FWDB_FLAG_NO_OFDM = BIT(0), 623 FWDB_FLAG_NO_OUTDOOR = BIT(1), 624 FWDB_FLAG_DFS = BIT(2), 625 FWDB_FLAG_NO_IR = BIT(3), 626 FWDB_FLAG_AUTO_BW = BIT(4), 627 }; 628 629 struct fwdb_wmm_ac { 630 u8 ecw; 631 u8 aifsn; 632 __be16 cot; 633 } __packed; 634 635 struct fwdb_wmm_rule { 636 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; 637 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; 638 } __packed; 639 640 struct fwdb_rule { 641 u8 len; 642 u8 flags; 643 __be16 max_eirp; 644 __be32 start, end, max_bw; 645 /* start of optional data */ 646 __be16 cac_timeout; 647 __be16 wmm_ptr; 648 } __packed __aligned(4); 649 650 #define FWDB_MAGIC 0x52474442 651 #define FWDB_VERSION 20 652 653 struct fwdb_header { 654 __be32 magic; 655 __be32 version; 656 struct fwdb_country country[]; 657 } __packed __aligned(4); 658 659 static int ecw2cw(int ecw) 660 { 661 return (1 << ecw) - 1; 662 } 663 664 static bool valid_wmm(struct fwdb_wmm_rule *rule) 665 { 666 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; 667 int i; 668 669 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { 670 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); 671 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); 672 u8 aifsn = ac[i].aifsn; 673 674 if (cw_min >= cw_max) 675 return false; 676 677 if (aifsn < 1) 678 return false; 679 } 680 681 return true; 682 } 683 684 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) 685 { 686 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); 687 688 if ((u8 *)rule + sizeof(rule->len) > data + size) 689 return false; 690 691 /* mandatory fields */ 692 if (rule->len < offsetofend(struct fwdb_rule, max_bw)) 693 return false; 694 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { 695 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 696 struct fwdb_wmm_rule *wmm; 697 698 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) 699 return false; 700 701 wmm = (void *)(data + wmm_ptr); 702 703 if (!valid_wmm(wmm)) 704 return false; 705 } 706 return true; 707 } 708 709 static bool valid_country(const u8 *data, unsigned int size, 710 const struct fwdb_country *country) 711 { 712 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 713 struct fwdb_collection *coll = (void *)(data + ptr); 714 __be16 *rules_ptr; 715 unsigned int i; 716 717 /* make sure we can read len/n_rules */ 718 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) 719 return false; 720 721 /* make sure base struct and all rules fit */ 722 if ((u8 *)coll + ALIGN(coll->len, 2) + 723 (coll->n_rules * 2) > data + size) 724 return false; 725 726 /* mandatory fields must exist */ 727 if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) 728 return false; 729 730 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 731 732 for (i = 0; i < coll->n_rules; i++) { 733 u16 rule_ptr = be16_to_cpu(rules_ptr[i]); 734 735 if (!valid_rule(data, size, rule_ptr)) 736 return false; 737 } 738 739 return true; 740 } 741 742 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB 743 #include <keys/asymmetric-type.h> 744 745 static struct key *builtin_regdb_keys; 746 747 static int __init load_builtin_regdb_keys(void) 748 { 749 builtin_regdb_keys = 750 keyring_alloc(".builtin_regdb_keys", 751 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), 752 ((KEY_POS_ALL & ~KEY_POS_SETATTR) | 753 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), 754 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 755 if (IS_ERR(builtin_regdb_keys)) 756 return PTR_ERR(builtin_regdb_keys); 757 758 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); 759 760 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS 761 x509_load_certificate_list(shipped_regdb_certs, 762 shipped_regdb_certs_len, 763 builtin_regdb_keys); 764 #endif 765 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR 766 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') 767 x509_load_certificate_list(extra_regdb_certs, 768 extra_regdb_certs_len, 769 builtin_regdb_keys); 770 #endif 771 772 return 0; 773 } 774 775 MODULE_FIRMWARE("regulatory.db.p7s"); 776 777 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 778 { 779 const struct firmware *sig; 780 bool result; 781 782 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) 783 return false; 784 785 result = verify_pkcs7_signature(data, size, sig->data, sig->size, 786 builtin_regdb_keys, 787 VERIFYING_UNSPECIFIED_SIGNATURE, 788 NULL, NULL) == 0; 789 790 release_firmware(sig); 791 792 return result; 793 } 794 795 static void free_regdb_keyring(void) 796 { 797 key_put(builtin_regdb_keys); 798 } 799 #else 800 static int load_builtin_regdb_keys(void) 801 { 802 return 0; 803 } 804 805 static bool regdb_has_valid_signature(const u8 *data, unsigned int size) 806 { 807 return true; 808 } 809 810 static void free_regdb_keyring(void) 811 { 812 } 813 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ 814 815 static bool valid_regdb(const u8 *data, unsigned int size) 816 { 817 const struct fwdb_header *hdr = (void *)data; 818 const struct fwdb_country *country; 819 820 if (size < sizeof(*hdr)) 821 return false; 822 823 if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) 824 return false; 825 826 if (hdr->version != cpu_to_be32(FWDB_VERSION)) 827 return false; 828 829 if (!regdb_has_valid_signature(data, size)) 830 return false; 831 832 country = &hdr->country[0]; 833 while ((u8 *)(country + 1) <= data + size) { 834 if (!country->coll_ptr) 835 break; 836 if (!valid_country(data, size, country)) 837 return false; 838 country++; 839 } 840 841 return true; 842 } 843 844 static void set_wmm_rule(const struct fwdb_header *db, 845 const struct fwdb_country *country, 846 const struct fwdb_rule *rule, 847 struct ieee80211_reg_rule *rrule) 848 { 849 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; 850 struct fwdb_wmm_rule *wmm; 851 unsigned int i, wmm_ptr; 852 853 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; 854 wmm = (void *)((u8 *)db + wmm_ptr); 855 856 if (!valid_wmm(wmm)) { 857 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", 858 be32_to_cpu(rule->start), be32_to_cpu(rule->end), 859 country->alpha2[0], country->alpha2[1]); 860 return; 861 } 862 863 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 864 wmm_rule->client[i].cw_min = 865 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); 866 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); 867 wmm_rule->client[i].aifsn = wmm->client[i].aifsn; 868 wmm_rule->client[i].cot = 869 1000 * be16_to_cpu(wmm->client[i].cot); 870 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); 871 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); 872 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; 873 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); 874 } 875 876 rrule->has_wmm = true; 877 } 878 879 static int __regdb_query_wmm(const struct fwdb_header *db, 880 const struct fwdb_country *country, int freq, 881 struct ieee80211_reg_rule *rrule) 882 { 883 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 884 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 885 int i; 886 887 for (i = 0; i < coll->n_rules; i++) { 888 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 889 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 890 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 891 892 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) 893 continue; 894 895 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && 896 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { 897 set_wmm_rule(db, country, rule, rrule); 898 return 0; 899 } 900 } 901 902 return -ENODATA; 903 } 904 905 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) 906 { 907 const struct fwdb_header *hdr = regdb; 908 const struct fwdb_country *country; 909 910 if (!regdb) 911 return -ENODATA; 912 913 if (IS_ERR(regdb)) 914 return PTR_ERR(regdb); 915 916 country = &hdr->country[0]; 917 while (country->coll_ptr) { 918 if (alpha2_equal(alpha2, country->alpha2)) 919 return __regdb_query_wmm(regdb, country, freq, rule); 920 921 country++; 922 } 923 924 return -ENODATA; 925 } 926 EXPORT_SYMBOL(reg_query_regdb_wmm); 927 928 static int regdb_query_country(const struct fwdb_header *db, 929 const struct fwdb_country *country) 930 { 931 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; 932 struct fwdb_collection *coll = (void *)((u8 *)db + ptr); 933 struct ieee80211_regdomain *regdom; 934 unsigned int i; 935 936 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), 937 GFP_KERNEL); 938 if (!regdom) 939 return -ENOMEM; 940 941 regdom->n_reg_rules = coll->n_rules; 942 regdom->alpha2[0] = country->alpha2[0]; 943 regdom->alpha2[1] = country->alpha2[1]; 944 regdom->dfs_region = coll->dfs_region; 945 946 for (i = 0; i < regdom->n_reg_rules; i++) { 947 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); 948 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; 949 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); 950 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; 951 952 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); 953 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); 954 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); 955 956 rrule->power_rule.max_antenna_gain = 0; 957 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); 958 959 rrule->flags = 0; 960 if (rule->flags & FWDB_FLAG_NO_OFDM) 961 rrule->flags |= NL80211_RRF_NO_OFDM; 962 if (rule->flags & FWDB_FLAG_NO_OUTDOOR) 963 rrule->flags |= NL80211_RRF_NO_OUTDOOR; 964 if (rule->flags & FWDB_FLAG_DFS) 965 rrule->flags |= NL80211_RRF_DFS; 966 if (rule->flags & FWDB_FLAG_NO_IR) 967 rrule->flags |= NL80211_RRF_NO_IR; 968 if (rule->flags & FWDB_FLAG_AUTO_BW) 969 rrule->flags |= NL80211_RRF_AUTO_BW; 970 971 rrule->dfs_cac_ms = 0; 972 973 /* handle optional data */ 974 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) 975 rrule->dfs_cac_ms = 976 1000 * be16_to_cpu(rule->cac_timeout); 977 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) 978 set_wmm_rule(db, country, rule, rrule); 979 } 980 981 return reg_schedule_apply(regdom); 982 } 983 984 static int query_regdb(const char *alpha2) 985 { 986 const struct fwdb_header *hdr = regdb; 987 const struct fwdb_country *country; 988 989 ASSERT_RTNL(); 990 991 if (IS_ERR(regdb)) 992 return PTR_ERR(regdb); 993 994 country = &hdr->country[0]; 995 while (country->coll_ptr) { 996 if (alpha2_equal(alpha2, country->alpha2)) 997 return regdb_query_country(regdb, country); 998 country++; 999 } 1000 1001 return -ENODATA; 1002 } 1003 1004 static void regdb_fw_cb(const struct firmware *fw, void *context) 1005 { 1006 int set_error = 0; 1007 bool restore = true; 1008 void *db; 1009 1010 if (!fw) { 1011 pr_info("failed to load regulatory.db\n"); 1012 set_error = -ENODATA; 1013 } else if (!valid_regdb(fw->data, fw->size)) { 1014 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); 1015 set_error = -EINVAL; 1016 } 1017 1018 rtnl_lock(); 1019 if (regdb && !IS_ERR(regdb)) { 1020 /* negative case - a bug 1021 * positive case - can happen due to race in case of multiple cb's in 1022 * queue, due to usage of asynchronous callback 1023 * 1024 * Either case, just restore and free new db. 1025 */ 1026 } else if (set_error) { 1027 regdb = ERR_PTR(set_error); 1028 } else if (fw) { 1029 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1030 if (db) { 1031 regdb = db; 1032 restore = context && query_regdb(context); 1033 } else { 1034 restore = true; 1035 } 1036 } 1037 1038 if (restore) 1039 restore_regulatory_settings(true, false); 1040 1041 rtnl_unlock(); 1042 1043 kfree(context); 1044 1045 release_firmware(fw); 1046 } 1047 1048 MODULE_FIRMWARE("regulatory.db"); 1049 1050 static int query_regdb_file(const char *alpha2) 1051 { 1052 int err; 1053 1054 ASSERT_RTNL(); 1055 1056 if (regdb) 1057 return query_regdb(alpha2); 1058 1059 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); 1060 if (!alpha2) 1061 return -ENOMEM; 1062 1063 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", 1064 ®_pdev->dev, GFP_KERNEL, 1065 (void *)alpha2, regdb_fw_cb); 1066 if (err) 1067 kfree(alpha2); 1068 1069 return err; 1070 } 1071 1072 int reg_reload_regdb(void) 1073 { 1074 const struct firmware *fw; 1075 void *db; 1076 int err; 1077 const struct ieee80211_regdomain *current_regdomain; 1078 struct regulatory_request *request; 1079 1080 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); 1081 if (err) 1082 return err; 1083 1084 if (!valid_regdb(fw->data, fw->size)) { 1085 err = -ENODATA; 1086 goto out; 1087 } 1088 1089 db = kmemdup(fw->data, fw->size, GFP_KERNEL); 1090 if (!db) { 1091 err = -ENOMEM; 1092 goto out; 1093 } 1094 1095 rtnl_lock(); 1096 if (!IS_ERR_OR_NULL(regdb)) 1097 kfree(regdb); 1098 regdb = db; 1099 1100 /* reset regulatory domain */ 1101 current_regdomain = get_cfg80211_regdom(); 1102 1103 request = kzalloc(sizeof(*request), GFP_KERNEL); 1104 if (!request) { 1105 err = -ENOMEM; 1106 goto out_unlock; 1107 } 1108 1109 request->wiphy_idx = WIPHY_IDX_INVALID; 1110 request->alpha2[0] = current_regdomain->alpha2[0]; 1111 request->alpha2[1] = current_regdomain->alpha2[1]; 1112 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1113 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; 1114 1115 reg_process_hint(request); 1116 1117 out_unlock: 1118 rtnl_unlock(); 1119 out: 1120 release_firmware(fw); 1121 return err; 1122 } 1123 1124 static bool reg_query_database(struct regulatory_request *request) 1125 { 1126 if (query_regdb_file(request->alpha2) == 0) 1127 return true; 1128 1129 if (call_crda(request->alpha2) == 0) 1130 return true; 1131 1132 return false; 1133 } 1134 1135 bool reg_is_valid_request(const char *alpha2) 1136 { 1137 struct regulatory_request *lr = get_last_request(); 1138 1139 if (!lr || lr->processed) 1140 return false; 1141 1142 return alpha2_equal(lr->alpha2, alpha2); 1143 } 1144 1145 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 1146 { 1147 struct regulatory_request *lr = get_last_request(); 1148 1149 /* 1150 * Follow the driver's regulatory domain, if present, unless a country 1151 * IE has been processed or a user wants to help compliance further 1152 */ 1153 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1154 lr->initiator != NL80211_REGDOM_SET_BY_USER && 1155 wiphy->regd) 1156 return get_wiphy_regdom(wiphy); 1157 1158 return get_cfg80211_regdom(); 1159 } 1160 1161 static unsigned int 1162 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, 1163 const struct ieee80211_reg_rule *rule) 1164 { 1165 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1166 const struct ieee80211_freq_range *freq_range_tmp; 1167 const struct ieee80211_reg_rule *tmp; 1168 u32 start_freq, end_freq, idx, no; 1169 1170 for (idx = 0; idx < rd->n_reg_rules; idx++) 1171 if (rule == &rd->reg_rules[idx]) 1172 break; 1173 1174 if (idx == rd->n_reg_rules) 1175 return 0; 1176 1177 /* get start_freq */ 1178 no = idx; 1179 1180 while (no) { 1181 tmp = &rd->reg_rules[--no]; 1182 freq_range_tmp = &tmp->freq_range; 1183 1184 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 1185 break; 1186 1187 freq_range = freq_range_tmp; 1188 } 1189 1190 start_freq = freq_range->start_freq_khz; 1191 1192 /* get end_freq */ 1193 freq_range = &rule->freq_range; 1194 no = idx; 1195 1196 while (no < rd->n_reg_rules - 1) { 1197 tmp = &rd->reg_rules[++no]; 1198 freq_range_tmp = &tmp->freq_range; 1199 1200 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 1201 break; 1202 1203 freq_range = freq_range_tmp; 1204 } 1205 1206 end_freq = freq_range->end_freq_khz; 1207 1208 return end_freq - start_freq; 1209 } 1210 1211 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 1212 const struct ieee80211_reg_rule *rule) 1213 { 1214 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); 1215 1216 if (rule->flags & NL80211_RRF_NO_320MHZ) 1217 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); 1218 if (rule->flags & NL80211_RRF_NO_160MHZ) 1219 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); 1220 if (rule->flags & NL80211_RRF_NO_80MHZ) 1221 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); 1222 1223 /* 1224 * HT40+/HT40- limits are handled per-channel. Only limit BW if both 1225 * are not allowed. 1226 */ 1227 if (rule->flags & NL80211_RRF_NO_HT40MINUS && 1228 rule->flags & NL80211_RRF_NO_HT40PLUS) 1229 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); 1230 1231 return bw; 1232 } 1233 1234 /* Sanity check on a regulatory rule */ 1235 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 1236 { 1237 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 1238 u32 freq_diff; 1239 1240 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 1241 return false; 1242 1243 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 1244 return false; 1245 1246 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1247 1248 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 1249 freq_range->max_bandwidth_khz > freq_diff) 1250 return false; 1251 1252 return true; 1253 } 1254 1255 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 1256 { 1257 const struct ieee80211_reg_rule *reg_rule = NULL; 1258 unsigned int i; 1259 1260 if (!rd->n_reg_rules) 1261 return false; 1262 1263 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 1264 return false; 1265 1266 for (i = 0; i < rd->n_reg_rules; i++) { 1267 reg_rule = &rd->reg_rules[i]; 1268 if (!is_valid_reg_rule(reg_rule)) 1269 return false; 1270 } 1271 1272 return true; 1273 } 1274 1275 /** 1276 * freq_in_rule_band - tells us if a frequency is in a frequency band 1277 * @freq_range: frequency rule we want to query 1278 * @freq_khz: frequency we are inquiring about 1279 * 1280 * This lets us know if a specific frequency rule is or is not relevant to 1281 * a specific frequency's band. Bands are device specific and artificial 1282 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 1283 * however it is safe for now to assume that a frequency rule should not be 1284 * part of a frequency's band if the start freq or end freq are off by more 1285 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the 1286 * 60 GHz band. 1287 * This resolution can be lowered and should be considered as we add 1288 * regulatory rule support for other "bands". 1289 * 1290 * Returns: whether or not the frequency is in the range 1291 */ 1292 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 1293 u32 freq_khz) 1294 { 1295 /* 1296 * From 802.11ad: directional multi-gigabit (DMG): 1297 * Pertaining to operation in a frequency band containing a channel 1298 * with the Channel starting frequency above 45 GHz. 1299 */ 1300 u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ; 1301 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 1302 return true; 1303 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 1304 return true; 1305 return false; 1306 } 1307 1308 /* 1309 * Later on we can perhaps use the more restrictive DFS 1310 * region but we don't have information for that yet so 1311 * for now simply disallow conflicts. 1312 */ 1313 static enum nl80211_dfs_regions 1314 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 1315 const enum nl80211_dfs_regions dfs_region2) 1316 { 1317 if (dfs_region1 != dfs_region2) 1318 return NL80211_DFS_UNSET; 1319 return dfs_region1; 1320 } 1321 1322 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, 1323 const struct ieee80211_wmm_ac *wmm_ac2, 1324 struct ieee80211_wmm_ac *intersect) 1325 { 1326 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); 1327 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); 1328 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); 1329 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); 1330 } 1331 1332 /* 1333 * Helper for regdom_intersect(), this does the real 1334 * mathematical intersection fun 1335 */ 1336 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 1337 const struct ieee80211_regdomain *rd2, 1338 const struct ieee80211_reg_rule *rule1, 1339 const struct ieee80211_reg_rule *rule2, 1340 struct ieee80211_reg_rule *intersected_rule) 1341 { 1342 const struct ieee80211_freq_range *freq_range1, *freq_range2; 1343 struct ieee80211_freq_range *freq_range; 1344 const struct ieee80211_power_rule *power_rule1, *power_rule2; 1345 struct ieee80211_power_rule *power_rule; 1346 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; 1347 struct ieee80211_wmm_rule *wmm_rule; 1348 u32 freq_diff, max_bandwidth1, max_bandwidth2; 1349 1350 freq_range1 = &rule1->freq_range; 1351 freq_range2 = &rule2->freq_range; 1352 freq_range = &intersected_rule->freq_range; 1353 1354 power_rule1 = &rule1->power_rule; 1355 power_rule2 = &rule2->power_rule; 1356 power_rule = &intersected_rule->power_rule; 1357 1358 wmm_rule1 = &rule1->wmm_rule; 1359 wmm_rule2 = &rule2->wmm_rule; 1360 wmm_rule = &intersected_rule->wmm_rule; 1361 1362 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 1363 freq_range2->start_freq_khz); 1364 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 1365 freq_range2->end_freq_khz); 1366 1367 max_bandwidth1 = freq_range1->max_bandwidth_khz; 1368 max_bandwidth2 = freq_range2->max_bandwidth_khz; 1369 1370 if (rule1->flags & NL80211_RRF_AUTO_BW) 1371 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 1372 if (rule2->flags & NL80211_RRF_AUTO_BW) 1373 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 1374 1375 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 1376 1377 intersected_rule->flags = rule1->flags | rule2->flags; 1378 1379 /* 1380 * In case NL80211_RRF_AUTO_BW requested for both rules 1381 * set AUTO_BW in intersected rule also. Next we will 1382 * calculate BW correctly in handle_channel function. 1383 * In other case remove AUTO_BW flag while we calculate 1384 * maximum bandwidth correctly and auto calculation is 1385 * not required. 1386 */ 1387 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 1388 (rule2->flags & NL80211_RRF_AUTO_BW)) 1389 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 1390 else 1391 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 1392 1393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 1394 if (freq_range->max_bandwidth_khz > freq_diff) 1395 freq_range->max_bandwidth_khz = freq_diff; 1396 1397 power_rule->max_eirp = min(power_rule1->max_eirp, 1398 power_rule2->max_eirp); 1399 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 1400 power_rule2->max_antenna_gain); 1401 1402 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 1403 rule2->dfs_cac_ms); 1404 1405 if (rule1->has_wmm && rule2->has_wmm) { 1406 u8 ac; 1407 1408 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1409 reg_wmm_rules_intersect(&wmm_rule1->client[ac], 1410 &wmm_rule2->client[ac], 1411 &wmm_rule->client[ac]); 1412 reg_wmm_rules_intersect(&wmm_rule1->ap[ac], 1413 &wmm_rule2->ap[ac], 1414 &wmm_rule->ap[ac]); 1415 } 1416 1417 intersected_rule->has_wmm = true; 1418 } else if (rule1->has_wmm) { 1419 *wmm_rule = *wmm_rule1; 1420 intersected_rule->has_wmm = true; 1421 } else if (rule2->has_wmm) { 1422 *wmm_rule = *wmm_rule2; 1423 intersected_rule->has_wmm = true; 1424 } else { 1425 intersected_rule->has_wmm = false; 1426 } 1427 1428 if (!is_valid_reg_rule(intersected_rule)) 1429 return -EINVAL; 1430 1431 return 0; 1432 } 1433 1434 /* check whether old rule contains new rule */ 1435 static bool rule_contains(struct ieee80211_reg_rule *r1, 1436 struct ieee80211_reg_rule *r2) 1437 { 1438 /* for simplicity, currently consider only same flags */ 1439 if (r1->flags != r2->flags) 1440 return false; 1441 1442 /* verify r1 is more restrictive */ 1443 if ((r1->power_rule.max_antenna_gain > 1444 r2->power_rule.max_antenna_gain) || 1445 r1->power_rule.max_eirp > r2->power_rule.max_eirp) 1446 return false; 1447 1448 /* make sure r2's range is contained within r1 */ 1449 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || 1450 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) 1451 return false; 1452 1453 /* and finally verify that r1.max_bw >= r2.max_bw */ 1454 if (r1->freq_range.max_bandwidth_khz < 1455 r2->freq_range.max_bandwidth_khz) 1456 return false; 1457 1458 return true; 1459 } 1460 1461 /* add or extend current rules. do nothing if rule is already contained */ 1462 static void add_rule(struct ieee80211_reg_rule *rule, 1463 struct ieee80211_reg_rule *reg_rules, u32 *n_rules) 1464 { 1465 struct ieee80211_reg_rule *tmp_rule; 1466 int i; 1467 1468 for (i = 0; i < *n_rules; i++) { 1469 tmp_rule = ®_rules[i]; 1470 /* rule is already contained - do nothing */ 1471 if (rule_contains(tmp_rule, rule)) 1472 return; 1473 1474 /* extend rule if possible */ 1475 if (rule_contains(rule, tmp_rule)) { 1476 memcpy(tmp_rule, rule, sizeof(*rule)); 1477 return; 1478 } 1479 } 1480 1481 memcpy(®_rules[*n_rules], rule, sizeof(*rule)); 1482 (*n_rules)++; 1483 } 1484 1485 /** 1486 * regdom_intersect - do the intersection between two regulatory domains 1487 * @rd1: first regulatory domain 1488 * @rd2: second regulatory domain 1489 * 1490 * Use this function to get the intersection between two regulatory domains. 1491 * Once completed we will mark the alpha2 for the rd as intersected, "98", 1492 * as no one single alpha2 can represent this regulatory domain. 1493 * 1494 * Returns a pointer to the regulatory domain structure which will hold the 1495 * resulting intersection of rules between rd1 and rd2. We will 1496 * kzalloc() this structure for you. 1497 * 1498 * Returns: the intersected regdomain 1499 */ 1500 static struct ieee80211_regdomain * 1501 regdom_intersect(const struct ieee80211_regdomain *rd1, 1502 const struct ieee80211_regdomain *rd2) 1503 { 1504 int r; 1505 unsigned int x, y; 1506 unsigned int num_rules = 0; 1507 const struct ieee80211_reg_rule *rule1, *rule2; 1508 struct ieee80211_reg_rule intersected_rule; 1509 struct ieee80211_regdomain *rd; 1510 1511 if (!rd1 || !rd2) 1512 return NULL; 1513 1514 /* 1515 * First we get a count of the rules we'll need, then we actually 1516 * build them. This is to so we can malloc() and free() a 1517 * regdomain once. The reason we use reg_rules_intersect() here 1518 * is it will return -EINVAL if the rule computed makes no sense. 1519 * All rules that do check out OK are valid. 1520 */ 1521 1522 for (x = 0; x < rd1->n_reg_rules; x++) { 1523 rule1 = &rd1->reg_rules[x]; 1524 for (y = 0; y < rd2->n_reg_rules; y++) { 1525 rule2 = &rd2->reg_rules[y]; 1526 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 1527 &intersected_rule)) 1528 num_rules++; 1529 } 1530 } 1531 1532 if (!num_rules) 1533 return NULL; 1534 1535 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); 1536 if (!rd) 1537 return NULL; 1538 1539 for (x = 0; x < rd1->n_reg_rules; x++) { 1540 rule1 = &rd1->reg_rules[x]; 1541 for (y = 0; y < rd2->n_reg_rules; y++) { 1542 rule2 = &rd2->reg_rules[y]; 1543 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 1544 &intersected_rule); 1545 /* 1546 * No need to memset here the intersected rule here as 1547 * we're not using the stack anymore 1548 */ 1549 if (r) 1550 continue; 1551 1552 add_rule(&intersected_rule, rd->reg_rules, 1553 &rd->n_reg_rules); 1554 } 1555 } 1556 1557 rd->alpha2[0] = '9'; 1558 rd->alpha2[1] = '8'; 1559 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 1560 rd2->dfs_region); 1561 1562 return rd; 1563 } 1564 1565 /* 1566 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 1567 * want to just have the channel structure use these 1568 */ 1569 static u32 map_regdom_flags(u32 rd_flags) 1570 { 1571 u32 channel_flags = 0; 1572 if (rd_flags & NL80211_RRF_NO_IR_ALL) 1573 channel_flags |= IEEE80211_CHAN_NO_IR; 1574 if (rd_flags & NL80211_RRF_DFS) 1575 channel_flags |= IEEE80211_CHAN_RADAR; 1576 if (rd_flags & NL80211_RRF_NO_OFDM) 1577 channel_flags |= IEEE80211_CHAN_NO_OFDM; 1578 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 1579 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 1580 if (rd_flags & NL80211_RRF_IR_CONCURRENT) 1581 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; 1582 if (rd_flags & NL80211_RRF_NO_HT40MINUS) 1583 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; 1584 if (rd_flags & NL80211_RRF_NO_HT40PLUS) 1585 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; 1586 if (rd_flags & NL80211_RRF_NO_80MHZ) 1587 channel_flags |= IEEE80211_CHAN_NO_80MHZ; 1588 if (rd_flags & NL80211_RRF_NO_160MHZ) 1589 channel_flags |= IEEE80211_CHAN_NO_160MHZ; 1590 if (rd_flags & NL80211_RRF_NO_HE) 1591 channel_flags |= IEEE80211_CHAN_NO_HE; 1592 if (rd_flags & NL80211_RRF_NO_320MHZ) 1593 channel_flags |= IEEE80211_CHAN_NO_320MHZ; 1594 if (rd_flags & NL80211_RRF_NO_EHT) 1595 channel_flags |= IEEE80211_CHAN_NO_EHT; 1596 if (rd_flags & NL80211_RRF_DFS_CONCURRENT) 1597 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT; 1598 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT) 1599 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT; 1600 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT) 1601 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT; 1602 if (rd_flags & NL80211_RRF_PSD) 1603 channel_flags |= IEEE80211_CHAN_PSD; 1604 if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP) 1605 channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP; 1606 if (rd_flags & NL80211_RRF_ALLOW_20MHZ_ACTIVITY) 1607 channel_flags |= IEEE80211_CHAN_ALLOW_20MHZ_ACTIVITY; 1608 return channel_flags; 1609 } 1610 1611 static const struct ieee80211_reg_rule * 1612 freq_reg_info_regd(u32 center_freq, 1613 const struct ieee80211_regdomain *regd, u32 bw) 1614 { 1615 int i; 1616 bool band_rule_found = false; 1617 bool bw_fits = false; 1618 1619 if (!regd) 1620 return ERR_PTR(-EINVAL); 1621 1622 for (i = 0; i < regd->n_reg_rules; i++) { 1623 const struct ieee80211_reg_rule *rr; 1624 const struct ieee80211_freq_range *fr = NULL; 1625 1626 rr = ®d->reg_rules[i]; 1627 fr = &rr->freq_range; 1628 1629 /* 1630 * We only need to know if one frequency rule was 1631 * in center_freq's band, that's enough, so let's 1632 * not overwrite it once found 1633 */ 1634 if (!band_rule_found) 1635 band_rule_found = freq_in_rule_band(fr, center_freq); 1636 1637 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); 1638 1639 if (band_rule_found && bw_fits) 1640 return rr; 1641 } 1642 1643 if (!band_rule_found) 1644 return ERR_PTR(-ERANGE); 1645 1646 return ERR_PTR(-EINVAL); 1647 } 1648 1649 static const struct ieee80211_reg_rule * 1650 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) 1651 { 1652 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); 1653 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; 1654 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); 1655 int i = ARRAY_SIZE(bws) - 1; 1656 u32 bw; 1657 1658 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { 1659 reg_rule = freq_reg_info_regd(center_freq, regd, bw); 1660 if (!IS_ERR(reg_rule)) 1661 return reg_rule; 1662 } 1663 1664 return reg_rule; 1665 } 1666 1667 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 1668 u32 center_freq) 1669 { 1670 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; 1671 1672 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); 1673 } 1674 EXPORT_SYMBOL(freq_reg_info); 1675 1676 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 1677 { 1678 switch (initiator) { 1679 case NL80211_REGDOM_SET_BY_CORE: 1680 return "core"; 1681 case NL80211_REGDOM_SET_BY_USER: 1682 return "user"; 1683 case NL80211_REGDOM_SET_BY_DRIVER: 1684 return "driver"; 1685 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1686 return "country element"; 1687 default: 1688 WARN_ON(1); 1689 return "bug"; 1690 } 1691 } 1692 EXPORT_SYMBOL(reg_initiator_name); 1693 1694 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, 1695 const struct ieee80211_reg_rule *reg_rule, 1696 const struct ieee80211_channel *chan) 1697 { 1698 const struct ieee80211_freq_range *freq_range = NULL; 1699 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; 1700 bool is_s1g = chan->band == NL80211_BAND_S1GHZ; 1701 1702 freq_range = ®_rule->freq_range; 1703 1704 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1705 center_freq_khz = ieee80211_channel_to_khz(chan); 1706 /* Check if auto calculation requested */ 1707 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1708 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1709 1710 /* If we get a reg_rule we can assume that at least 5Mhz fit */ 1711 if (!cfg80211_does_bw_fit_range(freq_range, 1712 center_freq_khz, 1713 MHZ_TO_KHZ(10))) 1714 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1715 if (!cfg80211_does_bw_fit_range(freq_range, 1716 center_freq_khz, 1717 MHZ_TO_KHZ(20))) 1718 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1719 1720 if (is_s1g) { 1721 /* S1G is strict about non overlapping channels. We can 1722 * calculate which bandwidth is allowed per channel by finding 1723 * the largest bandwidth which cleanly divides the freq_range. 1724 */ 1725 int edge_offset; 1726 int ch_bw = max_bandwidth_khz; 1727 1728 while (ch_bw) { 1729 edge_offset = (center_freq_khz - ch_bw / 2) - 1730 freq_range->start_freq_khz; 1731 if (edge_offset % ch_bw == 0) { 1732 switch (KHZ_TO_MHZ(ch_bw)) { 1733 case 1: 1734 bw_flags |= IEEE80211_CHAN_1MHZ; 1735 break; 1736 case 2: 1737 bw_flags |= IEEE80211_CHAN_2MHZ; 1738 break; 1739 case 4: 1740 bw_flags |= IEEE80211_CHAN_4MHZ; 1741 break; 1742 case 8: 1743 bw_flags |= IEEE80211_CHAN_8MHZ; 1744 break; 1745 case 16: 1746 bw_flags |= IEEE80211_CHAN_16MHZ; 1747 break; 1748 default: 1749 /* If we got here, no bandwidths fit on 1750 * this frequency, ie. band edge. 1751 */ 1752 bw_flags |= IEEE80211_CHAN_DISABLED; 1753 break; 1754 } 1755 break; 1756 } 1757 ch_bw /= 2; 1758 } 1759 } else { 1760 if (max_bandwidth_khz < MHZ_TO_KHZ(10)) 1761 bw_flags |= IEEE80211_CHAN_NO_10MHZ; 1762 if (max_bandwidth_khz < MHZ_TO_KHZ(20)) 1763 bw_flags |= IEEE80211_CHAN_NO_20MHZ; 1764 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1765 bw_flags |= IEEE80211_CHAN_NO_HT40; 1766 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1767 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1768 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1769 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1770 if (max_bandwidth_khz < MHZ_TO_KHZ(320)) 1771 bw_flags |= IEEE80211_CHAN_NO_320MHZ; 1772 } 1773 return bw_flags; 1774 } 1775 1776 static void handle_channel_single_rule(struct wiphy *wiphy, 1777 enum nl80211_reg_initiator initiator, 1778 struct ieee80211_channel *chan, 1779 u32 flags, 1780 struct regulatory_request *lr, 1781 struct wiphy *request_wiphy, 1782 const struct ieee80211_reg_rule *reg_rule) 1783 { 1784 u32 bw_flags = 0; 1785 const struct ieee80211_power_rule *power_rule = NULL; 1786 const struct ieee80211_regdomain *regd; 1787 1788 regd = reg_get_regdomain(wiphy); 1789 1790 power_rule = ®_rule->power_rule; 1791 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 1792 1793 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1794 request_wiphy && request_wiphy == wiphy && 1795 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1796 /* 1797 * This guarantees the driver's requested regulatory domain 1798 * will always be used as a base for further regulatory 1799 * settings 1800 */ 1801 chan->flags = chan->orig_flags = 1802 map_regdom_flags(reg_rule->flags) | bw_flags; 1803 chan->max_antenna_gain = chan->orig_mag = 1804 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1805 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1806 (int) MBM_TO_DBM(power_rule->max_eirp); 1807 1808 if (chan->flags & IEEE80211_CHAN_RADAR) { 1809 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1810 if (reg_rule->dfs_cac_ms) 1811 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1812 } 1813 1814 if (chan->flags & IEEE80211_CHAN_PSD) 1815 chan->psd = reg_rule->psd; 1816 1817 return; 1818 } 1819 1820 chan->dfs_state = NL80211_DFS_USABLE; 1821 chan->dfs_state_entered = jiffies; 1822 1823 chan->beacon_found = false; 1824 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1825 chan->max_antenna_gain = 1826 min_t(int, chan->orig_mag, 1827 MBI_TO_DBI(power_rule->max_antenna_gain)); 1828 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1829 1830 if (chan->flags & IEEE80211_CHAN_RADAR) { 1831 if (reg_rule->dfs_cac_ms) 1832 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1833 else 1834 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1835 } 1836 1837 if (chan->flags & IEEE80211_CHAN_PSD) 1838 chan->psd = reg_rule->psd; 1839 1840 if (chan->orig_mpwr) { 1841 /* 1842 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1843 * will always follow the passed country IE power settings. 1844 */ 1845 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1846 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1847 chan->max_power = chan->max_reg_power; 1848 else 1849 chan->max_power = min(chan->orig_mpwr, 1850 chan->max_reg_power); 1851 } else 1852 chan->max_power = chan->max_reg_power; 1853 } 1854 1855 static void handle_channel_adjacent_rules(struct wiphy *wiphy, 1856 enum nl80211_reg_initiator initiator, 1857 struct ieee80211_channel *chan, 1858 u32 flags, 1859 struct regulatory_request *lr, 1860 struct wiphy *request_wiphy, 1861 const struct ieee80211_reg_rule *rrule1, 1862 const struct ieee80211_reg_rule *rrule2, 1863 struct ieee80211_freq_range *comb_range) 1864 { 1865 u32 bw_flags1 = 0; 1866 u32 bw_flags2 = 0; 1867 const struct ieee80211_power_rule *power_rule1 = NULL; 1868 const struct ieee80211_power_rule *power_rule2 = NULL; 1869 const struct ieee80211_regdomain *regd; 1870 1871 regd = reg_get_regdomain(wiphy); 1872 1873 power_rule1 = &rrule1->power_rule; 1874 power_rule2 = &rrule2->power_rule; 1875 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); 1876 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); 1877 1878 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1879 request_wiphy && request_wiphy == wiphy && 1880 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1881 /* This guarantees the driver's requested regulatory domain 1882 * will always be used as a base for further regulatory 1883 * settings 1884 */ 1885 chan->flags = 1886 map_regdom_flags(rrule1->flags) | 1887 map_regdom_flags(rrule2->flags) | 1888 bw_flags1 | 1889 bw_flags2; 1890 chan->orig_flags = chan->flags; 1891 chan->max_antenna_gain = 1892 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), 1893 MBI_TO_DBI(power_rule2->max_antenna_gain)); 1894 chan->orig_mag = chan->max_antenna_gain; 1895 chan->max_reg_power = 1896 min_t(int, MBM_TO_DBM(power_rule1->max_eirp), 1897 MBM_TO_DBM(power_rule2->max_eirp)); 1898 chan->max_power = chan->max_reg_power; 1899 chan->orig_mpwr = chan->max_reg_power; 1900 1901 if (chan->flags & IEEE80211_CHAN_RADAR) { 1902 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1903 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1904 chan->dfs_cac_ms = max_t(unsigned int, 1905 rrule1->dfs_cac_ms, 1906 rrule2->dfs_cac_ms); 1907 } 1908 1909 if ((rrule1->flags & NL80211_RRF_PSD) && 1910 (rrule2->flags & NL80211_RRF_PSD)) 1911 chan->psd = min_t(s8, rrule1->psd, rrule2->psd); 1912 else 1913 chan->flags &= ~NL80211_RRF_PSD; 1914 1915 return; 1916 } 1917 1918 chan->dfs_state = NL80211_DFS_USABLE; 1919 chan->dfs_state_entered = jiffies; 1920 1921 chan->beacon_found = false; 1922 chan->flags = flags | bw_flags1 | bw_flags2 | 1923 map_regdom_flags(rrule1->flags) | 1924 map_regdom_flags(rrule2->flags); 1925 1926 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz 1927 * (otherwise no adj. rule case), recheck therefore 1928 */ 1929 if (cfg80211_does_bw_fit_range(comb_range, 1930 ieee80211_channel_to_khz(chan), 1931 MHZ_TO_KHZ(10))) 1932 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; 1933 if (cfg80211_does_bw_fit_range(comb_range, 1934 ieee80211_channel_to_khz(chan), 1935 MHZ_TO_KHZ(20))) 1936 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; 1937 1938 chan->max_antenna_gain = 1939 min_t(int, chan->orig_mag, 1940 min_t(int, 1941 MBI_TO_DBI(power_rule1->max_antenna_gain), 1942 MBI_TO_DBI(power_rule2->max_antenna_gain))); 1943 chan->max_reg_power = min_t(int, 1944 MBM_TO_DBM(power_rule1->max_eirp), 1945 MBM_TO_DBM(power_rule2->max_eirp)); 1946 1947 if (chan->flags & IEEE80211_CHAN_RADAR) { 1948 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) 1949 chan->dfs_cac_ms = max_t(unsigned int, 1950 rrule1->dfs_cac_ms, 1951 rrule2->dfs_cac_ms); 1952 else 1953 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1954 } 1955 1956 if (chan->orig_mpwr) { 1957 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1958 * will always follow the passed country IE power settings. 1959 */ 1960 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1961 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1962 chan->max_power = chan->max_reg_power; 1963 else 1964 chan->max_power = min(chan->orig_mpwr, 1965 chan->max_reg_power); 1966 } else { 1967 chan->max_power = chan->max_reg_power; 1968 } 1969 } 1970 1971 /* Note that right now we assume the desired channel bandwidth 1972 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1973 * per channel, the primary and the extension channel). 1974 */ 1975 static void handle_channel(struct wiphy *wiphy, 1976 enum nl80211_reg_initiator initiator, 1977 struct ieee80211_channel *chan) 1978 { 1979 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); 1980 struct regulatory_request *lr = get_last_request(); 1981 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1982 const struct ieee80211_reg_rule *rrule = NULL; 1983 const struct ieee80211_reg_rule *rrule1 = NULL; 1984 const struct ieee80211_reg_rule *rrule2 = NULL; 1985 1986 u32 flags = chan->orig_flags; 1987 1988 rrule = freq_reg_info(wiphy, orig_chan_freq); 1989 if (IS_ERR(rrule)) { 1990 /* check for adjacent match, therefore get rules for 1991 * chan - 20 MHz and chan + 20 MHz and test 1992 * if reg rules are adjacent 1993 */ 1994 rrule1 = freq_reg_info(wiphy, 1995 orig_chan_freq - MHZ_TO_KHZ(20)); 1996 rrule2 = freq_reg_info(wiphy, 1997 orig_chan_freq + MHZ_TO_KHZ(20)); 1998 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { 1999 struct ieee80211_freq_range comb_range; 2000 2001 if (rrule1->freq_range.end_freq_khz != 2002 rrule2->freq_range.start_freq_khz) 2003 goto disable_chan; 2004 2005 comb_range.start_freq_khz = 2006 rrule1->freq_range.start_freq_khz; 2007 comb_range.end_freq_khz = 2008 rrule2->freq_range.end_freq_khz; 2009 comb_range.max_bandwidth_khz = 2010 min_t(u32, 2011 rrule1->freq_range.max_bandwidth_khz, 2012 rrule2->freq_range.max_bandwidth_khz); 2013 2014 if (!cfg80211_does_bw_fit_range(&comb_range, 2015 orig_chan_freq, 2016 MHZ_TO_KHZ(20))) 2017 goto disable_chan; 2018 2019 handle_channel_adjacent_rules(wiphy, initiator, chan, 2020 flags, lr, request_wiphy, 2021 rrule1, rrule2, 2022 &comb_range); 2023 return; 2024 } 2025 2026 disable_chan: 2027 /* We will disable all channels that do not match our 2028 * received regulatory rule unless the hint is coming 2029 * from a Country IE and the Country IE had no information 2030 * about a band. The IEEE 802.11 spec allows for an AP 2031 * to send only a subset of the regulatory rules allowed, 2032 * so an AP in the US that only supports 2.4 GHz may only send 2033 * a country IE with information for the 2.4 GHz band 2034 * while 5 GHz is still supported. 2035 */ 2036 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2037 PTR_ERR(rrule) == -ERANGE) 2038 return; 2039 2040 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2041 request_wiphy && request_wiphy == wiphy && 2042 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 2043 pr_debug("Disabling freq %d.%03d MHz for good\n", 2044 chan->center_freq, chan->freq_offset); 2045 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2046 chan->flags = chan->orig_flags; 2047 } else { 2048 pr_debug("Disabling freq %d.%03d MHz\n", 2049 chan->center_freq, chan->freq_offset); 2050 chan->flags |= IEEE80211_CHAN_DISABLED; 2051 } 2052 return; 2053 } 2054 2055 handle_channel_single_rule(wiphy, initiator, chan, flags, lr, 2056 request_wiphy, rrule); 2057 } 2058 2059 static void handle_band(struct wiphy *wiphy, 2060 enum nl80211_reg_initiator initiator, 2061 struct ieee80211_supported_band *sband) 2062 { 2063 unsigned int i; 2064 2065 if (!sband) 2066 return; 2067 2068 for (i = 0; i < sband->n_channels; i++) 2069 handle_channel(wiphy, initiator, &sband->channels[i]); 2070 } 2071 2072 static bool reg_request_cell_base(struct regulatory_request *request) 2073 { 2074 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 2075 return false; 2076 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 2077 } 2078 2079 bool reg_last_request_cell_base(void) 2080 { 2081 return reg_request_cell_base(get_last_request()); 2082 } 2083 2084 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 2085 /* Core specific check */ 2086 static enum reg_request_treatment 2087 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2088 { 2089 struct regulatory_request *lr = get_last_request(); 2090 2091 if (!reg_num_devs_support_basehint) 2092 return REG_REQ_IGNORE; 2093 2094 if (reg_request_cell_base(lr) && 2095 !regdom_changes(pending_request->alpha2)) 2096 return REG_REQ_ALREADY_SET; 2097 2098 return REG_REQ_OK; 2099 } 2100 2101 /* Device specific check */ 2102 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2103 { 2104 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 2105 } 2106 #else 2107 static enum reg_request_treatment 2108 reg_ignore_cell_hint(struct regulatory_request *pending_request) 2109 { 2110 return REG_REQ_IGNORE; 2111 } 2112 2113 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 2114 { 2115 return true; 2116 } 2117 #endif 2118 2119 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 2120 { 2121 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 2122 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 2123 return true; 2124 return false; 2125 } 2126 2127 static bool ignore_reg_update(struct wiphy *wiphy, 2128 enum nl80211_reg_initiator initiator) 2129 { 2130 struct regulatory_request *lr = get_last_request(); 2131 2132 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2133 return true; 2134 2135 if (!lr) { 2136 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", 2137 reg_initiator_name(initiator)); 2138 return true; 2139 } 2140 2141 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2142 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 2143 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", 2144 reg_initiator_name(initiator)); 2145 return true; 2146 } 2147 2148 /* 2149 * wiphy->regd will be set once the device has its own 2150 * desired regulatory domain set 2151 */ 2152 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 2153 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2154 !is_world_regdom(lr->alpha2)) { 2155 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", 2156 reg_initiator_name(initiator)); 2157 return true; 2158 } 2159 2160 if (reg_request_cell_base(lr)) 2161 return reg_dev_ignore_cell_hint(wiphy); 2162 2163 return false; 2164 } 2165 2166 static bool reg_is_world_roaming(struct wiphy *wiphy) 2167 { 2168 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 2169 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 2170 struct regulatory_request *lr = get_last_request(); 2171 2172 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 2173 return true; 2174 2175 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 2176 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 2177 return true; 2178 2179 return false; 2180 } 2181 2182 static void reg_call_notifier(struct wiphy *wiphy, 2183 struct regulatory_request *request) 2184 { 2185 if (wiphy->reg_notifier) 2186 wiphy->reg_notifier(wiphy, request); 2187 } 2188 2189 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 2190 struct reg_beacon *reg_beacon) 2191 { 2192 struct ieee80211_supported_band *sband; 2193 struct ieee80211_channel *chan; 2194 bool channel_changed = false; 2195 struct ieee80211_channel chan_before; 2196 struct regulatory_request *lr = get_last_request(); 2197 2198 sband = wiphy->bands[reg_beacon->chan.band]; 2199 chan = &sband->channels[chan_idx]; 2200 2201 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) 2202 return; 2203 2204 if (chan->beacon_found) 2205 return; 2206 2207 chan->beacon_found = true; 2208 2209 if (!reg_is_world_roaming(wiphy)) 2210 return; 2211 2212 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 2213 return; 2214 2215 chan_before = *chan; 2216 2217 if (chan->flags & IEEE80211_CHAN_NO_IR) { 2218 chan->flags &= ~IEEE80211_CHAN_NO_IR; 2219 channel_changed = true; 2220 } 2221 2222 if (channel_changed) { 2223 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 2224 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON) 2225 reg_call_notifier(wiphy, lr); 2226 } 2227 } 2228 2229 /* 2230 * Called when a scan on a wiphy finds a beacon on 2231 * new channel 2232 */ 2233 static void wiphy_update_new_beacon(struct wiphy *wiphy, 2234 struct reg_beacon *reg_beacon) 2235 { 2236 unsigned int i; 2237 struct ieee80211_supported_band *sband; 2238 2239 if (!wiphy->bands[reg_beacon->chan.band]) 2240 return; 2241 2242 sband = wiphy->bands[reg_beacon->chan.band]; 2243 2244 for (i = 0; i < sband->n_channels; i++) 2245 handle_reg_beacon(wiphy, i, reg_beacon); 2246 } 2247 2248 /* 2249 * Called upon reg changes or a new wiphy is added 2250 */ 2251 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 2252 { 2253 unsigned int i; 2254 struct ieee80211_supported_band *sband; 2255 struct reg_beacon *reg_beacon; 2256 2257 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 2258 if (!wiphy->bands[reg_beacon->chan.band]) 2259 continue; 2260 sband = wiphy->bands[reg_beacon->chan.band]; 2261 for (i = 0; i < sband->n_channels; i++) 2262 handle_reg_beacon(wiphy, i, reg_beacon); 2263 } 2264 } 2265 2266 /* Reap the advantages of previously found beacons */ 2267 static void reg_process_beacons(struct wiphy *wiphy) 2268 { 2269 /* 2270 * Means we are just firing up cfg80211, so no beacons would 2271 * have been processed yet. 2272 */ 2273 if (!last_request) 2274 return; 2275 wiphy_update_beacon_reg(wiphy); 2276 } 2277 2278 static bool is_ht40_allowed(struct ieee80211_channel *chan) 2279 { 2280 if (!chan) 2281 return false; 2282 if (chan->flags & IEEE80211_CHAN_DISABLED) 2283 return false; 2284 /* This would happen when regulatory rules disallow HT40 completely */ 2285 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 2286 return false; 2287 return true; 2288 } 2289 2290 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 2291 struct ieee80211_channel *channel) 2292 { 2293 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 2294 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 2295 const struct ieee80211_regdomain *regd; 2296 unsigned int i; 2297 u32 flags; 2298 2299 if (!is_ht40_allowed(channel)) { 2300 channel->flags |= IEEE80211_CHAN_NO_HT40; 2301 return; 2302 } 2303 2304 /* 2305 * We need to ensure the extension channels exist to 2306 * be able to use HT40- or HT40+, this finds them (or not) 2307 */ 2308 for (i = 0; i < sband->n_channels; i++) { 2309 struct ieee80211_channel *c = &sband->channels[i]; 2310 2311 if (c->center_freq == (channel->center_freq - 20)) 2312 channel_before = c; 2313 if (c->center_freq == (channel->center_freq + 20)) 2314 channel_after = c; 2315 } 2316 2317 flags = 0; 2318 regd = get_wiphy_regdom(wiphy); 2319 if (regd) { 2320 const struct ieee80211_reg_rule *reg_rule = 2321 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), 2322 regd, MHZ_TO_KHZ(20)); 2323 2324 if (!IS_ERR(reg_rule)) 2325 flags = reg_rule->flags; 2326 } 2327 2328 /* 2329 * Please note that this assumes target bandwidth is 20 MHz, 2330 * if that ever changes we also need to change the below logic 2331 * to include that as well. 2332 */ 2333 if (!is_ht40_allowed(channel_before) || 2334 flags & NL80211_RRF_NO_HT40MINUS) 2335 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 2336 else 2337 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 2338 2339 if (!is_ht40_allowed(channel_after) || 2340 flags & NL80211_RRF_NO_HT40PLUS) 2341 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 2342 else 2343 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 2344 } 2345 2346 static void reg_process_ht_flags_band(struct wiphy *wiphy, 2347 struct ieee80211_supported_band *sband) 2348 { 2349 unsigned int i; 2350 2351 if (!sband) 2352 return; 2353 2354 for (i = 0; i < sband->n_channels; i++) 2355 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 2356 } 2357 2358 static void reg_process_ht_flags(struct wiphy *wiphy) 2359 { 2360 enum nl80211_band band; 2361 2362 if (!wiphy) 2363 return; 2364 2365 for (band = 0; band < NUM_NL80211_BANDS; band++) 2366 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 2367 } 2368 2369 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) 2370 { 2371 struct cfg80211_chan_def chandef = {}; 2372 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2373 enum nl80211_iftype iftype; 2374 bool ret; 2375 int link; 2376 2377 iftype = wdev->iftype; 2378 2379 /* make sure the interface is active */ 2380 if (!wdev->netdev || !netif_running(wdev->netdev)) 2381 return true; 2382 2383 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { 2384 struct ieee80211_channel *chan; 2385 2386 if (!wdev->valid_links && link > 0) 2387 break; 2388 if (wdev->valid_links && !(wdev->valid_links & BIT(link))) 2389 continue; 2390 switch (iftype) { 2391 case NL80211_IFTYPE_AP: 2392 case NL80211_IFTYPE_P2P_GO: 2393 if (!wdev->links[link].ap.beacon_interval) 2394 continue; 2395 chandef = wdev->links[link].ap.chandef; 2396 break; 2397 case NL80211_IFTYPE_MESH_POINT: 2398 if (!wdev->u.mesh.beacon_interval) 2399 continue; 2400 chandef = wdev->u.mesh.chandef; 2401 break; 2402 case NL80211_IFTYPE_ADHOC: 2403 if (!wdev->u.ibss.ssid_len) 2404 continue; 2405 chandef = wdev->u.ibss.chandef; 2406 break; 2407 case NL80211_IFTYPE_STATION: 2408 case NL80211_IFTYPE_P2P_CLIENT: 2409 /* Maybe we could consider disabling that link only? */ 2410 if (!wdev->links[link].client.current_bss) 2411 continue; 2412 2413 chan = wdev->links[link].client.current_bss->pub.channel; 2414 if (!chan) 2415 continue; 2416 2417 if (!rdev->ops->get_channel || 2418 rdev_get_channel(rdev, wdev, link, &chandef)) 2419 cfg80211_chandef_create(&chandef, chan, 2420 NL80211_CHAN_NO_HT); 2421 break; 2422 case NL80211_IFTYPE_MONITOR: 2423 case NL80211_IFTYPE_AP_VLAN: 2424 case NL80211_IFTYPE_P2P_DEVICE: 2425 /* no enforcement required */ 2426 break; 2427 case NL80211_IFTYPE_OCB: 2428 if (!wdev->u.ocb.chandef.chan) 2429 continue; 2430 chandef = wdev->u.ocb.chandef; 2431 break; 2432 case NL80211_IFTYPE_NAN: 2433 /* we have no info, but NAN is also pretty universal */ 2434 continue; 2435 default: 2436 /* others not implemented for now */ 2437 WARN_ON_ONCE(1); 2438 break; 2439 } 2440 2441 switch (iftype) { 2442 case NL80211_IFTYPE_AP: 2443 case NL80211_IFTYPE_P2P_GO: 2444 case NL80211_IFTYPE_ADHOC: 2445 case NL80211_IFTYPE_MESH_POINT: 2446 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, 2447 iftype); 2448 if (!ret) 2449 return ret; 2450 break; 2451 case NL80211_IFTYPE_STATION: 2452 case NL80211_IFTYPE_P2P_CLIENT: 2453 ret = cfg80211_chandef_usable(wiphy, &chandef, 2454 IEEE80211_CHAN_DISABLED); 2455 if (!ret) 2456 return ret; 2457 break; 2458 default: 2459 break; 2460 } 2461 } 2462 2463 return true; 2464 } 2465 2466 static void reg_leave_invalid_chans(struct wiphy *wiphy) 2467 { 2468 struct wireless_dev *wdev; 2469 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2470 2471 guard(wiphy)(wiphy); 2472 2473 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 2474 if (!reg_wdev_chan_valid(wiphy, wdev)) 2475 cfg80211_leave(rdev, wdev); 2476 } 2477 2478 static void reg_check_chans_work(struct work_struct *work) 2479 { 2480 struct cfg80211_registered_device *rdev; 2481 2482 pr_debug("Verifying active interfaces after reg change\n"); 2483 rtnl_lock(); 2484 2485 for_each_rdev(rdev) 2486 reg_leave_invalid_chans(&rdev->wiphy); 2487 2488 rtnl_unlock(); 2489 } 2490 2491 void reg_check_channels(void) 2492 { 2493 /* 2494 * Give usermode a chance to do something nicer (move to another 2495 * channel, orderly disconnection), before forcing a disconnection. 2496 */ 2497 mod_delayed_work(system_power_efficient_wq, 2498 ®_check_chans, 2499 msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); 2500 } 2501 2502 static void wiphy_update_regulatory(struct wiphy *wiphy, 2503 enum nl80211_reg_initiator initiator) 2504 { 2505 enum nl80211_band band; 2506 struct regulatory_request *lr = get_last_request(); 2507 2508 if (ignore_reg_update(wiphy, initiator)) { 2509 /* 2510 * Regulatory updates set by CORE are ignored for custom 2511 * regulatory cards. Let us notify the changes to the driver, 2512 * as some drivers used this to restore its orig_* reg domain. 2513 */ 2514 if (initiator == NL80211_REGDOM_SET_BY_CORE && 2515 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && 2516 !(wiphy->regulatory_flags & 2517 REGULATORY_WIPHY_SELF_MANAGED)) 2518 reg_call_notifier(wiphy, lr); 2519 return; 2520 } 2521 2522 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 2523 2524 for (band = 0; band < NUM_NL80211_BANDS; band++) 2525 handle_band(wiphy, initiator, wiphy->bands[band]); 2526 2527 reg_process_beacons(wiphy); 2528 reg_process_ht_flags(wiphy); 2529 reg_call_notifier(wiphy, lr); 2530 } 2531 2532 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 2533 { 2534 struct cfg80211_registered_device *rdev; 2535 struct wiphy *wiphy; 2536 2537 ASSERT_RTNL(); 2538 2539 for_each_rdev(rdev) { 2540 wiphy = &rdev->wiphy; 2541 wiphy_update_regulatory(wiphy, initiator); 2542 } 2543 2544 reg_check_channels(); 2545 } 2546 2547 static void handle_channel_custom(struct wiphy *wiphy, 2548 struct ieee80211_channel *chan, 2549 const struct ieee80211_regdomain *regd, 2550 u32 min_bw) 2551 { 2552 u32 bw_flags = 0; 2553 const struct ieee80211_reg_rule *reg_rule = NULL; 2554 const struct ieee80211_power_rule *power_rule = NULL; 2555 u32 bw, center_freq_khz; 2556 2557 center_freq_khz = ieee80211_channel_to_khz(chan); 2558 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { 2559 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); 2560 if (!IS_ERR(reg_rule)) 2561 break; 2562 } 2563 2564 if (IS_ERR_OR_NULL(reg_rule)) { 2565 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", 2566 chan->center_freq, chan->freq_offset); 2567 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 2568 chan->flags |= IEEE80211_CHAN_DISABLED; 2569 } else { 2570 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 2571 chan->flags = chan->orig_flags; 2572 } 2573 return; 2574 } 2575 2576 power_rule = ®_rule->power_rule; 2577 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); 2578 2579 chan->dfs_state_entered = jiffies; 2580 chan->dfs_state = NL80211_DFS_USABLE; 2581 2582 chan->beacon_found = false; 2583 2584 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 2585 chan->flags = chan->orig_flags | bw_flags | 2586 map_regdom_flags(reg_rule->flags); 2587 else 2588 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 2589 2590 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 2591 chan->max_reg_power = chan->max_power = 2592 (int) MBM_TO_DBM(power_rule->max_eirp); 2593 2594 if (chan->flags & IEEE80211_CHAN_RADAR) { 2595 if (reg_rule->dfs_cac_ms) 2596 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 2597 else 2598 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 2599 } 2600 2601 if (chan->flags & IEEE80211_CHAN_PSD) 2602 chan->psd = reg_rule->psd; 2603 2604 chan->max_power = chan->max_reg_power; 2605 } 2606 2607 static void handle_band_custom(struct wiphy *wiphy, 2608 struct ieee80211_supported_band *sband, 2609 const struct ieee80211_regdomain *regd) 2610 { 2611 unsigned int i; 2612 2613 if (!sband) 2614 return; 2615 2616 /* 2617 * We currently assume that you always want at least 20 MHz, 2618 * otherwise channel 12 might get enabled if this rule is 2619 * compatible to US, which permits 2402 - 2472 MHz. 2620 */ 2621 for (i = 0; i < sband->n_channels; i++) 2622 handle_channel_custom(wiphy, &sband->channels[i], regd, 2623 MHZ_TO_KHZ(20)); 2624 } 2625 2626 /* Used by drivers prior to wiphy registration */ 2627 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 2628 const struct ieee80211_regdomain *regd) 2629 { 2630 const struct ieee80211_regdomain *new_regd, *tmp; 2631 enum nl80211_band band; 2632 unsigned int bands_set = 0; 2633 2634 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 2635 "wiphy should have REGULATORY_CUSTOM_REG\n"); 2636 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 2637 2638 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2639 if (!wiphy->bands[band]) 2640 continue; 2641 handle_band_custom(wiphy, wiphy->bands[band], regd); 2642 bands_set++; 2643 } 2644 2645 /* 2646 * no point in calling this if it won't have any effect 2647 * on your device's supported bands. 2648 */ 2649 WARN_ON(!bands_set); 2650 new_regd = reg_copy_regd(regd); 2651 if (IS_ERR(new_regd)) 2652 return; 2653 2654 rtnl_lock(); 2655 scoped_guard(wiphy, wiphy) { 2656 tmp = get_wiphy_regdom(wiphy); 2657 rcu_assign_pointer(wiphy->regd, new_regd); 2658 rcu_free_regdom(tmp); 2659 } 2660 rtnl_unlock(); 2661 } 2662 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 2663 2664 static void reg_set_request_processed(void) 2665 { 2666 bool need_more_processing = false; 2667 struct regulatory_request *lr = get_last_request(); 2668 2669 lr->processed = true; 2670 2671 spin_lock(®_requests_lock); 2672 if (!list_empty(®_requests_list)) 2673 need_more_processing = true; 2674 spin_unlock(®_requests_lock); 2675 2676 cancel_crda_timeout(); 2677 2678 if (need_more_processing) 2679 schedule_work(®_work); 2680 } 2681 2682 /** 2683 * reg_process_hint_core - process core regulatory requests 2684 * @core_request: a pending core regulatory request 2685 * 2686 * The wireless subsystem can use this function to process 2687 * a regulatory request issued by the regulatory core. 2688 * 2689 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2690 * hint was processed or ignored 2691 */ 2692 static enum reg_request_treatment 2693 reg_process_hint_core(struct regulatory_request *core_request) 2694 { 2695 if (reg_query_database(core_request)) { 2696 core_request->intersect = false; 2697 core_request->processed = false; 2698 reg_update_last_request(core_request); 2699 return REG_REQ_OK; 2700 } 2701 2702 return REG_REQ_IGNORE; 2703 } 2704 2705 static enum reg_request_treatment 2706 __reg_process_hint_user(struct regulatory_request *user_request) 2707 { 2708 struct regulatory_request *lr = get_last_request(); 2709 2710 if (reg_request_cell_base(user_request)) 2711 return reg_ignore_cell_hint(user_request); 2712 2713 if (reg_request_cell_base(lr)) 2714 return REG_REQ_IGNORE; 2715 2716 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 2717 return REG_REQ_INTERSECT; 2718 /* 2719 * If the user knows better the user should set the regdom 2720 * to their country before the IE is picked up 2721 */ 2722 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 2723 lr->intersect) 2724 return REG_REQ_IGNORE; 2725 /* 2726 * Process user requests only after previous user/driver/core 2727 * requests have been processed 2728 */ 2729 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 2730 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 2731 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 2732 regdom_changes(lr->alpha2)) 2733 return REG_REQ_IGNORE; 2734 2735 if (!regdom_changes(user_request->alpha2)) 2736 return REG_REQ_ALREADY_SET; 2737 2738 return REG_REQ_OK; 2739 } 2740 2741 /** 2742 * reg_process_hint_user - process user regulatory requests 2743 * @user_request: a pending user regulatory request 2744 * 2745 * The wireless subsystem can use this function to process 2746 * a regulatory request initiated by userspace. 2747 * 2748 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the 2749 * hint was processed or ignored 2750 */ 2751 static enum reg_request_treatment 2752 reg_process_hint_user(struct regulatory_request *user_request) 2753 { 2754 enum reg_request_treatment treatment; 2755 2756 treatment = __reg_process_hint_user(user_request); 2757 if (treatment == REG_REQ_IGNORE || 2758 treatment == REG_REQ_ALREADY_SET) 2759 return REG_REQ_IGNORE; 2760 2761 user_request->intersect = treatment == REG_REQ_INTERSECT; 2762 user_request->processed = false; 2763 2764 if (reg_query_database(user_request)) { 2765 reg_update_last_request(user_request); 2766 user_alpha2[0] = user_request->alpha2[0]; 2767 user_alpha2[1] = user_request->alpha2[1]; 2768 return REG_REQ_OK; 2769 } 2770 2771 return REG_REQ_IGNORE; 2772 } 2773 2774 static enum reg_request_treatment 2775 __reg_process_hint_driver(struct regulatory_request *driver_request) 2776 { 2777 struct regulatory_request *lr = get_last_request(); 2778 2779 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 2780 if (regdom_changes(driver_request->alpha2)) 2781 return REG_REQ_OK; 2782 return REG_REQ_ALREADY_SET; 2783 } 2784 2785 /* 2786 * This would happen if you unplug and plug your card 2787 * back in or if you add a new device for which the previously 2788 * loaded card also agrees on the regulatory domain. 2789 */ 2790 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 2791 !regdom_changes(driver_request->alpha2)) 2792 return REG_REQ_ALREADY_SET; 2793 2794 return REG_REQ_INTERSECT; 2795 } 2796 2797 /** 2798 * reg_process_hint_driver - process driver regulatory requests 2799 * @wiphy: the wireless device for the regulatory request 2800 * @driver_request: a pending driver regulatory request 2801 * 2802 * The wireless subsystem can use this function to process 2803 * a regulatory request issued by an 802.11 driver. 2804 * 2805 * Returns: one of the different reg request treatment values. 2806 */ 2807 static enum reg_request_treatment 2808 reg_process_hint_driver(struct wiphy *wiphy, 2809 struct regulatory_request *driver_request) 2810 { 2811 const struct ieee80211_regdomain *regd, *tmp; 2812 enum reg_request_treatment treatment; 2813 2814 treatment = __reg_process_hint_driver(driver_request); 2815 2816 switch (treatment) { 2817 case REG_REQ_OK: 2818 break; 2819 case REG_REQ_IGNORE: 2820 return REG_REQ_IGNORE; 2821 case REG_REQ_INTERSECT: 2822 case REG_REQ_ALREADY_SET: 2823 regd = reg_copy_regd(get_cfg80211_regdom()); 2824 if (IS_ERR(regd)) 2825 return REG_REQ_IGNORE; 2826 2827 tmp = get_wiphy_regdom(wiphy); 2828 ASSERT_RTNL(); 2829 scoped_guard(wiphy, wiphy) { 2830 rcu_assign_pointer(wiphy->regd, regd); 2831 } 2832 rcu_free_regdom(tmp); 2833 } 2834 2835 2836 driver_request->intersect = treatment == REG_REQ_INTERSECT; 2837 driver_request->processed = false; 2838 2839 /* 2840 * Since CRDA will not be called in this case as we already 2841 * have applied the requested regulatory domain before we just 2842 * inform userspace we have processed the request 2843 */ 2844 if (treatment == REG_REQ_ALREADY_SET) { 2845 nl80211_send_reg_change_event(driver_request); 2846 reg_update_last_request(driver_request); 2847 reg_set_request_processed(); 2848 return REG_REQ_ALREADY_SET; 2849 } 2850 2851 if (reg_query_database(driver_request)) { 2852 reg_update_last_request(driver_request); 2853 return REG_REQ_OK; 2854 } 2855 2856 return REG_REQ_IGNORE; 2857 } 2858 2859 static enum reg_request_treatment 2860 __reg_process_hint_country_ie(struct wiphy *wiphy, 2861 struct regulatory_request *country_ie_request) 2862 { 2863 struct wiphy *last_wiphy = NULL; 2864 struct regulatory_request *lr = get_last_request(); 2865 2866 if (reg_request_cell_base(lr)) { 2867 /* Trust a Cell base station over the AP's country IE */ 2868 if (regdom_changes(country_ie_request->alpha2)) 2869 return REG_REQ_IGNORE; 2870 return REG_REQ_ALREADY_SET; 2871 } else { 2872 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 2873 return REG_REQ_IGNORE; 2874 } 2875 2876 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 2877 return -EINVAL; 2878 2879 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 2880 return REG_REQ_OK; 2881 2882 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2883 2884 if (last_wiphy != wiphy) { 2885 /* 2886 * Two cards with two APs claiming different 2887 * Country IE alpha2s. We could 2888 * intersect them, but that seems unlikely 2889 * to be correct. Reject second one for now. 2890 */ 2891 if (regdom_changes(country_ie_request->alpha2)) 2892 return REG_REQ_IGNORE; 2893 return REG_REQ_ALREADY_SET; 2894 } 2895 2896 if (regdom_changes(country_ie_request->alpha2)) 2897 return REG_REQ_OK; 2898 return REG_REQ_ALREADY_SET; 2899 } 2900 2901 /** 2902 * reg_process_hint_country_ie - process regulatory requests from country IEs 2903 * @wiphy: the wireless device for the regulatory request 2904 * @country_ie_request: a regulatory request from a country IE 2905 * 2906 * The wireless subsystem can use this function to process 2907 * a regulatory request issued by a country Information Element. 2908 * 2909 * Returns: one of the different reg request treatment values. 2910 */ 2911 static enum reg_request_treatment 2912 reg_process_hint_country_ie(struct wiphy *wiphy, 2913 struct regulatory_request *country_ie_request) 2914 { 2915 enum reg_request_treatment treatment; 2916 2917 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 2918 2919 switch (treatment) { 2920 case REG_REQ_OK: 2921 break; 2922 case REG_REQ_IGNORE: 2923 return REG_REQ_IGNORE; 2924 case REG_REQ_ALREADY_SET: 2925 reg_free_request(country_ie_request); 2926 return REG_REQ_ALREADY_SET; 2927 case REG_REQ_INTERSECT: 2928 /* 2929 * This doesn't happen yet, not sure we 2930 * ever want to support it for this case. 2931 */ 2932 WARN_ONCE(1, "Unexpected intersection for country elements"); 2933 return REG_REQ_IGNORE; 2934 } 2935 2936 country_ie_request->intersect = false; 2937 country_ie_request->processed = false; 2938 2939 if (reg_query_database(country_ie_request)) { 2940 reg_update_last_request(country_ie_request); 2941 return REG_REQ_OK; 2942 } 2943 2944 return REG_REQ_IGNORE; 2945 } 2946 2947 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) 2948 { 2949 const struct ieee80211_regdomain *wiphy1_regd = NULL; 2950 const struct ieee80211_regdomain *wiphy2_regd = NULL; 2951 const struct ieee80211_regdomain *cfg80211_regd = NULL; 2952 bool dfs_domain_same; 2953 2954 rcu_read_lock(); 2955 2956 cfg80211_regd = rcu_dereference(cfg80211_regdomain); 2957 wiphy1_regd = rcu_dereference(wiphy1->regd); 2958 if (!wiphy1_regd) 2959 wiphy1_regd = cfg80211_regd; 2960 2961 wiphy2_regd = rcu_dereference(wiphy2->regd); 2962 if (!wiphy2_regd) 2963 wiphy2_regd = cfg80211_regd; 2964 2965 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; 2966 2967 rcu_read_unlock(); 2968 2969 return dfs_domain_same; 2970 } 2971 2972 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, 2973 struct ieee80211_channel *src_chan) 2974 { 2975 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || 2976 !(src_chan->flags & IEEE80211_CHAN_RADAR)) 2977 return; 2978 2979 if (dst_chan->flags & IEEE80211_CHAN_DISABLED || 2980 src_chan->flags & IEEE80211_CHAN_DISABLED) 2981 return; 2982 2983 if (src_chan->center_freq == dst_chan->center_freq && 2984 dst_chan->dfs_state == NL80211_DFS_USABLE) { 2985 dst_chan->dfs_state = src_chan->dfs_state; 2986 dst_chan->dfs_state_entered = src_chan->dfs_state_entered; 2987 } 2988 } 2989 2990 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, 2991 struct wiphy *src_wiphy) 2992 { 2993 struct ieee80211_supported_band *src_sband, *dst_sband; 2994 struct ieee80211_channel *src_chan, *dst_chan; 2995 int i, j, band; 2996 2997 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) 2998 return; 2999 3000 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3001 dst_sband = dst_wiphy->bands[band]; 3002 src_sband = src_wiphy->bands[band]; 3003 if (!dst_sband || !src_sband) 3004 continue; 3005 3006 for (i = 0; i < dst_sband->n_channels; i++) { 3007 dst_chan = &dst_sband->channels[i]; 3008 for (j = 0; j < src_sband->n_channels; j++) { 3009 src_chan = &src_sband->channels[j]; 3010 reg_copy_dfs_chan_state(dst_chan, src_chan); 3011 } 3012 } 3013 } 3014 } 3015 3016 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) 3017 { 3018 struct cfg80211_registered_device *rdev; 3019 3020 ASSERT_RTNL(); 3021 3022 for_each_rdev(rdev) { 3023 if (wiphy == &rdev->wiphy) 3024 continue; 3025 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); 3026 } 3027 } 3028 3029 /* This processes *all* regulatory hints */ 3030 static void reg_process_hint(struct regulatory_request *reg_request) 3031 { 3032 struct wiphy *wiphy = NULL; 3033 enum reg_request_treatment treatment; 3034 enum nl80211_reg_initiator initiator = reg_request->initiator; 3035 3036 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 3037 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 3038 3039 switch (initiator) { 3040 case NL80211_REGDOM_SET_BY_CORE: 3041 treatment = reg_process_hint_core(reg_request); 3042 break; 3043 case NL80211_REGDOM_SET_BY_USER: 3044 treatment = reg_process_hint_user(reg_request); 3045 break; 3046 case NL80211_REGDOM_SET_BY_DRIVER: 3047 if (!wiphy) 3048 goto out_free; 3049 treatment = reg_process_hint_driver(wiphy, reg_request); 3050 break; 3051 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3052 if (!wiphy) 3053 goto out_free; 3054 treatment = reg_process_hint_country_ie(wiphy, reg_request); 3055 break; 3056 default: 3057 WARN(1, "invalid initiator %d\n", initiator); 3058 goto out_free; 3059 } 3060 3061 if (treatment == REG_REQ_IGNORE) 3062 goto out_free; 3063 3064 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, 3065 "unexpected treatment value %d\n", treatment); 3066 3067 /* This is required so that the orig_* parameters are saved. 3068 * NOTE: treatment must be set for any case that reaches here! 3069 */ 3070 if (treatment == REG_REQ_ALREADY_SET && wiphy && 3071 wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 3072 wiphy_update_regulatory(wiphy, initiator); 3073 wiphy_all_share_dfs_chan_state(wiphy); 3074 reg_check_channels(); 3075 } 3076 3077 return; 3078 3079 out_free: 3080 reg_free_request(reg_request); 3081 } 3082 3083 static void notify_self_managed_wiphys(struct regulatory_request *request) 3084 { 3085 struct cfg80211_registered_device *rdev; 3086 struct wiphy *wiphy; 3087 3088 for_each_rdev(rdev) { 3089 wiphy = &rdev->wiphy; 3090 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && 3091 request->initiator == NL80211_REGDOM_SET_BY_USER) 3092 reg_call_notifier(wiphy, request); 3093 } 3094 } 3095 3096 /* 3097 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 3098 * Regulatory hints come on a first come first serve basis and we 3099 * must process each one atomically. 3100 */ 3101 static void reg_process_pending_hints(void) 3102 { 3103 struct regulatory_request *reg_request, *lr; 3104 3105 lr = get_last_request(); 3106 3107 /* When last_request->processed becomes true this will be rescheduled */ 3108 if (lr && !lr->processed) { 3109 pr_debug("Pending regulatory request, waiting for it to be processed...\n"); 3110 return; 3111 } 3112 3113 spin_lock(®_requests_lock); 3114 3115 if (list_empty(®_requests_list)) { 3116 spin_unlock(®_requests_lock); 3117 return; 3118 } 3119 3120 reg_request = list_first_entry(®_requests_list, 3121 struct regulatory_request, 3122 list); 3123 list_del_init(®_request->list); 3124 3125 spin_unlock(®_requests_lock); 3126 3127 notify_self_managed_wiphys(reg_request); 3128 3129 reg_process_hint(reg_request); 3130 3131 lr = get_last_request(); 3132 3133 spin_lock(®_requests_lock); 3134 if (!list_empty(®_requests_list) && lr && lr->processed) 3135 schedule_work(®_work); 3136 spin_unlock(®_requests_lock); 3137 } 3138 3139 /* Processes beacon hints -- this has nothing to do with country IEs */ 3140 static void reg_process_pending_beacon_hints(void) 3141 { 3142 struct cfg80211_registered_device *rdev; 3143 struct reg_beacon *pending_beacon, *tmp; 3144 3145 /* This goes through the _pending_ beacon list */ 3146 spin_lock_bh(®_pending_beacons_lock); 3147 3148 list_for_each_entry_safe(pending_beacon, tmp, 3149 ®_pending_beacons, list) { 3150 list_del_init(&pending_beacon->list); 3151 3152 /* Applies the beacon hint to current wiphys */ 3153 for_each_rdev(rdev) 3154 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 3155 3156 /* Remembers the beacon hint for new wiphys or reg changes */ 3157 list_add_tail(&pending_beacon->list, ®_beacon_list); 3158 } 3159 3160 spin_unlock_bh(®_pending_beacons_lock); 3161 } 3162 3163 static void reg_process_self_managed_hint(struct wiphy *wiphy) 3164 { 3165 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3166 const struct ieee80211_regdomain *tmp; 3167 const struct ieee80211_regdomain *regd; 3168 enum nl80211_band band; 3169 struct regulatory_request request = {}; 3170 3171 ASSERT_RTNL(); 3172 lockdep_assert_wiphy(wiphy); 3173 3174 spin_lock(®_requests_lock); 3175 regd = rdev->requested_regd; 3176 rdev->requested_regd = NULL; 3177 spin_unlock(®_requests_lock); 3178 3179 if (!regd) 3180 return; 3181 3182 tmp = get_wiphy_regdom(wiphy); 3183 rcu_assign_pointer(wiphy->regd, regd); 3184 rcu_free_regdom(tmp); 3185 3186 for (band = 0; band < NUM_NL80211_BANDS; band++) 3187 handle_band_custom(wiphy, wiphy->bands[band], regd); 3188 3189 reg_process_ht_flags(wiphy); 3190 3191 request.wiphy_idx = get_wiphy_idx(wiphy); 3192 request.alpha2[0] = regd->alpha2[0]; 3193 request.alpha2[1] = regd->alpha2[1]; 3194 request.initiator = NL80211_REGDOM_SET_BY_DRIVER; 3195 3196 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) 3197 reg_call_notifier(wiphy, &request); 3198 3199 nl80211_send_wiphy_reg_change_event(&request); 3200 } 3201 3202 static void reg_process_self_managed_hints(void) 3203 { 3204 struct cfg80211_registered_device *rdev; 3205 3206 ASSERT_RTNL(); 3207 3208 for_each_rdev(rdev) { 3209 guard(wiphy)(&rdev->wiphy); 3210 3211 reg_process_self_managed_hint(&rdev->wiphy); 3212 } 3213 3214 reg_check_channels(); 3215 } 3216 3217 static void reg_todo(struct work_struct *work) 3218 { 3219 rtnl_lock(); 3220 reg_process_pending_hints(); 3221 reg_process_pending_beacon_hints(); 3222 reg_process_self_managed_hints(); 3223 rtnl_unlock(); 3224 } 3225 3226 static void queue_regulatory_request(struct regulatory_request *request) 3227 { 3228 request->alpha2[0] = toupper(request->alpha2[0]); 3229 request->alpha2[1] = toupper(request->alpha2[1]); 3230 3231 spin_lock(®_requests_lock); 3232 list_add_tail(&request->list, ®_requests_list); 3233 spin_unlock(®_requests_lock); 3234 3235 schedule_work(®_work); 3236 } 3237 3238 /* 3239 * Core regulatory hint -- happens during cfg80211_init() 3240 * and when we restore regulatory settings. 3241 */ 3242 static int regulatory_hint_core(const char *alpha2) 3243 { 3244 struct regulatory_request *request; 3245 3246 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3247 if (!request) 3248 return -ENOMEM; 3249 3250 request->alpha2[0] = alpha2[0]; 3251 request->alpha2[1] = alpha2[1]; 3252 request->initiator = NL80211_REGDOM_SET_BY_CORE; 3253 request->wiphy_idx = WIPHY_IDX_INVALID; 3254 3255 queue_regulatory_request(request); 3256 3257 return 0; 3258 } 3259 3260 /* User hints */ 3261 int regulatory_hint_user(const char *alpha2, 3262 enum nl80211_user_reg_hint_type user_reg_hint_type) 3263 { 3264 struct regulatory_request *request; 3265 3266 if (WARN_ON(!alpha2)) 3267 return -EINVAL; 3268 3269 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) 3270 return -EINVAL; 3271 3272 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3273 if (!request) 3274 return -ENOMEM; 3275 3276 request->wiphy_idx = WIPHY_IDX_INVALID; 3277 request->alpha2[0] = alpha2[0]; 3278 request->alpha2[1] = alpha2[1]; 3279 request->initiator = NL80211_REGDOM_SET_BY_USER; 3280 request->user_reg_hint_type = user_reg_hint_type; 3281 3282 /* Allow calling CRDA again */ 3283 reset_crda_timeouts(); 3284 3285 queue_regulatory_request(request); 3286 3287 return 0; 3288 } 3289 3290 void regulatory_hint_indoor(bool is_indoor, u32 portid) 3291 { 3292 spin_lock(®_indoor_lock); 3293 3294 /* It is possible that more than one user space process is trying to 3295 * configure the indoor setting. To handle such cases, clear the indoor 3296 * setting in case that some process does not think that the device 3297 * is operating in an indoor environment. In addition, if a user space 3298 * process indicates that it is controlling the indoor setting, save its 3299 * portid, i.e., make it the owner. 3300 */ 3301 reg_is_indoor = is_indoor; 3302 if (reg_is_indoor) { 3303 if (!reg_is_indoor_portid) 3304 reg_is_indoor_portid = portid; 3305 } else { 3306 reg_is_indoor_portid = 0; 3307 } 3308 3309 spin_unlock(®_indoor_lock); 3310 3311 if (!is_indoor) 3312 reg_check_channels(); 3313 } 3314 3315 void regulatory_netlink_notify(u32 portid) 3316 { 3317 spin_lock(®_indoor_lock); 3318 3319 if (reg_is_indoor_portid != portid) { 3320 spin_unlock(®_indoor_lock); 3321 return; 3322 } 3323 3324 reg_is_indoor = false; 3325 reg_is_indoor_portid = 0; 3326 3327 spin_unlock(®_indoor_lock); 3328 3329 reg_check_channels(); 3330 } 3331 3332 /* Driver hints */ 3333 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 3334 { 3335 struct regulatory_request *request; 3336 3337 if (WARN_ON(!alpha2 || !wiphy)) 3338 return -EINVAL; 3339 3340 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 3341 3342 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 3343 if (!request) 3344 return -ENOMEM; 3345 3346 request->wiphy_idx = get_wiphy_idx(wiphy); 3347 3348 request->alpha2[0] = alpha2[0]; 3349 request->alpha2[1] = alpha2[1]; 3350 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 3351 3352 /* Allow calling CRDA again */ 3353 reset_crda_timeouts(); 3354 3355 queue_regulatory_request(request); 3356 3357 return 0; 3358 } 3359 EXPORT_SYMBOL(regulatory_hint); 3360 3361 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, 3362 const u8 *country_ie, u8 country_ie_len) 3363 { 3364 char alpha2[2]; 3365 enum environment_cap env = ENVIRON_ANY; 3366 struct regulatory_request *request = NULL, *lr; 3367 3368 /* IE len must be evenly divisible by 2 */ 3369 if (country_ie_len & 0x01) 3370 return; 3371 3372 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 3373 return; 3374 3375 request = kzalloc(sizeof(*request), GFP_KERNEL); 3376 if (!request) 3377 return; 3378 3379 alpha2[0] = country_ie[0]; 3380 alpha2[1] = country_ie[1]; 3381 3382 if (country_ie[2] == 'I') 3383 env = ENVIRON_INDOOR; 3384 else if (country_ie[2] == 'O') 3385 env = ENVIRON_OUTDOOR; 3386 3387 rcu_read_lock(); 3388 lr = get_last_request(); 3389 3390 if (unlikely(!lr)) 3391 goto out; 3392 3393 /* 3394 * We will run this only upon a successful connection on cfg80211. 3395 * We leave conflict resolution to the workqueue, where can hold 3396 * the RTNL. 3397 */ 3398 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 3399 lr->wiphy_idx != WIPHY_IDX_INVALID) 3400 goto out; 3401 3402 request->wiphy_idx = get_wiphy_idx(wiphy); 3403 request->alpha2[0] = alpha2[0]; 3404 request->alpha2[1] = alpha2[1]; 3405 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 3406 request->country_ie_env = env; 3407 3408 /* Allow calling CRDA again */ 3409 reset_crda_timeouts(); 3410 3411 queue_regulatory_request(request); 3412 request = NULL; 3413 out: 3414 kfree(request); 3415 rcu_read_unlock(); 3416 } 3417 3418 static void restore_alpha2(char *alpha2, bool reset_user) 3419 { 3420 /* indicates there is no alpha2 to consider for restoration */ 3421 alpha2[0] = '9'; 3422 alpha2[1] = '7'; 3423 3424 /* The user setting has precedence over the module parameter */ 3425 if (is_user_regdom_saved()) { 3426 /* Unless we're asked to ignore it and reset it */ 3427 if (reset_user) { 3428 pr_debug("Restoring regulatory settings including user preference\n"); 3429 user_alpha2[0] = '9'; 3430 user_alpha2[1] = '7'; 3431 3432 /* 3433 * If we're ignoring user settings, we still need to 3434 * check the module parameter to ensure we put things 3435 * back as they were for a full restore. 3436 */ 3437 if (!is_world_regdom(ieee80211_regdom)) { 3438 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3439 ieee80211_regdom[0], ieee80211_regdom[1]); 3440 alpha2[0] = ieee80211_regdom[0]; 3441 alpha2[1] = ieee80211_regdom[1]; 3442 } 3443 } else { 3444 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", 3445 user_alpha2[0], user_alpha2[1]); 3446 alpha2[0] = user_alpha2[0]; 3447 alpha2[1] = user_alpha2[1]; 3448 } 3449 } else if (!is_world_regdom(ieee80211_regdom)) { 3450 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 3451 ieee80211_regdom[0], ieee80211_regdom[1]); 3452 alpha2[0] = ieee80211_regdom[0]; 3453 alpha2[1] = ieee80211_regdom[1]; 3454 } else 3455 pr_debug("Restoring regulatory settings\n"); 3456 } 3457 3458 static void restore_custom_reg_settings(struct wiphy *wiphy) 3459 { 3460 struct ieee80211_supported_band *sband; 3461 enum nl80211_band band; 3462 struct ieee80211_channel *chan; 3463 int i; 3464 3465 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3466 sband = wiphy->bands[band]; 3467 if (!sband) 3468 continue; 3469 for (i = 0; i < sband->n_channels; i++) { 3470 chan = &sband->channels[i]; 3471 chan->flags = chan->orig_flags; 3472 chan->max_antenna_gain = chan->orig_mag; 3473 chan->max_power = chan->orig_mpwr; 3474 chan->beacon_found = false; 3475 } 3476 } 3477 } 3478 3479 /* 3480 * Restoring regulatory settings involves ignoring any 3481 * possibly stale country IE information and user regulatory 3482 * settings if so desired, this includes any beacon hints 3483 * learned as we could have traveled outside to another country 3484 * after disconnection. To restore regulatory settings we do 3485 * exactly what we did at bootup: 3486 * 3487 * - send a core regulatory hint 3488 * - send a user regulatory hint if applicable 3489 * 3490 * Device drivers that send a regulatory hint for a specific country 3491 * keep their own regulatory domain on wiphy->regd so that does 3492 * not need to be remembered. 3493 */ 3494 static void restore_regulatory_settings(bool reset_user, bool cached) 3495 { 3496 char alpha2[2]; 3497 char world_alpha2[2]; 3498 struct reg_beacon *reg_beacon, *btmp; 3499 LIST_HEAD(tmp_reg_req_list); 3500 struct cfg80211_registered_device *rdev; 3501 3502 ASSERT_RTNL(); 3503 3504 /* 3505 * Clear the indoor setting in case that it is not controlled by user 3506 * space, as otherwise there is no guarantee that the device is still 3507 * operating in an indoor environment. 3508 */ 3509 spin_lock(®_indoor_lock); 3510 if (reg_is_indoor && !reg_is_indoor_portid) { 3511 reg_is_indoor = false; 3512 reg_check_channels(); 3513 } 3514 spin_unlock(®_indoor_lock); 3515 3516 reset_regdomains(true, &world_regdom); 3517 restore_alpha2(alpha2, reset_user); 3518 3519 /* 3520 * If there's any pending requests we simply 3521 * stash them to a temporary pending queue and 3522 * add then after we've restored regulatory 3523 * settings. 3524 */ 3525 spin_lock(®_requests_lock); 3526 list_splice_tail_init(®_requests_list, &tmp_reg_req_list); 3527 spin_unlock(®_requests_lock); 3528 3529 /* Clear beacon hints */ 3530 spin_lock_bh(®_pending_beacons_lock); 3531 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 3532 list_del(®_beacon->list); 3533 kfree(reg_beacon); 3534 } 3535 spin_unlock_bh(®_pending_beacons_lock); 3536 3537 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 3538 list_del(®_beacon->list); 3539 kfree(reg_beacon); 3540 } 3541 3542 /* First restore to the basic regulatory settings */ 3543 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 3544 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 3545 3546 for_each_rdev(rdev) { 3547 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) 3548 continue; 3549 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 3550 restore_custom_reg_settings(&rdev->wiphy); 3551 } 3552 3553 if (cached && (!is_an_alpha2(alpha2) || 3554 !IS_ERR_OR_NULL(cfg80211_user_regdom))) { 3555 reset_regdomains(false, cfg80211_world_regdom); 3556 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); 3557 print_regdomain(get_cfg80211_regdom()); 3558 nl80211_send_reg_change_event(&core_request_world); 3559 reg_set_request_processed(); 3560 3561 if (is_an_alpha2(alpha2) && 3562 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { 3563 struct regulatory_request *ureq; 3564 3565 spin_lock(®_requests_lock); 3566 ureq = list_last_entry(®_requests_list, 3567 struct regulatory_request, 3568 list); 3569 list_del(&ureq->list); 3570 spin_unlock(®_requests_lock); 3571 3572 notify_self_managed_wiphys(ureq); 3573 reg_update_last_request(ureq); 3574 set_regdom(reg_copy_regd(cfg80211_user_regdom), 3575 REGD_SOURCE_CACHED); 3576 } 3577 } else { 3578 regulatory_hint_core(world_alpha2); 3579 3580 /* 3581 * This restores the ieee80211_regdom module parameter 3582 * preference or the last user requested regulatory 3583 * settings, user regulatory settings takes precedence. 3584 */ 3585 if (is_an_alpha2(alpha2)) 3586 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); 3587 } 3588 3589 spin_lock(®_requests_lock); 3590 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 3591 spin_unlock(®_requests_lock); 3592 3593 pr_debug("Kicking the queue\n"); 3594 3595 schedule_work(®_work); 3596 } 3597 3598 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) 3599 { 3600 struct cfg80211_registered_device *rdev; 3601 struct wireless_dev *wdev; 3602 3603 for_each_rdev(rdev) { 3604 guard(wiphy)(&rdev->wiphy); 3605 3606 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 3607 if (!(wdev->wiphy->regulatory_flags & flag)) 3608 return false; 3609 } 3610 } 3611 3612 return true; 3613 } 3614 3615 void regulatory_hint_disconnect(void) 3616 { 3617 /* Restore of regulatory settings is not required when wiphy(s) 3618 * ignore IE from connected access point but clearance of beacon hints 3619 * is required when wiphy(s) supports beacon hints. 3620 */ 3621 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { 3622 struct reg_beacon *reg_beacon, *btmp; 3623 3624 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) 3625 return; 3626 3627 spin_lock_bh(®_pending_beacons_lock); 3628 list_for_each_entry_safe(reg_beacon, btmp, 3629 ®_pending_beacons, list) { 3630 list_del(®_beacon->list); 3631 kfree(reg_beacon); 3632 } 3633 spin_unlock_bh(®_pending_beacons_lock); 3634 3635 list_for_each_entry_safe(reg_beacon, btmp, 3636 ®_beacon_list, list) { 3637 list_del(®_beacon->list); 3638 kfree(reg_beacon); 3639 } 3640 3641 return; 3642 } 3643 3644 pr_debug("All devices are disconnected, going to restore regulatory settings\n"); 3645 restore_regulatory_settings(false, true); 3646 } 3647 3648 static bool freq_is_chan_12_13_14(u32 freq) 3649 { 3650 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || 3651 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || 3652 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) 3653 return true; 3654 return false; 3655 } 3656 3657 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 3658 { 3659 struct reg_beacon *pending_beacon; 3660 3661 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 3662 if (ieee80211_channel_equal(beacon_chan, 3663 &pending_beacon->chan)) 3664 return true; 3665 return false; 3666 } 3667 3668 void regulatory_hint_found_beacon(struct wiphy *wiphy, 3669 struct ieee80211_channel *beacon_chan, 3670 gfp_t gfp) 3671 { 3672 struct reg_beacon *reg_beacon; 3673 bool processing; 3674 3675 if (beacon_chan->beacon_found || 3676 beacon_chan->flags & IEEE80211_CHAN_RADAR || 3677 (beacon_chan->band == NL80211_BAND_2GHZ && 3678 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 3679 return; 3680 3681 spin_lock_bh(®_pending_beacons_lock); 3682 processing = pending_reg_beacon(beacon_chan); 3683 spin_unlock_bh(®_pending_beacons_lock); 3684 3685 if (processing) 3686 return; 3687 3688 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 3689 if (!reg_beacon) 3690 return; 3691 3692 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", 3693 beacon_chan->center_freq, beacon_chan->freq_offset, 3694 ieee80211_freq_khz_to_channel( 3695 ieee80211_channel_to_khz(beacon_chan)), 3696 wiphy_name(wiphy)); 3697 3698 memcpy(®_beacon->chan, beacon_chan, 3699 sizeof(struct ieee80211_channel)); 3700 3701 /* 3702 * Since we can be called from BH or and non-BH context 3703 * we must use spin_lock_bh() 3704 */ 3705 spin_lock_bh(®_pending_beacons_lock); 3706 list_add_tail(®_beacon->list, ®_pending_beacons); 3707 spin_unlock_bh(®_pending_beacons_lock); 3708 3709 schedule_work(®_work); 3710 } 3711 3712 static void print_rd_rules(const struct ieee80211_regdomain *rd) 3713 { 3714 unsigned int i; 3715 const struct ieee80211_reg_rule *reg_rule = NULL; 3716 const struct ieee80211_freq_range *freq_range = NULL; 3717 const struct ieee80211_power_rule *power_rule = NULL; 3718 char bw[32], cac_time[32]; 3719 3720 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 3721 3722 for (i = 0; i < rd->n_reg_rules; i++) { 3723 reg_rule = &rd->reg_rules[i]; 3724 freq_range = ®_rule->freq_range; 3725 power_rule = ®_rule->power_rule; 3726 3727 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 3728 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", 3729 freq_range->max_bandwidth_khz, 3730 reg_get_max_bandwidth(rd, reg_rule)); 3731 else 3732 snprintf(bw, sizeof(bw), "%d KHz", 3733 freq_range->max_bandwidth_khz); 3734 3735 if (reg_rule->flags & NL80211_RRF_DFS) 3736 scnprintf(cac_time, sizeof(cac_time), "%u s", 3737 reg_rule->dfs_cac_ms/1000); 3738 else 3739 scnprintf(cac_time, sizeof(cac_time), "N/A"); 3740 3741 3742 /* 3743 * There may not be documentation for max antenna gain 3744 * in certain regions 3745 */ 3746 if (power_rule->max_antenna_gain) 3747 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 3748 freq_range->start_freq_khz, 3749 freq_range->end_freq_khz, 3750 bw, 3751 power_rule->max_antenna_gain, 3752 power_rule->max_eirp, 3753 cac_time); 3754 else 3755 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 3756 freq_range->start_freq_khz, 3757 freq_range->end_freq_khz, 3758 bw, 3759 power_rule->max_eirp, 3760 cac_time); 3761 } 3762 } 3763 3764 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 3765 { 3766 switch (dfs_region) { 3767 case NL80211_DFS_UNSET: 3768 case NL80211_DFS_FCC: 3769 case NL80211_DFS_ETSI: 3770 case NL80211_DFS_JP: 3771 return true; 3772 default: 3773 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); 3774 return false; 3775 } 3776 } 3777 3778 static void print_regdomain(const struct ieee80211_regdomain *rd) 3779 { 3780 struct regulatory_request *lr = get_last_request(); 3781 3782 if (is_intersected_alpha2(rd->alpha2)) { 3783 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 3784 struct cfg80211_registered_device *rdev; 3785 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 3786 if (rdev) { 3787 pr_debug("Current regulatory domain updated by AP to: %c%c\n", 3788 rdev->country_ie_alpha2[0], 3789 rdev->country_ie_alpha2[1]); 3790 } else 3791 pr_debug("Current regulatory domain intersected:\n"); 3792 } else 3793 pr_debug("Current regulatory domain intersected:\n"); 3794 } else if (is_world_regdom(rd->alpha2)) { 3795 pr_debug("World regulatory domain updated:\n"); 3796 } else { 3797 if (is_unknown_alpha2(rd->alpha2)) 3798 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); 3799 else { 3800 if (reg_request_cell_base(lr)) 3801 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", 3802 rd->alpha2[0], rd->alpha2[1]); 3803 else 3804 pr_debug("Regulatory domain changed to country: %c%c\n", 3805 rd->alpha2[0], rd->alpha2[1]); 3806 } 3807 } 3808 3809 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 3810 print_rd_rules(rd); 3811 } 3812 3813 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 3814 { 3815 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 3816 print_rd_rules(rd); 3817 } 3818 3819 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 3820 { 3821 if (!is_world_regdom(rd->alpha2)) 3822 return -EINVAL; 3823 update_world_regdomain(rd); 3824 return 0; 3825 } 3826 3827 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 3828 struct regulatory_request *user_request) 3829 { 3830 const struct ieee80211_regdomain *intersected_rd = NULL; 3831 3832 if (!regdom_changes(rd->alpha2)) 3833 return -EALREADY; 3834 3835 if (!is_valid_rd(rd)) { 3836 pr_err("Invalid regulatory domain detected: %c%c\n", 3837 rd->alpha2[0], rd->alpha2[1]); 3838 print_regdomain_info(rd); 3839 return -EINVAL; 3840 } 3841 3842 if (!user_request->intersect) { 3843 reset_regdomains(false, rd); 3844 return 0; 3845 } 3846 3847 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3848 if (!intersected_rd) 3849 return -EINVAL; 3850 3851 kfree(rd); 3852 rd = NULL; 3853 reset_regdomains(false, intersected_rd); 3854 3855 return 0; 3856 } 3857 3858 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 3859 struct regulatory_request *driver_request) 3860 { 3861 const struct ieee80211_regdomain *regd; 3862 const struct ieee80211_regdomain *intersected_rd = NULL; 3863 const struct ieee80211_regdomain *tmp = NULL; 3864 struct wiphy *request_wiphy; 3865 3866 if (is_world_regdom(rd->alpha2)) 3867 return -EINVAL; 3868 3869 if (!regdom_changes(rd->alpha2)) 3870 return -EALREADY; 3871 3872 if (!is_valid_rd(rd)) { 3873 pr_err("Invalid regulatory domain detected: %c%c\n", 3874 rd->alpha2[0], rd->alpha2[1]); 3875 print_regdomain_info(rd); 3876 return -EINVAL; 3877 } 3878 3879 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 3880 if (!request_wiphy) 3881 return -ENODEV; 3882 3883 if (!driver_request->intersect) { 3884 ASSERT_RTNL(); 3885 scoped_guard(wiphy, request_wiphy) { 3886 if (request_wiphy->regd) 3887 tmp = get_wiphy_regdom(request_wiphy); 3888 3889 regd = reg_copy_regd(rd); 3890 if (IS_ERR(regd)) 3891 return PTR_ERR(regd); 3892 3893 rcu_assign_pointer(request_wiphy->regd, regd); 3894 rcu_free_regdom(tmp); 3895 } 3896 3897 reset_regdomains(false, rd); 3898 return 0; 3899 } 3900 3901 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 3902 if (!intersected_rd) 3903 return -EINVAL; 3904 3905 /* 3906 * We can trash what CRDA provided now. 3907 * However if a driver requested this specific regulatory 3908 * domain we keep it for its private use 3909 */ 3910 tmp = get_wiphy_regdom(request_wiphy); 3911 rcu_assign_pointer(request_wiphy->regd, rd); 3912 rcu_free_regdom(tmp); 3913 3914 rd = NULL; 3915 3916 reset_regdomains(false, intersected_rd); 3917 3918 return 0; 3919 } 3920 3921 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 3922 struct regulatory_request *country_ie_request) 3923 { 3924 struct wiphy *request_wiphy; 3925 3926 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 3927 !is_unknown_alpha2(rd->alpha2)) 3928 return -EINVAL; 3929 3930 /* 3931 * Lets only bother proceeding on the same alpha2 if the current 3932 * rd is non static (it means CRDA was present and was used last) 3933 * and the pending request came in from a country IE 3934 */ 3935 3936 if (!is_valid_rd(rd)) { 3937 pr_err("Invalid regulatory domain detected: %c%c\n", 3938 rd->alpha2[0], rd->alpha2[1]); 3939 print_regdomain_info(rd); 3940 return -EINVAL; 3941 } 3942 3943 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 3944 if (!request_wiphy) 3945 return -ENODEV; 3946 3947 if (country_ie_request->intersect) 3948 return -EINVAL; 3949 3950 reset_regdomains(false, rd); 3951 return 0; 3952 } 3953 3954 /* 3955 * Use this call to set the current regulatory domain. Conflicts with 3956 * multiple drivers can be ironed out later. Caller must've already 3957 * kmalloc'd the rd structure. 3958 */ 3959 int set_regdom(const struct ieee80211_regdomain *rd, 3960 enum ieee80211_regd_source regd_src) 3961 { 3962 struct regulatory_request *lr; 3963 bool user_reset = false; 3964 int r; 3965 3966 if (IS_ERR_OR_NULL(rd)) 3967 return -ENODATA; 3968 3969 if (!reg_is_valid_request(rd->alpha2)) { 3970 kfree(rd); 3971 return -EINVAL; 3972 } 3973 3974 if (regd_src == REGD_SOURCE_CRDA) 3975 reset_crda_timeouts(); 3976 3977 lr = get_last_request(); 3978 3979 /* Note that this doesn't update the wiphys, this is done below */ 3980 switch (lr->initiator) { 3981 case NL80211_REGDOM_SET_BY_CORE: 3982 r = reg_set_rd_core(rd); 3983 break; 3984 case NL80211_REGDOM_SET_BY_USER: 3985 cfg80211_save_user_regdom(rd); 3986 r = reg_set_rd_user(rd, lr); 3987 user_reset = true; 3988 break; 3989 case NL80211_REGDOM_SET_BY_DRIVER: 3990 r = reg_set_rd_driver(rd, lr); 3991 break; 3992 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 3993 r = reg_set_rd_country_ie(rd, lr); 3994 break; 3995 default: 3996 WARN(1, "invalid initiator %d\n", lr->initiator); 3997 kfree(rd); 3998 return -EINVAL; 3999 } 4000 4001 if (r) { 4002 switch (r) { 4003 case -EALREADY: 4004 reg_set_request_processed(); 4005 break; 4006 default: 4007 /* Back to world regulatory in case of errors */ 4008 restore_regulatory_settings(user_reset, false); 4009 } 4010 4011 kfree(rd); 4012 return r; 4013 } 4014 4015 /* This would make this whole thing pointless */ 4016 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 4017 return -EINVAL; 4018 4019 /* update all wiphys now with the new established regulatory domain */ 4020 update_all_wiphy_regulatory(lr->initiator); 4021 4022 print_regdomain(get_cfg80211_regdom()); 4023 4024 nl80211_send_reg_change_event(lr); 4025 4026 reg_set_request_processed(); 4027 4028 return 0; 4029 } 4030 4031 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, 4032 struct ieee80211_regdomain *rd) 4033 { 4034 const struct ieee80211_regdomain *regd; 4035 const struct ieee80211_regdomain *prev_regd; 4036 struct cfg80211_registered_device *rdev; 4037 4038 if (WARN_ON(!wiphy || !rd)) 4039 return -EINVAL; 4040 4041 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), 4042 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) 4043 return -EPERM; 4044 4045 if (WARN(!is_valid_rd(rd), 4046 "Invalid regulatory domain detected: %c%c\n", 4047 rd->alpha2[0], rd->alpha2[1])) { 4048 print_regdomain_info(rd); 4049 return -EINVAL; 4050 } 4051 4052 regd = reg_copy_regd(rd); 4053 if (IS_ERR(regd)) 4054 return PTR_ERR(regd); 4055 4056 rdev = wiphy_to_rdev(wiphy); 4057 4058 spin_lock(®_requests_lock); 4059 prev_regd = rdev->requested_regd; 4060 rdev->requested_regd = regd; 4061 spin_unlock(®_requests_lock); 4062 4063 kfree(prev_regd); 4064 return 0; 4065 } 4066 4067 int regulatory_set_wiphy_regd(struct wiphy *wiphy, 4068 struct ieee80211_regdomain *rd) 4069 { 4070 int ret = __regulatory_set_wiphy_regd(wiphy, rd); 4071 4072 if (ret) 4073 return ret; 4074 4075 schedule_work(®_work); 4076 return 0; 4077 } 4078 EXPORT_SYMBOL(regulatory_set_wiphy_regd); 4079 4080 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, 4081 struct ieee80211_regdomain *rd) 4082 { 4083 int ret; 4084 4085 ASSERT_RTNL(); 4086 4087 ret = __regulatory_set_wiphy_regd(wiphy, rd); 4088 if (ret) 4089 return ret; 4090 4091 /* process the request immediately */ 4092 reg_process_self_managed_hint(wiphy); 4093 reg_check_channels(); 4094 return 0; 4095 } 4096 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); 4097 4098 void wiphy_regulatory_register(struct wiphy *wiphy) 4099 { 4100 struct regulatory_request *lr = get_last_request(); 4101 4102 /* self-managed devices ignore beacon hints and country IE */ 4103 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { 4104 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | 4105 REGULATORY_COUNTRY_IE_IGNORE; 4106 4107 /* 4108 * The last request may have been received before this 4109 * registration call. Call the driver notifier if 4110 * initiator is USER. 4111 */ 4112 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 4113 reg_call_notifier(wiphy, lr); 4114 } 4115 4116 if (!reg_dev_ignore_cell_hint(wiphy)) 4117 reg_num_devs_support_basehint++; 4118 4119 wiphy_update_regulatory(wiphy, lr->initiator); 4120 wiphy_all_share_dfs_chan_state(wiphy); 4121 reg_process_self_managed_hints(); 4122 } 4123 4124 void wiphy_regulatory_deregister(struct wiphy *wiphy) 4125 { 4126 struct wiphy *request_wiphy = NULL; 4127 struct regulatory_request *lr; 4128 4129 lr = get_last_request(); 4130 4131 if (!reg_dev_ignore_cell_hint(wiphy)) 4132 reg_num_devs_support_basehint--; 4133 4134 rcu_free_regdom(get_wiphy_regdom(wiphy)); 4135 RCU_INIT_POINTER(wiphy->regd, NULL); 4136 4137 if (lr) 4138 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 4139 4140 if (!request_wiphy || request_wiphy != wiphy) 4141 return; 4142 4143 lr->wiphy_idx = WIPHY_IDX_INVALID; 4144 lr->country_ie_env = ENVIRON_ANY; 4145 } 4146 4147 /* 4148 * See FCC notices for UNII band definitions 4149 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii 4150 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 4151 */ 4152 int cfg80211_get_unii(int freq) 4153 { 4154 /* UNII-1 */ 4155 if (freq >= 5150 && freq <= 5250) 4156 return 0; 4157 4158 /* UNII-2A */ 4159 if (freq > 5250 && freq <= 5350) 4160 return 1; 4161 4162 /* UNII-2B */ 4163 if (freq > 5350 && freq <= 5470) 4164 return 2; 4165 4166 /* UNII-2C */ 4167 if (freq > 5470 && freq <= 5725) 4168 return 3; 4169 4170 /* UNII-3 */ 4171 if (freq > 5725 && freq <= 5825) 4172 return 4; 4173 4174 /* UNII-5 */ 4175 if (freq > 5925 && freq <= 6425) 4176 return 5; 4177 4178 /* UNII-6 */ 4179 if (freq > 6425 && freq <= 6525) 4180 return 6; 4181 4182 /* UNII-7 */ 4183 if (freq > 6525 && freq <= 6875) 4184 return 7; 4185 4186 /* UNII-8 */ 4187 if (freq > 6875 && freq <= 7125) 4188 return 8; 4189 4190 return -EINVAL; 4191 } 4192 4193 bool regulatory_indoor_allowed(void) 4194 { 4195 return reg_is_indoor; 4196 } 4197 4198 bool regulatory_pre_cac_allowed(struct wiphy *wiphy) 4199 { 4200 const struct ieee80211_regdomain *regd = NULL; 4201 const struct ieee80211_regdomain *wiphy_regd = NULL; 4202 bool pre_cac_allowed = false; 4203 4204 rcu_read_lock(); 4205 4206 regd = rcu_dereference(cfg80211_regdomain); 4207 wiphy_regd = rcu_dereference(wiphy->regd); 4208 if (!wiphy_regd) { 4209 if (regd->dfs_region == NL80211_DFS_ETSI) 4210 pre_cac_allowed = true; 4211 4212 rcu_read_unlock(); 4213 4214 return pre_cac_allowed; 4215 } 4216 4217 if (regd->dfs_region == wiphy_regd->dfs_region && 4218 wiphy_regd->dfs_region == NL80211_DFS_ETSI) 4219 pre_cac_allowed = true; 4220 4221 rcu_read_unlock(); 4222 4223 return pre_cac_allowed; 4224 } 4225 EXPORT_SYMBOL(regulatory_pre_cac_allowed); 4226 4227 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) 4228 { 4229 struct wireless_dev *wdev; 4230 unsigned int link_id; 4231 4232 /* If we finished CAC or received radar, we should end any 4233 * CAC running on the same channels. 4234 * the check !cfg80211_chandef_dfs_usable contain 2 options: 4235 * either all channels are available - those the CAC_FINISHED 4236 * event has effected another wdev state, or there is a channel 4237 * in unavailable state in wdev chandef - those the RADAR_DETECTED 4238 * event has effected another wdev state. 4239 * In both cases we should end the CAC on the wdev. 4240 */ 4241 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 4242 struct cfg80211_chan_def *chandef; 4243 4244 for_each_valid_link(wdev, link_id) { 4245 if (!wdev->links[link_id].cac_started) 4246 continue; 4247 4248 chandef = wdev_chandef(wdev, link_id); 4249 if (!chandef) 4250 continue; 4251 4252 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) 4253 rdev_end_cac(rdev, wdev->netdev, link_id); 4254 } 4255 } 4256 } 4257 4258 void regulatory_propagate_dfs_state(struct wiphy *wiphy, 4259 struct cfg80211_chan_def *chandef, 4260 enum nl80211_dfs_state dfs_state, 4261 enum nl80211_radar_event event) 4262 { 4263 struct cfg80211_registered_device *rdev; 4264 4265 ASSERT_RTNL(); 4266 4267 if (WARN_ON(!cfg80211_chandef_valid(chandef))) 4268 return; 4269 4270 for_each_rdev(rdev) { 4271 if (wiphy == &rdev->wiphy) 4272 continue; 4273 4274 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) 4275 continue; 4276 4277 if (!ieee80211_get_channel(&rdev->wiphy, 4278 chandef->chan->center_freq)) 4279 continue; 4280 4281 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); 4282 4283 if (event == NL80211_RADAR_DETECTED || 4284 event == NL80211_RADAR_CAC_FINISHED) { 4285 cfg80211_sched_dfs_chan_update(rdev); 4286 cfg80211_check_and_end_cac(rdev); 4287 } 4288 4289 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); 4290 } 4291 } 4292 4293 static int __init regulatory_init_db(void) 4294 { 4295 int err; 4296 4297 /* 4298 * It's possible that - due to other bugs/issues - cfg80211 4299 * never called regulatory_init() below, or that it failed; 4300 * in that case, don't try to do any further work here as 4301 * it's doomed to lead to crashes. 4302 */ 4303 if (IS_ERR_OR_NULL(reg_pdev)) 4304 return -EINVAL; 4305 4306 err = load_builtin_regdb_keys(); 4307 if (err) { 4308 platform_device_unregister(reg_pdev); 4309 return err; 4310 } 4311 4312 /* We always try to get an update for the static regdomain */ 4313 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 4314 if (err) { 4315 if (err == -ENOMEM) { 4316 platform_device_unregister(reg_pdev); 4317 return err; 4318 } 4319 /* 4320 * N.B. kobject_uevent_env() can fail mainly for when we're out 4321 * memory which is handled and propagated appropriately above 4322 * but it can also fail during a netlink_broadcast() or during 4323 * early boot for call_usermodehelper(). For now treat these 4324 * errors as non-fatal. 4325 */ 4326 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 4327 } 4328 4329 /* 4330 * Finally, if the user set the module parameter treat it 4331 * as a user hint. 4332 */ 4333 if (!is_world_regdom(ieee80211_regdom)) 4334 regulatory_hint_user(ieee80211_regdom, 4335 NL80211_USER_REG_HINT_USER); 4336 4337 return 0; 4338 } 4339 #ifndef MODULE 4340 late_initcall(regulatory_init_db); 4341 #endif 4342 4343 int __init regulatory_init(void) 4344 { 4345 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 4346 if (IS_ERR(reg_pdev)) 4347 return PTR_ERR(reg_pdev); 4348 4349 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 4350 4351 user_alpha2[0] = '9'; 4352 user_alpha2[1] = '7'; 4353 4354 #ifdef MODULE 4355 return regulatory_init_db(); 4356 #else 4357 return 0; 4358 #endif 4359 } 4360 4361 void regulatory_exit(void) 4362 { 4363 struct regulatory_request *reg_request, *tmp; 4364 struct reg_beacon *reg_beacon, *btmp; 4365 4366 cancel_work_sync(®_work); 4367 cancel_crda_timeout_sync(); 4368 cancel_delayed_work_sync(®_check_chans); 4369 4370 /* Lock to suppress warnings */ 4371 rtnl_lock(); 4372 reset_regdomains(true, NULL); 4373 rtnl_unlock(); 4374 4375 dev_set_uevent_suppress(®_pdev->dev, true); 4376 4377 platform_device_unregister(reg_pdev); 4378 4379 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 4380 list_del(®_beacon->list); 4381 kfree(reg_beacon); 4382 } 4383 4384 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 4385 list_del(®_beacon->list); 4386 kfree(reg_beacon); 4387 } 4388 4389 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 4390 list_del(®_request->list); 4391 kfree(reg_request); 4392 } 4393 4394 if (!IS_ERR_OR_NULL(regdb)) 4395 kfree(regdb); 4396 if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) 4397 kfree(cfg80211_user_regdom); 4398 4399 free_regdb_keyring(); 4400 } 4401