1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/sunrpc/stats.h>
16 #include <linux/sunrpc/svc_xprt.h>
17 #include <linux/sunrpc/svcsock.h>
18 #include <linux/sunrpc/xprt.h>
19 #include <linux/sunrpc/bc_xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23 
24 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
25 
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 
29 
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35 
36 /* apparently the "standard" is that clients close
37  * idle connections after 5 minutes, servers after
38  * 6 minutes
39  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40  */
41 static int svc_conn_age_period = 6*60;
42 
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46 
47 /* SMP locking strategy:
48  *
49  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50  *	when both need to be taken (rare), svc_serv->sv_lock is first.
51  *	The "service mutex" protects svc_serv->sv_nrthread.
52  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
53  *             and the ->sk_info_authunix cache.
54  *
55  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56  *	enqueued multiply. During normal transport processing this bit
57  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58  *	Providers should not manipulate this bit directly.
59  *
60  *	Some flags can be set to certain values at any time
61  *	providing that certain rules are followed:
62  *
63  *	XPT_CONN, XPT_DATA:
64  *		- Can be set or cleared at any time.
65  *		- After a set, svc_xprt_enqueue must be called to enqueue
66  *		  the transport for processing.
67  *		- After a clear, the transport must be read/accepted.
68  *		  If this succeeds, it must be set again.
69  *	XPT_CLOSE:
70  *		- Can set at any time. It is never cleared.
71  *      XPT_DEAD:
72  *		- Can only be set while XPT_BUSY is held which ensures
73  *		  that no other thread will be using the transport or will
74  *		  try to set XPT_DEAD.
75  */
76 
77 /**
78  * svc_reg_xprt_class - Register a server-side RPC transport class
79  * @xcl: New transport class to be registered
80  *
81  * Returns zero on success; otherwise a negative errno is returned.
82  */
83 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
84 {
85 	struct svc_xprt_class *cl;
86 	int res = -EEXIST;
87 
88 	INIT_LIST_HEAD(&xcl->xcl_list);
89 	spin_lock(&svc_xprt_class_lock);
90 	/* Make sure there isn't already a class with the same name */
91 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
92 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
93 			goto out;
94 	}
95 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
96 	res = 0;
97 out:
98 	spin_unlock(&svc_xprt_class_lock);
99 	return res;
100 }
101 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
102 
103 /**
104  * svc_unreg_xprt_class - Unregister a server-side RPC transport class
105  * @xcl: Transport class to be unregistered
106  *
107  */
108 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
109 {
110 	spin_lock(&svc_xprt_class_lock);
111 	list_del_init(&xcl->xcl_list);
112 	spin_unlock(&svc_xprt_class_lock);
113 }
114 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
115 
116 /**
117  * svc_print_xprts - Format the transport list for printing
118  * @buf: target buffer for formatted address
119  * @maxlen: length of target buffer
120  *
121  * Fills in @buf with a string containing a list of transport names, each name
122  * terminated with '\n'. If the buffer is too small, some entries may be
123  * missing, but it is guaranteed that all lines in the output buffer are
124  * complete.
125  *
126  * Returns positive length of the filled-in string.
127  */
128 int svc_print_xprts(char *buf, int maxlen)
129 {
130 	struct svc_xprt_class *xcl;
131 	char tmpstr[80];
132 	int len = 0;
133 	buf[0] = '\0';
134 
135 	spin_lock(&svc_xprt_class_lock);
136 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
137 		int slen;
138 
139 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
140 				xcl->xcl_name, xcl->xcl_max_payload);
141 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
142 			break;
143 		len += slen;
144 		strcat(buf, tmpstr);
145 	}
146 	spin_unlock(&svc_xprt_class_lock);
147 
148 	return len;
149 }
150 
151 /**
152  * svc_xprt_deferred_close - Close a transport
153  * @xprt: transport instance
154  *
155  * Used in contexts that need to defer the work of shutting down
156  * the transport to an nfsd thread.
157  */
158 void svc_xprt_deferred_close(struct svc_xprt *xprt)
159 {
160 	trace_svc_xprt_close(xprt);
161 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
162 		svc_xprt_enqueue(xprt);
163 }
164 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
165 
166 static void svc_xprt_free(struct kref *kref)
167 {
168 	struct svc_xprt *xprt =
169 		container_of(kref, struct svc_xprt, xpt_ref);
170 	struct module *owner = xprt->xpt_class->xcl_owner;
171 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
172 		svcauth_unix_info_release(xprt);
173 	put_cred(xprt->xpt_cred);
174 	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
175 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
176 	if (xprt->xpt_bc_xprt)
177 		xprt_put(xprt->xpt_bc_xprt);
178 	if (xprt->xpt_bc_xps)
179 		xprt_switch_put(xprt->xpt_bc_xps);
180 	trace_svc_xprt_free(xprt);
181 	xprt->xpt_ops->xpo_free(xprt);
182 	module_put(owner);
183 }
184 
185 void svc_xprt_put(struct svc_xprt *xprt)
186 {
187 	kref_put(&xprt->xpt_ref, svc_xprt_free);
188 }
189 EXPORT_SYMBOL_GPL(svc_xprt_put);
190 
191 /*
192  * Called by transport drivers to initialize the transport independent
193  * portion of the transport instance.
194  */
195 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
196 		   struct svc_xprt *xprt, struct svc_serv *serv)
197 {
198 	memset(xprt, 0, sizeof(*xprt));
199 	xprt->xpt_class = xcl;
200 	xprt->xpt_ops = xcl->xcl_ops;
201 	kref_init(&xprt->xpt_ref);
202 	xprt->xpt_server = serv;
203 	INIT_LIST_HEAD(&xprt->xpt_list);
204 	INIT_LIST_HEAD(&xprt->xpt_deferred);
205 	INIT_LIST_HEAD(&xprt->xpt_users);
206 	mutex_init(&xprt->xpt_mutex);
207 	spin_lock_init(&xprt->xpt_lock);
208 	set_bit(XPT_BUSY, &xprt->xpt_flags);
209 	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
210 	strcpy(xprt->xpt_remotebuf, "uninitialized");
211 }
212 EXPORT_SYMBOL_GPL(svc_xprt_init);
213 
214 /**
215  * svc_xprt_received - start next receiver thread
216  * @xprt: controlling transport
217  *
218  * The caller must hold the XPT_BUSY bit and must
219  * not thereafter touch transport data.
220  *
221  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
222  * insufficient) data.
223  */
224 void svc_xprt_received(struct svc_xprt *xprt)
225 {
226 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
227 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
228 		return;
229 	}
230 
231 	/* As soon as we clear busy, the xprt could be closed and
232 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
233 	 */
234 	svc_xprt_get(xprt);
235 	smp_mb__before_atomic();
236 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
237 	svc_xprt_enqueue(xprt);
238 	svc_xprt_put(xprt);
239 }
240 EXPORT_SYMBOL_GPL(svc_xprt_received);
241 
242 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
243 {
244 	clear_bit(XPT_TEMP, &new->xpt_flags);
245 	spin_lock_bh(&serv->sv_lock);
246 	list_add(&new->xpt_list, &serv->sv_permsocks);
247 	spin_unlock_bh(&serv->sv_lock);
248 	svc_xprt_received(new);
249 }
250 
251 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
252 			    struct net *net, struct sockaddr *sap,
253 			    size_t len, int flags, const struct cred *cred)
254 {
255 	struct svc_xprt_class *xcl;
256 
257 	spin_lock(&svc_xprt_class_lock);
258 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
259 		struct svc_xprt *newxprt;
260 		unsigned short newport;
261 
262 		if (strcmp(xprt_name, xcl->xcl_name))
263 			continue;
264 
265 		if (!try_module_get(xcl->xcl_owner))
266 			goto err;
267 
268 		spin_unlock(&svc_xprt_class_lock);
269 		newxprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
270 		if (IS_ERR(newxprt)) {
271 			trace_svc_xprt_create_err(serv->sv_programs->pg_name,
272 						  xcl->xcl_name, sap, len,
273 						  newxprt);
274 			module_put(xcl->xcl_owner);
275 			return PTR_ERR(newxprt);
276 		}
277 		newxprt->xpt_cred = get_cred(cred);
278 		svc_add_new_perm_xprt(serv, newxprt);
279 		newport = svc_xprt_local_port(newxprt);
280 		return newport;
281 	}
282  err:
283 	spin_unlock(&svc_xprt_class_lock);
284 	/* This errno is exposed to user space.  Provide a reasonable
285 	 * perror msg for a bad transport. */
286 	return -EPROTONOSUPPORT;
287 }
288 
289 /**
290  * svc_xprt_create_from_sa - Add a new listener to @serv from socket address
291  * @serv: target RPC service
292  * @xprt_name: transport class name
293  * @net: network namespace
294  * @sap: socket address pointer
295  * @flags: SVC_SOCK flags
296  * @cred: credential to bind to this transport
297  *
298  * Return local xprt port on success or %-EPROTONOSUPPORT on failure
299  */
300 int svc_xprt_create_from_sa(struct svc_serv *serv, const char *xprt_name,
301 			    struct net *net, struct sockaddr *sap,
302 			    int flags, const struct cred *cred)
303 {
304 	size_t len;
305 	int err;
306 
307 	switch (sap->sa_family) {
308 	case AF_INET:
309 		len = sizeof(struct sockaddr_in);
310 		break;
311 #if IS_ENABLED(CONFIG_IPV6)
312 	case AF_INET6:
313 		len = sizeof(struct sockaddr_in6);
314 		break;
315 #endif
316 	default:
317 		return -EAFNOSUPPORT;
318 	}
319 
320 	err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags, cred);
321 	if (err == -EPROTONOSUPPORT) {
322 		request_module("svc%s", xprt_name);
323 		err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags,
324 				       cred);
325 	}
326 
327 	return err;
328 }
329 EXPORT_SYMBOL_GPL(svc_xprt_create_from_sa);
330 
331 /**
332  * svc_xprt_create - Add a new listener to @serv
333  * @serv: target RPC service
334  * @xprt_name: transport class name
335  * @net: network namespace
336  * @family: network address family
337  * @port: listener port
338  * @flags: SVC_SOCK flags
339  * @cred: credential to bind to this transport
340  *
341  * Return local xprt port on success or %-EPROTONOSUPPORT on failure
342  */
343 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
344 		    struct net *net, const int family,
345 		    const unsigned short port, int flags,
346 		    const struct cred *cred)
347 {
348 	struct sockaddr_in sin = {
349 		.sin_family		= AF_INET,
350 		.sin_addr.s_addr	= htonl(INADDR_ANY),
351 		.sin_port		= htons(port),
352 	};
353 #if IS_ENABLED(CONFIG_IPV6)
354 	struct sockaddr_in6 sin6 = {
355 		.sin6_family		= AF_INET6,
356 		.sin6_addr		= IN6ADDR_ANY_INIT,
357 		.sin6_port		= htons(port),
358 	};
359 #endif
360 	struct sockaddr *sap;
361 
362 	switch (family) {
363 	case PF_INET:
364 		sap = (struct sockaddr *)&sin;
365 		break;
366 #if IS_ENABLED(CONFIG_IPV6)
367 	case PF_INET6:
368 		sap = (struct sockaddr *)&sin6;
369 		break;
370 #endif
371 	default:
372 		return -EAFNOSUPPORT;
373 	}
374 
375 	return svc_xprt_create_from_sa(serv, xprt_name, net, sap, flags, cred);
376 }
377 EXPORT_SYMBOL_GPL(svc_xprt_create);
378 
379 /*
380  * Copy the local and remote xprt addresses to the rqstp structure
381  */
382 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
383 {
384 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
385 	rqstp->rq_addrlen = xprt->xpt_remotelen;
386 
387 	/*
388 	 * Destination address in request is needed for binding the
389 	 * source address in RPC replies/callbacks later.
390 	 */
391 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
392 	rqstp->rq_daddrlen = xprt->xpt_locallen;
393 }
394 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
395 
396 /**
397  * svc_print_addr - Format rq_addr field for printing
398  * @rqstp: svc_rqst struct containing address to print
399  * @buf: target buffer for formatted address
400  * @len: length of target buffer
401  *
402  */
403 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
404 {
405 	return __svc_print_addr(svc_addr(rqstp), buf, len);
406 }
407 EXPORT_SYMBOL_GPL(svc_print_addr);
408 
409 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
410 {
411 	unsigned int limit = svc_rpc_per_connection_limit;
412 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
413 
414 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
415 }
416 
417 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
418 {
419 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
420 		if (!svc_xprt_slots_in_range(xprt))
421 			return false;
422 		atomic_inc(&xprt->xpt_nr_rqsts);
423 		set_bit(RQ_DATA, &rqstp->rq_flags);
424 	}
425 	return true;
426 }
427 
428 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
429 {
430 	struct svc_xprt	*xprt = rqstp->rq_xprt;
431 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
432 		atomic_dec(&xprt->xpt_nr_rqsts);
433 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
434 		svc_xprt_enqueue(xprt);
435 	}
436 }
437 
438 static bool svc_xprt_ready(struct svc_xprt *xprt)
439 {
440 	unsigned long xpt_flags;
441 
442 	/*
443 	 * If another cpu has recently updated xpt_flags,
444 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
445 	 * know about it; otherwise it's possible that both that cpu and
446 	 * this one could call svc_xprt_enqueue() without either
447 	 * svc_xprt_enqueue() recognizing that the conditions below
448 	 * are satisfied, and we could stall indefinitely:
449 	 */
450 	smp_rmb();
451 	xpt_flags = READ_ONCE(xprt->xpt_flags);
452 
453 	trace_svc_xprt_enqueue(xprt, xpt_flags);
454 	if (xpt_flags & BIT(XPT_BUSY))
455 		return false;
456 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE)))
457 		return true;
458 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
459 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
460 		    svc_xprt_slots_in_range(xprt))
461 			return true;
462 		trace_svc_xprt_no_write_space(xprt);
463 		return false;
464 	}
465 	return false;
466 }
467 
468 /**
469  * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
470  * @xprt: transport with data pending
471  *
472  */
473 void svc_xprt_enqueue(struct svc_xprt *xprt)
474 {
475 	struct svc_pool *pool;
476 
477 	if (!svc_xprt_ready(xprt))
478 		return;
479 
480 	/* Mark transport as busy. It will remain in this state until
481 	 * the provider calls svc_xprt_received. We update XPT_BUSY
482 	 * atomically because it also guards against trying to enqueue
483 	 * the transport twice.
484 	 */
485 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
486 		return;
487 
488 	pool = svc_pool_for_cpu(xprt->xpt_server);
489 
490 	percpu_counter_inc(&pool->sp_sockets_queued);
491 	xprt->xpt_qtime = ktime_get();
492 	lwq_enqueue(&xprt->xpt_ready, &pool->sp_xprts);
493 
494 	svc_pool_wake_idle_thread(pool);
495 }
496 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
497 
498 /*
499  * Dequeue the first transport, if there is one.
500  */
501 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
502 {
503 	struct svc_xprt	*xprt = NULL;
504 
505 	xprt = lwq_dequeue(&pool->sp_xprts, struct svc_xprt, xpt_ready);
506 	if (xprt)
507 		svc_xprt_get(xprt);
508 	return xprt;
509 }
510 
511 /**
512  * svc_reserve - change the space reserved for the reply to a request.
513  * @rqstp:  The request in question
514  * @space: new max space to reserve
515  *
516  * Each request reserves some space on the output queue of the transport
517  * to make sure the reply fits.  This function reduces that reserved
518  * space to be the amount of space used already, plus @space.
519  *
520  */
521 void svc_reserve(struct svc_rqst *rqstp, int space)
522 {
523 	struct svc_xprt *xprt = rqstp->rq_xprt;
524 
525 	space += rqstp->rq_res.head[0].iov_len;
526 
527 	if (xprt && space < rqstp->rq_reserved) {
528 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
529 		rqstp->rq_reserved = space;
530 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
531 		svc_xprt_enqueue(xprt);
532 	}
533 }
534 EXPORT_SYMBOL_GPL(svc_reserve);
535 
536 static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr)
537 {
538 	if (!dr)
539 		return;
540 
541 	xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt);
542 	kfree(dr);
543 }
544 
545 static void svc_xprt_release(struct svc_rqst *rqstp)
546 {
547 	struct svc_xprt	*xprt = rqstp->rq_xprt;
548 
549 	xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
550 	rqstp->rq_xprt_ctxt = NULL;
551 
552 	free_deferred(xprt, rqstp->rq_deferred);
553 	rqstp->rq_deferred = NULL;
554 
555 	svc_rqst_release_pages(rqstp);
556 	rqstp->rq_res.page_len = 0;
557 	rqstp->rq_res.page_base = 0;
558 
559 	/* Reset response buffer and release
560 	 * the reservation.
561 	 * But first, check that enough space was reserved
562 	 * for the reply, otherwise we have a bug!
563 	 */
564 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
565 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
566 		       rqstp->rq_reserved,
567 		       rqstp->rq_res.len);
568 
569 	rqstp->rq_res.head[0].iov_len = 0;
570 	svc_reserve(rqstp, 0);
571 	svc_xprt_release_slot(rqstp);
572 	rqstp->rq_xprt = NULL;
573 	svc_xprt_put(xprt);
574 }
575 
576 /**
577  * svc_wake_up - Wake up a service thread for non-transport work
578  * @serv: RPC service
579  *
580  * Some svc_serv's will have occasional work to do, even when a xprt is not
581  * waiting to be serviced. This function is there to "kick" a task in one of
582  * those services so that it can wake up and do that work. Note that we only
583  * bother with pool 0 as we don't need to wake up more than one thread for
584  * this purpose.
585  */
586 void svc_wake_up(struct svc_serv *serv)
587 {
588 	struct svc_pool *pool = &serv->sv_pools[0];
589 
590 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
591 	svc_pool_wake_idle_thread(pool);
592 }
593 EXPORT_SYMBOL_GPL(svc_wake_up);
594 
595 int svc_port_is_privileged(struct sockaddr *sin)
596 {
597 	switch (sin->sa_family) {
598 	case AF_INET:
599 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
600 			< PROT_SOCK;
601 	case AF_INET6:
602 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
603 			< PROT_SOCK;
604 	default:
605 		return 0;
606 	}
607 }
608 
609 /*
610  * Make sure that we don't have too many connections that have not yet
611  * demonstrated that they have access to the NFS server. If we have,
612  * something must be dropped. It's not clear what will happen if we allow
613  * "too many" connections, but when dealing with network-facing software,
614  * we have to code defensively. Here we do that by imposing hard limits.
615  *
616  * There's no point in trying to do random drop here for DoS
617  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
618  * attacker can easily beat that.
619  *
620  * The only somewhat efficient mechanism would be if drop old
621  * connections from the same IP first. But right now we don't even
622  * record the client IP in svc_sock.
623  */
624 static void svc_check_conn_limits(struct svc_serv *serv)
625 {
626 	if (serv->sv_tmpcnt > XPT_MAX_TMP_CONN) {
627 		struct svc_xprt *xprt = NULL, *xprti;
628 		spin_lock_bh(&serv->sv_lock);
629 		if (!list_empty(&serv->sv_tempsocks)) {
630 			/*
631 			 * Always select the oldest connection. It's not fair,
632 			 * but nor is life.
633 			 */
634 			list_for_each_entry_reverse(xprti, &serv->sv_tempsocks,
635 						    xpt_list) {
636 				if (!test_bit(XPT_PEER_VALID, &xprti->xpt_flags)) {
637 					xprt = xprti;
638 					set_bit(XPT_CLOSE, &xprt->xpt_flags);
639 					svc_xprt_get(xprt);
640 					break;
641 				}
642 			}
643 		}
644 		spin_unlock_bh(&serv->sv_lock);
645 
646 		if (xprt) {
647 			svc_xprt_enqueue(xprt);
648 			svc_xprt_put(xprt);
649 		}
650 	}
651 }
652 
653 static bool svc_alloc_arg(struct svc_rqst *rqstp)
654 {
655 	struct xdr_buf *arg = &rqstp->rq_arg;
656 	unsigned long pages, filled, ret;
657 
658 	pages = rqstp->rq_maxpages;
659 	for (filled = 0; filled < pages; filled = ret) {
660 		ret = alloc_pages_bulk(GFP_KERNEL, pages, rqstp->rq_pages);
661 		if (ret > filled)
662 			/* Made progress, don't sleep yet */
663 			continue;
664 
665 		set_current_state(TASK_IDLE);
666 		if (svc_thread_should_stop(rqstp)) {
667 			set_current_state(TASK_RUNNING);
668 			return false;
669 		}
670 		trace_svc_alloc_arg_err(pages, ret);
671 		memalloc_retry_wait(GFP_KERNEL);
672 	}
673 	rqstp->rq_page_end = &rqstp->rq_pages[pages];
674 	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
675 
676 	/* Make arg->head point to first page and arg->pages point to rest */
677 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
678 	arg->head[0].iov_len = PAGE_SIZE;
679 	arg->pages = rqstp->rq_pages + 1;
680 	arg->page_base = 0;
681 	/* save at least one page for response */
682 	arg->page_len = (pages-2)*PAGE_SIZE;
683 	arg->len = (pages-1)*PAGE_SIZE;
684 	arg->tail[0].iov_len = 0;
685 
686 	rqstp->rq_xid = xdr_zero;
687 	return true;
688 }
689 
690 static bool
691 svc_thread_should_sleep(struct svc_rqst *rqstp)
692 {
693 	struct svc_pool		*pool = rqstp->rq_pool;
694 
695 	/* did someone call svc_wake_up? */
696 	if (test_bit(SP_TASK_PENDING, &pool->sp_flags))
697 		return false;
698 
699 	/* was a socket queued? */
700 	if (!lwq_empty(&pool->sp_xprts))
701 		return false;
702 
703 	/* are we shutting down? */
704 	if (svc_thread_should_stop(rqstp))
705 		return false;
706 
707 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
708 	if (svc_is_backchannel(rqstp)) {
709 		if (!lwq_empty(&rqstp->rq_server->sv_cb_list))
710 			return false;
711 	}
712 #endif
713 
714 	return true;
715 }
716 
717 static void svc_thread_wait_for_work(struct svc_rqst *rqstp)
718 {
719 	struct svc_pool *pool = rqstp->rq_pool;
720 
721 	if (svc_thread_should_sleep(rqstp)) {
722 		set_current_state(TASK_IDLE | TASK_FREEZABLE);
723 		llist_add(&rqstp->rq_idle, &pool->sp_idle_threads);
724 		if (likely(svc_thread_should_sleep(rqstp)))
725 			schedule();
726 
727 		while (!llist_del_first_this(&pool->sp_idle_threads,
728 					     &rqstp->rq_idle)) {
729 			/* Work just became available.  This thread can only
730 			 * handle it after removing rqstp from the idle
731 			 * list. If that attempt failed, some other thread
732 			 * must have queued itself after finding no
733 			 * work to do, so that thread has taken responsibly
734 			 * for this new work.  This thread can safely sleep
735 			 * until woken again.
736 			 */
737 			schedule();
738 			set_current_state(TASK_IDLE | TASK_FREEZABLE);
739 		}
740 		__set_current_state(TASK_RUNNING);
741 	} else {
742 		cond_resched();
743 	}
744 	try_to_freeze();
745 }
746 
747 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
748 {
749 	spin_lock_bh(&serv->sv_lock);
750 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
751 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
752 	serv->sv_tmpcnt++;
753 	if (serv->sv_temptimer.function == NULL) {
754 		/* setup timer to age temp transports */
755 		serv->sv_temptimer.function = svc_age_temp_xprts;
756 		mod_timer(&serv->sv_temptimer,
757 			  jiffies + svc_conn_age_period * HZ);
758 	}
759 	spin_unlock_bh(&serv->sv_lock);
760 	svc_xprt_received(newxpt);
761 }
762 
763 static void svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
764 {
765 	struct svc_serv *serv = rqstp->rq_server;
766 	int len = 0;
767 
768 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
769 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
770 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
771 		svc_delete_xprt(xprt);
772 		/* Leave XPT_BUSY set on the dead xprt: */
773 		goto out;
774 	}
775 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
776 		struct svc_xprt *newxpt;
777 		/*
778 		 * We know this module_get will succeed because the
779 		 * listener holds a reference too
780 		 */
781 		__module_get(xprt->xpt_class->xcl_owner);
782 		svc_check_conn_limits(xprt->xpt_server);
783 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
784 		if (newxpt) {
785 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
786 			svc_add_new_temp_xprt(serv, newxpt);
787 			trace_svc_xprt_accept(newxpt, serv->sv_name);
788 		} else {
789 			module_put(xprt->xpt_class->xcl_owner);
790 		}
791 		svc_xprt_received(xprt);
792 	} else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) {
793 		xprt->xpt_ops->xpo_handshake(xprt);
794 		svc_xprt_received(xprt);
795 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
796 		/* XPT_DATA|XPT_DEFERRED case: */
797 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
798 		if (rqstp->rq_deferred)
799 			len = svc_deferred_recv(rqstp);
800 		else
801 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
802 		rqstp->rq_reserved = serv->sv_max_mesg;
803 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
804 		if (len <= 0)
805 			goto out;
806 
807 		trace_svc_xdr_recvfrom(&rqstp->rq_arg);
808 
809 		clear_bit(XPT_OLD, &xprt->xpt_flags);
810 
811 		rqstp->rq_chandle.defer = svc_defer;
812 
813 		if (serv->sv_stats)
814 			serv->sv_stats->netcnt++;
815 		percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived);
816 		rqstp->rq_stime = ktime_get();
817 		svc_process(rqstp);
818 	} else
819 		svc_xprt_received(xprt);
820 
821 out:
822 	rqstp->rq_res.len = 0;
823 	svc_xprt_release(rqstp);
824 }
825 
826 static void svc_thread_wake_next(struct svc_rqst *rqstp)
827 {
828 	if (!svc_thread_should_sleep(rqstp))
829 		/* More work pending after I dequeued some,
830 		 * wake another worker
831 		 */
832 		svc_pool_wake_idle_thread(rqstp->rq_pool);
833 }
834 
835 /**
836  * svc_recv - Receive and process the next request on any transport
837  * @rqstp: an idle RPC service thread
838  *
839  * This code is carefully organised not to touch any cachelines in
840  * the shared svc_serv structure, only cachelines in the local
841  * svc_pool.
842  */
843 void svc_recv(struct svc_rqst *rqstp)
844 {
845 	struct svc_pool *pool = rqstp->rq_pool;
846 
847 	if (!svc_alloc_arg(rqstp))
848 		return;
849 
850 	svc_thread_wait_for_work(rqstp);
851 
852 	clear_bit(SP_TASK_PENDING, &pool->sp_flags);
853 
854 	if (svc_thread_should_stop(rqstp)) {
855 		svc_thread_wake_next(rqstp);
856 		return;
857 	}
858 
859 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
860 	if (rqstp->rq_xprt) {
861 		struct svc_xprt *xprt = rqstp->rq_xprt;
862 
863 		svc_thread_wake_next(rqstp);
864 		/* Normally we will wait up to 5 seconds for any required
865 		 * cache information to be provided.  When there are no
866 		 * idle threads, we reduce the wait time.
867 		 */
868 		if (pool->sp_idle_threads.first)
869 			rqstp->rq_chandle.thread_wait = 5 * HZ;
870 		else
871 			rqstp->rq_chandle.thread_wait = 1 * HZ;
872 
873 		trace_svc_xprt_dequeue(rqstp);
874 		svc_handle_xprt(rqstp, xprt);
875 	}
876 
877 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
878 	if (svc_is_backchannel(rqstp)) {
879 		struct svc_serv *serv = rqstp->rq_server;
880 		struct rpc_rqst *req;
881 
882 		req = lwq_dequeue(&serv->sv_cb_list,
883 				  struct rpc_rqst, rq_bc_list);
884 		if (req) {
885 			svc_thread_wake_next(rqstp);
886 			svc_process_bc(req, rqstp);
887 		}
888 	}
889 #endif
890 }
891 EXPORT_SYMBOL_GPL(svc_recv);
892 
893 /**
894  * svc_send - Return reply to client
895  * @rqstp: RPC transaction context
896  *
897  */
898 void svc_send(struct svc_rqst *rqstp)
899 {
900 	struct svc_xprt	*xprt;
901 	struct xdr_buf	*xb;
902 	int status;
903 
904 	xprt = rqstp->rq_xprt;
905 
906 	/* calculate over-all length */
907 	xb = &rqstp->rq_res;
908 	xb->len = xb->head[0].iov_len +
909 		xb->page_len +
910 		xb->tail[0].iov_len;
911 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
912 	trace_svc_stats_latency(rqstp);
913 
914 	status = xprt->xpt_ops->xpo_sendto(rqstp);
915 
916 	trace_svc_send(rqstp, status);
917 }
918 
919 /*
920  * Timer function to close old temporary transports, using
921  * a mark-and-sweep algorithm.
922  */
923 static void svc_age_temp_xprts(struct timer_list *t)
924 {
925 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
926 	struct svc_xprt *xprt;
927 	struct list_head *le, *next;
928 
929 	dprintk("svc_age_temp_xprts\n");
930 
931 	if (!spin_trylock_bh(&serv->sv_lock)) {
932 		/* busy, try again 1 sec later */
933 		dprintk("svc_age_temp_xprts: busy\n");
934 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
935 		return;
936 	}
937 
938 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
939 		xprt = list_entry(le, struct svc_xprt, xpt_list);
940 
941 		/* First time through, just mark it OLD. Second time
942 		 * through, close it. */
943 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
944 			continue;
945 		if (kref_read(&xprt->xpt_ref) > 1 ||
946 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
947 			continue;
948 		list_del_init(le);
949 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
950 		dprintk("queuing xprt %p for closing\n", xprt);
951 
952 		/* a thread will dequeue and close it soon */
953 		svc_xprt_enqueue(xprt);
954 	}
955 	spin_unlock_bh(&serv->sv_lock);
956 
957 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
958 }
959 
960 /* Close temporary transports whose xpt_local matches server_addr immediately
961  * instead of waiting for them to be picked up by the timer.
962  *
963  * This is meant to be called from a notifier_block that runs when an ip
964  * address is deleted.
965  */
966 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
967 {
968 	struct svc_xprt *xprt;
969 	struct list_head *le, *next;
970 	LIST_HEAD(to_be_closed);
971 
972 	spin_lock_bh(&serv->sv_lock);
973 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
974 		xprt = list_entry(le, struct svc_xprt, xpt_list);
975 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
976 				&xprt->xpt_local)) {
977 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
978 			list_move(le, &to_be_closed);
979 		}
980 	}
981 	spin_unlock_bh(&serv->sv_lock);
982 
983 	while (!list_empty(&to_be_closed)) {
984 		le = to_be_closed.next;
985 		list_del_init(le);
986 		xprt = list_entry(le, struct svc_xprt, xpt_list);
987 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
988 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
989 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
990 				xprt);
991 		svc_xprt_enqueue(xprt);
992 	}
993 }
994 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
995 
996 static void call_xpt_users(struct svc_xprt *xprt)
997 {
998 	struct svc_xpt_user *u;
999 
1000 	spin_lock(&xprt->xpt_lock);
1001 	while (!list_empty(&xprt->xpt_users)) {
1002 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1003 		list_del_init(&u->list);
1004 		u->callback(u);
1005 	}
1006 	spin_unlock(&xprt->xpt_lock);
1007 }
1008 
1009 /*
1010  * Remove a dead transport
1011  */
1012 static void svc_delete_xprt(struct svc_xprt *xprt)
1013 {
1014 	struct svc_serv	*serv = xprt->xpt_server;
1015 	struct svc_deferred_req *dr;
1016 
1017 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1018 		return;
1019 
1020 	trace_svc_xprt_detach(xprt);
1021 	xprt->xpt_ops->xpo_detach(xprt);
1022 	if (xprt->xpt_bc_xprt)
1023 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1024 
1025 	spin_lock_bh(&serv->sv_lock);
1026 	list_del_init(&xprt->xpt_list);
1027 	if (test_bit(XPT_TEMP, &xprt->xpt_flags) &&
1028 	    !test_bit(XPT_PEER_VALID, &xprt->xpt_flags))
1029 		serv->sv_tmpcnt--;
1030 	spin_unlock_bh(&serv->sv_lock);
1031 
1032 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1033 		free_deferred(xprt, dr);
1034 
1035 	call_xpt_users(xprt);
1036 	svc_xprt_put(xprt);
1037 }
1038 
1039 /**
1040  * svc_xprt_close - Close a client connection
1041  * @xprt: transport to disconnect
1042  *
1043  */
1044 void svc_xprt_close(struct svc_xprt *xprt)
1045 {
1046 	trace_svc_xprt_close(xprt);
1047 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1048 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1049 		/* someone else will have to effect the close */
1050 		return;
1051 	/*
1052 	 * We expect svc_close_xprt() to work even when no threads are
1053 	 * running (e.g., while configuring the server before starting
1054 	 * any threads), so if the transport isn't busy, we delete
1055 	 * it ourself:
1056 	 */
1057 	svc_delete_xprt(xprt);
1058 }
1059 EXPORT_SYMBOL_GPL(svc_xprt_close);
1060 
1061 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1062 {
1063 	struct svc_xprt *xprt;
1064 	int ret = 0;
1065 
1066 	spin_lock_bh(&serv->sv_lock);
1067 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1068 		if (xprt->xpt_net != net)
1069 			continue;
1070 		ret++;
1071 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1072 		svc_xprt_enqueue(xprt);
1073 	}
1074 	spin_unlock_bh(&serv->sv_lock);
1075 	return ret;
1076 }
1077 
1078 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1079 {
1080 	struct svc_xprt *xprt;
1081 	int i;
1082 
1083 	for (i = 0; i < serv->sv_nrpools; i++) {
1084 		struct svc_pool *pool = &serv->sv_pools[i];
1085 		struct llist_node *q, **t1, *t2;
1086 
1087 		q = lwq_dequeue_all(&pool->sp_xprts);
1088 		lwq_for_each_safe(xprt, t1, t2, &q, xpt_ready) {
1089 			if (xprt->xpt_net == net) {
1090 				set_bit(XPT_CLOSE, &xprt->xpt_flags);
1091 				svc_delete_xprt(xprt);
1092 				xprt = NULL;
1093 			}
1094 		}
1095 
1096 		if (q)
1097 			lwq_enqueue_batch(q, &pool->sp_xprts);
1098 	}
1099 }
1100 
1101 /**
1102  * svc_xprt_destroy_all - Destroy transports associated with @serv
1103  * @serv: RPC service to be shut down
1104  * @net: target network namespace
1105  *
1106  * Server threads may still be running (especially in the case where the
1107  * service is still running in other network namespaces).
1108  *
1109  * So we shut down sockets the same way we would on a running server, by
1110  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1111  * the close.  In the case there are no such other threads,
1112  * threads running, svc_clean_up_xprts() does a simple version of a
1113  * server's main event loop, and in the case where there are other
1114  * threads, we may need to wait a little while and then check again to
1115  * see if they're done.
1116  */
1117 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1118 {
1119 	int delay = 0;
1120 
1121 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1122 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1123 
1124 		svc_clean_up_xprts(serv, net);
1125 		msleep(delay++);
1126 	}
1127 }
1128 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1129 
1130 /*
1131  * Handle defer and revisit of requests
1132  */
1133 
1134 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1135 {
1136 	struct svc_deferred_req *dr =
1137 		container_of(dreq, struct svc_deferred_req, handle);
1138 	struct svc_xprt *xprt = dr->xprt;
1139 
1140 	spin_lock(&xprt->xpt_lock);
1141 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1142 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1143 		spin_unlock(&xprt->xpt_lock);
1144 		trace_svc_defer_drop(dr);
1145 		free_deferred(xprt, dr);
1146 		svc_xprt_put(xprt);
1147 		return;
1148 	}
1149 	dr->xprt = NULL;
1150 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1151 	spin_unlock(&xprt->xpt_lock);
1152 	trace_svc_defer_queue(dr);
1153 	svc_xprt_enqueue(xprt);
1154 	svc_xprt_put(xprt);
1155 }
1156 
1157 /*
1158  * Save the request off for later processing. The request buffer looks
1159  * like this:
1160  *
1161  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1162  *
1163  * This code can only handle requests that consist of an xprt-header
1164  * and rpc-header.
1165  */
1166 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1167 {
1168 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1169 	struct svc_deferred_req *dr;
1170 
1171 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1172 		return NULL; /* if more than a page, give up FIXME */
1173 	if (rqstp->rq_deferred) {
1174 		dr = rqstp->rq_deferred;
1175 		rqstp->rq_deferred = NULL;
1176 	} else {
1177 		size_t skip;
1178 		size_t size;
1179 		/* FIXME maybe discard if size too large */
1180 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1181 		dr = kmalloc(size, GFP_KERNEL);
1182 		if (dr == NULL)
1183 			return NULL;
1184 
1185 		dr->handle.owner = rqstp->rq_server;
1186 		dr->prot = rqstp->rq_prot;
1187 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1188 		dr->addrlen = rqstp->rq_addrlen;
1189 		dr->daddr = rqstp->rq_daddr;
1190 		dr->argslen = rqstp->rq_arg.len >> 2;
1191 
1192 		/* back up head to the start of the buffer and copy */
1193 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1194 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1195 		       dr->argslen << 2);
1196 	}
1197 	dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1198 	rqstp->rq_xprt_ctxt = NULL;
1199 	trace_svc_defer(rqstp);
1200 	svc_xprt_get(rqstp->rq_xprt);
1201 	dr->xprt = rqstp->rq_xprt;
1202 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1203 
1204 	dr->handle.revisit = svc_revisit;
1205 	return &dr->handle;
1206 }
1207 
1208 /*
1209  * recv data from a deferred request into an active one
1210  */
1211 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1212 {
1213 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1214 
1215 	trace_svc_defer_recv(dr);
1216 
1217 	/* setup iov_base past transport header */
1218 	rqstp->rq_arg.head[0].iov_base = dr->args;
1219 	/* The iov_len does not include the transport header bytes */
1220 	rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1221 	rqstp->rq_arg.page_len = 0;
1222 	/* The rq_arg.len includes the transport header bytes */
1223 	rqstp->rq_arg.len     = dr->argslen << 2;
1224 	rqstp->rq_prot        = dr->prot;
1225 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1226 	rqstp->rq_addrlen     = dr->addrlen;
1227 	/* Save off transport header len in case we get deferred again */
1228 	rqstp->rq_daddr       = dr->daddr;
1229 	rqstp->rq_respages    = rqstp->rq_pages;
1230 	rqstp->rq_xprt_ctxt   = dr->xprt_ctxt;
1231 
1232 	dr->xprt_ctxt = NULL;
1233 	svc_xprt_received(rqstp->rq_xprt);
1234 	return dr->argslen << 2;
1235 }
1236 
1237 
1238 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1239 {
1240 	struct svc_deferred_req *dr = NULL;
1241 
1242 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1243 		return NULL;
1244 	spin_lock(&xprt->xpt_lock);
1245 	if (!list_empty(&xprt->xpt_deferred)) {
1246 		dr = list_entry(xprt->xpt_deferred.next,
1247 				struct svc_deferred_req,
1248 				handle.recent);
1249 		list_del_init(&dr->handle.recent);
1250 	} else
1251 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1252 	spin_unlock(&xprt->xpt_lock);
1253 	return dr;
1254 }
1255 
1256 /**
1257  * svc_find_listener - find an RPC transport instance
1258  * @serv: pointer to svc_serv to search
1259  * @xcl_name: C string containing transport's class name
1260  * @net: owner net pointer
1261  * @sa: sockaddr containing address
1262  *
1263  * Return the transport instance pointer for the endpoint accepting
1264  * connections/peer traffic from the specified transport class,
1265  * and matching sockaddr.
1266  */
1267 struct svc_xprt *svc_find_listener(struct svc_serv *serv, const char *xcl_name,
1268 				   struct net *net, const struct sockaddr *sa)
1269 {
1270 	struct svc_xprt *xprt;
1271 	struct svc_xprt *found = NULL;
1272 
1273 	spin_lock_bh(&serv->sv_lock);
1274 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1275 		if (xprt->xpt_net != net)
1276 			continue;
1277 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1278 			continue;
1279 		if (!rpc_cmp_addr_port(sa, (struct sockaddr *)&xprt->xpt_local))
1280 			continue;
1281 		found = xprt;
1282 		svc_xprt_get(xprt);
1283 		break;
1284 	}
1285 	spin_unlock_bh(&serv->sv_lock);
1286 	return found;
1287 }
1288 EXPORT_SYMBOL_GPL(svc_find_listener);
1289 
1290 /**
1291  * svc_find_xprt - find an RPC transport instance
1292  * @serv: pointer to svc_serv to search
1293  * @xcl_name: C string containing transport's class name
1294  * @net: owner net pointer
1295  * @af: Address family of transport's local address
1296  * @port: transport's IP port number
1297  *
1298  * Return the transport instance pointer for the endpoint accepting
1299  * connections/peer traffic from the specified transport class,
1300  * address family and port.
1301  *
1302  * Specifying 0 for the address family or port is effectively a
1303  * wild-card, and will result in matching the first transport in the
1304  * service's list that has a matching class name.
1305  */
1306 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1307 			       struct net *net, const sa_family_t af,
1308 			       const unsigned short port)
1309 {
1310 	struct svc_xprt *xprt;
1311 	struct svc_xprt *found = NULL;
1312 
1313 	/* Sanity check the args */
1314 	if (serv == NULL || xcl_name == NULL)
1315 		return found;
1316 
1317 	spin_lock_bh(&serv->sv_lock);
1318 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1319 		if (xprt->xpt_net != net)
1320 			continue;
1321 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1322 			continue;
1323 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1324 			continue;
1325 		if (port != 0 && port != svc_xprt_local_port(xprt))
1326 			continue;
1327 		found = xprt;
1328 		svc_xprt_get(xprt);
1329 		break;
1330 	}
1331 	spin_unlock_bh(&serv->sv_lock);
1332 	return found;
1333 }
1334 EXPORT_SYMBOL_GPL(svc_find_xprt);
1335 
1336 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1337 			     char *pos, int remaining)
1338 {
1339 	int len;
1340 
1341 	len = snprintf(pos, remaining, "%s %u\n",
1342 			xprt->xpt_class->xcl_name,
1343 			svc_xprt_local_port(xprt));
1344 	if (len >= remaining)
1345 		return -ENAMETOOLONG;
1346 	return len;
1347 }
1348 
1349 /**
1350  * svc_xprt_names - format a buffer with a list of transport names
1351  * @serv: pointer to an RPC service
1352  * @buf: pointer to a buffer to be filled in
1353  * @buflen: length of buffer to be filled in
1354  *
1355  * Fills in @buf with a string containing a list of transport names,
1356  * each name terminated with '\n'.
1357  *
1358  * Returns positive length of the filled-in string on success; otherwise
1359  * a negative errno value is returned if an error occurs.
1360  */
1361 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1362 {
1363 	struct svc_xprt *xprt;
1364 	int len, totlen;
1365 	char *pos;
1366 
1367 	/* Sanity check args */
1368 	if (!serv)
1369 		return 0;
1370 
1371 	spin_lock_bh(&serv->sv_lock);
1372 
1373 	pos = buf;
1374 	totlen = 0;
1375 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1376 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1377 		if (len < 0) {
1378 			*buf = '\0';
1379 			totlen = len;
1380 		}
1381 		if (len <= 0)
1382 			break;
1383 
1384 		pos += len;
1385 		totlen += len;
1386 	}
1387 
1388 	spin_unlock_bh(&serv->sv_lock);
1389 	return totlen;
1390 }
1391 EXPORT_SYMBOL_GPL(svc_xprt_names);
1392 
1393 /*----------------------------------------------------------------------------*/
1394 
1395 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1396 {
1397 	unsigned int pidx = (unsigned int)*pos;
1398 	struct svc_info *si = m->private;
1399 
1400 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1401 
1402 	mutex_lock(si->mutex);
1403 
1404 	if (!pidx)
1405 		return SEQ_START_TOKEN;
1406 	if (!si->serv)
1407 		return NULL;
1408 	return pidx > si->serv->sv_nrpools ? NULL
1409 		: &si->serv->sv_pools[pidx - 1];
1410 }
1411 
1412 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1413 {
1414 	struct svc_pool *pool = p;
1415 	struct svc_info *si = m->private;
1416 	struct svc_serv *serv = si->serv;
1417 
1418 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1419 
1420 	if (!serv) {
1421 		pool = NULL;
1422 	} else if (p == SEQ_START_TOKEN) {
1423 		pool = &serv->sv_pools[0];
1424 	} else {
1425 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1426 		if (pidx < serv->sv_nrpools-1)
1427 			pool = &serv->sv_pools[pidx+1];
1428 		else
1429 			pool = NULL;
1430 	}
1431 	++*pos;
1432 	return pool;
1433 }
1434 
1435 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1436 {
1437 	struct svc_info *si = m->private;
1438 
1439 	mutex_unlock(si->mutex);
1440 }
1441 
1442 static int svc_pool_stats_show(struct seq_file *m, void *p)
1443 {
1444 	struct svc_pool *pool = p;
1445 
1446 	if (p == SEQ_START_TOKEN) {
1447 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1448 		return 0;
1449 	}
1450 
1451 	seq_printf(m, "%u %llu %llu %llu 0\n",
1452 		   pool->sp_id,
1453 		   percpu_counter_sum_positive(&pool->sp_messages_arrived),
1454 		   percpu_counter_sum_positive(&pool->sp_sockets_queued),
1455 		   percpu_counter_sum_positive(&pool->sp_threads_woken));
1456 
1457 	return 0;
1458 }
1459 
1460 static const struct seq_operations svc_pool_stats_seq_ops = {
1461 	.start	= svc_pool_stats_start,
1462 	.next	= svc_pool_stats_next,
1463 	.stop	= svc_pool_stats_stop,
1464 	.show	= svc_pool_stats_show,
1465 };
1466 
1467 int svc_pool_stats_open(struct svc_info *info, struct file *file)
1468 {
1469 	struct seq_file *seq;
1470 	int err;
1471 
1472 	err = seq_open(file, &svc_pool_stats_seq_ops);
1473 	if (err)
1474 		return err;
1475 	seq = file->private_data;
1476 	seq->private = info;
1477 
1478 	return 0;
1479 }
1480 EXPORT_SYMBOL(svc_pool_stats_open);
1481 
1482 /*----------------------------------------------------------------------------*/
1483