1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc_xprt.c 4 * 5 * Author: Tom Tucker <tom@opengridcomputing.com> 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/errno.h> 11 #include <linux/freezer.h> 12 #include <linux/slab.h> 13 #include <net/sock.h> 14 #include <linux/sunrpc/addr.h> 15 #include <linux/sunrpc/stats.h> 16 #include <linux/sunrpc/svc_xprt.h> 17 #include <linux/sunrpc/svcsock.h> 18 #include <linux/sunrpc/xprt.h> 19 #include <linux/sunrpc/bc_xprt.h> 20 #include <linux/module.h> 21 #include <linux/netdevice.h> 22 #include <trace/events/sunrpc.h> 23 24 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 25 26 static unsigned int svc_rpc_per_connection_limit __read_mostly; 27 module_param(svc_rpc_per_connection_limit, uint, 0644); 28 29 30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 31 static int svc_deferred_recv(struct svc_rqst *rqstp); 32 static struct cache_deferred_req *svc_defer(struct cache_req *req); 33 static void svc_age_temp_xprts(struct timer_list *t); 34 static void svc_delete_xprt(struct svc_xprt *xprt); 35 36 /* apparently the "standard" is that clients close 37 * idle connections after 5 minutes, servers after 38 * 6 minutes 39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf 40 */ 41 static int svc_conn_age_period = 6*60; 42 43 /* List of registered transport classes */ 44 static DEFINE_SPINLOCK(svc_xprt_class_lock); 45 static LIST_HEAD(svc_xprt_class_list); 46 47 /* SMP locking strategy: 48 * 49 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 50 * when both need to be taken (rare), svc_serv->sv_lock is first. 51 * The "service mutex" protects svc_serv->sv_nrthread. 52 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 53 * and the ->sk_info_authunix cache. 54 * 55 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 56 * enqueued multiply. During normal transport processing this bit 57 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 58 * Providers should not manipulate this bit directly. 59 * 60 * Some flags can be set to certain values at any time 61 * providing that certain rules are followed: 62 * 63 * XPT_CONN, XPT_DATA: 64 * - Can be set or cleared at any time. 65 * - After a set, svc_xprt_enqueue must be called to enqueue 66 * the transport for processing. 67 * - After a clear, the transport must be read/accepted. 68 * If this succeeds, it must be set again. 69 * XPT_CLOSE: 70 * - Can set at any time. It is never cleared. 71 * XPT_DEAD: 72 * - Can only be set while XPT_BUSY is held which ensures 73 * that no other thread will be using the transport or will 74 * try to set XPT_DEAD. 75 */ 76 77 /** 78 * svc_reg_xprt_class - Register a server-side RPC transport class 79 * @xcl: New transport class to be registered 80 * 81 * Returns zero on success; otherwise a negative errno is returned. 82 */ 83 int svc_reg_xprt_class(struct svc_xprt_class *xcl) 84 { 85 struct svc_xprt_class *cl; 86 int res = -EEXIST; 87 88 INIT_LIST_HEAD(&xcl->xcl_list); 89 spin_lock(&svc_xprt_class_lock); 90 /* Make sure there isn't already a class with the same name */ 91 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 92 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 93 goto out; 94 } 95 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 96 res = 0; 97 out: 98 spin_unlock(&svc_xprt_class_lock); 99 return res; 100 } 101 EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 102 103 /** 104 * svc_unreg_xprt_class - Unregister a server-side RPC transport class 105 * @xcl: Transport class to be unregistered 106 * 107 */ 108 void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 109 { 110 spin_lock(&svc_xprt_class_lock); 111 list_del_init(&xcl->xcl_list); 112 spin_unlock(&svc_xprt_class_lock); 113 } 114 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 115 116 /** 117 * svc_print_xprts - Format the transport list for printing 118 * @buf: target buffer for formatted address 119 * @maxlen: length of target buffer 120 * 121 * Fills in @buf with a string containing a list of transport names, each name 122 * terminated with '\n'. If the buffer is too small, some entries may be 123 * missing, but it is guaranteed that all lines in the output buffer are 124 * complete. 125 * 126 * Returns positive length of the filled-in string. 127 */ 128 int svc_print_xprts(char *buf, int maxlen) 129 { 130 struct svc_xprt_class *xcl; 131 char tmpstr[80]; 132 int len = 0; 133 buf[0] = '\0'; 134 135 spin_lock(&svc_xprt_class_lock); 136 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 137 int slen; 138 139 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n", 140 xcl->xcl_name, xcl->xcl_max_payload); 141 if (slen >= sizeof(tmpstr) || len + slen >= maxlen) 142 break; 143 len += slen; 144 strcat(buf, tmpstr); 145 } 146 spin_unlock(&svc_xprt_class_lock); 147 148 return len; 149 } 150 151 /** 152 * svc_xprt_deferred_close - Close a transport 153 * @xprt: transport instance 154 * 155 * Used in contexts that need to defer the work of shutting down 156 * the transport to an nfsd thread. 157 */ 158 void svc_xprt_deferred_close(struct svc_xprt *xprt) 159 { 160 trace_svc_xprt_close(xprt); 161 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags)) 162 svc_xprt_enqueue(xprt); 163 } 164 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close); 165 166 static void svc_xprt_free(struct kref *kref) 167 { 168 struct svc_xprt *xprt = 169 container_of(kref, struct svc_xprt, xpt_ref); 170 struct module *owner = xprt->xpt_class->xcl_owner; 171 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 172 svcauth_unix_info_release(xprt); 173 put_cred(xprt->xpt_cred); 174 put_net_track(xprt->xpt_net, &xprt->ns_tracker); 175 /* See comment on corresponding get in xs_setup_bc_tcp(): */ 176 if (xprt->xpt_bc_xprt) 177 xprt_put(xprt->xpt_bc_xprt); 178 if (xprt->xpt_bc_xps) 179 xprt_switch_put(xprt->xpt_bc_xps); 180 trace_svc_xprt_free(xprt); 181 xprt->xpt_ops->xpo_free(xprt); 182 module_put(owner); 183 } 184 185 void svc_xprt_put(struct svc_xprt *xprt) 186 { 187 kref_put(&xprt->xpt_ref, svc_xprt_free); 188 } 189 EXPORT_SYMBOL_GPL(svc_xprt_put); 190 191 /* 192 * Called by transport drivers to initialize the transport independent 193 * portion of the transport instance. 194 */ 195 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, 196 struct svc_xprt *xprt, struct svc_serv *serv) 197 { 198 memset(xprt, 0, sizeof(*xprt)); 199 xprt->xpt_class = xcl; 200 xprt->xpt_ops = xcl->xcl_ops; 201 kref_init(&xprt->xpt_ref); 202 xprt->xpt_server = serv; 203 INIT_LIST_HEAD(&xprt->xpt_list); 204 INIT_LIST_HEAD(&xprt->xpt_deferred); 205 INIT_LIST_HEAD(&xprt->xpt_users); 206 mutex_init(&xprt->xpt_mutex); 207 spin_lock_init(&xprt->xpt_lock); 208 set_bit(XPT_BUSY, &xprt->xpt_flags); 209 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC); 210 strcpy(xprt->xpt_remotebuf, "uninitialized"); 211 } 212 EXPORT_SYMBOL_GPL(svc_xprt_init); 213 214 /** 215 * svc_xprt_received - start next receiver thread 216 * @xprt: controlling transport 217 * 218 * The caller must hold the XPT_BUSY bit and must 219 * not thereafter touch transport data. 220 * 221 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 222 * insufficient) data. 223 */ 224 void svc_xprt_received(struct svc_xprt *xprt) 225 { 226 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { 227 WARN_ONCE(1, "xprt=0x%p already busy!", xprt); 228 return; 229 } 230 231 /* As soon as we clear busy, the xprt could be closed and 232 * 'put', so we need a reference to call svc_xprt_enqueue with: 233 */ 234 svc_xprt_get(xprt); 235 smp_mb__before_atomic(); 236 clear_bit(XPT_BUSY, &xprt->xpt_flags); 237 svc_xprt_enqueue(xprt); 238 svc_xprt_put(xprt); 239 } 240 EXPORT_SYMBOL_GPL(svc_xprt_received); 241 242 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) 243 { 244 clear_bit(XPT_TEMP, &new->xpt_flags); 245 spin_lock_bh(&serv->sv_lock); 246 list_add(&new->xpt_list, &serv->sv_permsocks); 247 spin_unlock_bh(&serv->sv_lock); 248 svc_xprt_received(new); 249 } 250 251 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name, 252 struct net *net, struct sockaddr *sap, 253 size_t len, int flags, const struct cred *cred) 254 { 255 struct svc_xprt_class *xcl; 256 257 spin_lock(&svc_xprt_class_lock); 258 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 259 struct svc_xprt *newxprt; 260 unsigned short newport; 261 262 if (strcmp(xprt_name, xcl->xcl_name)) 263 continue; 264 265 if (!try_module_get(xcl->xcl_owner)) 266 goto err; 267 268 spin_unlock(&svc_xprt_class_lock); 269 newxprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 270 if (IS_ERR(newxprt)) { 271 trace_svc_xprt_create_err(serv->sv_programs->pg_name, 272 xcl->xcl_name, sap, len, 273 newxprt); 274 module_put(xcl->xcl_owner); 275 return PTR_ERR(newxprt); 276 } 277 newxprt->xpt_cred = get_cred(cred); 278 svc_add_new_perm_xprt(serv, newxprt); 279 newport = svc_xprt_local_port(newxprt); 280 return newport; 281 } 282 err: 283 spin_unlock(&svc_xprt_class_lock); 284 /* This errno is exposed to user space. Provide a reasonable 285 * perror msg for a bad transport. */ 286 return -EPROTONOSUPPORT; 287 } 288 289 /** 290 * svc_xprt_create_from_sa - Add a new listener to @serv from socket address 291 * @serv: target RPC service 292 * @xprt_name: transport class name 293 * @net: network namespace 294 * @sap: socket address pointer 295 * @flags: SVC_SOCK flags 296 * @cred: credential to bind to this transport 297 * 298 * Return local xprt port on success or %-EPROTONOSUPPORT on failure 299 */ 300 int svc_xprt_create_from_sa(struct svc_serv *serv, const char *xprt_name, 301 struct net *net, struct sockaddr *sap, 302 int flags, const struct cred *cred) 303 { 304 size_t len; 305 int err; 306 307 switch (sap->sa_family) { 308 case AF_INET: 309 len = sizeof(struct sockaddr_in); 310 break; 311 #if IS_ENABLED(CONFIG_IPV6) 312 case AF_INET6: 313 len = sizeof(struct sockaddr_in6); 314 break; 315 #endif 316 default: 317 return -EAFNOSUPPORT; 318 } 319 320 err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags, cred); 321 if (err == -EPROTONOSUPPORT) { 322 request_module("svc%s", xprt_name); 323 err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags, 324 cred); 325 } 326 327 return err; 328 } 329 EXPORT_SYMBOL_GPL(svc_xprt_create_from_sa); 330 331 /** 332 * svc_xprt_create - Add a new listener to @serv 333 * @serv: target RPC service 334 * @xprt_name: transport class name 335 * @net: network namespace 336 * @family: network address family 337 * @port: listener port 338 * @flags: SVC_SOCK flags 339 * @cred: credential to bind to this transport 340 * 341 * Return local xprt port on success or %-EPROTONOSUPPORT on failure 342 */ 343 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name, 344 struct net *net, const int family, 345 const unsigned short port, int flags, 346 const struct cred *cred) 347 { 348 struct sockaddr_in sin = { 349 .sin_family = AF_INET, 350 .sin_addr.s_addr = htonl(INADDR_ANY), 351 .sin_port = htons(port), 352 }; 353 #if IS_ENABLED(CONFIG_IPV6) 354 struct sockaddr_in6 sin6 = { 355 .sin6_family = AF_INET6, 356 .sin6_addr = IN6ADDR_ANY_INIT, 357 .sin6_port = htons(port), 358 }; 359 #endif 360 struct sockaddr *sap; 361 362 switch (family) { 363 case PF_INET: 364 sap = (struct sockaddr *)&sin; 365 break; 366 #if IS_ENABLED(CONFIG_IPV6) 367 case PF_INET6: 368 sap = (struct sockaddr *)&sin6; 369 break; 370 #endif 371 default: 372 return -EAFNOSUPPORT; 373 } 374 375 return svc_xprt_create_from_sa(serv, xprt_name, net, sap, flags, cred); 376 } 377 EXPORT_SYMBOL_GPL(svc_xprt_create); 378 379 /* 380 * Copy the local and remote xprt addresses to the rqstp structure 381 */ 382 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 383 { 384 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 385 rqstp->rq_addrlen = xprt->xpt_remotelen; 386 387 /* 388 * Destination address in request is needed for binding the 389 * source address in RPC replies/callbacks later. 390 */ 391 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); 392 rqstp->rq_daddrlen = xprt->xpt_locallen; 393 } 394 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 395 396 /** 397 * svc_print_addr - Format rq_addr field for printing 398 * @rqstp: svc_rqst struct containing address to print 399 * @buf: target buffer for formatted address 400 * @len: length of target buffer 401 * 402 */ 403 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 404 { 405 return __svc_print_addr(svc_addr(rqstp), buf, len); 406 } 407 EXPORT_SYMBOL_GPL(svc_print_addr); 408 409 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) 410 { 411 unsigned int limit = svc_rpc_per_connection_limit; 412 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); 413 414 return limit == 0 || (nrqsts >= 0 && nrqsts < limit); 415 } 416 417 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) 418 { 419 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { 420 if (!svc_xprt_slots_in_range(xprt)) 421 return false; 422 atomic_inc(&xprt->xpt_nr_rqsts); 423 set_bit(RQ_DATA, &rqstp->rq_flags); 424 } 425 return true; 426 } 427 428 static void svc_xprt_release_slot(struct svc_rqst *rqstp) 429 { 430 struct svc_xprt *xprt = rqstp->rq_xprt; 431 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { 432 atomic_dec(&xprt->xpt_nr_rqsts); 433 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 434 svc_xprt_enqueue(xprt); 435 } 436 } 437 438 static bool svc_xprt_ready(struct svc_xprt *xprt) 439 { 440 unsigned long xpt_flags; 441 442 /* 443 * If another cpu has recently updated xpt_flags, 444 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to 445 * know about it; otherwise it's possible that both that cpu and 446 * this one could call svc_xprt_enqueue() without either 447 * svc_xprt_enqueue() recognizing that the conditions below 448 * are satisfied, and we could stall indefinitely: 449 */ 450 smp_rmb(); 451 xpt_flags = READ_ONCE(xprt->xpt_flags); 452 453 trace_svc_xprt_enqueue(xprt, xpt_flags); 454 if (xpt_flags & BIT(XPT_BUSY)) 455 return false; 456 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE))) 457 return true; 458 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) { 459 if (xprt->xpt_ops->xpo_has_wspace(xprt) && 460 svc_xprt_slots_in_range(xprt)) 461 return true; 462 trace_svc_xprt_no_write_space(xprt); 463 return false; 464 } 465 return false; 466 } 467 468 /** 469 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread 470 * @xprt: transport with data pending 471 * 472 */ 473 void svc_xprt_enqueue(struct svc_xprt *xprt) 474 { 475 struct svc_pool *pool; 476 477 if (!svc_xprt_ready(xprt)) 478 return; 479 480 /* Mark transport as busy. It will remain in this state until 481 * the provider calls svc_xprt_received. We update XPT_BUSY 482 * atomically because it also guards against trying to enqueue 483 * the transport twice. 484 */ 485 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 486 return; 487 488 pool = svc_pool_for_cpu(xprt->xpt_server); 489 490 percpu_counter_inc(&pool->sp_sockets_queued); 491 xprt->xpt_qtime = ktime_get(); 492 lwq_enqueue(&xprt->xpt_ready, &pool->sp_xprts); 493 494 svc_pool_wake_idle_thread(pool); 495 } 496 EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 497 498 /* 499 * Dequeue the first transport, if there is one. 500 */ 501 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 502 { 503 struct svc_xprt *xprt = NULL; 504 505 xprt = lwq_dequeue(&pool->sp_xprts, struct svc_xprt, xpt_ready); 506 if (xprt) 507 svc_xprt_get(xprt); 508 return xprt; 509 } 510 511 /** 512 * svc_reserve - change the space reserved for the reply to a request. 513 * @rqstp: The request in question 514 * @space: new max space to reserve 515 * 516 * Each request reserves some space on the output queue of the transport 517 * to make sure the reply fits. This function reduces that reserved 518 * space to be the amount of space used already, plus @space. 519 * 520 */ 521 void svc_reserve(struct svc_rqst *rqstp, int space) 522 { 523 struct svc_xprt *xprt = rqstp->rq_xprt; 524 525 space += rqstp->rq_res.head[0].iov_len; 526 527 if (xprt && space < rqstp->rq_reserved) { 528 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 529 rqstp->rq_reserved = space; 530 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ 531 svc_xprt_enqueue(xprt); 532 } 533 } 534 EXPORT_SYMBOL_GPL(svc_reserve); 535 536 static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr) 537 { 538 if (!dr) 539 return; 540 541 xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt); 542 kfree(dr); 543 } 544 545 static void svc_xprt_release(struct svc_rqst *rqstp) 546 { 547 struct svc_xprt *xprt = rqstp->rq_xprt; 548 549 xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt); 550 rqstp->rq_xprt_ctxt = NULL; 551 552 free_deferred(xprt, rqstp->rq_deferred); 553 rqstp->rq_deferred = NULL; 554 555 svc_rqst_release_pages(rqstp); 556 rqstp->rq_res.page_len = 0; 557 rqstp->rq_res.page_base = 0; 558 559 /* Reset response buffer and release 560 * the reservation. 561 * But first, check that enough space was reserved 562 * for the reply, otherwise we have a bug! 563 */ 564 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 565 printk(KERN_ERR "RPC request reserved %d but used %d\n", 566 rqstp->rq_reserved, 567 rqstp->rq_res.len); 568 569 rqstp->rq_res.head[0].iov_len = 0; 570 svc_reserve(rqstp, 0); 571 svc_xprt_release_slot(rqstp); 572 rqstp->rq_xprt = NULL; 573 svc_xprt_put(xprt); 574 } 575 576 /** 577 * svc_wake_up - Wake up a service thread for non-transport work 578 * @serv: RPC service 579 * 580 * Some svc_serv's will have occasional work to do, even when a xprt is not 581 * waiting to be serviced. This function is there to "kick" a task in one of 582 * those services so that it can wake up and do that work. Note that we only 583 * bother with pool 0 as we don't need to wake up more than one thread for 584 * this purpose. 585 */ 586 void svc_wake_up(struct svc_serv *serv) 587 { 588 struct svc_pool *pool = &serv->sv_pools[0]; 589 590 set_bit(SP_TASK_PENDING, &pool->sp_flags); 591 svc_pool_wake_idle_thread(pool); 592 } 593 EXPORT_SYMBOL_GPL(svc_wake_up); 594 595 int svc_port_is_privileged(struct sockaddr *sin) 596 { 597 switch (sin->sa_family) { 598 case AF_INET: 599 return ntohs(((struct sockaddr_in *)sin)->sin_port) 600 < PROT_SOCK; 601 case AF_INET6: 602 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 603 < PROT_SOCK; 604 default: 605 return 0; 606 } 607 } 608 609 /* 610 * Make sure that we don't have too many connections that have not yet 611 * demonstrated that they have access to the NFS server. If we have, 612 * something must be dropped. It's not clear what will happen if we allow 613 * "too many" connections, but when dealing with network-facing software, 614 * we have to code defensively. Here we do that by imposing hard limits. 615 * 616 * There's no point in trying to do random drop here for DoS 617 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 618 * attacker can easily beat that. 619 * 620 * The only somewhat efficient mechanism would be if drop old 621 * connections from the same IP first. But right now we don't even 622 * record the client IP in svc_sock. 623 */ 624 static void svc_check_conn_limits(struct svc_serv *serv) 625 { 626 if (serv->sv_tmpcnt > XPT_MAX_TMP_CONN) { 627 struct svc_xprt *xprt = NULL, *xprti; 628 spin_lock_bh(&serv->sv_lock); 629 if (!list_empty(&serv->sv_tempsocks)) { 630 /* 631 * Always select the oldest connection. It's not fair, 632 * but nor is life. 633 */ 634 list_for_each_entry_reverse(xprti, &serv->sv_tempsocks, 635 xpt_list) { 636 if (!test_bit(XPT_PEER_VALID, &xprti->xpt_flags)) { 637 xprt = xprti; 638 set_bit(XPT_CLOSE, &xprt->xpt_flags); 639 svc_xprt_get(xprt); 640 break; 641 } 642 } 643 } 644 spin_unlock_bh(&serv->sv_lock); 645 646 if (xprt) { 647 svc_xprt_enqueue(xprt); 648 svc_xprt_put(xprt); 649 } 650 } 651 } 652 653 static bool svc_alloc_arg(struct svc_rqst *rqstp) 654 { 655 struct xdr_buf *arg = &rqstp->rq_arg; 656 unsigned long pages, filled, ret; 657 658 pages = rqstp->rq_maxpages; 659 for (filled = 0; filled < pages; filled = ret) { 660 ret = alloc_pages_bulk(GFP_KERNEL, pages, rqstp->rq_pages); 661 if (ret > filled) 662 /* Made progress, don't sleep yet */ 663 continue; 664 665 set_current_state(TASK_IDLE); 666 if (svc_thread_should_stop(rqstp)) { 667 set_current_state(TASK_RUNNING); 668 return false; 669 } 670 trace_svc_alloc_arg_err(pages, ret); 671 memalloc_retry_wait(GFP_KERNEL); 672 } 673 rqstp->rq_page_end = &rqstp->rq_pages[pages]; 674 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */ 675 676 /* Make arg->head point to first page and arg->pages point to rest */ 677 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 678 arg->head[0].iov_len = PAGE_SIZE; 679 arg->pages = rqstp->rq_pages + 1; 680 arg->page_base = 0; 681 /* save at least one page for response */ 682 arg->page_len = (pages-2)*PAGE_SIZE; 683 arg->len = (pages-1)*PAGE_SIZE; 684 arg->tail[0].iov_len = 0; 685 686 rqstp->rq_xid = xdr_zero; 687 return true; 688 } 689 690 static bool 691 svc_thread_should_sleep(struct svc_rqst *rqstp) 692 { 693 struct svc_pool *pool = rqstp->rq_pool; 694 695 /* did someone call svc_wake_up? */ 696 if (test_bit(SP_TASK_PENDING, &pool->sp_flags)) 697 return false; 698 699 /* was a socket queued? */ 700 if (!lwq_empty(&pool->sp_xprts)) 701 return false; 702 703 /* are we shutting down? */ 704 if (svc_thread_should_stop(rqstp)) 705 return false; 706 707 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 708 if (svc_is_backchannel(rqstp)) { 709 if (!lwq_empty(&rqstp->rq_server->sv_cb_list)) 710 return false; 711 } 712 #endif 713 714 return true; 715 } 716 717 static void svc_thread_wait_for_work(struct svc_rqst *rqstp) 718 { 719 struct svc_pool *pool = rqstp->rq_pool; 720 721 if (svc_thread_should_sleep(rqstp)) { 722 set_current_state(TASK_IDLE | TASK_FREEZABLE); 723 llist_add(&rqstp->rq_idle, &pool->sp_idle_threads); 724 if (likely(svc_thread_should_sleep(rqstp))) 725 schedule(); 726 727 while (!llist_del_first_this(&pool->sp_idle_threads, 728 &rqstp->rq_idle)) { 729 /* Work just became available. This thread can only 730 * handle it after removing rqstp from the idle 731 * list. If that attempt failed, some other thread 732 * must have queued itself after finding no 733 * work to do, so that thread has taken responsibly 734 * for this new work. This thread can safely sleep 735 * until woken again. 736 */ 737 schedule(); 738 set_current_state(TASK_IDLE | TASK_FREEZABLE); 739 } 740 __set_current_state(TASK_RUNNING); 741 } else { 742 cond_resched(); 743 } 744 try_to_freeze(); 745 } 746 747 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) 748 { 749 spin_lock_bh(&serv->sv_lock); 750 set_bit(XPT_TEMP, &newxpt->xpt_flags); 751 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 752 serv->sv_tmpcnt++; 753 if (serv->sv_temptimer.function == NULL) { 754 /* setup timer to age temp transports */ 755 serv->sv_temptimer.function = svc_age_temp_xprts; 756 mod_timer(&serv->sv_temptimer, 757 jiffies + svc_conn_age_period * HZ); 758 } 759 spin_unlock_bh(&serv->sv_lock); 760 svc_xprt_received(newxpt); 761 } 762 763 static void svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) 764 { 765 struct svc_serv *serv = rqstp->rq_server; 766 int len = 0; 767 768 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 769 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) 770 xprt->xpt_ops->xpo_kill_temp_xprt(xprt); 771 svc_delete_xprt(xprt); 772 /* Leave XPT_BUSY set on the dead xprt: */ 773 goto out; 774 } 775 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 776 struct svc_xprt *newxpt; 777 /* 778 * We know this module_get will succeed because the 779 * listener holds a reference too 780 */ 781 __module_get(xprt->xpt_class->xcl_owner); 782 svc_check_conn_limits(xprt->xpt_server); 783 newxpt = xprt->xpt_ops->xpo_accept(xprt); 784 if (newxpt) { 785 newxpt->xpt_cred = get_cred(xprt->xpt_cred); 786 svc_add_new_temp_xprt(serv, newxpt); 787 trace_svc_xprt_accept(newxpt, serv->sv_name); 788 } else { 789 module_put(xprt->xpt_class->xcl_owner); 790 } 791 svc_xprt_received(xprt); 792 } else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) { 793 xprt->xpt_ops->xpo_handshake(xprt); 794 svc_xprt_received(xprt); 795 } else if (svc_xprt_reserve_slot(rqstp, xprt)) { 796 /* XPT_DATA|XPT_DEFERRED case: */ 797 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 798 if (rqstp->rq_deferred) 799 len = svc_deferred_recv(rqstp); 800 else 801 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 802 rqstp->rq_reserved = serv->sv_max_mesg; 803 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 804 if (len <= 0) 805 goto out; 806 807 trace_svc_xdr_recvfrom(&rqstp->rq_arg); 808 809 clear_bit(XPT_OLD, &xprt->xpt_flags); 810 811 rqstp->rq_chandle.defer = svc_defer; 812 813 if (serv->sv_stats) 814 serv->sv_stats->netcnt++; 815 percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived); 816 rqstp->rq_stime = ktime_get(); 817 svc_process(rqstp); 818 } else 819 svc_xprt_received(xprt); 820 821 out: 822 rqstp->rq_res.len = 0; 823 svc_xprt_release(rqstp); 824 } 825 826 static void svc_thread_wake_next(struct svc_rqst *rqstp) 827 { 828 if (!svc_thread_should_sleep(rqstp)) 829 /* More work pending after I dequeued some, 830 * wake another worker 831 */ 832 svc_pool_wake_idle_thread(rqstp->rq_pool); 833 } 834 835 /** 836 * svc_recv - Receive and process the next request on any transport 837 * @rqstp: an idle RPC service thread 838 * 839 * This code is carefully organised not to touch any cachelines in 840 * the shared svc_serv structure, only cachelines in the local 841 * svc_pool. 842 */ 843 void svc_recv(struct svc_rqst *rqstp) 844 { 845 struct svc_pool *pool = rqstp->rq_pool; 846 847 if (!svc_alloc_arg(rqstp)) 848 return; 849 850 svc_thread_wait_for_work(rqstp); 851 852 clear_bit(SP_TASK_PENDING, &pool->sp_flags); 853 854 if (svc_thread_should_stop(rqstp)) { 855 svc_thread_wake_next(rqstp); 856 return; 857 } 858 859 rqstp->rq_xprt = svc_xprt_dequeue(pool); 860 if (rqstp->rq_xprt) { 861 struct svc_xprt *xprt = rqstp->rq_xprt; 862 863 svc_thread_wake_next(rqstp); 864 /* Normally we will wait up to 5 seconds for any required 865 * cache information to be provided. When there are no 866 * idle threads, we reduce the wait time. 867 */ 868 if (pool->sp_idle_threads.first) 869 rqstp->rq_chandle.thread_wait = 5 * HZ; 870 else 871 rqstp->rq_chandle.thread_wait = 1 * HZ; 872 873 trace_svc_xprt_dequeue(rqstp); 874 svc_handle_xprt(rqstp, xprt); 875 } 876 877 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 878 if (svc_is_backchannel(rqstp)) { 879 struct svc_serv *serv = rqstp->rq_server; 880 struct rpc_rqst *req; 881 882 req = lwq_dequeue(&serv->sv_cb_list, 883 struct rpc_rqst, rq_bc_list); 884 if (req) { 885 svc_thread_wake_next(rqstp); 886 svc_process_bc(req, rqstp); 887 } 888 } 889 #endif 890 } 891 EXPORT_SYMBOL_GPL(svc_recv); 892 893 /** 894 * svc_send - Return reply to client 895 * @rqstp: RPC transaction context 896 * 897 */ 898 void svc_send(struct svc_rqst *rqstp) 899 { 900 struct svc_xprt *xprt; 901 struct xdr_buf *xb; 902 int status; 903 904 xprt = rqstp->rq_xprt; 905 906 /* calculate over-all length */ 907 xb = &rqstp->rq_res; 908 xb->len = xb->head[0].iov_len + 909 xb->page_len + 910 xb->tail[0].iov_len; 911 trace_svc_xdr_sendto(rqstp->rq_xid, xb); 912 trace_svc_stats_latency(rqstp); 913 914 status = xprt->xpt_ops->xpo_sendto(rqstp); 915 916 trace_svc_send(rqstp, status); 917 } 918 919 /* 920 * Timer function to close old temporary transports, using 921 * a mark-and-sweep algorithm. 922 */ 923 static void svc_age_temp_xprts(struct timer_list *t) 924 { 925 struct svc_serv *serv = from_timer(serv, t, sv_temptimer); 926 struct svc_xprt *xprt; 927 struct list_head *le, *next; 928 929 dprintk("svc_age_temp_xprts\n"); 930 931 if (!spin_trylock_bh(&serv->sv_lock)) { 932 /* busy, try again 1 sec later */ 933 dprintk("svc_age_temp_xprts: busy\n"); 934 mod_timer(&serv->sv_temptimer, jiffies + HZ); 935 return; 936 } 937 938 list_for_each_safe(le, next, &serv->sv_tempsocks) { 939 xprt = list_entry(le, struct svc_xprt, xpt_list); 940 941 /* First time through, just mark it OLD. Second time 942 * through, close it. */ 943 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 944 continue; 945 if (kref_read(&xprt->xpt_ref) > 1 || 946 test_bit(XPT_BUSY, &xprt->xpt_flags)) 947 continue; 948 list_del_init(le); 949 set_bit(XPT_CLOSE, &xprt->xpt_flags); 950 dprintk("queuing xprt %p for closing\n", xprt); 951 952 /* a thread will dequeue and close it soon */ 953 svc_xprt_enqueue(xprt); 954 } 955 spin_unlock_bh(&serv->sv_lock); 956 957 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 958 } 959 960 /* Close temporary transports whose xpt_local matches server_addr immediately 961 * instead of waiting for them to be picked up by the timer. 962 * 963 * This is meant to be called from a notifier_block that runs when an ip 964 * address is deleted. 965 */ 966 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) 967 { 968 struct svc_xprt *xprt; 969 struct list_head *le, *next; 970 LIST_HEAD(to_be_closed); 971 972 spin_lock_bh(&serv->sv_lock); 973 list_for_each_safe(le, next, &serv->sv_tempsocks) { 974 xprt = list_entry(le, struct svc_xprt, xpt_list); 975 if (rpc_cmp_addr(server_addr, (struct sockaddr *) 976 &xprt->xpt_local)) { 977 dprintk("svc_age_temp_xprts_now: found %p\n", xprt); 978 list_move(le, &to_be_closed); 979 } 980 } 981 spin_unlock_bh(&serv->sv_lock); 982 983 while (!list_empty(&to_be_closed)) { 984 le = to_be_closed.next; 985 list_del_init(le); 986 xprt = list_entry(le, struct svc_xprt, xpt_list); 987 set_bit(XPT_CLOSE, &xprt->xpt_flags); 988 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); 989 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", 990 xprt); 991 svc_xprt_enqueue(xprt); 992 } 993 } 994 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); 995 996 static void call_xpt_users(struct svc_xprt *xprt) 997 { 998 struct svc_xpt_user *u; 999 1000 spin_lock(&xprt->xpt_lock); 1001 while (!list_empty(&xprt->xpt_users)) { 1002 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 1003 list_del_init(&u->list); 1004 u->callback(u); 1005 } 1006 spin_unlock(&xprt->xpt_lock); 1007 } 1008 1009 /* 1010 * Remove a dead transport 1011 */ 1012 static void svc_delete_xprt(struct svc_xprt *xprt) 1013 { 1014 struct svc_serv *serv = xprt->xpt_server; 1015 struct svc_deferred_req *dr; 1016 1017 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 1018 return; 1019 1020 trace_svc_xprt_detach(xprt); 1021 xprt->xpt_ops->xpo_detach(xprt); 1022 if (xprt->xpt_bc_xprt) 1023 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt); 1024 1025 spin_lock_bh(&serv->sv_lock); 1026 list_del_init(&xprt->xpt_list); 1027 if (test_bit(XPT_TEMP, &xprt->xpt_flags) && 1028 !test_bit(XPT_PEER_VALID, &xprt->xpt_flags)) 1029 serv->sv_tmpcnt--; 1030 spin_unlock_bh(&serv->sv_lock); 1031 1032 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 1033 free_deferred(xprt, dr); 1034 1035 call_xpt_users(xprt); 1036 svc_xprt_put(xprt); 1037 } 1038 1039 /** 1040 * svc_xprt_close - Close a client connection 1041 * @xprt: transport to disconnect 1042 * 1043 */ 1044 void svc_xprt_close(struct svc_xprt *xprt) 1045 { 1046 trace_svc_xprt_close(xprt); 1047 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1048 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 1049 /* someone else will have to effect the close */ 1050 return; 1051 /* 1052 * We expect svc_close_xprt() to work even when no threads are 1053 * running (e.g., while configuring the server before starting 1054 * any threads), so if the transport isn't busy, we delete 1055 * it ourself: 1056 */ 1057 svc_delete_xprt(xprt); 1058 } 1059 EXPORT_SYMBOL_GPL(svc_xprt_close); 1060 1061 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) 1062 { 1063 struct svc_xprt *xprt; 1064 int ret = 0; 1065 1066 spin_lock_bh(&serv->sv_lock); 1067 list_for_each_entry(xprt, xprt_list, xpt_list) { 1068 if (xprt->xpt_net != net) 1069 continue; 1070 ret++; 1071 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1072 svc_xprt_enqueue(xprt); 1073 } 1074 spin_unlock_bh(&serv->sv_lock); 1075 return ret; 1076 } 1077 1078 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) 1079 { 1080 struct svc_xprt *xprt; 1081 int i; 1082 1083 for (i = 0; i < serv->sv_nrpools; i++) { 1084 struct svc_pool *pool = &serv->sv_pools[i]; 1085 struct llist_node *q, **t1, *t2; 1086 1087 q = lwq_dequeue_all(&pool->sp_xprts); 1088 lwq_for_each_safe(xprt, t1, t2, &q, xpt_ready) { 1089 if (xprt->xpt_net == net) { 1090 set_bit(XPT_CLOSE, &xprt->xpt_flags); 1091 svc_delete_xprt(xprt); 1092 xprt = NULL; 1093 } 1094 } 1095 1096 if (q) 1097 lwq_enqueue_batch(q, &pool->sp_xprts); 1098 } 1099 } 1100 1101 /** 1102 * svc_xprt_destroy_all - Destroy transports associated with @serv 1103 * @serv: RPC service to be shut down 1104 * @net: target network namespace 1105 * 1106 * Server threads may still be running (especially in the case where the 1107 * service is still running in other network namespaces). 1108 * 1109 * So we shut down sockets the same way we would on a running server, by 1110 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do 1111 * the close. In the case there are no such other threads, 1112 * threads running, svc_clean_up_xprts() does a simple version of a 1113 * server's main event loop, and in the case where there are other 1114 * threads, we may need to wait a little while and then check again to 1115 * see if they're done. 1116 */ 1117 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net) 1118 { 1119 int delay = 0; 1120 1121 while (svc_close_list(serv, &serv->sv_permsocks, net) + 1122 svc_close_list(serv, &serv->sv_tempsocks, net)) { 1123 1124 svc_clean_up_xprts(serv, net); 1125 msleep(delay++); 1126 } 1127 } 1128 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all); 1129 1130 /* 1131 * Handle defer and revisit of requests 1132 */ 1133 1134 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1135 { 1136 struct svc_deferred_req *dr = 1137 container_of(dreq, struct svc_deferred_req, handle); 1138 struct svc_xprt *xprt = dr->xprt; 1139 1140 spin_lock(&xprt->xpt_lock); 1141 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 1142 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 1143 spin_unlock(&xprt->xpt_lock); 1144 trace_svc_defer_drop(dr); 1145 free_deferred(xprt, dr); 1146 svc_xprt_put(xprt); 1147 return; 1148 } 1149 dr->xprt = NULL; 1150 list_add(&dr->handle.recent, &xprt->xpt_deferred); 1151 spin_unlock(&xprt->xpt_lock); 1152 trace_svc_defer_queue(dr); 1153 svc_xprt_enqueue(xprt); 1154 svc_xprt_put(xprt); 1155 } 1156 1157 /* 1158 * Save the request off for later processing. The request buffer looks 1159 * like this: 1160 * 1161 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 1162 * 1163 * This code can only handle requests that consist of an xprt-header 1164 * and rpc-header. 1165 */ 1166 static struct cache_deferred_req *svc_defer(struct cache_req *req) 1167 { 1168 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1169 struct svc_deferred_req *dr; 1170 1171 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) 1172 return NULL; /* if more than a page, give up FIXME */ 1173 if (rqstp->rq_deferred) { 1174 dr = rqstp->rq_deferred; 1175 rqstp->rq_deferred = NULL; 1176 } else { 1177 size_t skip; 1178 size_t size; 1179 /* FIXME maybe discard if size too large */ 1180 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1181 dr = kmalloc(size, GFP_KERNEL); 1182 if (dr == NULL) 1183 return NULL; 1184 1185 dr->handle.owner = rqstp->rq_server; 1186 dr->prot = rqstp->rq_prot; 1187 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1188 dr->addrlen = rqstp->rq_addrlen; 1189 dr->daddr = rqstp->rq_daddr; 1190 dr->argslen = rqstp->rq_arg.len >> 2; 1191 1192 /* back up head to the start of the buffer and copy */ 1193 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1194 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1195 dr->argslen << 2); 1196 } 1197 dr->xprt_ctxt = rqstp->rq_xprt_ctxt; 1198 rqstp->rq_xprt_ctxt = NULL; 1199 trace_svc_defer(rqstp); 1200 svc_xprt_get(rqstp->rq_xprt); 1201 dr->xprt = rqstp->rq_xprt; 1202 set_bit(RQ_DROPME, &rqstp->rq_flags); 1203 1204 dr->handle.revisit = svc_revisit; 1205 return &dr->handle; 1206 } 1207 1208 /* 1209 * recv data from a deferred request into an active one 1210 */ 1211 static noinline int svc_deferred_recv(struct svc_rqst *rqstp) 1212 { 1213 struct svc_deferred_req *dr = rqstp->rq_deferred; 1214 1215 trace_svc_defer_recv(dr); 1216 1217 /* setup iov_base past transport header */ 1218 rqstp->rq_arg.head[0].iov_base = dr->args; 1219 /* The iov_len does not include the transport header bytes */ 1220 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2; 1221 rqstp->rq_arg.page_len = 0; 1222 /* The rq_arg.len includes the transport header bytes */ 1223 rqstp->rq_arg.len = dr->argslen << 2; 1224 rqstp->rq_prot = dr->prot; 1225 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1226 rqstp->rq_addrlen = dr->addrlen; 1227 /* Save off transport header len in case we get deferred again */ 1228 rqstp->rq_daddr = dr->daddr; 1229 rqstp->rq_respages = rqstp->rq_pages; 1230 rqstp->rq_xprt_ctxt = dr->xprt_ctxt; 1231 1232 dr->xprt_ctxt = NULL; 1233 svc_xprt_received(rqstp->rq_xprt); 1234 return dr->argslen << 2; 1235 } 1236 1237 1238 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1239 { 1240 struct svc_deferred_req *dr = NULL; 1241 1242 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1243 return NULL; 1244 spin_lock(&xprt->xpt_lock); 1245 if (!list_empty(&xprt->xpt_deferred)) { 1246 dr = list_entry(xprt->xpt_deferred.next, 1247 struct svc_deferred_req, 1248 handle.recent); 1249 list_del_init(&dr->handle.recent); 1250 } else 1251 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1252 spin_unlock(&xprt->xpt_lock); 1253 return dr; 1254 } 1255 1256 /** 1257 * svc_find_listener - find an RPC transport instance 1258 * @serv: pointer to svc_serv to search 1259 * @xcl_name: C string containing transport's class name 1260 * @net: owner net pointer 1261 * @sa: sockaddr containing address 1262 * 1263 * Return the transport instance pointer for the endpoint accepting 1264 * connections/peer traffic from the specified transport class, 1265 * and matching sockaddr. 1266 */ 1267 struct svc_xprt *svc_find_listener(struct svc_serv *serv, const char *xcl_name, 1268 struct net *net, const struct sockaddr *sa) 1269 { 1270 struct svc_xprt *xprt; 1271 struct svc_xprt *found = NULL; 1272 1273 spin_lock_bh(&serv->sv_lock); 1274 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1275 if (xprt->xpt_net != net) 1276 continue; 1277 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1278 continue; 1279 if (!rpc_cmp_addr_port(sa, (struct sockaddr *)&xprt->xpt_local)) 1280 continue; 1281 found = xprt; 1282 svc_xprt_get(xprt); 1283 break; 1284 } 1285 spin_unlock_bh(&serv->sv_lock); 1286 return found; 1287 } 1288 EXPORT_SYMBOL_GPL(svc_find_listener); 1289 1290 /** 1291 * svc_find_xprt - find an RPC transport instance 1292 * @serv: pointer to svc_serv to search 1293 * @xcl_name: C string containing transport's class name 1294 * @net: owner net pointer 1295 * @af: Address family of transport's local address 1296 * @port: transport's IP port number 1297 * 1298 * Return the transport instance pointer for the endpoint accepting 1299 * connections/peer traffic from the specified transport class, 1300 * address family and port. 1301 * 1302 * Specifying 0 for the address family or port is effectively a 1303 * wild-card, and will result in matching the first transport in the 1304 * service's list that has a matching class name. 1305 */ 1306 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1307 struct net *net, const sa_family_t af, 1308 const unsigned short port) 1309 { 1310 struct svc_xprt *xprt; 1311 struct svc_xprt *found = NULL; 1312 1313 /* Sanity check the args */ 1314 if (serv == NULL || xcl_name == NULL) 1315 return found; 1316 1317 spin_lock_bh(&serv->sv_lock); 1318 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1319 if (xprt->xpt_net != net) 1320 continue; 1321 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1322 continue; 1323 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1324 continue; 1325 if (port != 0 && port != svc_xprt_local_port(xprt)) 1326 continue; 1327 found = xprt; 1328 svc_xprt_get(xprt); 1329 break; 1330 } 1331 spin_unlock_bh(&serv->sv_lock); 1332 return found; 1333 } 1334 EXPORT_SYMBOL_GPL(svc_find_xprt); 1335 1336 static int svc_one_xprt_name(const struct svc_xprt *xprt, 1337 char *pos, int remaining) 1338 { 1339 int len; 1340 1341 len = snprintf(pos, remaining, "%s %u\n", 1342 xprt->xpt_class->xcl_name, 1343 svc_xprt_local_port(xprt)); 1344 if (len >= remaining) 1345 return -ENAMETOOLONG; 1346 return len; 1347 } 1348 1349 /** 1350 * svc_xprt_names - format a buffer with a list of transport names 1351 * @serv: pointer to an RPC service 1352 * @buf: pointer to a buffer to be filled in 1353 * @buflen: length of buffer to be filled in 1354 * 1355 * Fills in @buf with a string containing a list of transport names, 1356 * each name terminated with '\n'. 1357 * 1358 * Returns positive length of the filled-in string on success; otherwise 1359 * a negative errno value is returned if an error occurs. 1360 */ 1361 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1362 { 1363 struct svc_xprt *xprt; 1364 int len, totlen; 1365 char *pos; 1366 1367 /* Sanity check args */ 1368 if (!serv) 1369 return 0; 1370 1371 spin_lock_bh(&serv->sv_lock); 1372 1373 pos = buf; 1374 totlen = 0; 1375 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1376 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1377 if (len < 0) { 1378 *buf = '\0'; 1379 totlen = len; 1380 } 1381 if (len <= 0) 1382 break; 1383 1384 pos += len; 1385 totlen += len; 1386 } 1387 1388 spin_unlock_bh(&serv->sv_lock); 1389 return totlen; 1390 } 1391 EXPORT_SYMBOL_GPL(svc_xprt_names); 1392 1393 /*----------------------------------------------------------------------------*/ 1394 1395 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1396 { 1397 unsigned int pidx = (unsigned int)*pos; 1398 struct svc_info *si = m->private; 1399 1400 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1401 1402 mutex_lock(si->mutex); 1403 1404 if (!pidx) 1405 return SEQ_START_TOKEN; 1406 if (!si->serv) 1407 return NULL; 1408 return pidx > si->serv->sv_nrpools ? NULL 1409 : &si->serv->sv_pools[pidx - 1]; 1410 } 1411 1412 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1413 { 1414 struct svc_pool *pool = p; 1415 struct svc_info *si = m->private; 1416 struct svc_serv *serv = si->serv; 1417 1418 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1419 1420 if (!serv) { 1421 pool = NULL; 1422 } else if (p == SEQ_START_TOKEN) { 1423 pool = &serv->sv_pools[0]; 1424 } else { 1425 unsigned int pidx = (pool - &serv->sv_pools[0]); 1426 if (pidx < serv->sv_nrpools-1) 1427 pool = &serv->sv_pools[pidx+1]; 1428 else 1429 pool = NULL; 1430 } 1431 ++*pos; 1432 return pool; 1433 } 1434 1435 static void svc_pool_stats_stop(struct seq_file *m, void *p) 1436 { 1437 struct svc_info *si = m->private; 1438 1439 mutex_unlock(si->mutex); 1440 } 1441 1442 static int svc_pool_stats_show(struct seq_file *m, void *p) 1443 { 1444 struct svc_pool *pool = p; 1445 1446 if (p == SEQ_START_TOKEN) { 1447 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1448 return 0; 1449 } 1450 1451 seq_printf(m, "%u %llu %llu %llu 0\n", 1452 pool->sp_id, 1453 percpu_counter_sum_positive(&pool->sp_messages_arrived), 1454 percpu_counter_sum_positive(&pool->sp_sockets_queued), 1455 percpu_counter_sum_positive(&pool->sp_threads_woken)); 1456 1457 return 0; 1458 } 1459 1460 static const struct seq_operations svc_pool_stats_seq_ops = { 1461 .start = svc_pool_stats_start, 1462 .next = svc_pool_stats_next, 1463 .stop = svc_pool_stats_stop, 1464 .show = svc_pool_stats_show, 1465 }; 1466 1467 int svc_pool_stats_open(struct svc_info *info, struct file *file) 1468 { 1469 struct seq_file *seq; 1470 int err; 1471 1472 err = seq_open(file, &svc_pool_stats_seq_ops); 1473 if (err) 1474 return err; 1475 seq = file->private_data; 1476 seq->private = info; 1477 1478 return 0; 1479 } 1480 EXPORT_SYMBOL(svc_pool_stats_open); 1481 1482 /*----------------------------------------------------------------------------*/ 1483