1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 #include <trace/events/sock.h> 63 64 #include <linux/socket.h> /* for sa_family_t */ 65 #include <linux/export.h> 66 #include <net/sock.h> 67 #include <net/sctp/sctp.h> 68 #include <net/sctp/sm.h> 69 #include <net/sctp/stream_sched.h> 70 #include <net/rps.h> 71 72 /* Forward declarations for internal helper functions. */ 73 static bool sctp_writeable(const struct sock *sk); 74 static void sctp_wfree(struct sk_buff *skb); 75 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, 76 struct sctp_transport *transport, 77 long *timeo_p, size_t msg_len); 78 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 79 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 80 static int sctp_wait_for_accept(struct sock *sk, long timeo); 81 static void sctp_wait_for_close(struct sock *sk, long timeo); 82 static void sctp_destruct_sock(struct sock *sk); 83 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 84 union sctp_addr *addr, int len); 85 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 86 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 87 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 88 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 89 static int sctp_send_asconf(struct sctp_association *asoc, 90 struct sctp_chunk *chunk); 91 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 92 static int sctp_autobind(struct sock *sk); 93 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 94 struct sctp_association *assoc, 95 enum sctp_socket_type type); 96 97 static unsigned long sctp_memory_pressure; 98 static atomic_long_t sctp_memory_allocated; 99 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc); 100 struct percpu_counter sctp_sockets_allocated; 101 102 static void sctp_enter_memory_pressure(struct sock *sk) 103 { 104 WRITE_ONCE(sctp_memory_pressure, 1); 105 } 106 107 108 /* Get the sndbuf space available at the time on the association. */ 109 static inline int sctp_wspace(struct sctp_association *asoc) 110 { 111 struct sock *sk = asoc->base.sk; 112 113 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 114 : sk_stream_wspace(sk); 115 } 116 117 /* Increment the used sndbuf space count of the corresponding association by 118 * the size of the outgoing data chunk. 119 * Also, set the skb destructor for sndbuf accounting later. 120 * 121 * Since it is always 1-1 between chunk and skb, and also a new skb is always 122 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 123 * destructor in the data chunk skb for the purpose of the sndbuf space 124 * tracking. 125 */ 126 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 127 { 128 struct sctp_association *asoc = chunk->asoc; 129 struct sock *sk = asoc->base.sk; 130 131 /* The sndbuf space is tracked per association. */ 132 sctp_association_hold(asoc); 133 134 if (chunk->shkey) 135 sctp_auth_shkey_hold(chunk->shkey); 136 137 skb_set_owner_w(chunk->skb, sk); 138 139 chunk->skb->destructor = sctp_wfree; 140 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 141 skb_shinfo(chunk->skb)->destructor_arg = chunk; 142 143 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 144 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 145 sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk)); 146 sk_mem_charge(sk, chunk->skb->truesize); 147 } 148 149 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 150 { 151 skb_orphan(chunk->skb); 152 } 153 154 #define traverse_and_process() \ 155 do { \ 156 msg = chunk->msg; \ 157 if (msg == prev_msg) \ 158 continue; \ 159 list_for_each_entry(c, &msg->chunks, frag_list) { \ 160 if ((clear && asoc->base.sk == c->skb->sk) || \ 161 (!clear && asoc->base.sk != c->skb->sk)) \ 162 cb(c); \ 163 } \ 164 prev_msg = msg; \ 165 } while (0) 166 167 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 168 bool clear, 169 void (*cb)(struct sctp_chunk *)) 170 171 { 172 struct sctp_datamsg *msg, *prev_msg = NULL; 173 struct sctp_outq *q = &asoc->outqueue; 174 struct sctp_chunk *chunk, *c; 175 struct sctp_transport *t; 176 177 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 178 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 179 traverse_and_process(); 180 181 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 182 traverse_and_process(); 183 184 list_for_each_entry(chunk, &q->sacked, transmitted_list) 185 traverse_and_process(); 186 187 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 188 traverse_and_process(); 189 190 list_for_each_entry(chunk, &q->out_chunk_list, list) 191 traverse_and_process(); 192 } 193 194 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 195 void (*cb)(struct sk_buff *, struct sock *)) 196 197 { 198 struct sk_buff *skb, *tmp; 199 200 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 201 cb(skb, sk); 202 203 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 204 cb(skb, sk); 205 206 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 207 cb(skb, sk); 208 } 209 210 /* Verify that this is a valid address. */ 211 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 212 int len) 213 { 214 struct sctp_af *af; 215 216 /* Verify basic sockaddr. */ 217 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 218 if (!af) 219 return -EINVAL; 220 221 /* Is this a valid SCTP address? */ 222 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 223 return -EINVAL; 224 225 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 226 return -EINVAL; 227 228 return 0; 229 } 230 231 /* Look up the association by its id. If this is not a UDP-style 232 * socket, the ID field is always ignored. 233 */ 234 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 235 { 236 struct sctp_association *asoc = NULL; 237 238 /* If this is not a UDP-style socket, assoc id should be ignored. */ 239 if (!sctp_style(sk, UDP)) { 240 /* Return NULL if the socket state is not ESTABLISHED. It 241 * could be a TCP-style listening socket or a socket which 242 * hasn't yet called connect() to establish an association. 243 */ 244 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 245 return NULL; 246 247 /* Get the first and the only association from the list. */ 248 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 249 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 250 struct sctp_association, asocs); 251 return asoc; 252 } 253 254 /* Otherwise this is a UDP-style socket. */ 255 if (id <= SCTP_ALL_ASSOC) 256 return NULL; 257 258 spin_lock_bh(&sctp_assocs_id_lock); 259 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 260 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 261 asoc = NULL; 262 spin_unlock_bh(&sctp_assocs_id_lock); 263 264 return asoc; 265 } 266 267 /* Look up the transport from an address and an assoc id. If both address and 268 * id are specified, the associations matching the address and the id should be 269 * the same. 270 */ 271 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 272 struct sockaddr_storage *addr, 273 sctp_assoc_t id) 274 { 275 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 276 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 277 union sctp_addr *laddr = (union sctp_addr *)addr; 278 struct sctp_transport *transport; 279 280 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 281 return NULL; 282 283 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 284 laddr, 285 &transport); 286 287 if (!addr_asoc) 288 return NULL; 289 290 id_asoc = sctp_id2assoc(sk, id); 291 if (id_asoc && (id_asoc != addr_asoc)) 292 return NULL; 293 294 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 295 (union sctp_addr *)addr); 296 297 return transport; 298 } 299 300 /* API 3.1.2 bind() - UDP Style Syntax 301 * The syntax of bind() is, 302 * 303 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 304 * 305 * sd - the socket descriptor returned by socket(). 306 * addr - the address structure (struct sockaddr_in or struct 307 * sockaddr_in6 [RFC 2553]), 308 * addr_len - the size of the address structure. 309 */ 310 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 311 { 312 int retval = 0; 313 314 lock_sock(sk); 315 316 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 317 addr, addr_len); 318 319 /* Disallow binding twice. */ 320 if (!sctp_sk(sk)->ep->base.bind_addr.port) 321 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 322 addr_len); 323 else 324 retval = -EINVAL; 325 326 release_sock(sk); 327 328 return retval; 329 } 330 331 static int sctp_get_port_local(struct sock *, union sctp_addr *); 332 333 /* Verify this is a valid sockaddr. */ 334 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 335 union sctp_addr *addr, int len) 336 { 337 struct sctp_af *af; 338 339 /* Check minimum size. */ 340 if (len < sizeof (struct sockaddr)) 341 return NULL; 342 343 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 344 return NULL; 345 346 if (addr->sa.sa_family == AF_INET6) { 347 if (len < SIN6_LEN_RFC2133) 348 return NULL; 349 /* V4 mapped address are really of AF_INET family */ 350 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 351 !opt->pf->af_supported(AF_INET, opt)) 352 return NULL; 353 } 354 355 /* If we get this far, af is valid. */ 356 af = sctp_get_af_specific(addr->sa.sa_family); 357 358 if (len < af->sockaddr_len) 359 return NULL; 360 361 return af; 362 } 363 364 static void sctp_auto_asconf_init(struct sctp_sock *sp) 365 { 366 struct net *net = sock_net(&sp->inet.sk); 367 368 if (net->sctp.default_auto_asconf) { 369 spin_lock_bh(&net->sctp.addr_wq_lock); 370 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 371 spin_unlock_bh(&net->sctp.addr_wq_lock); 372 sp->do_auto_asconf = 1; 373 } 374 } 375 376 /* Bind a local address either to an endpoint or to an association. */ 377 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 378 { 379 struct net *net = sock_net(sk); 380 struct sctp_sock *sp = sctp_sk(sk); 381 struct sctp_endpoint *ep = sp->ep; 382 struct sctp_bind_addr *bp = &ep->base.bind_addr; 383 struct sctp_af *af; 384 unsigned short snum; 385 int ret = 0; 386 387 /* Common sockaddr verification. */ 388 af = sctp_sockaddr_af(sp, addr, len); 389 if (!af) { 390 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 391 __func__, sk, addr, len); 392 return -EINVAL; 393 } 394 395 snum = ntohs(addr->v4.sin_port); 396 397 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 398 __func__, sk, &addr->sa, bp->port, snum, len); 399 400 /* PF specific bind() address verification. */ 401 if (!sp->pf->bind_verify(sp, addr)) 402 return -EADDRNOTAVAIL; 403 404 /* We must either be unbound, or bind to the same port. 405 * It's OK to allow 0 ports if we are already bound. 406 * We'll just inhert an already bound port in this case 407 */ 408 if (bp->port) { 409 if (!snum) 410 snum = bp->port; 411 else if (snum != bp->port) { 412 pr_debug("%s: new port %d doesn't match existing port " 413 "%d\n", __func__, snum, bp->port); 414 return -EINVAL; 415 } 416 } 417 418 if (snum && inet_port_requires_bind_service(net, snum) && 419 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 420 return -EACCES; 421 422 /* See if the address matches any of the addresses we may have 423 * already bound before checking against other endpoints. 424 */ 425 if (sctp_bind_addr_match(bp, addr, sp)) 426 return -EINVAL; 427 428 /* Make sure we are allowed to bind here. 429 * The function sctp_get_port_local() does duplicate address 430 * detection. 431 */ 432 addr->v4.sin_port = htons(snum); 433 if (sctp_get_port_local(sk, addr)) 434 return -EADDRINUSE; 435 436 /* Refresh ephemeral port. */ 437 if (!bp->port) { 438 bp->port = inet_sk(sk)->inet_num; 439 sctp_auto_asconf_init(sp); 440 } 441 442 /* Add the address to the bind address list. 443 * Use GFP_ATOMIC since BHs will be disabled. 444 */ 445 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 446 SCTP_ADDR_SRC, GFP_ATOMIC); 447 448 if (ret) { 449 sctp_put_port(sk); 450 return ret; 451 } 452 /* Copy back into socket for getsockname() use. */ 453 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 454 sp->pf->to_sk_saddr(addr, sk); 455 456 return ret; 457 } 458 459 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 460 * 461 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 462 * at any one time. If a sender, after sending an ASCONF chunk, decides 463 * it needs to transfer another ASCONF Chunk, it MUST wait until the 464 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 465 * subsequent ASCONF. Note this restriction binds each side, so at any 466 * time two ASCONF may be in-transit on any given association (one sent 467 * from each endpoint). 468 */ 469 static int sctp_send_asconf(struct sctp_association *asoc, 470 struct sctp_chunk *chunk) 471 { 472 int retval = 0; 473 474 /* If there is an outstanding ASCONF chunk, queue it for later 475 * transmission. 476 */ 477 if (asoc->addip_last_asconf) { 478 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 479 goto out; 480 } 481 482 /* Hold the chunk until an ASCONF_ACK is received. */ 483 sctp_chunk_hold(chunk); 484 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 485 if (retval) 486 sctp_chunk_free(chunk); 487 else 488 asoc->addip_last_asconf = chunk; 489 490 out: 491 return retval; 492 } 493 494 /* Add a list of addresses as bind addresses to local endpoint or 495 * association. 496 * 497 * Basically run through each address specified in the addrs/addrcnt 498 * array/length pair, determine if it is IPv6 or IPv4 and call 499 * sctp_do_bind() on it. 500 * 501 * If any of them fails, then the operation will be reversed and the 502 * ones that were added will be removed. 503 * 504 * Only sctp_setsockopt_bindx() is supposed to call this function. 505 */ 506 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 507 { 508 int cnt; 509 int retval = 0; 510 void *addr_buf; 511 struct sockaddr *sa_addr; 512 struct sctp_af *af; 513 514 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 515 addrs, addrcnt); 516 517 addr_buf = addrs; 518 for (cnt = 0; cnt < addrcnt; cnt++) { 519 /* The list may contain either IPv4 or IPv6 address; 520 * determine the address length for walking thru the list. 521 */ 522 sa_addr = addr_buf; 523 af = sctp_get_af_specific(sa_addr->sa_family); 524 if (!af) { 525 retval = -EINVAL; 526 goto err_bindx_add; 527 } 528 529 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 530 af->sockaddr_len); 531 532 addr_buf += af->sockaddr_len; 533 534 err_bindx_add: 535 if (retval < 0) { 536 /* Failed. Cleanup the ones that have been added */ 537 if (cnt > 0) 538 sctp_bindx_rem(sk, addrs, cnt); 539 return retval; 540 } 541 } 542 543 return retval; 544 } 545 546 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 547 * associations that are part of the endpoint indicating that a list of local 548 * addresses are added to the endpoint. 549 * 550 * If any of the addresses is already in the bind address list of the 551 * association, we do not send the chunk for that association. But it will not 552 * affect other associations. 553 * 554 * Only sctp_setsockopt_bindx() is supposed to call this function. 555 */ 556 static int sctp_send_asconf_add_ip(struct sock *sk, 557 struct sockaddr *addrs, 558 int addrcnt) 559 { 560 struct sctp_sock *sp; 561 struct sctp_endpoint *ep; 562 struct sctp_association *asoc; 563 struct sctp_bind_addr *bp; 564 struct sctp_chunk *chunk; 565 struct sctp_sockaddr_entry *laddr; 566 union sctp_addr *addr; 567 union sctp_addr saveaddr; 568 void *addr_buf; 569 struct sctp_af *af; 570 struct list_head *p; 571 int i; 572 int retval = 0; 573 574 sp = sctp_sk(sk); 575 ep = sp->ep; 576 577 if (!ep->asconf_enable) 578 return retval; 579 580 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 581 __func__, sk, addrs, addrcnt); 582 583 list_for_each_entry(asoc, &ep->asocs, asocs) { 584 if (!asoc->peer.asconf_capable) 585 continue; 586 587 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 588 continue; 589 590 if (!sctp_state(asoc, ESTABLISHED)) 591 continue; 592 593 /* Check if any address in the packed array of addresses is 594 * in the bind address list of the association. If so, 595 * do not send the asconf chunk to its peer, but continue with 596 * other associations. 597 */ 598 addr_buf = addrs; 599 for (i = 0; i < addrcnt; i++) { 600 addr = addr_buf; 601 af = sctp_get_af_specific(addr->v4.sin_family); 602 if (!af) { 603 retval = -EINVAL; 604 goto out; 605 } 606 607 if (sctp_assoc_lookup_laddr(asoc, addr)) 608 break; 609 610 addr_buf += af->sockaddr_len; 611 } 612 if (i < addrcnt) 613 continue; 614 615 /* Use the first valid address in bind addr list of 616 * association as Address Parameter of ASCONF CHUNK. 617 */ 618 bp = &asoc->base.bind_addr; 619 p = bp->address_list.next; 620 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 621 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 622 addrcnt, SCTP_PARAM_ADD_IP); 623 if (!chunk) { 624 retval = -ENOMEM; 625 goto out; 626 } 627 628 /* Add the new addresses to the bind address list with 629 * use_as_src set to 0. 630 */ 631 addr_buf = addrs; 632 for (i = 0; i < addrcnt; i++) { 633 addr = addr_buf; 634 af = sctp_get_af_specific(addr->v4.sin_family); 635 memcpy(&saveaddr, addr, af->sockaddr_len); 636 retval = sctp_add_bind_addr(bp, &saveaddr, 637 sizeof(saveaddr), 638 SCTP_ADDR_NEW, GFP_ATOMIC); 639 addr_buf += af->sockaddr_len; 640 } 641 if (asoc->src_out_of_asoc_ok) { 642 struct sctp_transport *trans; 643 644 list_for_each_entry(trans, 645 &asoc->peer.transport_addr_list, transports) { 646 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 647 2*asoc->pathmtu, 4380)); 648 trans->ssthresh = asoc->peer.i.a_rwnd; 649 trans->rto = asoc->rto_initial; 650 sctp_max_rto(asoc, trans); 651 trans->rtt = trans->srtt = trans->rttvar = 0; 652 /* Clear the source and route cache */ 653 sctp_transport_route(trans, NULL, 654 sctp_sk(asoc->base.sk)); 655 } 656 } 657 retval = sctp_send_asconf(asoc, chunk); 658 } 659 660 out: 661 return retval; 662 } 663 664 /* Remove a list of addresses from bind addresses list. Do not remove the 665 * last address. 666 * 667 * Basically run through each address specified in the addrs/addrcnt 668 * array/length pair, determine if it is IPv6 or IPv4 and call 669 * sctp_del_bind() on it. 670 * 671 * If any of them fails, then the operation will be reversed and the 672 * ones that were removed will be added back. 673 * 674 * At least one address has to be left; if only one address is 675 * available, the operation will return -EBUSY. 676 * 677 * Only sctp_setsockopt_bindx() is supposed to call this function. 678 */ 679 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 680 { 681 struct sctp_sock *sp = sctp_sk(sk); 682 struct sctp_endpoint *ep = sp->ep; 683 int cnt; 684 struct sctp_bind_addr *bp = &ep->base.bind_addr; 685 int retval = 0; 686 void *addr_buf; 687 union sctp_addr *sa_addr; 688 struct sctp_af *af; 689 690 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 691 __func__, sk, addrs, addrcnt); 692 693 addr_buf = addrs; 694 for (cnt = 0; cnt < addrcnt; cnt++) { 695 /* If the bind address list is empty or if there is only one 696 * bind address, there is nothing more to be removed (we need 697 * at least one address here). 698 */ 699 if (list_empty(&bp->address_list) || 700 (sctp_list_single_entry(&bp->address_list))) { 701 retval = -EBUSY; 702 goto err_bindx_rem; 703 } 704 705 sa_addr = addr_buf; 706 af = sctp_get_af_specific(sa_addr->sa.sa_family); 707 if (!af) { 708 retval = -EINVAL; 709 goto err_bindx_rem; 710 } 711 712 if (!af->addr_valid(sa_addr, sp, NULL)) { 713 retval = -EADDRNOTAVAIL; 714 goto err_bindx_rem; 715 } 716 717 if (sa_addr->v4.sin_port && 718 sa_addr->v4.sin_port != htons(bp->port)) { 719 retval = -EINVAL; 720 goto err_bindx_rem; 721 } 722 723 if (!sa_addr->v4.sin_port) 724 sa_addr->v4.sin_port = htons(bp->port); 725 726 /* FIXME - There is probably a need to check if sk->sk_saddr and 727 * sk->sk_rcv_addr are currently set to one of the addresses to 728 * be removed. This is something which needs to be looked into 729 * when we are fixing the outstanding issues with multi-homing 730 * socket routing and failover schemes. Refer to comments in 731 * sctp_do_bind(). -daisy 732 */ 733 retval = sctp_del_bind_addr(bp, sa_addr); 734 735 addr_buf += af->sockaddr_len; 736 err_bindx_rem: 737 if (retval < 0) { 738 /* Failed. Add the ones that has been removed back */ 739 if (cnt > 0) 740 sctp_bindx_add(sk, addrs, cnt); 741 return retval; 742 } 743 } 744 745 return retval; 746 } 747 748 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 749 * the associations that are part of the endpoint indicating that a list of 750 * local addresses are removed from the endpoint. 751 * 752 * If any of the addresses is already in the bind address list of the 753 * association, we do not send the chunk for that association. But it will not 754 * affect other associations. 755 * 756 * Only sctp_setsockopt_bindx() is supposed to call this function. 757 */ 758 static int sctp_send_asconf_del_ip(struct sock *sk, 759 struct sockaddr *addrs, 760 int addrcnt) 761 { 762 struct sctp_sock *sp; 763 struct sctp_endpoint *ep; 764 struct sctp_association *asoc; 765 struct sctp_transport *transport; 766 struct sctp_bind_addr *bp; 767 struct sctp_chunk *chunk; 768 union sctp_addr *laddr; 769 void *addr_buf; 770 struct sctp_af *af; 771 struct sctp_sockaddr_entry *saddr; 772 int i; 773 int retval = 0; 774 int stored = 0; 775 776 chunk = NULL; 777 sp = sctp_sk(sk); 778 ep = sp->ep; 779 780 if (!ep->asconf_enable) 781 return retval; 782 783 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 784 __func__, sk, addrs, addrcnt); 785 786 list_for_each_entry(asoc, &ep->asocs, asocs) { 787 788 if (!asoc->peer.asconf_capable) 789 continue; 790 791 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 792 continue; 793 794 if (!sctp_state(asoc, ESTABLISHED)) 795 continue; 796 797 /* Check if any address in the packed array of addresses is 798 * not present in the bind address list of the association. 799 * If so, do not send the asconf chunk to its peer, but 800 * continue with other associations. 801 */ 802 addr_buf = addrs; 803 for (i = 0; i < addrcnt; i++) { 804 laddr = addr_buf; 805 af = sctp_get_af_specific(laddr->v4.sin_family); 806 if (!af) { 807 retval = -EINVAL; 808 goto out; 809 } 810 811 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 812 break; 813 814 addr_buf += af->sockaddr_len; 815 } 816 if (i < addrcnt) 817 continue; 818 819 /* Find one address in the association's bind address list 820 * that is not in the packed array of addresses. This is to 821 * make sure that we do not delete all the addresses in the 822 * association. 823 */ 824 bp = &asoc->base.bind_addr; 825 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 826 addrcnt, sp); 827 if ((laddr == NULL) && (addrcnt == 1)) { 828 if (asoc->asconf_addr_del_pending) 829 continue; 830 asoc->asconf_addr_del_pending = 831 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 832 if (asoc->asconf_addr_del_pending == NULL) { 833 retval = -ENOMEM; 834 goto out; 835 } 836 asoc->asconf_addr_del_pending->sa.sa_family = 837 addrs->sa_family; 838 asoc->asconf_addr_del_pending->v4.sin_port = 839 htons(bp->port); 840 if (addrs->sa_family == AF_INET) { 841 struct sockaddr_in *sin; 842 843 sin = (struct sockaddr_in *)addrs; 844 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 845 } else if (addrs->sa_family == AF_INET6) { 846 struct sockaddr_in6 *sin6; 847 848 sin6 = (struct sockaddr_in6 *)addrs; 849 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 850 } 851 852 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 853 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 854 asoc->asconf_addr_del_pending); 855 856 asoc->src_out_of_asoc_ok = 1; 857 stored = 1; 858 goto skip_mkasconf; 859 } 860 861 if (laddr == NULL) 862 return -EINVAL; 863 864 /* We do not need RCU protection throughout this loop 865 * because this is done under a socket lock from the 866 * setsockopt call. 867 */ 868 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 869 SCTP_PARAM_DEL_IP); 870 if (!chunk) { 871 retval = -ENOMEM; 872 goto out; 873 } 874 875 skip_mkasconf: 876 /* Reset use_as_src flag for the addresses in the bind address 877 * list that are to be deleted. 878 */ 879 addr_buf = addrs; 880 for (i = 0; i < addrcnt; i++) { 881 laddr = addr_buf; 882 af = sctp_get_af_specific(laddr->v4.sin_family); 883 list_for_each_entry(saddr, &bp->address_list, list) { 884 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 885 saddr->state = SCTP_ADDR_DEL; 886 } 887 addr_buf += af->sockaddr_len; 888 } 889 890 /* Update the route and saddr entries for all the transports 891 * as some of the addresses in the bind address list are 892 * about to be deleted and cannot be used as source addresses. 893 */ 894 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 895 transports) { 896 sctp_transport_route(transport, NULL, 897 sctp_sk(asoc->base.sk)); 898 } 899 900 if (stored) 901 /* We don't need to transmit ASCONF */ 902 continue; 903 retval = sctp_send_asconf(asoc, chunk); 904 } 905 out: 906 return retval; 907 } 908 909 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 910 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 911 { 912 struct sock *sk = sctp_opt2sk(sp); 913 union sctp_addr *addr; 914 struct sctp_af *af; 915 916 /* It is safe to write port space in caller. */ 917 addr = &addrw->a; 918 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 919 af = sctp_get_af_specific(addr->sa.sa_family); 920 if (!af) 921 return -EINVAL; 922 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 923 return -EINVAL; 924 925 if (addrw->state == SCTP_ADDR_NEW) 926 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 927 else 928 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 929 } 930 931 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 932 * 933 * API 8.1 934 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 935 * int flags); 936 * 937 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 938 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 939 * or IPv6 addresses. 940 * 941 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 942 * Section 3.1.2 for this usage. 943 * 944 * addrs is a pointer to an array of one or more socket addresses. Each 945 * address is contained in its appropriate structure (i.e. struct 946 * sockaddr_in or struct sockaddr_in6) the family of the address type 947 * must be used to distinguish the address length (note that this 948 * representation is termed a "packed array" of addresses). The caller 949 * specifies the number of addresses in the array with addrcnt. 950 * 951 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 952 * -1, and sets errno to the appropriate error code. 953 * 954 * For SCTP, the port given in each socket address must be the same, or 955 * sctp_bindx() will fail, setting errno to EINVAL. 956 * 957 * The flags parameter is formed from the bitwise OR of zero or more of 958 * the following currently defined flags: 959 * 960 * SCTP_BINDX_ADD_ADDR 961 * 962 * SCTP_BINDX_REM_ADDR 963 * 964 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 965 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 966 * addresses from the association. The two flags are mutually exclusive; 967 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 968 * not remove all addresses from an association; sctp_bindx() will 969 * reject such an attempt with EINVAL. 970 * 971 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 972 * additional addresses with an endpoint after calling bind(). Or use 973 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 974 * socket is associated with so that no new association accepted will be 975 * associated with those addresses. If the endpoint supports dynamic 976 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 977 * endpoint to send the appropriate message to the peer to change the 978 * peers address lists. 979 * 980 * Adding and removing addresses from a connected association is 981 * optional functionality. Implementations that do not support this 982 * functionality should return EOPNOTSUPP. 983 * 984 * Basically do nothing but copying the addresses from user to kernel 985 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 986 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 987 * from userspace. 988 * 989 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 990 * it. 991 * 992 * sk The sk of the socket 993 * addrs The pointer to the addresses 994 * addrssize Size of the addrs buffer 995 * op Operation to perform (add or remove, see the flags of 996 * sctp_bindx) 997 * 998 * Returns 0 if ok, <0 errno code on error. 999 */ 1000 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 1001 int addrs_size, int op) 1002 { 1003 int err; 1004 int addrcnt = 0; 1005 int walk_size = 0; 1006 struct sockaddr *sa_addr; 1007 void *addr_buf = addrs; 1008 struct sctp_af *af; 1009 1010 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1011 __func__, sk, addr_buf, addrs_size, op); 1012 1013 if (unlikely(addrs_size <= 0)) 1014 return -EINVAL; 1015 1016 /* Walk through the addrs buffer and count the number of addresses. */ 1017 while (walk_size < addrs_size) { 1018 if (walk_size + sizeof(sa_family_t) > addrs_size) 1019 return -EINVAL; 1020 1021 sa_addr = addr_buf; 1022 af = sctp_get_af_specific(sa_addr->sa_family); 1023 1024 /* If the address family is not supported or if this address 1025 * causes the address buffer to overflow return EINVAL. 1026 */ 1027 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1028 return -EINVAL; 1029 addrcnt++; 1030 addr_buf += af->sockaddr_len; 1031 walk_size += af->sockaddr_len; 1032 } 1033 1034 /* Do the work. */ 1035 switch (op) { 1036 case SCTP_BINDX_ADD_ADDR: 1037 /* Allow security module to validate bindx addresses. */ 1038 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1039 addrs, addrs_size); 1040 if (err) 1041 return err; 1042 err = sctp_bindx_add(sk, addrs, addrcnt); 1043 if (err) 1044 return err; 1045 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1046 case SCTP_BINDX_REM_ADDR: 1047 err = sctp_bindx_rem(sk, addrs, addrcnt); 1048 if (err) 1049 return err; 1050 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1051 1052 default: 1053 return -EINVAL; 1054 } 1055 } 1056 1057 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1058 int addrlen) 1059 { 1060 int err; 1061 1062 lock_sock(sk); 1063 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1064 release_sock(sk); 1065 return err; 1066 } 1067 1068 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1069 const union sctp_addr *daddr, 1070 const struct sctp_initmsg *init, 1071 struct sctp_transport **tp) 1072 { 1073 struct sctp_association *asoc; 1074 struct sock *sk = ep->base.sk; 1075 struct net *net = sock_net(sk); 1076 enum sctp_scope scope; 1077 int err; 1078 1079 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1080 return -EADDRNOTAVAIL; 1081 1082 if (!ep->base.bind_addr.port) { 1083 if (sctp_autobind(sk)) 1084 return -EAGAIN; 1085 } else { 1086 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1087 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1088 return -EACCES; 1089 } 1090 1091 scope = sctp_scope(daddr); 1092 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1093 if (!asoc) 1094 return -ENOMEM; 1095 1096 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1097 if (err < 0) 1098 goto free; 1099 1100 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1101 if (!*tp) { 1102 err = -ENOMEM; 1103 goto free; 1104 } 1105 1106 if (!init) 1107 return 0; 1108 1109 if (init->sinit_num_ostreams) { 1110 __u16 outcnt = init->sinit_num_ostreams; 1111 1112 asoc->c.sinit_num_ostreams = outcnt; 1113 /* outcnt has been changed, need to re-init stream */ 1114 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1115 if (err) 1116 goto free; 1117 } 1118 1119 if (init->sinit_max_instreams) 1120 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1121 1122 if (init->sinit_max_attempts) 1123 asoc->max_init_attempts = init->sinit_max_attempts; 1124 1125 if (init->sinit_max_init_timeo) 1126 asoc->max_init_timeo = 1127 msecs_to_jiffies(init->sinit_max_init_timeo); 1128 1129 return 0; 1130 free: 1131 sctp_association_free(asoc); 1132 return err; 1133 } 1134 1135 static int sctp_connect_add_peer(struct sctp_association *asoc, 1136 union sctp_addr *daddr, int addr_len) 1137 { 1138 struct sctp_endpoint *ep = asoc->ep; 1139 struct sctp_association *old; 1140 struct sctp_transport *t; 1141 int err; 1142 1143 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1144 if (err) 1145 return err; 1146 1147 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1148 if (old && old != asoc) 1149 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1150 : -EALREADY; 1151 1152 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1153 return -EADDRNOTAVAIL; 1154 1155 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1156 if (!t) 1157 return -ENOMEM; 1158 1159 return 0; 1160 } 1161 1162 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1163 * 1164 * Common routine for handling connect() and sctp_connectx(). 1165 * Connect will come in with just a single address. 1166 */ 1167 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1168 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1169 { 1170 struct sctp_sock *sp = sctp_sk(sk); 1171 struct sctp_endpoint *ep = sp->ep; 1172 struct sctp_transport *transport; 1173 struct sctp_association *asoc; 1174 void *addr_buf = kaddrs; 1175 union sctp_addr *daddr; 1176 struct sctp_af *af; 1177 int walk_size, err; 1178 long timeo; 1179 1180 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1181 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1182 return -EISCONN; 1183 1184 daddr = addr_buf; 1185 af = sctp_get_af_specific(daddr->sa.sa_family); 1186 if (!af || af->sockaddr_len > addrs_size) 1187 return -EINVAL; 1188 1189 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1190 if (err) 1191 return err; 1192 1193 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1194 if (asoc) 1195 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1196 : -EALREADY; 1197 1198 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1199 if (err) 1200 return err; 1201 asoc = transport->asoc; 1202 1203 addr_buf += af->sockaddr_len; 1204 walk_size = af->sockaddr_len; 1205 while (walk_size < addrs_size) { 1206 err = -EINVAL; 1207 if (walk_size + sizeof(sa_family_t) > addrs_size) 1208 goto out_free; 1209 1210 daddr = addr_buf; 1211 af = sctp_get_af_specific(daddr->sa.sa_family); 1212 if (!af || af->sockaddr_len + walk_size > addrs_size) 1213 goto out_free; 1214 1215 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1216 goto out_free; 1217 1218 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1219 if (err) 1220 goto out_free; 1221 1222 addr_buf += af->sockaddr_len; 1223 walk_size += af->sockaddr_len; 1224 } 1225 1226 /* In case the user of sctp_connectx() wants an association 1227 * id back, assign one now. 1228 */ 1229 if (assoc_id) { 1230 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1231 if (err < 0) 1232 goto out_free; 1233 } 1234 1235 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1236 if (err < 0) 1237 goto out_free; 1238 1239 /* Initialize sk's dport and daddr for getpeername() */ 1240 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1241 sp->pf->to_sk_daddr(daddr, sk); 1242 sk->sk_err = 0; 1243 1244 if (assoc_id) 1245 *assoc_id = asoc->assoc_id; 1246 1247 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1248 return sctp_wait_for_connect(asoc, &timeo); 1249 1250 out_free: 1251 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1252 __func__, asoc, kaddrs, err); 1253 sctp_association_free(asoc); 1254 return err; 1255 } 1256 1257 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1258 * 1259 * API 8.9 1260 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1261 * sctp_assoc_t *asoc); 1262 * 1263 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1264 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1265 * or IPv6 addresses. 1266 * 1267 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1268 * Section 3.1.2 for this usage. 1269 * 1270 * addrs is a pointer to an array of one or more socket addresses. Each 1271 * address is contained in its appropriate structure (i.e. struct 1272 * sockaddr_in or struct sockaddr_in6) the family of the address type 1273 * must be used to distengish the address length (note that this 1274 * representation is termed a "packed array" of addresses). The caller 1275 * specifies the number of addresses in the array with addrcnt. 1276 * 1277 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1278 * the association id of the new association. On failure, sctp_connectx() 1279 * returns -1, and sets errno to the appropriate error code. The assoc_id 1280 * is not touched by the kernel. 1281 * 1282 * For SCTP, the port given in each socket address must be the same, or 1283 * sctp_connectx() will fail, setting errno to EINVAL. 1284 * 1285 * An application can use sctp_connectx to initiate an association with 1286 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1287 * allows a caller to specify multiple addresses at which a peer can be 1288 * reached. The way the SCTP stack uses the list of addresses to set up 1289 * the association is implementation dependent. This function only 1290 * specifies that the stack will try to make use of all the addresses in 1291 * the list when needed. 1292 * 1293 * Note that the list of addresses passed in is only used for setting up 1294 * the association. It does not necessarily equal the set of addresses 1295 * the peer uses for the resulting association. If the caller wants to 1296 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1297 * retrieve them after the association has been set up. 1298 * 1299 * Basically do nothing but copying the addresses from user to kernel 1300 * land and invoking either sctp_connectx(). This is used for tunneling 1301 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1302 * 1303 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1304 * it. 1305 * 1306 * sk The sk of the socket 1307 * addrs The pointer to the addresses 1308 * addrssize Size of the addrs buffer 1309 * 1310 * Returns >=0 if ok, <0 errno code on error. 1311 */ 1312 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1313 int addrs_size, sctp_assoc_t *assoc_id) 1314 { 1315 int err = 0, flags = 0; 1316 1317 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1318 __func__, sk, kaddrs, addrs_size); 1319 1320 /* make sure the 1st addr's sa_family is accessible later */ 1321 if (unlikely(addrs_size < sizeof(sa_family_t))) 1322 return -EINVAL; 1323 1324 /* Allow security module to validate connectx addresses. */ 1325 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1326 (struct sockaddr *)kaddrs, 1327 addrs_size); 1328 if (err) 1329 return err; 1330 1331 /* in-kernel sockets don't generally have a file allocated to them 1332 * if all they do is call sock_create_kern(). 1333 */ 1334 if (sk->sk_socket->file) 1335 flags = sk->sk_socket->file->f_flags; 1336 1337 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1338 } 1339 1340 /* 1341 * This is an older interface. It's kept for backward compatibility 1342 * to the option that doesn't provide association id. 1343 */ 1344 static int sctp_setsockopt_connectx_old(struct sock *sk, 1345 struct sockaddr *kaddrs, 1346 int addrs_size) 1347 { 1348 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1349 } 1350 1351 /* 1352 * New interface for the API. The since the API is done with a socket 1353 * option, to make it simple we feed back the association id is as a return 1354 * indication to the call. Error is always negative and association id is 1355 * always positive. 1356 */ 1357 static int sctp_setsockopt_connectx(struct sock *sk, 1358 struct sockaddr *kaddrs, 1359 int addrs_size) 1360 { 1361 sctp_assoc_t assoc_id = 0; 1362 int err = 0; 1363 1364 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1365 1366 if (err) 1367 return err; 1368 else 1369 return assoc_id; 1370 } 1371 1372 /* 1373 * New (hopefully final) interface for the API. 1374 * We use the sctp_getaddrs_old structure so that use-space library 1375 * can avoid any unnecessary allocations. The only different part 1376 * is that we store the actual length of the address buffer into the 1377 * addrs_num structure member. That way we can re-use the existing 1378 * code. 1379 */ 1380 #ifdef CONFIG_COMPAT 1381 struct compat_sctp_getaddrs_old { 1382 sctp_assoc_t assoc_id; 1383 s32 addr_num; 1384 compat_uptr_t addrs; /* struct sockaddr * */ 1385 }; 1386 #endif 1387 1388 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1389 char __user *optval, 1390 int __user *optlen) 1391 { 1392 struct sctp_getaddrs_old param; 1393 sctp_assoc_t assoc_id = 0; 1394 struct sockaddr *kaddrs; 1395 int err = 0; 1396 1397 #ifdef CONFIG_COMPAT 1398 if (in_compat_syscall()) { 1399 struct compat_sctp_getaddrs_old param32; 1400 1401 if (len < sizeof(param32)) 1402 return -EINVAL; 1403 if (copy_from_user(¶m32, optval, sizeof(param32))) 1404 return -EFAULT; 1405 1406 param.assoc_id = param32.assoc_id; 1407 param.addr_num = param32.addr_num; 1408 param.addrs = compat_ptr(param32.addrs); 1409 } else 1410 #endif 1411 { 1412 if (len < sizeof(param)) 1413 return -EINVAL; 1414 if (copy_from_user(¶m, optval, sizeof(param))) 1415 return -EFAULT; 1416 } 1417 1418 kaddrs = memdup_user(param.addrs, param.addr_num); 1419 if (IS_ERR(kaddrs)) 1420 return PTR_ERR(kaddrs); 1421 1422 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1423 kfree(kaddrs); 1424 if (err == 0 || err == -EINPROGRESS) { 1425 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1426 return -EFAULT; 1427 if (put_user(sizeof(assoc_id), optlen)) 1428 return -EFAULT; 1429 } 1430 1431 return err; 1432 } 1433 1434 /* API 3.1.4 close() - UDP Style Syntax 1435 * Applications use close() to perform graceful shutdown (as described in 1436 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1437 * by a UDP-style socket. 1438 * 1439 * The syntax is 1440 * 1441 * ret = close(int sd); 1442 * 1443 * sd - the socket descriptor of the associations to be closed. 1444 * 1445 * To gracefully shutdown a specific association represented by the 1446 * UDP-style socket, an application should use the sendmsg() call, 1447 * passing no user data, but including the appropriate flag in the 1448 * ancillary data (see Section xxxx). 1449 * 1450 * If sd in the close() call is a branched-off socket representing only 1451 * one association, the shutdown is performed on that association only. 1452 * 1453 * 4.1.6 close() - TCP Style Syntax 1454 * 1455 * Applications use close() to gracefully close down an association. 1456 * 1457 * The syntax is: 1458 * 1459 * int close(int sd); 1460 * 1461 * sd - the socket descriptor of the association to be closed. 1462 * 1463 * After an application calls close() on a socket descriptor, no further 1464 * socket operations will succeed on that descriptor. 1465 * 1466 * API 7.1.4 SO_LINGER 1467 * 1468 * An application using the TCP-style socket can use this option to 1469 * perform the SCTP ABORT primitive. The linger option structure is: 1470 * 1471 * struct linger { 1472 * int l_onoff; // option on/off 1473 * int l_linger; // linger time 1474 * }; 1475 * 1476 * To enable the option, set l_onoff to 1. If the l_linger value is set 1477 * to 0, calling close() is the same as the ABORT primitive. If the 1478 * value is set to a negative value, the setsockopt() call will return 1479 * an error. If the value is set to a positive value linger_time, the 1480 * close() can be blocked for at most linger_time ms. If the graceful 1481 * shutdown phase does not finish during this period, close() will 1482 * return but the graceful shutdown phase continues in the system. 1483 */ 1484 static void sctp_close(struct sock *sk, long timeout) 1485 { 1486 struct net *net = sock_net(sk); 1487 struct sctp_endpoint *ep; 1488 struct sctp_association *asoc; 1489 struct list_head *pos, *temp; 1490 unsigned int data_was_unread; 1491 1492 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1493 1494 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1495 sk->sk_shutdown = SHUTDOWN_MASK; 1496 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1497 1498 ep = sctp_sk(sk)->ep; 1499 1500 /* Clean up any skbs sitting on the receive queue. */ 1501 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1502 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1503 1504 /* Walk all associations on an endpoint. */ 1505 list_for_each_safe(pos, temp, &ep->asocs) { 1506 asoc = list_entry(pos, struct sctp_association, asocs); 1507 1508 if (sctp_style(sk, TCP)) { 1509 /* A closed association can still be in the list if 1510 * it belongs to a TCP-style listening socket that is 1511 * not yet accepted. If so, free it. If not, send an 1512 * ABORT or SHUTDOWN based on the linger options. 1513 */ 1514 if (sctp_state(asoc, CLOSED)) { 1515 sctp_association_free(asoc); 1516 continue; 1517 } 1518 } 1519 1520 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1521 !skb_queue_empty(&asoc->ulpq.reasm) || 1522 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1523 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1524 struct sctp_chunk *chunk; 1525 1526 chunk = sctp_make_abort_user(asoc, NULL, 0); 1527 sctp_primitive_ABORT(net, asoc, chunk); 1528 } else 1529 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1530 } 1531 1532 /* On a TCP-style socket, block for at most linger_time if set. */ 1533 if (sctp_style(sk, TCP) && timeout) 1534 sctp_wait_for_close(sk, timeout); 1535 1536 /* This will run the backlog queue. */ 1537 release_sock(sk); 1538 1539 /* Supposedly, no process has access to the socket, but 1540 * the net layers still may. 1541 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1542 * held and that should be grabbed before socket lock. 1543 */ 1544 spin_lock_bh(&net->sctp.addr_wq_lock); 1545 bh_lock_sock_nested(sk); 1546 1547 /* Hold the sock, since sk_common_release() will put sock_put() 1548 * and we have just a little more cleanup. 1549 */ 1550 sock_hold(sk); 1551 sk_common_release(sk); 1552 1553 bh_unlock_sock(sk); 1554 spin_unlock_bh(&net->sctp.addr_wq_lock); 1555 1556 sock_put(sk); 1557 1558 SCTP_DBG_OBJCNT_DEC(sock); 1559 } 1560 1561 /* Handle EPIPE error. */ 1562 static int sctp_error(struct sock *sk, int flags, int err) 1563 { 1564 if (err == -EPIPE) 1565 err = sock_error(sk) ? : -EPIPE; 1566 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1567 send_sig(SIGPIPE, current, 0); 1568 return err; 1569 } 1570 1571 /* API 3.1.3 sendmsg() - UDP Style Syntax 1572 * 1573 * An application uses sendmsg() and recvmsg() calls to transmit data to 1574 * and receive data from its peer. 1575 * 1576 * ssize_t sendmsg(int socket, const struct msghdr *message, 1577 * int flags); 1578 * 1579 * socket - the socket descriptor of the endpoint. 1580 * message - pointer to the msghdr structure which contains a single 1581 * user message and possibly some ancillary data. 1582 * 1583 * See Section 5 for complete description of the data 1584 * structures. 1585 * 1586 * flags - flags sent or received with the user message, see Section 1587 * 5 for complete description of the flags. 1588 * 1589 * Note: This function could use a rewrite especially when explicit 1590 * connect support comes in. 1591 */ 1592 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1593 1594 static int sctp_msghdr_parse(const struct msghdr *msg, 1595 struct sctp_cmsgs *cmsgs); 1596 1597 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1598 struct sctp_sndrcvinfo *srinfo, 1599 const struct msghdr *msg, size_t msg_len) 1600 { 1601 __u16 sflags; 1602 int err; 1603 1604 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1605 return -EPIPE; 1606 1607 if (msg_len > sk->sk_sndbuf) 1608 return -EMSGSIZE; 1609 1610 memset(cmsgs, 0, sizeof(*cmsgs)); 1611 err = sctp_msghdr_parse(msg, cmsgs); 1612 if (err) { 1613 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1614 return err; 1615 } 1616 1617 memset(srinfo, 0, sizeof(*srinfo)); 1618 if (cmsgs->srinfo) { 1619 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1620 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1621 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1622 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1623 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1624 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1625 } 1626 1627 if (cmsgs->sinfo) { 1628 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1629 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1630 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1631 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1632 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1633 } 1634 1635 if (cmsgs->prinfo) { 1636 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1637 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1638 cmsgs->prinfo->pr_policy); 1639 } 1640 1641 sflags = srinfo->sinfo_flags; 1642 if (!sflags && msg_len) 1643 return 0; 1644 1645 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1646 return -EINVAL; 1647 1648 if (((sflags & SCTP_EOF) && msg_len > 0) || 1649 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1650 return -EINVAL; 1651 1652 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1653 return -EINVAL; 1654 1655 return 0; 1656 } 1657 1658 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1659 struct sctp_cmsgs *cmsgs, 1660 union sctp_addr *daddr, 1661 struct sctp_transport **tp) 1662 { 1663 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1664 struct sctp_association *asoc; 1665 struct cmsghdr *cmsg; 1666 __be32 flowinfo = 0; 1667 struct sctp_af *af; 1668 int err; 1669 1670 *tp = NULL; 1671 1672 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1673 return -EINVAL; 1674 1675 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1676 sctp_sstate(sk, CLOSING))) 1677 return -EADDRNOTAVAIL; 1678 1679 /* Label connection socket for first association 1-to-many 1680 * style for client sequence socket()->sendmsg(). This 1681 * needs to be done before sctp_assoc_add_peer() as that will 1682 * set up the initial packet that needs to account for any 1683 * security ip options (CIPSO/CALIPSO) added to the packet. 1684 */ 1685 af = sctp_get_af_specific(daddr->sa.sa_family); 1686 if (!af) 1687 return -EINVAL; 1688 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1689 (struct sockaddr *)daddr, 1690 af->sockaddr_len); 1691 if (err < 0) 1692 return err; 1693 1694 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1695 if (err) 1696 return err; 1697 asoc = (*tp)->asoc; 1698 1699 if (!cmsgs->addrs_msg) 1700 return 0; 1701 1702 if (daddr->sa.sa_family == AF_INET6) 1703 flowinfo = daddr->v6.sin6_flowinfo; 1704 1705 /* sendv addr list parse */ 1706 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1707 union sctp_addr _daddr; 1708 int dlen; 1709 1710 if (cmsg->cmsg_level != IPPROTO_SCTP || 1711 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1712 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1713 continue; 1714 1715 daddr = &_daddr; 1716 memset(daddr, 0, sizeof(*daddr)); 1717 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1718 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1719 if (dlen < sizeof(struct in_addr)) { 1720 err = -EINVAL; 1721 goto free; 1722 } 1723 1724 dlen = sizeof(struct in_addr); 1725 daddr->v4.sin_family = AF_INET; 1726 daddr->v4.sin_port = htons(asoc->peer.port); 1727 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1728 } else { 1729 if (dlen < sizeof(struct in6_addr)) { 1730 err = -EINVAL; 1731 goto free; 1732 } 1733 1734 dlen = sizeof(struct in6_addr); 1735 daddr->v6.sin6_flowinfo = flowinfo; 1736 daddr->v6.sin6_family = AF_INET6; 1737 daddr->v6.sin6_port = htons(asoc->peer.port); 1738 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1739 } 1740 1741 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1742 if (err) 1743 goto free; 1744 } 1745 1746 return 0; 1747 1748 free: 1749 sctp_association_free(asoc); 1750 return err; 1751 } 1752 1753 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1754 __u16 sflags, struct msghdr *msg, 1755 size_t msg_len) 1756 { 1757 struct sock *sk = asoc->base.sk; 1758 struct net *net = sock_net(sk); 1759 1760 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1761 return -EPIPE; 1762 1763 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1764 !sctp_state(asoc, ESTABLISHED)) 1765 return 0; 1766 1767 if (sflags & SCTP_EOF) { 1768 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1769 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1770 1771 return 0; 1772 } 1773 1774 if (sflags & SCTP_ABORT) { 1775 struct sctp_chunk *chunk; 1776 1777 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1778 if (!chunk) 1779 return -ENOMEM; 1780 1781 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1782 sctp_primitive_ABORT(net, asoc, chunk); 1783 iov_iter_revert(&msg->msg_iter, msg_len); 1784 1785 return 0; 1786 } 1787 1788 return 1; 1789 } 1790 1791 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1792 struct msghdr *msg, size_t msg_len, 1793 struct sctp_transport *transport, 1794 struct sctp_sndrcvinfo *sinfo) 1795 { 1796 struct sock *sk = asoc->base.sk; 1797 struct sctp_sock *sp = sctp_sk(sk); 1798 struct net *net = sock_net(sk); 1799 struct sctp_datamsg *datamsg; 1800 bool wait_connect = false; 1801 struct sctp_chunk *chunk; 1802 long timeo; 1803 int err; 1804 1805 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1806 err = -EINVAL; 1807 goto err; 1808 } 1809 1810 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1811 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1812 if (err) 1813 goto err; 1814 } 1815 1816 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1817 err = -EMSGSIZE; 1818 goto err; 1819 } 1820 1821 if (asoc->pmtu_pending) { 1822 if (sp->param_flags & SPP_PMTUD_ENABLE) 1823 sctp_assoc_sync_pmtu(asoc); 1824 asoc->pmtu_pending = 0; 1825 } 1826 1827 if (sctp_wspace(asoc) < (int)msg_len) 1828 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1829 1830 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1831 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1832 err = sctp_wait_for_sndbuf(asoc, transport, &timeo, msg_len); 1833 if (err) 1834 goto err; 1835 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) { 1836 err = -EINVAL; 1837 goto err; 1838 } 1839 } 1840 1841 if (sctp_state(asoc, CLOSED)) { 1842 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1843 if (err) 1844 goto err; 1845 1846 if (asoc->ep->intl_enable) { 1847 timeo = sock_sndtimeo(sk, 0); 1848 err = sctp_wait_for_connect(asoc, &timeo); 1849 if (err) { 1850 err = -ESRCH; 1851 goto err; 1852 } 1853 } else { 1854 wait_connect = true; 1855 } 1856 1857 pr_debug("%s: we associated primitively\n", __func__); 1858 } 1859 1860 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1861 if (IS_ERR(datamsg)) { 1862 err = PTR_ERR(datamsg); 1863 goto err; 1864 } 1865 1866 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1867 1868 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1869 sctp_chunk_hold(chunk); 1870 sctp_set_owner_w(chunk); 1871 chunk->transport = transport; 1872 } 1873 1874 err = sctp_primitive_SEND(net, asoc, datamsg); 1875 if (err) { 1876 sctp_datamsg_free(datamsg); 1877 goto err; 1878 } 1879 1880 pr_debug("%s: we sent primitively\n", __func__); 1881 1882 sctp_datamsg_put(datamsg); 1883 1884 if (unlikely(wait_connect)) { 1885 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1886 sctp_wait_for_connect(asoc, &timeo); 1887 } 1888 1889 err = msg_len; 1890 1891 err: 1892 return err; 1893 } 1894 1895 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1896 const struct msghdr *msg, 1897 struct sctp_cmsgs *cmsgs) 1898 { 1899 union sctp_addr *daddr = NULL; 1900 int err; 1901 1902 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1903 int len = msg->msg_namelen; 1904 1905 if (len > sizeof(*daddr)) 1906 len = sizeof(*daddr); 1907 1908 daddr = (union sctp_addr *)msg->msg_name; 1909 1910 err = sctp_verify_addr(sk, daddr, len); 1911 if (err) 1912 return ERR_PTR(err); 1913 } 1914 1915 return daddr; 1916 } 1917 1918 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1919 struct sctp_sndrcvinfo *sinfo, 1920 struct sctp_cmsgs *cmsgs) 1921 { 1922 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1923 sinfo->sinfo_stream = asoc->default_stream; 1924 sinfo->sinfo_ppid = asoc->default_ppid; 1925 sinfo->sinfo_context = asoc->default_context; 1926 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1927 1928 if (!cmsgs->prinfo) 1929 sinfo->sinfo_flags = asoc->default_flags; 1930 } 1931 1932 if (!cmsgs->srinfo && !cmsgs->prinfo) 1933 sinfo->sinfo_timetolive = asoc->default_timetolive; 1934 1935 if (cmsgs->authinfo) { 1936 /* Reuse sinfo_tsn to indicate that authinfo was set and 1937 * sinfo_ssn to save the keyid on tx path. 1938 */ 1939 sinfo->sinfo_tsn = 1; 1940 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1941 } 1942 } 1943 1944 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1945 { 1946 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1947 struct sctp_transport *transport = NULL; 1948 struct sctp_sndrcvinfo _sinfo, *sinfo; 1949 struct sctp_association *asoc, *tmp; 1950 struct sctp_cmsgs cmsgs; 1951 union sctp_addr *daddr; 1952 bool new = false; 1953 __u16 sflags; 1954 int err; 1955 1956 /* Parse and get snd_info */ 1957 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1958 if (err) 1959 goto out; 1960 1961 sinfo = &_sinfo; 1962 sflags = sinfo->sinfo_flags; 1963 1964 /* Get daddr from msg */ 1965 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1966 if (IS_ERR(daddr)) { 1967 err = PTR_ERR(daddr); 1968 goto out; 1969 } 1970 1971 lock_sock(sk); 1972 1973 /* SCTP_SENDALL process */ 1974 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1975 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1976 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1977 msg_len); 1978 if (err == 0) 1979 continue; 1980 if (err < 0) 1981 goto out_unlock; 1982 1983 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1984 1985 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1986 NULL, sinfo); 1987 if (err < 0) 1988 goto out_unlock; 1989 1990 iov_iter_revert(&msg->msg_iter, err); 1991 } 1992 1993 goto out_unlock; 1994 } 1995 1996 /* Get and check or create asoc */ 1997 if (daddr) { 1998 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1999 if (asoc) { 2000 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2001 msg_len); 2002 if (err <= 0) 2003 goto out_unlock; 2004 } else { 2005 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2006 &transport); 2007 if (err) 2008 goto out_unlock; 2009 2010 asoc = transport->asoc; 2011 new = true; 2012 } 2013 2014 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2015 transport = NULL; 2016 } else { 2017 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2018 if (!asoc) { 2019 err = -EPIPE; 2020 goto out_unlock; 2021 } 2022 2023 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2024 if (err <= 0) 2025 goto out_unlock; 2026 } 2027 2028 /* Update snd_info with the asoc */ 2029 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2030 2031 /* Send msg to the asoc */ 2032 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2033 if (err < 0 && err != -ESRCH && new) 2034 sctp_association_free(asoc); 2035 2036 out_unlock: 2037 release_sock(sk); 2038 out: 2039 return sctp_error(sk, msg->msg_flags, err); 2040 } 2041 2042 /* This is an extended version of skb_pull() that removes the data from the 2043 * start of a skb even when data is spread across the list of skb's in the 2044 * frag_list. len specifies the total amount of data that needs to be removed. 2045 * when 'len' bytes could be removed from the skb, it returns 0. 2046 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2047 * could not be removed. 2048 */ 2049 static int sctp_skb_pull(struct sk_buff *skb, int len) 2050 { 2051 struct sk_buff *list; 2052 int skb_len = skb_headlen(skb); 2053 int rlen; 2054 2055 if (len <= skb_len) { 2056 __skb_pull(skb, len); 2057 return 0; 2058 } 2059 len -= skb_len; 2060 __skb_pull(skb, skb_len); 2061 2062 skb_walk_frags(skb, list) { 2063 rlen = sctp_skb_pull(list, len); 2064 skb->len -= (len-rlen); 2065 skb->data_len -= (len-rlen); 2066 2067 if (!rlen) 2068 return 0; 2069 2070 len = rlen; 2071 } 2072 2073 return len; 2074 } 2075 2076 /* API 3.1.3 recvmsg() - UDP Style Syntax 2077 * 2078 * ssize_t recvmsg(int socket, struct msghdr *message, 2079 * int flags); 2080 * 2081 * socket - the socket descriptor of the endpoint. 2082 * message - pointer to the msghdr structure which contains a single 2083 * user message and possibly some ancillary data. 2084 * 2085 * See Section 5 for complete description of the data 2086 * structures. 2087 * 2088 * flags - flags sent or received with the user message, see Section 2089 * 5 for complete description of the flags. 2090 */ 2091 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2092 int flags, int *addr_len) 2093 { 2094 struct sctp_ulpevent *event = NULL; 2095 struct sctp_sock *sp = sctp_sk(sk); 2096 struct sk_buff *skb, *head_skb; 2097 int copied; 2098 int err = 0; 2099 int skb_len; 2100 2101 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", 2102 __func__, sk, msg, len, flags, addr_len); 2103 2104 if (unlikely(flags & MSG_ERRQUEUE)) 2105 return inet_recv_error(sk, msg, len, addr_len); 2106 2107 if (sk_can_busy_loop(sk) && 2108 skb_queue_empty_lockless(&sk->sk_receive_queue)) 2109 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2110 2111 lock_sock(sk); 2112 2113 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2114 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2115 err = -ENOTCONN; 2116 goto out; 2117 } 2118 2119 skb = sctp_skb_recv_datagram(sk, flags, &err); 2120 if (!skb) 2121 goto out; 2122 2123 /* Get the total length of the skb including any skb's in the 2124 * frag_list. 2125 */ 2126 skb_len = skb->len; 2127 2128 copied = skb_len; 2129 if (copied > len) 2130 copied = len; 2131 2132 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2133 2134 event = sctp_skb2event(skb); 2135 2136 if (err) 2137 goto out_free; 2138 2139 if (event->chunk && event->chunk->head_skb) 2140 head_skb = event->chunk->head_skb; 2141 else 2142 head_skb = skb; 2143 sock_recv_cmsgs(msg, sk, head_skb); 2144 if (sctp_ulpevent_is_notification(event)) { 2145 msg->msg_flags |= MSG_NOTIFICATION; 2146 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2147 } else { 2148 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2149 } 2150 2151 /* Check if we allow SCTP_NXTINFO. */ 2152 if (sp->recvnxtinfo) 2153 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2154 /* Check if we allow SCTP_RCVINFO. */ 2155 if (sp->recvrcvinfo) 2156 sctp_ulpevent_read_rcvinfo(event, msg); 2157 /* Check if we allow SCTP_SNDRCVINFO. */ 2158 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2159 sctp_ulpevent_read_sndrcvinfo(event, msg); 2160 2161 err = copied; 2162 2163 /* If skb's length exceeds the user's buffer, update the skb and 2164 * push it back to the receive_queue so that the next call to 2165 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2166 */ 2167 if (skb_len > copied) { 2168 msg->msg_flags &= ~MSG_EOR; 2169 if (flags & MSG_PEEK) 2170 goto out_free; 2171 sctp_skb_pull(skb, copied); 2172 skb_queue_head(&sk->sk_receive_queue, skb); 2173 2174 /* When only partial message is copied to the user, increase 2175 * rwnd by that amount. If all the data in the skb is read, 2176 * rwnd is updated when the event is freed. 2177 */ 2178 if (!sctp_ulpevent_is_notification(event)) 2179 sctp_assoc_rwnd_increase(event->asoc, copied); 2180 goto out; 2181 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2182 (event->msg_flags & MSG_EOR)) 2183 msg->msg_flags |= MSG_EOR; 2184 else 2185 msg->msg_flags &= ~MSG_EOR; 2186 2187 out_free: 2188 if (flags & MSG_PEEK) { 2189 /* Release the skb reference acquired after peeking the skb in 2190 * sctp_skb_recv_datagram(). 2191 */ 2192 kfree_skb(skb); 2193 } else { 2194 /* Free the event which includes releasing the reference to 2195 * the owner of the skb, freeing the skb and updating the 2196 * rwnd. 2197 */ 2198 sctp_ulpevent_free(event); 2199 } 2200 out: 2201 release_sock(sk); 2202 return err; 2203 } 2204 2205 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2206 * 2207 * This option is a on/off flag. If enabled no SCTP message 2208 * fragmentation will be performed. Instead if a message being sent 2209 * exceeds the current PMTU size, the message will NOT be sent and 2210 * instead a error will be indicated to the user. 2211 */ 2212 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2213 unsigned int optlen) 2214 { 2215 if (optlen < sizeof(int)) 2216 return -EINVAL; 2217 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2218 return 0; 2219 } 2220 2221 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2222 unsigned int optlen) 2223 { 2224 struct sctp_sock *sp = sctp_sk(sk); 2225 struct sctp_association *asoc; 2226 int i; 2227 2228 if (optlen > sizeof(struct sctp_event_subscribe)) 2229 return -EINVAL; 2230 2231 for (i = 0; i < optlen; i++) 2232 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2233 sn_type[i]); 2234 2235 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2236 asoc->subscribe = sctp_sk(sk)->subscribe; 2237 2238 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2239 * if there is no data to be sent or retransmit, the stack will 2240 * immediately send up this notification. 2241 */ 2242 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2243 struct sctp_ulpevent *event; 2244 2245 asoc = sctp_id2assoc(sk, 0); 2246 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2247 event = sctp_ulpevent_make_sender_dry_event(asoc, 2248 GFP_USER | __GFP_NOWARN); 2249 if (!event) 2250 return -ENOMEM; 2251 2252 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2253 } 2254 } 2255 2256 return 0; 2257 } 2258 2259 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2260 * 2261 * This socket option is applicable to the UDP-style socket only. When 2262 * set it will cause associations that are idle for more than the 2263 * specified number of seconds to automatically close. An association 2264 * being idle is defined an association that has NOT sent or received 2265 * user data. The special value of '0' indicates that no automatic 2266 * close of any associations should be performed. The option expects an 2267 * integer defining the number of seconds of idle time before an 2268 * association is closed. 2269 */ 2270 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2271 unsigned int optlen) 2272 { 2273 struct sctp_sock *sp = sctp_sk(sk); 2274 struct net *net = sock_net(sk); 2275 2276 /* Applicable to UDP-style socket only */ 2277 if (sctp_style(sk, TCP)) 2278 return -EOPNOTSUPP; 2279 if (optlen != sizeof(int)) 2280 return -EINVAL; 2281 2282 sp->autoclose = *optval; 2283 if (sp->autoclose > net->sctp.max_autoclose) 2284 sp->autoclose = net->sctp.max_autoclose; 2285 2286 return 0; 2287 } 2288 2289 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2290 * 2291 * Applications can enable or disable heartbeats for any peer address of 2292 * an association, modify an address's heartbeat interval, force a 2293 * heartbeat to be sent immediately, and adjust the address's maximum 2294 * number of retransmissions sent before an address is considered 2295 * unreachable. The following structure is used to access and modify an 2296 * address's parameters: 2297 * 2298 * struct sctp_paddrparams { 2299 * sctp_assoc_t spp_assoc_id; 2300 * struct sockaddr_storage spp_address; 2301 * uint32_t spp_hbinterval; 2302 * uint16_t spp_pathmaxrxt; 2303 * uint32_t spp_pathmtu; 2304 * uint32_t spp_sackdelay; 2305 * uint32_t spp_flags; 2306 * uint32_t spp_ipv6_flowlabel; 2307 * uint8_t spp_dscp; 2308 * }; 2309 * 2310 * spp_assoc_id - (one-to-many style socket) This is filled in the 2311 * application, and identifies the association for 2312 * this query. 2313 * spp_address - This specifies which address is of interest. 2314 * spp_hbinterval - This contains the value of the heartbeat interval, 2315 * in milliseconds. If a value of zero 2316 * is present in this field then no changes are to 2317 * be made to this parameter. 2318 * spp_pathmaxrxt - This contains the maximum number of 2319 * retransmissions before this address shall be 2320 * considered unreachable. If a value of zero 2321 * is present in this field then no changes are to 2322 * be made to this parameter. 2323 * spp_pathmtu - When Path MTU discovery is disabled the value 2324 * specified here will be the "fixed" path mtu. 2325 * Note that if the spp_address field is empty 2326 * then all associations on this address will 2327 * have this fixed path mtu set upon them. 2328 * 2329 * spp_sackdelay - When delayed sack is enabled, this value specifies 2330 * the number of milliseconds that sacks will be delayed 2331 * for. This value will apply to all addresses of an 2332 * association if the spp_address field is empty. Note 2333 * also, that if delayed sack is enabled and this 2334 * value is set to 0, no change is made to the last 2335 * recorded delayed sack timer value. 2336 * 2337 * spp_flags - These flags are used to control various features 2338 * on an association. The flag field may contain 2339 * zero or more of the following options. 2340 * 2341 * SPP_HB_ENABLE - Enable heartbeats on the 2342 * specified address. Note that if the address 2343 * field is empty all addresses for the association 2344 * have heartbeats enabled upon them. 2345 * 2346 * SPP_HB_DISABLE - Disable heartbeats on the 2347 * speicifed address. Note that if the address 2348 * field is empty all addresses for the association 2349 * will have their heartbeats disabled. Note also 2350 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2351 * mutually exclusive, only one of these two should 2352 * be specified. Enabling both fields will have 2353 * undetermined results. 2354 * 2355 * SPP_HB_DEMAND - Request a user initiated heartbeat 2356 * to be made immediately. 2357 * 2358 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2359 * heartbeat delayis to be set to the value of 0 2360 * milliseconds. 2361 * 2362 * SPP_PMTUD_ENABLE - This field will enable PMTU 2363 * discovery upon the specified address. Note that 2364 * if the address feild is empty then all addresses 2365 * on the association are effected. 2366 * 2367 * SPP_PMTUD_DISABLE - This field will disable PMTU 2368 * discovery upon the specified address. Note that 2369 * if the address feild is empty then all addresses 2370 * on the association are effected. Not also that 2371 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2372 * exclusive. Enabling both will have undetermined 2373 * results. 2374 * 2375 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2376 * on delayed sack. The time specified in spp_sackdelay 2377 * is used to specify the sack delay for this address. Note 2378 * that if spp_address is empty then all addresses will 2379 * enable delayed sack and take on the sack delay 2380 * value specified in spp_sackdelay. 2381 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2382 * off delayed sack. If the spp_address field is blank then 2383 * delayed sack is disabled for the entire association. Note 2384 * also that this field is mutually exclusive to 2385 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2386 * results. 2387 * 2388 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2389 * setting of the IPV6 flow label value. The value is 2390 * contained in the spp_ipv6_flowlabel field. 2391 * Upon retrieval, this flag will be set to indicate that 2392 * the spp_ipv6_flowlabel field has a valid value returned. 2393 * If a specific destination address is set (in the 2394 * spp_address field), then the value returned is that of 2395 * the address. If just an association is specified (and 2396 * no address), then the association's default flow label 2397 * is returned. If neither an association nor a destination 2398 * is specified, then the socket's default flow label is 2399 * returned. For non-IPv6 sockets, this flag will be left 2400 * cleared. 2401 * 2402 * SPP_DSCP: Setting this flag enables the setting of the 2403 * Differentiated Services Code Point (DSCP) value 2404 * associated with either the association or a specific 2405 * address. The value is obtained in the spp_dscp field. 2406 * Upon retrieval, this flag will be set to indicate that 2407 * the spp_dscp field has a valid value returned. If a 2408 * specific destination address is set when called (in the 2409 * spp_address field), then that specific destination 2410 * address's DSCP value is returned. If just an association 2411 * is specified, then the association's default DSCP is 2412 * returned. If neither an association nor a destination is 2413 * specified, then the socket's default DSCP is returned. 2414 * 2415 * spp_ipv6_flowlabel 2416 * - This field is used in conjunction with the 2417 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2418 * The 20 least significant bits are used for the flow 2419 * label. This setting has precedence over any IPv6-layer 2420 * setting. 2421 * 2422 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2423 * and contains the DSCP. The 6 most significant bits are 2424 * used for the DSCP. This setting has precedence over any 2425 * IPv4- or IPv6- layer setting. 2426 */ 2427 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2428 struct sctp_transport *trans, 2429 struct sctp_association *asoc, 2430 struct sctp_sock *sp, 2431 int hb_change, 2432 int pmtud_change, 2433 int sackdelay_change) 2434 { 2435 int error; 2436 2437 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2438 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2439 trans->asoc, trans); 2440 if (error) 2441 return error; 2442 } 2443 2444 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2445 * this field is ignored. Note also that a value of zero indicates 2446 * the current setting should be left unchanged. 2447 */ 2448 if (params->spp_flags & SPP_HB_ENABLE) { 2449 2450 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2451 * set. This lets us use 0 value when this flag 2452 * is set. 2453 */ 2454 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2455 params->spp_hbinterval = 0; 2456 2457 if (params->spp_hbinterval || 2458 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2459 if (trans) { 2460 trans->hbinterval = 2461 msecs_to_jiffies(params->spp_hbinterval); 2462 sctp_transport_reset_hb_timer(trans); 2463 } else if (asoc) { 2464 asoc->hbinterval = 2465 msecs_to_jiffies(params->spp_hbinterval); 2466 } else { 2467 sp->hbinterval = params->spp_hbinterval; 2468 } 2469 } 2470 } 2471 2472 if (hb_change) { 2473 if (trans) { 2474 trans->param_flags = 2475 (trans->param_flags & ~SPP_HB) | hb_change; 2476 } else if (asoc) { 2477 asoc->param_flags = 2478 (asoc->param_flags & ~SPP_HB) | hb_change; 2479 } else { 2480 sp->param_flags = 2481 (sp->param_flags & ~SPP_HB) | hb_change; 2482 } 2483 } 2484 2485 /* When Path MTU discovery is disabled the value specified here will 2486 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2487 * include the flag SPP_PMTUD_DISABLE for this field to have any 2488 * effect). 2489 */ 2490 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2491 if (trans) { 2492 trans->pathmtu = params->spp_pathmtu; 2493 sctp_assoc_sync_pmtu(asoc); 2494 } else if (asoc) { 2495 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2496 } else { 2497 sp->pathmtu = params->spp_pathmtu; 2498 } 2499 } 2500 2501 if (pmtud_change) { 2502 if (trans) { 2503 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2504 (params->spp_flags & SPP_PMTUD_ENABLE); 2505 trans->param_flags = 2506 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2507 if (update) { 2508 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2509 sctp_assoc_sync_pmtu(asoc); 2510 } 2511 sctp_transport_pl_reset(trans); 2512 } else if (asoc) { 2513 asoc->param_flags = 2514 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2515 } else { 2516 sp->param_flags = 2517 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2518 } 2519 } 2520 2521 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2522 * value of this field is ignored. Note also that a value of zero 2523 * indicates the current setting should be left unchanged. 2524 */ 2525 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2526 if (trans) { 2527 trans->sackdelay = 2528 msecs_to_jiffies(params->spp_sackdelay); 2529 } else if (asoc) { 2530 asoc->sackdelay = 2531 msecs_to_jiffies(params->spp_sackdelay); 2532 } else { 2533 sp->sackdelay = params->spp_sackdelay; 2534 } 2535 } 2536 2537 if (sackdelay_change) { 2538 if (trans) { 2539 trans->param_flags = 2540 (trans->param_flags & ~SPP_SACKDELAY) | 2541 sackdelay_change; 2542 } else if (asoc) { 2543 asoc->param_flags = 2544 (asoc->param_flags & ~SPP_SACKDELAY) | 2545 sackdelay_change; 2546 } else { 2547 sp->param_flags = 2548 (sp->param_flags & ~SPP_SACKDELAY) | 2549 sackdelay_change; 2550 } 2551 } 2552 2553 /* Note that a value of zero indicates the current setting should be 2554 left unchanged. 2555 */ 2556 if (params->spp_pathmaxrxt) { 2557 if (trans) { 2558 trans->pathmaxrxt = params->spp_pathmaxrxt; 2559 } else if (asoc) { 2560 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2561 } else { 2562 sp->pathmaxrxt = params->spp_pathmaxrxt; 2563 } 2564 } 2565 2566 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2567 if (trans) { 2568 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2569 trans->flowlabel = params->spp_ipv6_flowlabel & 2570 SCTP_FLOWLABEL_VAL_MASK; 2571 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2572 } 2573 } else if (asoc) { 2574 struct sctp_transport *t; 2575 2576 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2577 transports) { 2578 if (t->ipaddr.sa.sa_family != AF_INET6) 2579 continue; 2580 t->flowlabel = params->spp_ipv6_flowlabel & 2581 SCTP_FLOWLABEL_VAL_MASK; 2582 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2583 } 2584 asoc->flowlabel = params->spp_ipv6_flowlabel & 2585 SCTP_FLOWLABEL_VAL_MASK; 2586 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2587 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2588 sp->flowlabel = params->spp_ipv6_flowlabel & 2589 SCTP_FLOWLABEL_VAL_MASK; 2590 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2591 } 2592 } 2593 2594 if (params->spp_flags & SPP_DSCP) { 2595 if (trans) { 2596 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2597 trans->dscp |= SCTP_DSCP_SET_MASK; 2598 } else if (asoc) { 2599 struct sctp_transport *t; 2600 2601 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2602 transports) { 2603 t->dscp = params->spp_dscp & 2604 SCTP_DSCP_VAL_MASK; 2605 t->dscp |= SCTP_DSCP_SET_MASK; 2606 } 2607 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2608 asoc->dscp |= SCTP_DSCP_SET_MASK; 2609 } else { 2610 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2611 sp->dscp |= SCTP_DSCP_SET_MASK; 2612 } 2613 } 2614 2615 return 0; 2616 } 2617 2618 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2619 struct sctp_paddrparams *params, 2620 unsigned int optlen) 2621 { 2622 struct sctp_transport *trans = NULL; 2623 struct sctp_association *asoc = NULL; 2624 struct sctp_sock *sp = sctp_sk(sk); 2625 int error; 2626 int hb_change, pmtud_change, sackdelay_change; 2627 2628 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2629 spp_ipv6_flowlabel), 4)) { 2630 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2631 return -EINVAL; 2632 } else if (optlen != sizeof(*params)) { 2633 return -EINVAL; 2634 } 2635 2636 /* Validate flags and value parameters. */ 2637 hb_change = params->spp_flags & SPP_HB; 2638 pmtud_change = params->spp_flags & SPP_PMTUD; 2639 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2640 2641 if (hb_change == SPP_HB || 2642 pmtud_change == SPP_PMTUD || 2643 sackdelay_change == SPP_SACKDELAY || 2644 params->spp_sackdelay > 500 || 2645 (params->spp_pathmtu && 2646 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2647 return -EINVAL; 2648 2649 /* If an address other than INADDR_ANY is specified, and 2650 * no transport is found, then the request is invalid. 2651 */ 2652 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2653 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2654 params->spp_assoc_id); 2655 if (!trans) 2656 return -EINVAL; 2657 } 2658 2659 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2660 * socket is a one to many style socket, and an association 2661 * was not found, then the id was invalid. 2662 */ 2663 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2664 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2665 sctp_style(sk, UDP)) 2666 return -EINVAL; 2667 2668 /* Heartbeat demand can only be sent on a transport or 2669 * association, but not a socket. 2670 */ 2671 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2672 return -EINVAL; 2673 2674 /* Process parameters. */ 2675 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2676 hb_change, pmtud_change, 2677 sackdelay_change); 2678 2679 if (error) 2680 return error; 2681 2682 /* If changes are for association, also apply parameters to each 2683 * transport. 2684 */ 2685 if (!trans && asoc) { 2686 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2687 transports) { 2688 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2689 hb_change, pmtud_change, 2690 sackdelay_change); 2691 } 2692 } 2693 2694 return 0; 2695 } 2696 2697 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2698 { 2699 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2700 } 2701 2702 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2703 { 2704 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2705 } 2706 2707 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2708 struct sctp_association *asoc) 2709 { 2710 struct sctp_transport *trans; 2711 2712 if (params->sack_delay) { 2713 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2714 asoc->param_flags = 2715 sctp_spp_sackdelay_enable(asoc->param_flags); 2716 } 2717 if (params->sack_freq == 1) { 2718 asoc->param_flags = 2719 sctp_spp_sackdelay_disable(asoc->param_flags); 2720 } else if (params->sack_freq > 1) { 2721 asoc->sackfreq = params->sack_freq; 2722 asoc->param_flags = 2723 sctp_spp_sackdelay_enable(asoc->param_flags); 2724 } 2725 2726 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2727 transports) { 2728 if (params->sack_delay) { 2729 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2730 trans->param_flags = 2731 sctp_spp_sackdelay_enable(trans->param_flags); 2732 } 2733 if (params->sack_freq == 1) { 2734 trans->param_flags = 2735 sctp_spp_sackdelay_disable(trans->param_flags); 2736 } else if (params->sack_freq > 1) { 2737 trans->sackfreq = params->sack_freq; 2738 trans->param_flags = 2739 sctp_spp_sackdelay_enable(trans->param_flags); 2740 } 2741 } 2742 } 2743 2744 /* 2745 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2746 * 2747 * This option will effect the way delayed acks are performed. This 2748 * option allows you to get or set the delayed ack time, in 2749 * milliseconds. It also allows changing the delayed ack frequency. 2750 * Changing the frequency to 1 disables the delayed sack algorithm. If 2751 * the assoc_id is 0, then this sets or gets the endpoints default 2752 * values. If the assoc_id field is non-zero, then the set or get 2753 * effects the specified association for the one to many model (the 2754 * assoc_id field is ignored by the one to one model). Note that if 2755 * sack_delay or sack_freq are 0 when setting this option, then the 2756 * current values will remain unchanged. 2757 * 2758 * struct sctp_sack_info { 2759 * sctp_assoc_t sack_assoc_id; 2760 * uint32_t sack_delay; 2761 * uint32_t sack_freq; 2762 * }; 2763 * 2764 * sack_assoc_id - This parameter, indicates which association the user 2765 * is performing an action upon. Note that if this field's value is 2766 * zero then the endpoints default value is changed (effecting future 2767 * associations only). 2768 * 2769 * sack_delay - This parameter contains the number of milliseconds that 2770 * the user is requesting the delayed ACK timer be set to. Note that 2771 * this value is defined in the standard to be between 200 and 500 2772 * milliseconds. 2773 * 2774 * sack_freq - This parameter contains the number of packets that must 2775 * be received before a sack is sent without waiting for the delay 2776 * timer to expire. The default value for this is 2, setting this 2777 * value to 1 will disable the delayed sack algorithm. 2778 */ 2779 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2780 struct sctp_sack_info *params) 2781 { 2782 struct sctp_sock *sp = sctp_sk(sk); 2783 struct sctp_association *asoc; 2784 2785 /* Validate value parameter. */ 2786 if (params->sack_delay > 500) 2787 return -EINVAL; 2788 2789 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2790 * socket is a one to many style socket, and an association 2791 * was not found, then the id was invalid. 2792 */ 2793 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2794 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2795 sctp_style(sk, UDP)) 2796 return -EINVAL; 2797 2798 if (asoc) { 2799 sctp_apply_asoc_delayed_ack(params, asoc); 2800 2801 return 0; 2802 } 2803 2804 if (sctp_style(sk, TCP)) 2805 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2806 2807 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2808 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2809 if (params->sack_delay) { 2810 sp->sackdelay = params->sack_delay; 2811 sp->param_flags = 2812 sctp_spp_sackdelay_enable(sp->param_flags); 2813 } 2814 if (params->sack_freq == 1) { 2815 sp->param_flags = 2816 sctp_spp_sackdelay_disable(sp->param_flags); 2817 } else if (params->sack_freq > 1) { 2818 sp->sackfreq = params->sack_freq; 2819 sp->param_flags = 2820 sctp_spp_sackdelay_enable(sp->param_flags); 2821 } 2822 } 2823 2824 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2825 params->sack_assoc_id == SCTP_ALL_ASSOC) 2826 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2827 sctp_apply_asoc_delayed_ack(params, asoc); 2828 2829 return 0; 2830 } 2831 2832 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2833 struct sctp_sack_info *params, 2834 unsigned int optlen) 2835 { 2836 if (optlen == sizeof(struct sctp_assoc_value)) { 2837 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2838 struct sctp_sack_info p; 2839 2840 pr_warn_ratelimited(DEPRECATED 2841 "%s (pid %d) " 2842 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2843 "Use struct sctp_sack_info instead\n", 2844 current->comm, task_pid_nr(current)); 2845 2846 p.sack_assoc_id = v->assoc_id; 2847 p.sack_delay = v->assoc_value; 2848 p.sack_freq = v->assoc_value ? 0 : 1; 2849 return __sctp_setsockopt_delayed_ack(sk, &p); 2850 } 2851 2852 if (optlen != sizeof(struct sctp_sack_info)) 2853 return -EINVAL; 2854 if (params->sack_delay == 0 && params->sack_freq == 0) 2855 return 0; 2856 return __sctp_setsockopt_delayed_ack(sk, params); 2857 } 2858 2859 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2860 * 2861 * Applications can specify protocol parameters for the default association 2862 * initialization. The option name argument to setsockopt() and getsockopt() 2863 * is SCTP_INITMSG. 2864 * 2865 * Setting initialization parameters is effective only on an unconnected 2866 * socket (for UDP-style sockets only future associations are effected 2867 * by the change). With TCP-style sockets, this option is inherited by 2868 * sockets derived from a listener socket. 2869 */ 2870 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2871 unsigned int optlen) 2872 { 2873 struct sctp_sock *sp = sctp_sk(sk); 2874 2875 if (optlen != sizeof(struct sctp_initmsg)) 2876 return -EINVAL; 2877 2878 if (sinit->sinit_num_ostreams) 2879 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2880 if (sinit->sinit_max_instreams) 2881 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2882 if (sinit->sinit_max_attempts) 2883 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2884 if (sinit->sinit_max_init_timeo) 2885 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2886 2887 return 0; 2888 } 2889 2890 /* 2891 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2892 * 2893 * Applications that wish to use the sendto() system call may wish to 2894 * specify a default set of parameters that would normally be supplied 2895 * through the inclusion of ancillary data. This socket option allows 2896 * such an application to set the default sctp_sndrcvinfo structure. 2897 * The application that wishes to use this socket option simply passes 2898 * in to this call the sctp_sndrcvinfo structure defined in Section 2899 * 5.2.2) The input parameters accepted by this call include 2900 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2901 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2902 * to this call if the caller is using the UDP model. 2903 */ 2904 static int sctp_setsockopt_default_send_param(struct sock *sk, 2905 struct sctp_sndrcvinfo *info, 2906 unsigned int optlen) 2907 { 2908 struct sctp_sock *sp = sctp_sk(sk); 2909 struct sctp_association *asoc; 2910 2911 if (optlen != sizeof(*info)) 2912 return -EINVAL; 2913 if (info->sinfo_flags & 2914 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2915 SCTP_ABORT | SCTP_EOF)) 2916 return -EINVAL; 2917 2918 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2919 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2920 sctp_style(sk, UDP)) 2921 return -EINVAL; 2922 2923 if (asoc) { 2924 asoc->default_stream = info->sinfo_stream; 2925 asoc->default_flags = info->sinfo_flags; 2926 asoc->default_ppid = info->sinfo_ppid; 2927 asoc->default_context = info->sinfo_context; 2928 asoc->default_timetolive = info->sinfo_timetolive; 2929 2930 return 0; 2931 } 2932 2933 if (sctp_style(sk, TCP)) 2934 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2935 2936 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2937 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2938 sp->default_stream = info->sinfo_stream; 2939 sp->default_flags = info->sinfo_flags; 2940 sp->default_ppid = info->sinfo_ppid; 2941 sp->default_context = info->sinfo_context; 2942 sp->default_timetolive = info->sinfo_timetolive; 2943 } 2944 2945 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2946 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2947 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2948 asoc->default_stream = info->sinfo_stream; 2949 asoc->default_flags = info->sinfo_flags; 2950 asoc->default_ppid = info->sinfo_ppid; 2951 asoc->default_context = info->sinfo_context; 2952 asoc->default_timetolive = info->sinfo_timetolive; 2953 } 2954 } 2955 2956 return 0; 2957 } 2958 2959 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2960 * (SCTP_DEFAULT_SNDINFO) 2961 */ 2962 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2963 struct sctp_sndinfo *info, 2964 unsigned int optlen) 2965 { 2966 struct sctp_sock *sp = sctp_sk(sk); 2967 struct sctp_association *asoc; 2968 2969 if (optlen != sizeof(*info)) 2970 return -EINVAL; 2971 if (info->snd_flags & 2972 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2973 SCTP_ABORT | SCTP_EOF)) 2974 return -EINVAL; 2975 2976 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2977 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2978 sctp_style(sk, UDP)) 2979 return -EINVAL; 2980 2981 if (asoc) { 2982 asoc->default_stream = info->snd_sid; 2983 asoc->default_flags = info->snd_flags; 2984 asoc->default_ppid = info->snd_ppid; 2985 asoc->default_context = info->snd_context; 2986 2987 return 0; 2988 } 2989 2990 if (sctp_style(sk, TCP)) 2991 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2992 2993 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2994 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2995 sp->default_stream = info->snd_sid; 2996 sp->default_flags = info->snd_flags; 2997 sp->default_ppid = info->snd_ppid; 2998 sp->default_context = info->snd_context; 2999 } 3000 3001 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 3002 info->snd_assoc_id == SCTP_ALL_ASSOC) { 3003 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3004 asoc->default_stream = info->snd_sid; 3005 asoc->default_flags = info->snd_flags; 3006 asoc->default_ppid = info->snd_ppid; 3007 asoc->default_context = info->snd_context; 3008 } 3009 } 3010 3011 return 0; 3012 } 3013 3014 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3015 * 3016 * Requests that the local SCTP stack use the enclosed peer address as 3017 * the association primary. The enclosed address must be one of the 3018 * association peer's addresses. 3019 */ 3020 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3021 unsigned int optlen) 3022 { 3023 struct sctp_transport *trans; 3024 struct sctp_af *af; 3025 int err; 3026 3027 if (optlen != sizeof(struct sctp_prim)) 3028 return -EINVAL; 3029 3030 /* Allow security module to validate address but need address len. */ 3031 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3032 if (!af) 3033 return -EINVAL; 3034 3035 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3036 (struct sockaddr *)&prim->ssp_addr, 3037 af->sockaddr_len); 3038 if (err) 3039 return err; 3040 3041 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3042 if (!trans) 3043 return -EINVAL; 3044 3045 sctp_assoc_set_primary(trans->asoc, trans); 3046 3047 return 0; 3048 } 3049 3050 /* 3051 * 7.1.5 SCTP_NODELAY 3052 * 3053 * Turn on/off any Nagle-like algorithm. This means that packets are 3054 * generally sent as soon as possible and no unnecessary delays are 3055 * introduced, at the cost of more packets in the network. Expects an 3056 * integer boolean flag. 3057 */ 3058 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3059 unsigned int optlen) 3060 { 3061 if (optlen < sizeof(int)) 3062 return -EINVAL; 3063 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3064 return 0; 3065 } 3066 3067 /* 3068 * 3069 * 7.1.1 SCTP_RTOINFO 3070 * 3071 * The protocol parameters used to initialize and bound retransmission 3072 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3073 * and modify these parameters. 3074 * All parameters are time values, in milliseconds. A value of 0, when 3075 * modifying the parameters, indicates that the current value should not 3076 * be changed. 3077 * 3078 */ 3079 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3080 struct sctp_rtoinfo *rtoinfo, 3081 unsigned int optlen) 3082 { 3083 struct sctp_association *asoc; 3084 unsigned long rto_min, rto_max; 3085 struct sctp_sock *sp = sctp_sk(sk); 3086 3087 if (optlen != sizeof (struct sctp_rtoinfo)) 3088 return -EINVAL; 3089 3090 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3091 3092 /* Set the values to the specific association */ 3093 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3094 sctp_style(sk, UDP)) 3095 return -EINVAL; 3096 3097 rto_max = rtoinfo->srto_max; 3098 rto_min = rtoinfo->srto_min; 3099 3100 if (rto_max) 3101 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3102 else 3103 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3104 3105 if (rto_min) 3106 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3107 else 3108 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3109 3110 if (rto_min > rto_max) 3111 return -EINVAL; 3112 3113 if (asoc) { 3114 if (rtoinfo->srto_initial != 0) 3115 asoc->rto_initial = 3116 msecs_to_jiffies(rtoinfo->srto_initial); 3117 asoc->rto_max = rto_max; 3118 asoc->rto_min = rto_min; 3119 } else { 3120 /* If there is no association or the association-id = 0 3121 * set the values to the endpoint. 3122 */ 3123 if (rtoinfo->srto_initial != 0) 3124 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3125 sp->rtoinfo.srto_max = rto_max; 3126 sp->rtoinfo.srto_min = rto_min; 3127 } 3128 3129 return 0; 3130 } 3131 3132 /* 3133 * 3134 * 7.1.2 SCTP_ASSOCINFO 3135 * 3136 * This option is used to tune the maximum retransmission attempts 3137 * of the association. 3138 * Returns an error if the new association retransmission value is 3139 * greater than the sum of the retransmission value of the peer. 3140 * See [SCTP] for more information. 3141 * 3142 */ 3143 static int sctp_setsockopt_associnfo(struct sock *sk, 3144 struct sctp_assocparams *assocparams, 3145 unsigned int optlen) 3146 { 3147 3148 struct sctp_association *asoc; 3149 3150 if (optlen != sizeof(struct sctp_assocparams)) 3151 return -EINVAL; 3152 3153 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3154 3155 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3156 sctp_style(sk, UDP)) 3157 return -EINVAL; 3158 3159 /* Set the values to the specific association */ 3160 if (asoc) { 3161 if (assocparams->sasoc_asocmaxrxt != 0) { 3162 __u32 path_sum = 0; 3163 int paths = 0; 3164 struct sctp_transport *peer_addr; 3165 3166 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3167 transports) { 3168 path_sum += peer_addr->pathmaxrxt; 3169 paths++; 3170 } 3171 3172 /* Only validate asocmaxrxt if we have more than 3173 * one path/transport. We do this because path 3174 * retransmissions are only counted when we have more 3175 * then one path. 3176 */ 3177 if (paths > 1 && 3178 assocparams->sasoc_asocmaxrxt > path_sum) 3179 return -EINVAL; 3180 3181 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3182 } 3183 3184 if (assocparams->sasoc_cookie_life != 0) 3185 asoc->cookie_life = 3186 ms_to_ktime(assocparams->sasoc_cookie_life); 3187 } else { 3188 /* Set the values to the endpoint */ 3189 struct sctp_sock *sp = sctp_sk(sk); 3190 3191 if (assocparams->sasoc_asocmaxrxt != 0) 3192 sp->assocparams.sasoc_asocmaxrxt = 3193 assocparams->sasoc_asocmaxrxt; 3194 if (assocparams->sasoc_cookie_life != 0) 3195 sp->assocparams.sasoc_cookie_life = 3196 assocparams->sasoc_cookie_life; 3197 } 3198 return 0; 3199 } 3200 3201 /* 3202 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3203 * 3204 * This socket option is a boolean flag which turns on or off mapped V4 3205 * addresses. If this option is turned on and the socket is type 3206 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3207 * If this option is turned off, then no mapping will be done of V4 3208 * addresses and a user will receive both PF_INET6 and PF_INET type 3209 * addresses on the socket. 3210 */ 3211 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3212 unsigned int optlen) 3213 { 3214 struct sctp_sock *sp = sctp_sk(sk); 3215 3216 if (optlen < sizeof(int)) 3217 return -EINVAL; 3218 if (*val) 3219 sp->v4mapped = 1; 3220 else 3221 sp->v4mapped = 0; 3222 3223 return 0; 3224 } 3225 3226 /* 3227 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3228 * This option will get or set the maximum size to put in any outgoing 3229 * SCTP DATA chunk. If a message is larger than this size it will be 3230 * fragmented by SCTP into the specified size. Note that the underlying 3231 * SCTP implementation may fragment into smaller sized chunks when the 3232 * PMTU of the underlying association is smaller than the value set by 3233 * the user. The default value for this option is '0' which indicates 3234 * the user is NOT limiting fragmentation and only the PMTU will effect 3235 * SCTP's choice of DATA chunk size. Note also that values set larger 3236 * than the maximum size of an IP datagram will effectively let SCTP 3237 * control fragmentation (i.e. the same as setting this option to 0). 3238 * 3239 * The following structure is used to access and modify this parameter: 3240 * 3241 * struct sctp_assoc_value { 3242 * sctp_assoc_t assoc_id; 3243 * uint32_t assoc_value; 3244 * }; 3245 * 3246 * assoc_id: This parameter is ignored for one-to-one style sockets. 3247 * For one-to-many style sockets this parameter indicates which 3248 * association the user is performing an action upon. Note that if 3249 * this field's value is zero then the endpoints default value is 3250 * changed (effecting future associations only). 3251 * assoc_value: This parameter specifies the maximum size in bytes. 3252 */ 3253 static int sctp_setsockopt_maxseg(struct sock *sk, 3254 struct sctp_assoc_value *params, 3255 unsigned int optlen) 3256 { 3257 struct sctp_sock *sp = sctp_sk(sk); 3258 struct sctp_association *asoc; 3259 sctp_assoc_t assoc_id; 3260 int val; 3261 3262 if (optlen == sizeof(int)) { 3263 pr_warn_ratelimited(DEPRECATED 3264 "%s (pid %d) " 3265 "Use of int in maxseg socket option.\n" 3266 "Use struct sctp_assoc_value instead\n", 3267 current->comm, task_pid_nr(current)); 3268 assoc_id = SCTP_FUTURE_ASSOC; 3269 val = *(int *)params; 3270 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3271 assoc_id = params->assoc_id; 3272 val = params->assoc_value; 3273 } else { 3274 return -EINVAL; 3275 } 3276 3277 asoc = sctp_id2assoc(sk, assoc_id); 3278 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3279 sctp_style(sk, UDP)) 3280 return -EINVAL; 3281 3282 if (val) { 3283 int min_len, max_len; 3284 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3285 sizeof(struct sctp_data_chunk); 3286 3287 min_len = sctp_min_frag_point(sp, datasize); 3288 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3289 3290 if (val < min_len || val > max_len) 3291 return -EINVAL; 3292 } 3293 3294 if (asoc) { 3295 asoc->user_frag = val; 3296 sctp_assoc_update_frag_point(asoc); 3297 } else { 3298 sp->user_frag = val; 3299 } 3300 3301 return 0; 3302 } 3303 3304 3305 /* 3306 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3307 * 3308 * Requests that the peer mark the enclosed address as the association 3309 * primary. The enclosed address must be one of the association's 3310 * locally bound addresses. The following structure is used to make a 3311 * set primary request: 3312 */ 3313 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3314 struct sctp_setpeerprim *prim, 3315 unsigned int optlen) 3316 { 3317 struct sctp_sock *sp; 3318 struct sctp_association *asoc = NULL; 3319 struct sctp_chunk *chunk; 3320 struct sctp_af *af; 3321 int err; 3322 3323 sp = sctp_sk(sk); 3324 3325 if (!sp->ep->asconf_enable) 3326 return -EPERM; 3327 3328 if (optlen != sizeof(struct sctp_setpeerprim)) 3329 return -EINVAL; 3330 3331 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3332 if (!asoc) 3333 return -EINVAL; 3334 3335 if (!asoc->peer.asconf_capable) 3336 return -EPERM; 3337 3338 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3339 return -EPERM; 3340 3341 if (!sctp_state(asoc, ESTABLISHED)) 3342 return -ENOTCONN; 3343 3344 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3345 if (!af) 3346 return -EINVAL; 3347 3348 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3349 return -EADDRNOTAVAIL; 3350 3351 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3352 return -EADDRNOTAVAIL; 3353 3354 /* Allow security module to validate address. */ 3355 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3356 (struct sockaddr *)&prim->sspp_addr, 3357 af->sockaddr_len); 3358 if (err) 3359 return err; 3360 3361 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3362 chunk = sctp_make_asconf_set_prim(asoc, 3363 (union sctp_addr *)&prim->sspp_addr); 3364 if (!chunk) 3365 return -ENOMEM; 3366 3367 err = sctp_send_asconf(asoc, chunk); 3368 3369 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3370 3371 return err; 3372 } 3373 3374 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3375 struct sctp_setadaptation *adapt, 3376 unsigned int optlen) 3377 { 3378 if (optlen != sizeof(struct sctp_setadaptation)) 3379 return -EINVAL; 3380 3381 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3382 3383 return 0; 3384 } 3385 3386 /* 3387 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3388 * 3389 * The context field in the sctp_sndrcvinfo structure is normally only 3390 * used when a failed message is retrieved holding the value that was 3391 * sent down on the actual send call. This option allows the setting of 3392 * a default context on an association basis that will be received on 3393 * reading messages from the peer. This is especially helpful in the 3394 * one-2-many model for an application to keep some reference to an 3395 * internal state machine that is processing messages on the 3396 * association. Note that the setting of this value only effects 3397 * received messages from the peer and does not effect the value that is 3398 * saved with outbound messages. 3399 */ 3400 static int sctp_setsockopt_context(struct sock *sk, 3401 struct sctp_assoc_value *params, 3402 unsigned int optlen) 3403 { 3404 struct sctp_sock *sp = sctp_sk(sk); 3405 struct sctp_association *asoc; 3406 3407 if (optlen != sizeof(struct sctp_assoc_value)) 3408 return -EINVAL; 3409 3410 asoc = sctp_id2assoc(sk, params->assoc_id); 3411 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3412 sctp_style(sk, UDP)) 3413 return -EINVAL; 3414 3415 if (asoc) { 3416 asoc->default_rcv_context = params->assoc_value; 3417 3418 return 0; 3419 } 3420 3421 if (sctp_style(sk, TCP)) 3422 params->assoc_id = SCTP_FUTURE_ASSOC; 3423 3424 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3425 params->assoc_id == SCTP_ALL_ASSOC) 3426 sp->default_rcv_context = params->assoc_value; 3427 3428 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3429 params->assoc_id == SCTP_ALL_ASSOC) 3430 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3431 asoc->default_rcv_context = params->assoc_value; 3432 3433 return 0; 3434 } 3435 3436 /* 3437 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3438 * 3439 * This options will at a minimum specify if the implementation is doing 3440 * fragmented interleave. Fragmented interleave, for a one to many 3441 * socket, is when subsequent calls to receive a message may return 3442 * parts of messages from different associations. Some implementations 3443 * may allow you to turn this value on or off. If so, when turned off, 3444 * no fragment interleave will occur (which will cause a head of line 3445 * blocking amongst multiple associations sharing the same one to many 3446 * socket). When this option is turned on, then each receive call may 3447 * come from a different association (thus the user must receive data 3448 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3449 * association each receive belongs to. 3450 * 3451 * This option takes a boolean value. A non-zero value indicates that 3452 * fragmented interleave is on. A value of zero indicates that 3453 * fragmented interleave is off. 3454 * 3455 * Note that it is important that an implementation that allows this 3456 * option to be turned on, have it off by default. Otherwise an unaware 3457 * application using the one to many model may become confused and act 3458 * incorrectly. 3459 */ 3460 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3461 unsigned int optlen) 3462 { 3463 if (optlen != sizeof(int)) 3464 return -EINVAL; 3465 3466 sctp_sk(sk)->frag_interleave = !!*val; 3467 3468 if (!sctp_sk(sk)->frag_interleave) 3469 sctp_sk(sk)->ep->intl_enable = 0; 3470 3471 return 0; 3472 } 3473 3474 /* 3475 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3476 * (SCTP_PARTIAL_DELIVERY_POINT) 3477 * 3478 * This option will set or get the SCTP partial delivery point. This 3479 * point is the size of a message where the partial delivery API will be 3480 * invoked to help free up rwnd space for the peer. Setting this to a 3481 * lower value will cause partial deliveries to happen more often. The 3482 * calls argument is an integer that sets or gets the partial delivery 3483 * point. Note also that the call will fail if the user attempts to set 3484 * this value larger than the socket receive buffer size. 3485 * 3486 * Note that any single message having a length smaller than or equal to 3487 * the SCTP partial delivery point will be delivered in one single read 3488 * call as long as the user provided buffer is large enough to hold the 3489 * message. 3490 */ 3491 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3492 unsigned int optlen) 3493 { 3494 if (optlen != sizeof(u32)) 3495 return -EINVAL; 3496 3497 /* Note: We double the receive buffer from what the user sets 3498 * it to be, also initial rwnd is based on rcvbuf/2. 3499 */ 3500 if (*val > (sk->sk_rcvbuf >> 1)) 3501 return -EINVAL; 3502 3503 sctp_sk(sk)->pd_point = *val; 3504 3505 return 0; /* is this the right error code? */ 3506 } 3507 3508 /* 3509 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3510 * 3511 * This option will allow a user to change the maximum burst of packets 3512 * that can be emitted by this association. Note that the default value 3513 * is 4, and some implementations may restrict this setting so that it 3514 * can only be lowered. 3515 * 3516 * NOTE: This text doesn't seem right. Do this on a socket basis with 3517 * future associations inheriting the socket value. 3518 */ 3519 static int sctp_setsockopt_maxburst(struct sock *sk, 3520 struct sctp_assoc_value *params, 3521 unsigned int optlen) 3522 { 3523 struct sctp_sock *sp = sctp_sk(sk); 3524 struct sctp_association *asoc; 3525 sctp_assoc_t assoc_id; 3526 u32 assoc_value; 3527 3528 if (optlen == sizeof(int)) { 3529 pr_warn_ratelimited(DEPRECATED 3530 "%s (pid %d) " 3531 "Use of int in max_burst socket option deprecated.\n" 3532 "Use struct sctp_assoc_value instead\n", 3533 current->comm, task_pid_nr(current)); 3534 assoc_id = SCTP_FUTURE_ASSOC; 3535 assoc_value = *((int *)params); 3536 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3537 assoc_id = params->assoc_id; 3538 assoc_value = params->assoc_value; 3539 } else 3540 return -EINVAL; 3541 3542 asoc = sctp_id2assoc(sk, assoc_id); 3543 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3544 return -EINVAL; 3545 3546 if (asoc) { 3547 asoc->max_burst = assoc_value; 3548 3549 return 0; 3550 } 3551 3552 if (sctp_style(sk, TCP)) 3553 assoc_id = SCTP_FUTURE_ASSOC; 3554 3555 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3556 sp->max_burst = assoc_value; 3557 3558 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3559 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3560 asoc->max_burst = assoc_value; 3561 3562 return 0; 3563 } 3564 3565 /* 3566 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3567 * 3568 * This set option adds a chunk type that the user is requesting to be 3569 * received only in an authenticated way. Changes to the list of chunks 3570 * will only effect future associations on the socket. 3571 */ 3572 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3573 struct sctp_authchunk *val, 3574 unsigned int optlen) 3575 { 3576 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3577 3578 if (!ep->auth_enable) 3579 return -EACCES; 3580 3581 if (optlen != sizeof(struct sctp_authchunk)) 3582 return -EINVAL; 3583 3584 switch (val->sauth_chunk) { 3585 case SCTP_CID_INIT: 3586 case SCTP_CID_INIT_ACK: 3587 case SCTP_CID_SHUTDOWN_COMPLETE: 3588 case SCTP_CID_AUTH: 3589 return -EINVAL; 3590 } 3591 3592 /* add this chunk id to the endpoint */ 3593 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3594 } 3595 3596 /* 3597 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3598 * 3599 * This option gets or sets the list of HMAC algorithms that the local 3600 * endpoint requires the peer to use. 3601 */ 3602 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3603 struct sctp_hmacalgo *hmacs, 3604 unsigned int optlen) 3605 { 3606 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3607 u32 idents; 3608 3609 if (!ep->auth_enable) 3610 return -EACCES; 3611 3612 if (optlen < sizeof(struct sctp_hmacalgo)) 3613 return -EINVAL; 3614 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3615 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3616 3617 idents = hmacs->shmac_num_idents; 3618 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3619 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3620 return -EINVAL; 3621 3622 return sctp_auth_ep_set_hmacs(ep, hmacs); 3623 } 3624 3625 /* 3626 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3627 * 3628 * This option will set a shared secret key which is used to build an 3629 * association shared key. 3630 */ 3631 static int sctp_setsockopt_auth_key(struct sock *sk, 3632 struct sctp_authkey *authkey, 3633 unsigned int optlen) 3634 { 3635 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3636 struct sctp_association *asoc; 3637 int ret = -EINVAL; 3638 3639 if (optlen <= sizeof(struct sctp_authkey)) 3640 return -EINVAL; 3641 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3642 * this. 3643 */ 3644 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3645 3646 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3647 goto out; 3648 3649 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3650 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3651 sctp_style(sk, UDP)) 3652 goto out; 3653 3654 if (asoc) { 3655 ret = sctp_auth_set_key(ep, asoc, authkey); 3656 goto out; 3657 } 3658 3659 if (sctp_style(sk, TCP)) 3660 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3661 3662 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3663 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3664 ret = sctp_auth_set_key(ep, asoc, authkey); 3665 if (ret) 3666 goto out; 3667 } 3668 3669 ret = 0; 3670 3671 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3672 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3673 list_for_each_entry(asoc, &ep->asocs, asocs) { 3674 int res = sctp_auth_set_key(ep, asoc, authkey); 3675 3676 if (res && !ret) 3677 ret = res; 3678 } 3679 } 3680 3681 out: 3682 memzero_explicit(authkey, optlen); 3683 return ret; 3684 } 3685 3686 /* 3687 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3688 * 3689 * This option will get or set the active shared key to be used to build 3690 * the association shared key. 3691 */ 3692 static int sctp_setsockopt_active_key(struct sock *sk, 3693 struct sctp_authkeyid *val, 3694 unsigned int optlen) 3695 { 3696 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3697 struct sctp_association *asoc; 3698 int ret = 0; 3699 3700 if (optlen != sizeof(struct sctp_authkeyid)) 3701 return -EINVAL; 3702 3703 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3704 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3705 sctp_style(sk, UDP)) 3706 return -EINVAL; 3707 3708 if (asoc) 3709 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3710 3711 if (sctp_style(sk, TCP)) 3712 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3713 3714 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3715 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3716 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3717 if (ret) 3718 return ret; 3719 } 3720 3721 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3722 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3723 list_for_each_entry(asoc, &ep->asocs, asocs) { 3724 int res = sctp_auth_set_active_key(ep, asoc, 3725 val->scact_keynumber); 3726 3727 if (res && !ret) 3728 ret = res; 3729 } 3730 } 3731 3732 return ret; 3733 } 3734 3735 /* 3736 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3737 * 3738 * This set option will delete a shared secret key from use. 3739 */ 3740 static int sctp_setsockopt_del_key(struct sock *sk, 3741 struct sctp_authkeyid *val, 3742 unsigned int optlen) 3743 { 3744 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3745 struct sctp_association *asoc; 3746 int ret = 0; 3747 3748 if (optlen != sizeof(struct sctp_authkeyid)) 3749 return -EINVAL; 3750 3751 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3752 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3753 sctp_style(sk, UDP)) 3754 return -EINVAL; 3755 3756 if (asoc) 3757 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3758 3759 if (sctp_style(sk, TCP)) 3760 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3761 3762 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3763 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3764 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3765 if (ret) 3766 return ret; 3767 } 3768 3769 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3770 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3771 list_for_each_entry(asoc, &ep->asocs, asocs) { 3772 int res = sctp_auth_del_key_id(ep, asoc, 3773 val->scact_keynumber); 3774 3775 if (res && !ret) 3776 ret = res; 3777 } 3778 } 3779 3780 return ret; 3781 } 3782 3783 /* 3784 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3785 * 3786 * This set option will deactivate a shared secret key. 3787 */ 3788 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3789 struct sctp_authkeyid *val, 3790 unsigned int optlen) 3791 { 3792 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3793 struct sctp_association *asoc; 3794 int ret = 0; 3795 3796 if (optlen != sizeof(struct sctp_authkeyid)) 3797 return -EINVAL; 3798 3799 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3800 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3801 sctp_style(sk, UDP)) 3802 return -EINVAL; 3803 3804 if (asoc) 3805 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3806 3807 if (sctp_style(sk, TCP)) 3808 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3809 3810 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3811 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3812 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3813 if (ret) 3814 return ret; 3815 } 3816 3817 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3818 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3819 list_for_each_entry(asoc, &ep->asocs, asocs) { 3820 int res = sctp_auth_deact_key_id(ep, asoc, 3821 val->scact_keynumber); 3822 3823 if (res && !ret) 3824 ret = res; 3825 } 3826 } 3827 3828 return ret; 3829 } 3830 3831 /* 3832 * 8.1.23 SCTP_AUTO_ASCONF 3833 * 3834 * This option will enable or disable the use of the automatic generation of 3835 * ASCONF chunks to add and delete addresses to an existing association. Note 3836 * that this option has two caveats namely: a) it only affects sockets that 3837 * are bound to all addresses available to the SCTP stack, and b) the system 3838 * administrator may have an overriding control that turns the ASCONF feature 3839 * off no matter what setting the socket option may have. 3840 * This option expects an integer boolean flag, where a non-zero value turns on 3841 * the option, and a zero value turns off the option. 3842 * Note. In this implementation, socket operation overrides default parameter 3843 * being set by sysctl as well as FreeBSD implementation 3844 */ 3845 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3846 unsigned int optlen) 3847 { 3848 struct sctp_sock *sp = sctp_sk(sk); 3849 3850 if (optlen < sizeof(int)) 3851 return -EINVAL; 3852 if (!sctp_is_ep_boundall(sk) && *val) 3853 return -EINVAL; 3854 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3855 return 0; 3856 3857 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3858 if (*val == 0 && sp->do_auto_asconf) { 3859 list_del(&sp->auto_asconf_list); 3860 sp->do_auto_asconf = 0; 3861 } else if (*val && !sp->do_auto_asconf) { 3862 list_add_tail(&sp->auto_asconf_list, 3863 &sock_net(sk)->sctp.auto_asconf_splist); 3864 sp->do_auto_asconf = 1; 3865 } 3866 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3867 return 0; 3868 } 3869 3870 /* 3871 * SCTP_PEER_ADDR_THLDS 3872 * 3873 * This option allows us to alter the partially failed threshold for one or all 3874 * transports in an association. See Section 6.1 of: 3875 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3876 */ 3877 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3878 struct sctp_paddrthlds_v2 *val, 3879 unsigned int optlen, bool v2) 3880 { 3881 struct sctp_transport *trans; 3882 struct sctp_association *asoc; 3883 int len; 3884 3885 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3886 if (optlen < len) 3887 return -EINVAL; 3888 3889 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3890 return -EINVAL; 3891 3892 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3893 trans = sctp_addr_id2transport(sk, &val->spt_address, 3894 val->spt_assoc_id); 3895 if (!trans) 3896 return -ENOENT; 3897 3898 if (val->spt_pathmaxrxt) 3899 trans->pathmaxrxt = val->spt_pathmaxrxt; 3900 if (v2) 3901 trans->ps_retrans = val->spt_pathcpthld; 3902 trans->pf_retrans = val->spt_pathpfthld; 3903 3904 return 0; 3905 } 3906 3907 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3908 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3909 sctp_style(sk, UDP)) 3910 return -EINVAL; 3911 3912 if (asoc) { 3913 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3914 transports) { 3915 if (val->spt_pathmaxrxt) 3916 trans->pathmaxrxt = val->spt_pathmaxrxt; 3917 if (v2) 3918 trans->ps_retrans = val->spt_pathcpthld; 3919 trans->pf_retrans = val->spt_pathpfthld; 3920 } 3921 3922 if (val->spt_pathmaxrxt) 3923 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3924 if (v2) 3925 asoc->ps_retrans = val->spt_pathcpthld; 3926 asoc->pf_retrans = val->spt_pathpfthld; 3927 } else { 3928 struct sctp_sock *sp = sctp_sk(sk); 3929 3930 if (val->spt_pathmaxrxt) 3931 sp->pathmaxrxt = val->spt_pathmaxrxt; 3932 if (v2) 3933 sp->ps_retrans = val->spt_pathcpthld; 3934 sp->pf_retrans = val->spt_pathpfthld; 3935 } 3936 3937 return 0; 3938 } 3939 3940 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3941 unsigned int optlen) 3942 { 3943 if (optlen < sizeof(int)) 3944 return -EINVAL; 3945 3946 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3947 3948 return 0; 3949 } 3950 3951 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3952 unsigned int optlen) 3953 { 3954 if (optlen < sizeof(int)) 3955 return -EINVAL; 3956 3957 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3958 3959 return 0; 3960 } 3961 3962 static int sctp_setsockopt_pr_supported(struct sock *sk, 3963 struct sctp_assoc_value *params, 3964 unsigned int optlen) 3965 { 3966 struct sctp_association *asoc; 3967 3968 if (optlen != sizeof(*params)) 3969 return -EINVAL; 3970 3971 asoc = sctp_id2assoc(sk, params->assoc_id); 3972 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3973 sctp_style(sk, UDP)) 3974 return -EINVAL; 3975 3976 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3977 3978 return 0; 3979 } 3980 3981 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3982 struct sctp_default_prinfo *info, 3983 unsigned int optlen) 3984 { 3985 struct sctp_sock *sp = sctp_sk(sk); 3986 struct sctp_association *asoc; 3987 int retval = -EINVAL; 3988 3989 if (optlen != sizeof(*info)) 3990 goto out; 3991 3992 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3993 goto out; 3994 3995 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3996 info->pr_value = 0; 3997 3998 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3999 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 4000 sctp_style(sk, UDP)) 4001 goto out; 4002 4003 retval = 0; 4004 4005 if (asoc) { 4006 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 4007 asoc->default_timetolive = info->pr_value; 4008 goto out; 4009 } 4010 4011 if (sctp_style(sk, TCP)) 4012 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4013 4014 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4015 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4016 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4017 sp->default_timetolive = info->pr_value; 4018 } 4019 4020 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4021 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4022 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4023 SCTP_PR_SET_POLICY(asoc->default_flags, 4024 info->pr_policy); 4025 asoc->default_timetolive = info->pr_value; 4026 } 4027 } 4028 4029 out: 4030 return retval; 4031 } 4032 4033 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4034 struct sctp_assoc_value *params, 4035 unsigned int optlen) 4036 { 4037 struct sctp_association *asoc; 4038 int retval = -EINVAL; 4039 4040 if (optlen != sizeof(*params)) 4041 goto out; 4042 4043 asoc = sctp_id2assoc(sk, params->assoc_id); 4044 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4045 sctp_style(sk, UDP)) 4046 goto out; 4047 4048 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4049 4050 retval = 0; 4051 4052 out: 4053 return retval; 4054 } 4055 4056 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4057 struct sctp_assoc_value *params, 4058 unsigned int optlen) 4059 { 4060 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4061 struct sctp_association *asoc; 4062 int retval = -EINVAL; 4063 4064 if (optlen != sizeof(*params)) 4065 goto out; 4066 4067 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4068 goto out; 4069 4070 asoc = sctp_id2assoc(sk, params->assoc_id); 4071 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4072 sctp_style(sk, UDP)) 4073 goto out; 4074 4075 retval = 0; 4076 4077 if (asoc) { 4078 asoc->strreset_enable = params->assoc_value; 4079 goto out; 4080 } 4081 4082 if (sctp_style(sk, TCP)) 4083 params->assoc_id = SCTP_FUTURE_ASSOC; 4084 4085 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4086 params->assoc_id == SCTP_ALL_ASSOC) 4087 ep->strreset_enable = params->assoc_value; 4088 4089 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4090 params->assoc_id == SCTP_ALL_ASSOC) 4091 list_for_each_entry(asoc, &ep->asocs, asocs) 4092 asoc->strreset_enable = params->assoc_value; 4093 4094 out: 4095 return retval; 4096 } 4097 4098 static int sctp_setsockopt_reset_streams(struct sock *sk, 4099 struct sctp_reset_streams *params, 4100 unsigned int optlen) 4101 { 4102 struct sctp_association *asoc; 4103 4104 if (optlen < sizeof(*params)) 4105 return -EINVAL; 4106 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4107 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4108 sizeof(__u16) * sizeof(*params)); 4109 4110 if (params->srs_number_streams * sizeof(__u16) > 4111 optlen - sizeof(*params)) 4112 return -EINVAL; 4113 4114 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4115 if (!asoc) 4116 return -EINVAL; 4117 4118 return sctp_send_reset_streams(asoc, params); 4119 } 4120 4121 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4122 unsigned int optlen) 4123 { 4124 struct sctp_association *asoc; 4125 4126 if (optlen != sizeof(*associd)) 4127 return -EINVAL; 4128 4129 asoc = sctp_id2assoc(sk, *associd); 4130 if (!asoc) 4131 return -EINVAL; 4132 4133 return sctp_send_reset_assoc(asoc); 4134 } 4135 4136 static int sctp_setsockopt_add_streams(struct sock *sk, 4137 struct sctp_add_streams *params, 4138 unsigned int optlen) 4139 { 4140 struct sctp_association *asoc; 4141 4142 if (optlen != sizeof(*params)) 4143 return -EINVAL; 4144 4145 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4146 if (!asoc) 4147 return -EINVAL; 4148 4149 return sctp_send_add_streams(asoc, params); 4150 } 4151 4152 static int sctp_setsockopt_scheduler(struct sock *sk, 4153 struct sctp_assoc_value *params, 4154 unsigned int optlen) 4155 { 4156 struct sctp_sock *sp = sctp_sk(sk); 4157 struct sctp_association *asoc; 4158 int retval = 0; 4159 4160 if (optlen < sizeof(*params)) 4161 return -EINVAL; 4162 4163 if (params->assoc_value > SCTP_SS_MAX) 4164 return -EINVAL; 4165 4166 asoc = sctp_id2assoc(sk, params->assoc_id); 4167 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4168 sctp_style(sk, UDP)) 4169 return -EINVAL; 4170 4171 if (asoc) 4172 return sctp_sched_set_sched(asoc, params->assoc_value); 4173 4174 if (sctp_style(sk, TCP)) 4175 params->assoc_id = SCTP_FUTURE_ASSOC; 4176 4177 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4178 params->assoc_id == SCTP_ALL_ASSOC) 4179 sp->default_ss = params->assoc_value; 4180 4181 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4182 params->assoc_id == SCTP_ALL_ASSOC) { 4183 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4184 int ret = sctp_sched_set_sched(asoc, 4185 params->assoc_value); 4186 4187 if (ret && !retval) 4188 retval = ret; 4189 } 4190 } 4191 4192 return retval; 4193 } 4194 4195 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4196 struct sctp_stream_value *params, 4197 unsigned int optlen) 4198 { 4199 struct sctp_association *asoc; 4200 int retval = -EINVAL; 4201 4202 if (optlen < sizeof(*params)) 4203 goto out; 4204 4205 asoc = sctp_id2assoc(sk, params->assoc_id); 4206 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4207 sctp_style(sk, UDP)) 4208 goto out; 4209 4210 if (asoc) { 4211 retval = sctp_sched_set_value(asoc, params->stream_id, 4212 params->stream_value, GFP_KERNEL); 4213 goto out; 4214 } 4215 4216 retval = 0; 4217 4218 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4219 int ret = sctp_sched_set_value(asoc, params->stream_id, 4220 params->stream_value, 4221 GFP_KERNEL); 4222 if (ret && !retval) /* try to return the 1st error. */ 4223 retval = ret; 4224 } 4225 4226 out: 4227 return retval; 4228 } 4229 4230 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4231 struct sctp_assoc_value *p, 4232 unsigned int optlen) 4233 { 4234 struct sctp_sock *sp = sctp_sk(sk); 4235 struct sctp_association *asoc; 4236 4237 if (optlen < sizeof(*p)) 4238 return -EINVAL; 4239 4240 asoc = sctp_id2assoc(sk, p->assoc_id); 4241 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4242 return -EINVAL; 4243 4244 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4245 return -EPERM; 4246 } 4247 4248 sp->ep->intl_enable = !!p->assoc_value; 4249 return 0; 4250 } 4251 4252 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4253 unsigned int optlen) 4254 { 4255 if (!sctp_style(sk, TCP)) 4256 return -EOPNOTSUPP; 4257 4258 if (sctp_sk(sk)->ep->base.bind_addr.port) 4259 return -EFAULT; 4260 4261 if (optlen < sizeof(int)) 4262 return -EINVAL; 4263 4264 sctp_sk(sk)->reuse = !!*val; 4265 4266 return 0; 4267 } 4268 4269 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4270 struct sctp_association *asoc) 4271 { 4272 struct sctp_ulpevent *event; 4273 4274 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4275 4276 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4277 if (sctp_outq_is_empty(&asoc->outqueue)) { 4278 event = sctp_ulpevent_make_sender_dry_event(asoc, 4279 GFP_USER | __GFP_NOWARN); 4280 if (!event) 4281 return -ENOMEM; 4282 4283 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4284 } 4285 } 4286 4287 return 0; 4288 } 4289 4290 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4291 unsigned int optlen) 4292 { 4293 struct sctp_sock *sp = sctp_sk(sk); 4294 struct sctp_association *asoc; 4295 int retval = 0; 4296 4297 if (optlen < sizeof(*param)) 4298 return -EINVAL; 4299 4300 if (param->se_type < SCTP_SN_TYPE_BASE || 4301 param->se_type > SCTP_SN_TYPE_MAX) 4302 return -EINVAL; 4303 4304 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4305 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4306 sctp_style(sk, UDP)) 4307 return -EINVAL; 4308 4309 if (asoc) 4310 return sctp_assoc_ulpevent_type_set(param, asoc); 4311 4312 if (sctp_style(sk, TCP)) 4313 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4314 4315 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4316 param->se_assoc_id == SCTP_ALL_ASSOC) 4317 sctp_ulpevent_type_set(&sp->subscribe, 4318 param->se_type, param->se_on); 4319 4320 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4321 param->se_assoc_id == SCTP_ALL_ASSOC) { 4322 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4323 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4324 4325 if (ret && !retval) 4326 retval = ret; 4327 } 4328 } 4329 4330 return retval; 4331 } 4332 4333 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4334 struct sctp_assoc_value *params, 4335 unsigned int optlen) 4336 { 4337 struct sctp_association *asoc; 4338 struct sctp_endpoint *ep; 4339 int retval = -EINVAL; 4340 4341 if (optlen != sizeof(*params)) 4342 goto out; 4343 4344 asoc = sctp_id2assoc(sk, params->assoc_id); 4345 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4346 sctp_style(sk, UDP)) 4347 goto out; 4348 4349 ep = sctp_sk(sk)->ep; 4350 ep->asconf_enable = !!params->assoc_value; 4351 4352 if (ep->asconf_enable && ep->auth_enable) { 4353 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4354 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4355 } 4356 4357 retval = 0; 4358 4359 out: 4360 return retval; 4361 } 4362 4363 static int sctp_setsockopt_auth_supported(struct sock *sk, 4364 struct sctp_assoc_value *params, 4365 unsigned int optlen) 4366 { 4367 struct sctp_association *asoc; 4368 struct sctp_endpoint *ep; 4369 int retval = -EINVAL; 4370 4371 if (optlen != sizeof(*params)) 4372 goto out; 4373 4374 asoc = sctp_id2assoc(sk, params->assoc_id); 4375 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4376 sctp_style(sk, UDP)) 4377 goto out; 4378 4379 ep = sctp_sk(sk)->ep; 4380 if (params->assoc_value) { 4381 retval = sctp_auth_init(ep, GFP_KERNEL); 4382 if (retval) 4383 goto out; 4384 if (ep->asconf_enable) { 4385 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4386 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4387 } 4388 } 4389 4390 ep->auth_enable = !!params->assoc_value; 4391 retval = 0; 4392 4393 out: 4394 return retval; 4395 } 4396 4397 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4398 struct sctp_assoc_value *params, 4399 unsigned int optlen) 4400 { 4401 struct sctp_association *asoc; 4402 int retval = -EINVAL; 4403 4404 if (optlen != sizeof(*params)) 4405 goto out; 4406 4407 asoc = sctp_id2assoc(sk, params->assoc_id); 4408 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4409 sctp_style(sk, UDP)) 4410 goto out; 4411 4412 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4413 retval = 0; 4414 4415 out: 4416 return retval; 4417 } 4418 4419 static int sctp_setsockopt_pf_expose(struct sock *sk, 4420 struct sctp_assoc_value *params, 4421 unsigned int optlen) 4422 { 4423 struct sctp_association *asoc; 4424 int retval = -EINVAL; 4425 4426 if (optlen != sizeof(*params)) 4427 goto out; 4428 4429 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4430 goto out; 4431 4432 asoc = sctp_id2assoc(sk, params->assoc_id); 4433 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4434 sctp_style(sk, UDP)) 4435 goto out; 4436 4437 if (asoc) 4438 asoc->pf_expose = params->assoc_value; 4439 else 4440 sctp_sk(sk)->pf_expose = params->assoc_value; 4441 retval = 0; 4442 4443 out: 4444 return retval; 4445 } 4446 4447 static int sctp_setsockopt_encap_port(struct sock *sk, 4448 struct sctp_udpencaps *encap, 4449 unsigned int optlen) 4450 { 4451 struct sctp_association *asoc; 4452 struct sctp_transport *t; 4453 __be16 encap_port; 4454 4455 if (optlen != sizeof(*encap)) 4456 return -EINVAL; 4457 4458 /* If an address other than INADDR_ANY is specified, and 4459 * no transport is found, then the request is invalid. 4460 */ 4461 encap_port = (__force __be16)encap->sue_port; 4462 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4463 t = sctp_addr_id2transport(sk, &encap->sue_address, 4464 encap->sue_assoc_id); 4465 if (!t) 4466 return -EINVAL; 4467 4468 t->encap_port = encap_port; 4469 return 0; 4470 } 4471 4472 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4473 * socket is a one to many style socket, and an association 4474 * was not found, then the id was invalid. 4475 */ 4476 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4477 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4478 sctp_style(sk, UDP)) 4479 return -EINVAL; 4480 4481 /* If changes are for association, also apply encap_port to 4482 * each transport. 4483 */ 4484 if (asoc) { 4485 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4486 transports) 4487 t->encap_port = encap_port; 4488 4489 asoc->encap_port = encap_port; 4490 return 0; 4491 } 4492 4493 sctp_sk(sk)->encap_port = encap_port; 4494 return 0; 4495 } 4496 4497 static int sctp_setsockopt_probe_interval(struct sock *sk, 4498 struct sctp_probeinterval *params, 4499 unsigned int optlen) 4500 { 4501 struct sctp_association *asoc; 4502 struct sctp_transport *t; 4503 __u32 probe_interval; 4504 4505 if (optlen != sizeof(*params)) 4506 return -EINVAL; 4507 4508 probe_interval = params->spi_interval; 4509 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4510 return -EINVAL; 4511 4512 /* If an address other than INADDR_ANY is specified, and 4513 * no transport is found, then the request is invalid. 4514 */ 4515 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4516 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4517 params->spi_assoc_id); 4518 if (!t) 4519 return -EINVAL; 4520 4521 t->probe_interval = msecs_to_jiffies(probe_interval); 4522 sctp_transport_pl_reset(t); 4523 return 0; 4524 } 4525 4526 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4527 * socket is a one to many style socket, and an association 4528 * was not found, then the id was invalid. 4529 */ 4530 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4531 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4532 sctp_style(sk, UDP)) 4533 return -EINVAL; 4534 4535 /* If changes are for association, also apply probe_interval to 4536 * each transport. 4537 */ 4538 if (asoc) { 4539 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4540 t->probe_interval = msecs_to_jiffies(probe_interval); 4541 sctp_transport_pl_reset(t); 4542 } 4543 4544 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4545 return 0; 4546 } 4547 4548 sctp_sk(sk)->probe_interval = probe_interval; 4549 return 0; 4550 } 4551 4552 /* API 6.2 setsockopt(), getsockopt() 4553 * 4554 * Applications use setsockopt() and getsockopt() to set or retrieve 4555 * socket options. Socket options are used to change the default 4556 * behavior of sockets calls. They are described in Section 7. 4557 * 4558 * The syntax is: 4559 * 4560 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4561 * int __user *optlen); 4562 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4563 * int optlen); 4564 * 4565 * sd - the socket descript. 4566 * level - set to IPPROTO_SCTP for all SCTP options. 4567 * optname - the option name. 4568 * optval - the buffer to store the value of the option. 4569 * optlen - the size of the buffer. 4570 */ 4571 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4572 sockptr_t optval, unsigned int optlen) 4573 { 4574 void *kopt = NULL; 4575 int retval = 0; 4576 4577 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4578 4579 /* I can hardly begin to describe how wrong this is. This is 4580 * so broken as to be worse than useless. The API draft 4581 * REALLY is NOT helpful here... I am not convinced that the 4582 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4583 * are at all well-founded. 4584 */ 4585 if (level != SOL_SCTP) { 4586 struct sctp_af *af = sctp_sk(sk)->pf->af; 4587 4588 return af->setsockopt(sk, level, optname, optval, optlen); 4589 } 4590 4591 if (optlen > 0) { 4592 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4593 optlen = min_t(unsigned int, optlen, 4594 PAGE_ALIGN(USHRT_MAX + 4595 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4596 kopt = memdup_sockptr(optval, optlen); 4597 if (IS_ERR(kopt)) 4598 return PTR_ERR(kopt); 4599 } 4600 4601 lock_sock(sk); 4602 4603 switch (optname) { 4604 case SCTP_SOCKOPT_BINDX_ADD: 4605 /* 'optlen' is the size of the addresses buffer. */ 4606 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4607 SCTP_BINDX_ADD_ADDR); 4608 break; 4609 4610 case SCTP_SOCKOPT_BINDX_REM: 4611 /* 'optlen' is the size of the addresses buffer. */ 4612 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4613 SCTP_BINDX_REM_ADDR); 4614 break; 4615 4616 case SCTP_SOCKOPT_CONNECTX_OLD: 4617 /* 'optlen' is the size of the addresses buffer. */ 4618 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4619 break; 4620 4621 case SCTP_SOCKOPT_CONNECTX: 4622 /* 'optlen' is the size of the addresses buffer. */ 4623 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4624 break; 4625 4626 case SCTP_DISABLE_FRAGMENTS: 4627 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4628 break; 4629 4630 case SCTP_EVENTS: 4631 retval = sctp_setsockopt_events(sk, kopt, optlen); 4632 break; 4633 4634 case SCTP_AUTOCLOSE: 4635 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4636 break; 4637 4638 case SCTP_PEER_ADDR_PARAMS: 4639 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4640 break; 4641 4642 case SCTP_DELAYED_SACK: 4643 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4644 break; 4645 case SCTP_PARTIAL_DELIVERY_POINT: 4646 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4647 break; 4648 4649 case SCTP_INITMSG: 4650 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4651 break; 4652 case SCTP_DEFAULT_SEND_PARAM: 4653 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4654 break; 4655 case SCTP_DEFAULT_SNDINFO: 4656 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4657 break; 4658 case SCTP_PRIMARY_ADDR: 4659 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4660 break; 4661 case SCTP_SET_PEER_PRIMARY_ADDR: 4662 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4663 break; 4664 case SCTP_NODELAY: 4665 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4666 break; 4667 case SCTP_RTOINFO: 4668 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4669 break; 4670 case SCTP_ASSOCINFO: 4671 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4672 break; 4673 case SCTP_I_WANT_MAPPED_V4_ADDR: 4674 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4675 break; 4676 case SCTP_MAXSEG: 4677 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4678 break; 4679 case SCTP_ADAPTATION_LAYER: 4680 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4681 break; 4682 case SCTP_CONTEXT: 4683 retval = sctp_setsockopt_context(sk, kopt, optlen); 4684 break; 4685 case SCTP_FRAGMENT_INTERLEAVE: 4686 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4687 break; 4688 case SCTP_MAX_BURST: 4689 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4690 break; 4691 case SCTP_AUTH_CHUNK: 4692 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4693 break; 4694 case SCTP_HMAC_IDENT: 4695 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4696 break; 4697 case SCTP_AUTH_KEY: 4698 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4699 break; 4700 case SCTP_AUTH_ACTIVE_KEY: 4701 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4702 break; 4703 case SCTP_AUTH_DELETE_KEY: 4704 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4705 break; 4706 case SCTP_AUTH_DEACTIVATE_KEY: 4707 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4708 break; 4709 case SCTP_AUTO_ASCONF: 4710 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4711 break; 4712 case SCTP_PEER_ADDR_THLDS: 4713 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4714 false); 4715 break; 4716 case SCTP_PEER_ADDR_THLDS_V2: 4717 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4718 true); 4719 break; 4720 case SCTP_RECVRCVINFO: 4721 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4722 break; 4723 case SCTP_RECVNXTINFO: 4724 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4725 break; 4726 case SCTP_PR_SUPPORTED: 4727 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4728 break; 4729 case SCTP_DEFAULT_PRINFO: 4730 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4731 break; 4732 case SCTP_RECONFIG_SUPPORTED: 4733 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4734 break; 4735 case SCTP_ENABLE_STREAM_RESET: 4736 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4737 break; 4738 case SCTP_RESET_STREAMS: 4739 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4740 break; 4741 case SCTP_RESET_ASSOC: 4742 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4743 break; 4744 case SCTP_ADD_STREAMS: 4745 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4746 break; 4747 case SCTP_STREAM_SCHEDULER: 4748 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4749 break; 4750 case SCTP_STREAM_SCHEDULER_VALUE: 4751 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4752 break; 4753 case SCTP_INTERLEAVING_SUPPORTED: 4754 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4755 optlen); 4756 break; 4757 case SCTP_REUSE_PORT: 4758 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4759 break; 4760 case SCTP_EVENT: 4761 retval = sctp_setsockopt_event(sk, kopt, optlen); 4762 break; 4763 case SCTP_ASCONF_SUPPORTED: 4764 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4765 break; 4766 case SCTP_AUTH_SUPPORTED: 4767 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4768 break; 4769 case SCTP_ECN_SUPPORTED: 4770 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4771 break; 4772 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4773 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4774 break; 4775 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4776 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4777 break; 4778 case SCTP_PLPMTUD_PROBE_INTERVAL: 4779 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4780 break; 4781 default: 4782 retval = -ENOPROTOOPT; 4783 break; 4784 } 4785 4786 release_sock(sk); 4787 kfree(kopt); 4788 return retval; 4789 } 4790 4791 /* API 3.1.6 connect() - UDP Style Syntax 4792 * 4793 * An application may use the connect() call in the UDP model to initiate an 4794 * association without sending data. 4795 * 4796 * The syntax is: 4797 * 4798 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4799 * 4800 * sd: the socket descriptor to have a new association added to. 4801 * 4802 * nam: the address structure (either struct sockaddr_in or struct 4803 * sockaddr_in6 defined in RFC2553 [7]). 4804 * 4805 * len: the size of the address. 4806 */ 4807 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4808 int addr_len, int flags) 4809 { 4810 struct sctp_af *af; 4811 int err = -EINVAL; 4812 4813 lock_sock(sk); 4814 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4815 addr, addr_len); 4816 4817 /* Validate addr_len before calling common connect/connectx routine. */ 4818 af = sctp_get_af_specific(addr->sa_family); 4819 if (af && addr_len >= af->sockaddr_len) 4820 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4821 4822 release_sock(sk); 4823 return err; 4824 } 4825 4826 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4827 int addr_len, int flags) 4828 { 4829 if (addr_len < sizeof(uaddr->sa_family)) 4830 return -EINVAL; 4831 4832 if (uaddr->sa_family == AF_UNSPEC) 4833 return -EOPNOTSUPP; 4834 4835 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4836 } 4837 4838 /* Only called when shutdown a listening SCTP socket. */ 4839 static int sctp_disconnect(struct sock *sk, int flags) 4840 { 4841 if (!sctp_style(sk, TCP)) 4842 return -EOPNOTSUPP; 4843 4844 sk->sk_shutdown |= RCV_SHUTDOWN; 4845 return 0; 4846 } 4847 4848 /* 4.1.4 accept() - TCP Style Syntax 4849 * 4850 * Applications use accept() call to remove an established SCTP 4851 * association from the accept queue of the endpoint. A new socket 4852 * descriptor will be returned from accept() to represent the newly 4853 * formed association. 4854 */ 4855 static struct sock *sctp_accept(struct sock *sk, struct proto_accept_arg *arg) 4856 { 4857 struct sctp_sock *sp; 4858 struct sctp_endpoint *ep; 4859 struct sock *newsk = NULL; 4860 struct sctp_association *asoc; 4861 long timeo; 4862 int error = 0; 4863 4864 lock_sock(sk); 4865 4866 sp = sctp_sk(sk); 4867 ep = sp->ep; 4868 4869 if (!sctp_style(sk, TCP)) { 4870 error = -EOPNOTSUPP; 4871 goto out; 4872 } 4873 4874 if (!sctp_sstate(sk, LISTENING) || 4875 (sk->sk_shutdown & RCV_SHUTDOWN)) { 4876 error = -EINVAL; 4877 goto out; 4878 } 4879 4880 timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK); 4881 4882 error = sctp_wait_for_accept(sk, timeo); 4883 if (error) 4884 goto out; 4885 4886 /* We treat the list of associations on the endpoint as the accept 4887 * queue and pick the first association on the list. 4888 */ 4889 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4890 4891 newsk = sp->pf->create_accept_sk(sk, asoc, arg->kern); 4892 if (!newsk) { 4893 error = -ENOMEM; 4894 goto out; 4895 } 4896 4897 /* Populate the fields of the newsk from the oldsk and migrate the 4898 * asoc to the newsk. 4899 */ 4900 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4901 if (error) { 4902 sk_common_release(newsk); 4903 newsk = NULL; 4904 } 4905 4906 out: 4907 release_sock(sk); 4908 arg->err = error; 4909 return newsk; 4910 } 4911 4912 /* The SCTP ioctl handler. */ 4913 static int sctp_ioctl(struct sock *sk, int cmd, int *karg) 4914 { 4915 int rc = -ENOTCONN; 4916 4917 lock_sock(sk); 4918 4919 /* 4920 * SEQPACKET-style sockets in LISTENING state are valid, for 4921 * SCTP, so only discard TCP-style sockets in LISTENING state. 4922 */ 4923 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4924 goto out; 4925 4926 switch (cmd) { 4927 case SIOCINQ: { 4928 struct sk_buff *skb; 4929 *karg = 0; 4930 4931 skb = skb_peek(&sk->sk_receive_queue); 4932 if (skb != NULL) { 4933 /* 4934 * We will only return the amount of this packet since 4935 * that is all that will be read. 4936 */ 4937 *karg = skb->len; 4938 } 4939 rc = 0; 4940 break; 4941 } 4942 default: 4943 rc = -ENOIOCTLCMD; 4944 break; 4945 } 4946 out: 4947 release_sock(sk); 4948 return rc; 4949 } 4950 4951 /* This is the function which gets called during socket creation to 4952 * initialized the SCTP-specific portion of the sock. 4953 * The sock structure should already be zero-filled memory. 4954 */ 4955 static int sctp_init_sock(struct sock *sk) 4956 { 4957 struct net *net = sock_net(sk); 4958 struct sctp_sock *sp; 4959 4960 pr_debug("%s: sk:%p\n", __func__, sk); 4961 4962 sp = sctp_sk(sk); 4963 4964 /* Initialize the SCTP per socket area. */ 4965 switch (sk->sk_type) { 4966 case SOCK_SEQPACKET: 4967 sp->type = SCTP_SOCKET_UDP; 4968 break; 4969 case SOCK_STREAM: 4970 sp->type = SCTP_SOCKET_TCP; 4971 break; 4972 default: 4973 return -ESOCKTNOSUPPORT; 4974 } 4975 4976 sk->sk_gso_type = SKB_GSO_SCTP; 4977 4978 /* Initialize default send parameters. These parameters can be 4979 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4980 */ 4981 sp->default_stream = 0; 4982 sp->default_ppid = 0; 4983 sp->default_flags = 0; 4984 sp->default_context = 0; 4985 sp->default_timetolive = 0; 4986 4987 sp->default_rcv_context = 0; 4988 sp->max_burst = net->sctp.max_burst; 4989 4990 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4991 4992 /* Initialize default setup parameters. These parameters 4993 * can be modified with the SCTP_INITMSG socket option or 4994 * overridden by the SCTP_INIT CMSG. 4995 */ 4996 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4997 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4998 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4999 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5000 5001 /* Initialize default RTO related parameters. These parameters can 5002 * be modified for with the SCTP_RTOINFO socket option. 5003 */ 5004 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5005 sp->rtoinfo.srto_max = net->sctp.rto_max; 5006 sp->rtoinfo.srto_min = net->sctp.rto_min; 5007 5008 /* Initialize default association related parameters. These parameters 5009 * can be modified with the SCTP_ASSOCINFO socket option. 5010 */ 5011 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5012 sp->assocparams.sasoc_number_peer_destinations = 0; 5013 sp->assocparams.sasoc_peer_rwnd = 0; 5014 sp->assocparams.sasoc_local_rwnd = 0; 5015 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5016 5017 /* Initialize default event subscriptions. By default, all the 5018 * options are off. 5019 */ 5020 sp->subscribe = 0; 5021 5022 /* Default Peer Address Parameters. These defaults can 5023 * be modified via SCTP_PEER_ADDR_PARAMS 5024 */ 5025 sp->hbinterval = net->sctp.hb_interval; 5026 sp->udp_port = htons(net->sctp.udp_port); 5027 sp->encap_port = htons(net->sctp.encap_port); 5028 sp->pathmaxrxt = net->sctp.max_retrans_path; 5029 sp->pf_retrans = net->sctp.pf_retrans; 5030 sp->ps_retrans = net->sctp.ps_retrans; 5031 sp->pf_expose = net->sctp.pf_expose; 5032 sp->pathmtu = 0; /* allow default discovery */ 5033 sp->sackdelay = net->sctp.sack_timeout; 5034 sp->sackfreq = 2; 5035 sp->param_flags = SPP_HB_ENABLE | 5036 SPP_PMTUD_ENABLE | 5037 SPP_SACKDELAY_ENABLE; 5038 sp->default_ss = SCTP_SS_DEFAULT; 5039 5040 /* If enabled no SCTP message fragmentation will be performed. 5041 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5042 */ 5043 sp->disable_fragments = 0; 5044 5045 /* Enable Nagle algorithm by default. */ 5046 sp->nodelay = 0; 5047 5048 sp->recvrcvinfo = 0; 5049 sp->recvnxtinfo = 0; 5050 5051 /* Enable by default. */ 5052 sp->v4mapped = 1; 5053 5054 /* Auto-close idle associations after the configured 5055 * number of seconds. A value of 0 disables this 5056 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5057 * for UDP-style sockets only. 5058 */ 5059 sp->autoclose = 0; 5060 5061 /* User specified fragmentation limit. */ 5062 sp->user_frag = 0; 5063 5064 sp->adaptation_ind = 0; 5065 5066 sp->pf = sctp_get_pf_specific(sk->sk_family); 5067 5068 /* Control variables for partial data delivery. */ 5069 atomic_set(&sp->pd_mode, 0); 5070 skb_queue_head_init(&sp->pd_lobby); 5071 sp->frag_interleave = 0; 5072 sp->probe_interval = net->sctp.probe_interval; 5073 5074 /* Create a per socket endpoint structure. Even if we 5075 * change the data structure relationships, this may still 5076 * be useful for storing pre-connect address information. 5077 */ 5078 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5079 if (!sp->ep) 5080 return -ENOMEM; 5081 5082 sp->hmac = NULL; 5083 5084 sk->sk_destruct = sctp_destruct_sock; 5085 5086 SCTP_DBG_OBJCNT_INC(sock); 5087 5088 sk_sockets_allocated_inc(sk); 5089 sock_prot_inuse_add(net, sk->sk_prot, 1); 5090 5091 return 0; 5092 } 5093 5094 /* Cleanup any SCTP per socket resources. Must be called with 5095 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5096 */ 5097 static void sctp_destroy_sock(struct sock *sk) 5098 { 5099 struct sctp_sock *sp; 5100 5101 pr_debug("%s: sk:%p\n", __func__, sk); 5102 5103 /* Release our hold on the endpoint. */ 5104 sp = sctp_sk(sk); 5105 /* This could happen during socket init, thus we bail out 5106 * early, since the rest of the below is not setup either. 5107 */ 5108 if (sp->ep == NULL) 5109 return; 5110 5111 if (sp->do_auto_asconf) { 5112 sp->do_auto_asconf = 0; 5113 list_del(&sp->auto_asconf_list); 5114 } 5115 sctp_endpoint_free(sp->ep); 5116 sk_sockets_allocated_dec(sk); 5117 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5118 } 5119 5120 /* Triggered when there are no references on the socket anymore */ 5121 static void sctp_destruct_common(struct sock *sk) 5122 { 5123 struct sctp_sock *sp = sctp_sk(sk); 5124 5125 /* Free up the HMAC transform. */ 5126 crypto_free_shash(sp->hmac); 5127 } 5128 5129 static void sctp_destruct_sock(struct sock *sk) 5130 { 5131 sctp_destruct_common(sk); 5132 inet_sock_destruct(sk); 5133 } 5134 5135 /* API 4.1.7 shutdown() - TCP Style Syntax 5136 * int shutdown(int socket, int how); 5137 * 5138 * sd - the socket descriptor of the association to be closed. 5139 * how - Specifies the type of shutdown. The values are 5140 * as follows: 5141 * SHUT_RD 5142 * Disables further receive operations. No SCTP 5143 * protocol action is taken. 5144 * SHUT_WR 5145 * Disables further send operations, and initiates 5146 * the SCTP shutdown sequence. 5147 * SHUT_RDWR 5148 * Disables further send and receive operations 5149 * and initiates the SCTP shutdown sequence. 5150 */ 5151 static void sctp_shutdown(struct sock *sk, int how) 5152 { 5153 struct net *net = sock_net(sk); 5154 struct sctp_endpoint *ep; 5155 5156 if (!sctp_style(sk, TCP)) 5157 return; 5158 5159 ep = sctp_sk(sk)->ep; 5160 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5161 struct sctp_association *asoc; 5162 5163 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5164 asoc = list_entry(ep->asocs.next, 5165 struct sctp_association, asocs); 5166 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5167 } 5168 } 5169 5170 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5171 struct sctp_info *info) 5172 { 5173 struct sctp_transport *prim; 5174 struct list_head *pos; 5175 int mask; 5176 5177 memset(info, 0, sizeof(*info)); 5178 if (!asoc) { 5179 struct sctp_sock *sp = sctp_sk(sk); 5180 5181 info->sctpi_s_autoclose = sp->autoclose; 5182 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5183 info->sctpi_s_pd_point = sp->pd_point; 5184 info->sctpi_s_nodelay = sp->nodelay; 5185 info->sctpi_s_disable_fragments = sp->disable_fragments; 5186 info->sctpi_s_v4mapped = sp->v4mapped; 5187 info->sctpi_s_frag_interleave = sp->frag_interleave; 5188 info->sctpi_s_type = sp->type; 5189 5190 return 0; 5191 } 5192 5193 info->sctpi_tag = asoc->c.my_vtag; 5194 info->sctpi_state = asoc->state; 5195 info->sctpi_rwnd = asoc->a_rwnd; 5196 info->sctpi_unackdata = asoc->unack_data; 5197 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5198 info->sctpi_instrms = asoc->stream.incnt; 5199 info->sctpi_outstrms = asoc->stream.outcnt; 5200 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5201 info->sctpi_inqueue++; 5202 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5203 info->sctpi_outqueue++; 5204 info->sctpi_overall_error = asoc->overall_error_count; 5205 info->sctpi_max_burst = asoc->max_burst; 5206 info->sctpi_maxseg = asoc->frag_point; 5207 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5208 info->sctpi_peer_tag = asoc->c.peer_vtag; 5209 5210 mask = asoc->peer.intl_capable << 1; 5211 mask = (mask | asoc->peer.ecn_capable) << 1; 5212 mask = (mask | asoc->peer.ipv4_address) << 1; 5213 mask = (mask | asoc->peer.ipv6_address) << 1; 5214 mask = (mask | asoc->peer.reconf_capable) << 1; 5215 mask = (mask | asoc->peer.asconf_capable) << 1; 5216 mask = (mask | asoc->peer.prsctp_capable) << 1; 5217 mask = (mask | asoc->peer.auth_capable); 5218 info->sctpi_peer_capable = mask; 5219 mask = asoc->peer.sack_needed << 1; 5220 mask = (mask | asoc->peer.sack_generation) << 1; 5221 mask = (mask | asoc->peer.zero_window_announced); 5222 info->sctpi_peer_sack = mask; 5223 5224 info->sctpi_isacks = asoc->stats.isacks; 5225 info->sctpi_osacks = asoc->stats.osacks; 5226 info->sctpi_opackets = asoc->stats.opackets; 5227 info->sctpi_ipackets = asoc->stats.ipackets; 5228 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5229 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5230 info->sctpi_idupchunks = asoc->stats.idupchunks; 5231 info->sctpi_gapcnt = asoc->stats.gapcnt; 5232 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5233 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5234 info->sctpi_oodchunks = asoc->stats.oodchunks; 5235 info->sctpi_iodchunks = asoc->stats.iodchunks; 5236 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5237 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5238 5239 prim = asoc->peer.primary_path; 5240 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5241 info->sctpi_p_state = prim->state; 5242 info->sctpi_p_cwnd = prim->cwnd; 5243 info->sctpi_p_srtt = prim->srtt; 5244 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5245 info->sctpi_p_hbinterval = prim->hbinterval; 5246 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5247 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5248 info->sctpi_p_ssthresh = prim->ssthresh; 5249 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5250 info->sctpi_p_flight_size = prim->flight_size; 5251 info->sctpi_p_error = prim->error_count; 5252 5253 return 0; 5254 } 5255 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5256 5257 /* use callback to avoid exporting the core structure */ 5258 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5259 { 5260 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5261 5262 rhashtable_walk_start(iter); 5263 } 5264 5265 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5266 { 5267 rhashtable_walk_stop(iter); 5268 rhashtable_walk_exit(iter); 5269 } 5270 5271 struct sctp_transport *sctp_transport_get_next(struct net *net, 5272 struct rhashtable_iter *iter) 5273 { 5274 struct sctp_transport *t; 5275 5276 t = rhashtable_walk_next(iter); 5277 for (; t; t = rhashtable_walk_next(iter)) { 5278 if (IS_ERR(t)) { 5279 if (PTR_ERR(t) == -EAGAIN) 5280 continue; 5281 break; 5282 } 5283 5284 if (!sctp_transport_hold(t)) 5285 continue; 5286 5287 if (net_eq(t->asoc->base.net, net) && 5288 t->asoc->peer.primary_path == t) 5289 break; 5290 5291 sctp_transport_put(t); 5292 } 5293 5294 return t; 5295 } 5296 5297 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5298 struct rhashtable_iter *iter, 5299 int pos) 5300 { 5301 struct sctp_transport *t; 5302 5303 if (!pos) 5304 return SEQ_START_TOKEN; 5305 5306 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5307 if (!--pos) 5308 break; 5309 sctp_transport_put(t); 5310 } 5311 5312 return t; 5313 } 5314 5315 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5316 void *p) { 5317 int err = 0; 5318 int hash = 0; 5319 struct sctp_endpoint *ep; 5320 struct sctp_hashbucket *head; 5321 5322 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5323 hash++, head++) { 5324 read_lock_bh(&head->lock); 5325 sctp_for_each_hentry(ep, &head->chain) { 5326 err = cb(ep, p); 5327 if (err) 5328 break; 5329 } 5330 read_unlock_bh(&head->lock); 5331 } 5332 5333 return err; 5334 } 5335 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5336 5337 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, 5338 const union sctp_addr *laddr, 5339 const union sctp_addr *paddr, void *p, int dif) 5340 { 5341 struct sctp_transport *transport; 5342 struct sctp_endpoint *ep; 5343 int err = -ENOENT; 5344 5345 rcu_read_lock(); 5346 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif); 5347 if (!transport) { 5348 rcu_read_unlock(); 5349 return err; 5350 } 5351 ep = transport->asoc->ep; 5352 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5353 sctp_transport_put(transport); 5354 rcu_read_unlock(); 5355 return err; 5356 } 5357 rcu_read_unlock(); 5358 5359 err = cb(ep, transport, p); 5360 sctp_endpoint_put(ep); 5361 sctp_transport_put(transport); 5362 return err; 5363 } 5364 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5365 5366 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, 5367 struct net *net, int *pos, void *p) 5368 { 5369 struct rhashtable_iter hti; 5370 struct sctp_transport *tsp; 5371 struct sctp_endpoint *ep; 5372 int ret; 5373 5374 again: 5375 ret = 0; 5376 sctp_transport_walk_start(&hti); 5377 5378 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5379 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5380 ep = tsp->asoc->ep; 5381 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5382 ret = cb(ep, tsp, p); 5383 if (ret) 5384 break; 5385 sctp_endpoint_put(ep); 5386 } 5387 (*pos)++; 5388 sctp_transport_put(tsp); 5389 } 5390 sctp_transport_walk_stop(&hti); 5391 5392 if (ret) { 5393 if (cb_done && !cb_done(ep, tsp, p)) { 5394 (*pos)++; 5395 sctp_endpoint_put(ep); 5396 sctp_transport_put(tsp); 5397 goto again; 5398 } 5399 sctp_endpoint_put(ep); 5400 sctp_transport_put(tsp); 5401 } 5402 5403 return ret; 5404 } 5405 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); 5406 5407 /* 7.2.1 Association Status (SCTP_STATUS) 5408 5409 * Applications can retrieve current status information about an 5410 * association, including association state, peer receiver window size, 5411 * number of unacked data chunks, and number of data chunks pending 5412 * receipt. This information is read-only. 5413 */ 5414 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5415 char __user *optval, 5416 int __user *optlen) 5417 { 5418 struct sctp_status status; 5419 struct sctp_association *asoc = NULL; 5420 struct sctp_transport *transport; 5421 sctp_assoc_t associd; 5422 int retval = 0; 5423 5424 if (len < sizeof(status)) { 5425 retval = -EINVAL; 5426 goto out; 5427 } 5428 5429 len = sizeof(status); 5430 if (copy_from_user(&status, optval, len)) { 5431 retval = -EFAULT; 5432 goto out; 5433 } 5434 5435 associd = status.sstat_assoc_id; 5436 asoc = sctp_id2assoc(sk, associd); 5437 if (!asoc) { 5438 retval = -EINVAL; 5439 goto out; 5440 } 5441 5442 transport = asoc->peer.primary_path; 5443 5444 status.sstat_assoc_id = sctp_assoc2id(asoc); 5445 status.sstat_state = sctp_assoc_to_state(asoc); 5446 status.sstat_rwnd = asoc->peer.rwnd; 5447 status.sstat_unackdata = asoc->unack_data; 5448 5449 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5450 status.sstat_instrms = asoc->stream.incnt; 5451 status.sstat_outstrms = asoc->stream.outcnt; 5452 status.sstat_fragmentation_point = asoc->frag_point; 5453 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5454 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5455 transport->af_specific->sockaddr_len); 5456 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5457 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5458 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5459 status.sstat_primary.spinfo_state = transport->state; 5460 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5461 status.sstat_primary.spinfo_srtt = transport->srtt; 5462 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5463 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5464 5465 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5466 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5467 5468 if (put_user(len, optlen)) { 5469 retval = -EFAULT; 5470 goto out; 5471 } 5472 5473 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5474 __func__, len, status.sstat_state, status.sstat_rwnd, 5475 status.sstat_assoc_id); 5476 5477 if (copy_to_user(optval, &status, len)) { 5478 retval = -EFAULT; 5479 goto out; 5480 } 5481 5482 out: 5483 return retval; 5484 } 5485 5486 5487 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5488 * 5489 * Applications can retrieve information about a specific peer address 5490 * of an association, including its reachability state, congestion 5491 * window, and retransmission timer values. This information is 5492 * read-only. 5493 */ 5494 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5495 char __user *optval, 5496 int __user *optlen) 5497 { 5498 struct sctp_paddrinfo pinfo; 5499 struct sctp_transport *transport; 5500 int retval = 0; 5501 5502 if (len < sizeof(pinfo)) { 5503 retval = -EINVAL; 5504 goto out; 5505 } 5506 5507 len = sizeof(pinfo); 5508 if (copy_from_user(&pinfo, optval, len)) { 5509 retval = -EFAULT; 5510 goto out; 5511 } 5512 5513 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5514 pinfo.spinfo_assoc_id); 5515 if (!transport) { 5516 retval = -EINVAL; 5517 goto out; 5518 } 5519 5520 if (transport->state == SCTP_PF && 5521 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5522 retval = -EACCES; 5523 goto out; 5524 } 5525 5526 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5527 pinfo.spinfo_state = transport->state; 5528 pinfo.spinfo_cwnd = transport->cwnd; 5529 pinfo.spinfo_srtt = transport->srtt; 5530 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5531 pinfo.spinfo_mtu = transport->pathmtu; 5532 5533 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5534 pinfo.spinfo_state = SCTP_ACTIVE; 5535 5536 if (put_user(len, optlen)) { 5537 retval = -EFAULT; 5538 goto out; 5539 } 5540 5541 if (copy_to_user(optval, &pinfo, len)) { 5542 retval = -EFAULT; 5543 goto out; 5544 } 5545 5546 out: 5547 return retval; 5548 } 5549 5550 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5551 * 5552 * This option is a on/off flag. If enabled no SCTP message 5553 * fragmentation will be performed. Instead if a message being sent 5554 * exceeds the current PMTU size, the message will NOT be sent and 5555 * instead a error will be indicated to the user. 5556 */ 5557 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5558 char __user *optval, int __user *optlen) 5559 { 5560 int val; 5561 5562 if (len < sizeof(int)) 5563 return -EINVAL; 5564 5565 len = sizeof(int); 5566 val = (sctp_sk(sk)->disable_fragments == 1); 5567 if (put_user(len, optlen)) 5568 return -EFAULT; 5569 if (copy_to_user(optval, &val, len)) 5570 return -EFAULT; 5571 return 0; 5572 } 5573 5574 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5575 * 5576 * This socket option is used to specify various notifications and 5577 * ancillary data the user wishes to receive. 5578 */ 5579 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5580 int __user *optlen) 5581 { 5582 struct sctp_event_subscribe subscribe; 5583 __u8 *sn_type = (__u8 *)&subscribe; 5584 int i; 5585 5586 if (len == 0) 5587 return -EINVAL; 5588 if (len > sizeof(struct sctp_event_subscribe)) 5589 len = sizeof(struct sctp_event_subscribe); 5590 if (put_user(len, optlen)) 5591 return -EFAULT; 5592 5593 for (i = 0; i < len; i++) 5594 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5595 SCTP_SN_TYPE_BASE + i); 5596 5597 if (copy_to_user(optval, &subscribe, len)) 5598 return -EFAULT; 5599 5600 return 0; 5601 } 5602 5603 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5604 * 5605 * This socket option is applicable to the UDP-style socket only. When 5606 * set it will cause associations that are idle for more than the 5607 * specified number of seconds to automatically close. An association 5608 * being idle is defined an association that has NOT sent or received 5609 * user data. The special value of '0' indicates that no automatic 5610 * close of any associations should be performed. The option expects an 5611 * integer defining the number of seconds of idle time before an 5612 * association is closed. 5613 */ 5614 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5615 { 5616 /* Applicable to UDP-style socket only */ 5617 if (sctp_style(sk, TCP)) 5618 return -EOPNOTSUPP; 5619 if (len < sizeof(int)) 5620 return -EINVAL; 5621 len = sizeof(int); 5622 if (put_user(len, optlen)) 5623 return -EFAULT; 5624 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5625 return -EFAULT; 5626 return 0; 5627 } 5628 5629 /* Helper routine to branch off an association to a new socket. */ 5630 static int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, 5631 struct socket **sockp) 5632 { 5633 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5634 struct sctp_sock *sp = sctp_sk(sk); 5635 struct socket *sock; 5636 int err = 0; 5637 5638 /* Do not peel off from one netns to another one. */ 5639 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5640 return -EINVAL; 5641 5642 if (!asoc) 5643 return -EINVAL; 5644 5645 /* An association cannot be branched off from an already peeled-off 5646 * socket, nor is this supported for tcp style sockets. 5647 */ 5648 if (!sctp_style(sk, UDP)) 5649 return -EINVAL; 5650 5651 /* Create a new socket. */ 5652 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5653 if (err < 0) 5654 return err; 5655 5656 sctp_copy_sock(sock->sk, sk, asoc); 5657 5658 /* Make peeled-off sockets more like 1-1 accepted sockets. 5659 * Set the daddr and initialize id to something more random and also 5660 * copy over any ip options. 5661 */ 5662 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk); 5663 sp->pf->copy_ip_options(sk, sock->sk); 5664 5665 /* Populate the fields of the newsk from the oldsk and migrate the 5666 * asoc to the newsk. 5667 */ 5668 err = sctp_sock_migrate(sk, sock->sk, asoc, 5669 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5670 if (err) { 5671 sock_release(sock); 5672 sock = NULL; 5673 } 5674 5675 *sockp = sock; 5676 5677 return err; 5678 } 5679 5680 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5681 struct file **newfile, unsigned flags) 5682 { 5683 struct socket *newsock; 5684 int retval; 5685 5686 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5687 if (retval < 0) 5688 goto out; 5689 5690 /* Map the socket to an unused fd that can be returned to the user. */ 5691 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5692 if (retval < 0) { 5693 sock_release(newsock); 5694 goto out; 5695 } 5696 5697 *newfile = sock_alloc_file(newsock, 0, NULL); 5698 if (IS_ERR(*newfile)) { 5699 put_unused_fd(retval); 5700 retval = PTR_ERR(*newfile); 5701 *newfile = NULL; 5702 return retval; 5703 } 5704 5705 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5706 retval); 5707 5708 peeloff->sd = retval; 5709 5710 if (flags & SOCK_NONBLOCK) 5711 (*newfile)->f_flags |= O_NONBLOCK; 5712 out: 5713 return retval; 5714 } 5715 5716 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5717 { 5718 sctp_peeloff_arg_t peeloff; 5719 struct file *newfile = NULL; 5720 int retval = 0; 5721 5722 if (len < sizeof(sctp_peeloff_arg_t)) 5723 return -EINVAL; 5724 len = sizeof(sctp_peeloff_arg_t); 5725 if (copy_from_user(&peeloff, optval, len)) 5726 return -EFAULT; 5727 5728 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5729 if (retval < 0) 5730 goto out; 5731 5732 /* Return the fd mapped to the new socket. */ 5733 if (put_user(len, optlen)) { 5734 fput(newfile); 5735 put_unused_fd(retval); 5736 return -EFAULT; 5737 } 5738 5739 if (copy_to_user(optval, &peeloff, len)) { 5740 fput(newfile); 5741 put_unused_fd(retval); 5742 return -EFAULT; 5743 } 5744 fd_install(retval, newfile); 5745 out: 5746 return retval; 5747 } 5748 5749 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5750 char __user *optval, int __user *optlen) 5751 { 5752 sctp_peeloff_flags_arg_t peeloff; 5753 struct file *newfile = NULL; 5754 int retval = 0; 5755 5756 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5757 return -EINVAL; 5758 len = sizeof(sctp_peeloff_flags_arg_t); 5759 if (copy_from_user(&peeloff, optval, len)) 5760 return -EFAULT; 5761 5762 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5763 &newfile, peeloff.flags); 5764 if (retval < 0) 5765 goto out; 5766 5767 /* Return the fd mapped to the new socket. */ 5768 if (put_user(len, optlen)) { 5769 fput(newfile); 5770 put_unused_fd(retval); 5771 return -EFAULT; 5772 } 5773 5774 if (copy_to_user(optval, &peeloff, len)) { 5775 fput(newfile); 5776 put_unused_fd(retval); 5777 return -EFAULT; 5778 } 5779 fd_install(retval, newfile); 5780 out: 5781 return retval; 5782 } 5783 5784 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5785 * 5786 * Applications can enable or disable heartbeats for any peer address of 5787 * an association, modify an address's heartbeat interval, force a 5788 * heartbeat to be sent immediately, and adjust the address's maximum 5789 * number of retransmissions sent before an address is considered 5790 * unreachable. The following structure is used to access and modify an 5791 * address's parameters: 5792 * 5793 * struct sctp_paddrparams { 5794 * sctp_assoc_t spp_assoc_id; 5795 * struct sockaddr_storage spp_address; 5796 * uint32_t spp_hbinterval; 5797 * uint16_t spp_pathmaxrxt; 5798 * uint32_t spp_pathmtu; 5799 * uint32_t spp_sackdelay; 5800 * uint32_t spp_flags; 5801 * }; 5802 * 5803 * spp_assoc_id - (one-to-many style socket) This is filled in the 5804 * application, and identifies the association for 5805 * this query. 5806 * spp_address - This specifies which address is of interest. 5807 * spp_hbinterval - This contains the value of the heartbeat interval, 5808 * in milliseconds. If a value of zero 5809 * is present in this field then no changes are to 5810 * be made to this parameter. 5811 * spp_pathmaxrxt - This contains the maximum number of 5812 * retransmissions before this address shall be 5813 * considered unreachable. If a value of zero 5814 * is present in this field then no changes are to 5815 * be made to this parameter. 5816 * spp_pathmtu - When Path MTU discovery is disabled the value 5817 * specified here will be the "fixed" path mtu. 5818 * Note that if the spp_address field is empty 5819 * then all associations on this address will 5820 * have this fixed path mtu set upon them. 5821 * 5822 * spp_sackdelay - When delayed sack is enabled, this value specifies 5823 * the number of milliseconds that sacks will be delayed 5824 * for. This value will apply to all addresses of an 5825 * association if the spp_address field is empty. Note 5826 * also, that if delayed sack is enabled and this 5827 * value is set to 0, no change is made to the last 5828 * recorded delayed sack timer value. 5829 * 5830 * spp_flags - These flags are used to control various features 5831 * on an association. The flag field may contain 5832 * zero or more of the following options. 5833 * 5834 * SPP_HB_ENABLE - Enable heartbeats on the 5835 * specified address. Note that if the address 5836 * field is empty all addresses for the association 5837 * have heartbeats enabled upon them. 5838 * 5839 * SPP_HB_DISABLE - Disable heartbeats on the 5840 * speicifed address. Note that if the address 5841 * field is empty all addresses for the association 5842 * will have their heartbeats disabled. Note also 5843 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5844 * mutually exclusive, only one of these two should 5845 * be specified. Enabling both fields will have 5846 * undetermined results. 5847 * 5848 * SPP_HB_DEMAND - Request a user initiated heartbeat 5849 * to be made immediately. 5850 * 5851 * SPP_PMTUD_ENABLE - This field will enable PMTU 5852 * discovery upon the specified address. Note that 5853 * if the address feild is empty then all addresses 5854 * on the association are effected. 5855 * 5856 * SPP_PMTUD_DISABLE - This field will disable PMTU 5857 * discovery upon the specified address. Note that 5858 * if the address feild is empty then all addresses 5859 * on the association are effected. Not also that 5860 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5861 * exclusive. Enabling both will have undetermined 5862 * results. 5863 * 5864 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5865 * on delayed sack. The time specified in spp_sackdelay 5866 * is used to specify the sack delay for this address. Note 5867 * that if spp_address is empty then all addresses will 5868 * enable delayed sack and take on the sack delay 5869 * value specified in spp_sackdelay. 5870 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5871 * off delayed sack. If the spp_address field is blank then 5872 * delayed sack is disabled for the entire association. Note 5873 * also that this field is mutually exclusive to 5874 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5875 * results. 5876 * 5877 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5878 * setting of the IPV6 flow label value. The value is 5879 * contained in the spp_ipv6_flowlabel field. 5880 * Upon retrieval, this flag will be set to indicate that 5881 * the spp_ipv6_flowlabel field has a valid value returned. 5882 * If a specific destination address is set (in the 5883 * spp_address field), then the value returned is that of 5884 * the address. If just an association is specified (and 5885 * no address), then the association's default flow label 5886 * is returned. If neither an association nor a destination 5887 * is specified, then the socket's default flow label is 5888 * returned. For non-IPv6 sockets, this flag will be left 5889 * cleared. 5890 * 5891 * SPP_DSCP: Setting this flag enables the setting of the 5892 * Differentiated Services Code Point (DSCP) value 5893 * associated with either the association or a specific 5894 * address. The value is obtained in the spp_dscp field. 5895 * Upon retrieval, this flag will be set to indicate that 5896 * the spp_dscp field has a valid value returned. If a 5897 * specific destination address is set when called (in the 5898 * spp_address field), then that specific destination 5899 * address's DSCP value is returned. If just an association 5900 * is specified, then the association's default DSCP is 5901 * returned. If neither an association nor a destination is 5902 * specified, then the socket's default DSCP is returned. 5903 * 5904 * spp_ipv6_flowlabel 5905 * - This field is used in conjunction with the 5906 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5907 * The 20 least significant bits are used for the flow 5908 * label. This setting has precedence over any IPv6-layer 5909 * setting. 5910 * 5911 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5912 * and contains the DSCP. The 6 most significant bits are 5913 * used for the DSCP. This setting has precedence over any 5914 * IPv4- or IPv6- layer setting. 5915 */ 5916 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5917 char __user *optval, int __user *optlen) 5918 { 5919 struct sctp_paddrparams params; 5920 struct sctp_transport *trans = NULL; 5921 struct sctp_association *asoc = NULL; 5922 struct sctp_sock *sp = sctp_sk(sk); 5923 5924 if (len >= sizeof(params)) 5925 len = sizeof(params); 5926 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5927 spp_ipv6_flowlabel), 4)) 5928 len = ALIGN(offsetof(struct sctp_paddrparams, 5929 spp_ipv6_flowlabel), 4); 5930 else 5931 return -EINVAL; 5932 5933 if (copy_from_user(¶ms, optval, len)) 5934 return -EFAULT; 5935 5936 /* If an address other than INADDR_ANY is specified, and 5937 * no transport is found, then the request is invalid. 5938 */ 5939 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5940 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5941 params.spp_assoc_id); 5942 if (!trans) { 5943 pr_debug("%s: failed no transport\n", __func__); 5944 return -EINVAL; 5945 } 5946 } 5947 5948 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5949 * socket is a one to many style socket, and an association 5950 * was not found, then the id was invalid. 5951 */ 5952 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5953 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5954 sctp_style(sk, UDP)) { 5955 pr_debug("%s: failed no association\n", __func__); 5956 return -EINVAL; 5957 } 5958 5959 if (trans) { 5960 /* Fetch transport values. */ 5961 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5962 params.spp_pathmtu = trans->pathmtu; 5963 params.spp_pathmaxrxt = trans->pathmaxrxt; 5964 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5965 5966 /*draft-11 doesn't say what to return in spp_flags*/ 5967 params.spp_flags = trans->param_flags; 5968 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5969 params.spp_ipv6_flowlabel = trans->flowlabel & 5970 SCTP_FLOWLABEL_VAL_MASK; 5971 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5972 } 5973 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5974 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5975 params.spp_flags |= SPP_DSCP; 5976 } 5977 } else if (asoc) { 5978 /* Fetch association values. */ 5979 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5980 params.spp_pathmtu = asoc->pathmtu; 5981 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5982 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5983 5984 /*draft-11 doesn't say what to return in spp_flags*/ 5985 params.spp_flags = asoc->param_flags; 5986 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5987 params.spp_ipv6_flowlabel = asoc->flowlabel & 5988 SCTP_FLOWLABEL_VAL_MASK; 5989 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5990 } 5991 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5992 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5993 params.spp_flags |= SPP_DSCP; 5994 } 5995 } else { 5996 /* Fetch socket values. */ 5997 params.spp_hbinterval = sp->hbinterval; 5998 params.spp_pathmtu = sp->pathmtu; 5999 params.spp_sackdelay = sp->sackdelay; 6000 params.spp_pathmaxrxt = sp->pathmaxrxt; 6001 6002 /*draft-11 doesn't say what to return in spp_flags*/ 6003 params.spp_flags = sp->param_flags; 6004 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6005 params.spp_ipv6_flowlabel = sp->flowlabel & 6006 SCTP_FLOWLABEL_VAL_MASK; 6007 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6008 } 6009 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6010 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6011 params.spp_flags |= SPP_DSCP; 6012 } 6013 } 6014 6015 if (copy_to_user(optval, ¶ms, len)) 6016 return -EFAULT; 6017 6018 if (put_user(len, optlen)) 6019 return -EFAULT; 6020 6021 return 0; 6022 } 6023 6024 /* 6025 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6026 * 6027 * This option will effect the way delayed acks are performed. This 6028 * option allows you to get or set the delayed ack time, in 6029 * milliseconds. It also allows changing the delayed ack frequency. 6030 * Changing the frequency to 1 disables the delayed sack algorithm. If 6031 * the assoc_id is 0, then this sets or gets the endpoints default 6032 * values. If the assoc_id field is non-zero, then the set or get 6033 * effects the specified association for the one to many model (the 6034 * assoc_id field is ignored by the one to one model). Note that if 6035 * sack_delay or sack_freq are 0 when setting this option, then the 6036 * current values will remain unchanged. 6037 * 6038 * struct sctp_sack_info { 6039 * sctp_assoc_t sack_assoc_id; 6040 * uint32_t sack_delay; 6041 * uint32_t sack_freq; 6042 * }; 6043 * 6044 * sack_assoc_id - This parameter, indicates which association the user 6045 * is performing an action upon. Note that if this field's value is 6046 * zero then the endpoints default value is changed (effecting future 6047 * associations only). 6048 * 6049 * sack_delay - This parameter contains the number of milliseconds that 6050 * the user is requesting the delayed ACK timer be set to. Note that 6051 * this value is defined in the standard to be between 200 and 500 6052 * milliseconds. 6053 * 6054 * sack_freq - This parameter contains the number of packets that must 6055 * be received before a sack is sent without waiting for the delay 6056 * timer to expire. The default value for this is 2, setting this 6057 * value to 1 will disable the delayed sack algorithm. 6058 */ 6059 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6060 char __user *optval, 6061 int __user *optlen) 6062 { 6063 struct sctp_sack_info params; 6064 struct sctp_association *asoc = NULL; 6065 struct sctp_sock *sp = sctp_sk(sk); 6066 6067 if (len >= sizeof(struct sctp_sack_info)) { 6068 len = sizeof(struct sctp_sack_info); 6069 6070 if (copy_from_user(¶ms, optval, len)) 6071 return -EFAULT; 6072 } else if (len == sizeof(struct sctp_assoc_value)) { 6073 pr_warn_ratelimited(DEPRECATED 6074 "%s (pid %d) " 6075 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6076 "Use struct sctp_sack_info instead\n", 6077 current->comm, task_pid_nr(current)); 6078 if (copy_from_user(¶ms, optval, len)) 6079 return -EFAULT; 6080 } else 6081 return -EINVAL; 6082 6083 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6084 * socket is a one to many style socket, and an association 6085 * was not found, then the id was invalid. 6086 */ 6087 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6088 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6089 sctp_style(sk, UDP)) 6090 return -EINVAL; 6091 6092 if (asoc) { 6093 /* Fetch association values. */ 6094 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6095 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6096 params.sack_freq = asoc->sackfreq; 6097 6098 } else { 6099 params.sack_delay = 0; 6100 params.sack_freq = 1; 6101 } 6102 } else { 6103 /* Fetch socket values. */ 6104 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6105 params.sack_delay = sp->sackdelay; 6106 params.sack_freq = sp->sackfreq; 6107 } else { 6108 params.sack_delay = 0; 6109 params.sack_freq = 1; 6110 } 6111 } 6112 6113 if (copy_to_user(optval, ¶ms, len)) 6114 return -EFAULT; 6115 6116 if (put_user(len, optlen)) 6117 return -EFAULT; 6118 6119 return 0; 6120 } 6121 6122 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6123 * 6124 * Applications can specify protocol parameters for the default association 6125 * initialization. The option name argument to setsockopt() and getsockopt() 6126 * is SCTP_INITMSG. 6127 * 6128 * Setting initialization parameters is effective only on an unconnected 6129 * socket (for UDP-style sockets only future associations are effected 6130 * by the change). With TCP-style sockets, this option is inherited by 6131 * sockets derived from a listener socket. 6132 */ 6133 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6134 { 6135 if (len < sizeof(struct sctp_initmsg)) 6136 return -EINVAL; 6137 len = sizeof(struct sctp_initmsg); 6138 if (put_user(len, optlen)) 6139 return -EFAULT; 6140 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6141 return -EFAULT; 6142 return 0; 6143 } 6144 6145 6146 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6147 char __user *optval, int __user *optlen) 6148 { 6149 struct sctp_association *asoc; 6150 int cnt = 0; 6151 struct sctp_getaddrs getaddrs; 6152 struct sctp_transport *from; 6153 void __user *to; 6154 union sctp_addr temp; 6155 struct sctp_sock *sp = sctp_sk(sk); 6156 int addrlen; 6157 size_t space_left; 6158 int bytes_copied; 6159 6160 if (len < sizeof(struct sctp_getaddrs)) 6161 return -EINVAL; 6162 6163 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6164 return -EFAULT; 6165 6166 /* For UDP-style sockets, id specifies the association to query. */ 6167 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6168 if (!asoc) 6169 return -EINVAL; 6170 6171 to = optval + offsetof(struct sctp_getaddrs, addrs); 6172 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6173 6174 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6175 transports) { 6176 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6177 addrlen = sctp_get_pf_specific(sk->sk_family) 6178 ->addr_to_user(sp, &temp); 6179 if (space_left < addrlen) 6180 return -ENOMEM; 6181 if (copy_to_user(to, &temp, addrlen)) 6182 return -EFAULT; 6183 to += addrlen; 6184 cnt++; 6185 space_left -= addrlen; 6186 } 6187 6188 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6189 return -EFAULT; 6190 bytes_copied = ((char __user *)to) - optval; 6191 if (put_user(bytes_copied, optlen)) 6192 return -EFAULT; 6193 6194 return 0; 6195 } 6196 6197 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6198 size_t space_left, int *bytes_copied) 6199 { 6200 struct sctp_sockaddr_entry *addr; 6201 union sctp_addr temp; 6202 int cnt = 0; 6203 int addrlen; 6204 struct net *net = sock_net(sk); 6205 6206 rcu_read_lock(); 6207 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6208 if (!addr->valid) 6209 continue; 6210 6211 if ((PF_INET == sk->sk_family) && 6212 (AF_INET6 == addr->a.sa.sa_family)) 6213 continue; 6214 if ((PF_INET6 == sk->sk_family) && 6215 inet_v6_ipv6only(sk) && 6216 (AF_INET == addr->a.sa.sa_family)) 6217 continue; 6218 memcpy(&temp, &addr->a, sizeof(temp)); 6219 if (!temp.v4.sin_port) 6220 temp.v4.sin_port = htons(port); 6221 6222 addrlen = sctp_get_pf_specific(sk->sk_family) 6223 ->addr_to_user(sctp_sk(sk), &temp); 6224 6225 if (space_left < addrlen) { 6226 cnt = -ENOMEM; 6227 break; 6228 } 6229 memcpy(to, &temp, addrlen); 6230 6231 to += addrlen; 6232 cnt++; 6233 space_left -= addrlen; 6234 *bytes_copied += addrlen; 6235 } 6236 rcu_read_unlock(); 6237 6238 return cnt; 6239 } 6240 6241 6242 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6243 char __user *optval, int __user *optlen) 6244 { 6245 struct sctp_bind_addr *bp; 6246 struct sctp_association *asoc; 6247 int cnt = 0; 6248 struct sctp_getaddrs getaddrs; 6249 struct sctp_sockaddr_entry *addr; 6250 void __user *to; 6251 union sctp_addr temp; 6252 struct sctp_sock *sp = sctp_sk(sk); 6253 int addrlen; 6254 int err = 0; 6255 size_t space_left; 6256 int bytes_copied = 0; 6257 void *addrs; 6258 void *buf; 6259 6260 if (len < sizeof(struct sctp_getaddrs)) 6261 return -EINVAL; 6262 6263 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6264 return -EFAULT; 6265 6266 /* 6267 * For UDP-style sockets, id specifies the association to query. 6268 * If the id field is set to the value '0' then the locally bound 6269 * addresses are returned without regard to any particular 6270 * association. 6271 */ 6272 if (0 == getaddrs.assoc_id) { 6273 bp = &sctp_sk(sk)->ep->base.bind_addr; 6274 } else { 6275 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6276 if (!asoc) 6277 return -EINVAL; 6278 bp = &asoc->base.bind_addr; 6279 } 6280 6281 to = optval + offsetof(struct sctp_getaddrs, addrs); 6282 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6283 6284 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6285 if (!addrs) 6286 return -ENOMEM; 6287 6288 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6289 * addresses from the global local address list. 6290 */ 6291 if (sctp_list_single_entry(&bp->address_list)) { 6292 addr = list_entry(bp->address_list.next, 6293 struct sctp_sockaddr_entry, list); 6294 if (sctp_is_any(sk, &addr->a)) { 6295 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6296 space_left, &bytes_copied); 6297 if (cnt < 0) { 6298 err = cnt; 6299 goto out; 6300 } 6301 goto copy_getaddrs; 6302 } 6303 } 6304 6305 buf = addrs; 6306 /* Protection on the bound address list is not needed since 6307 * in the socket option context we hold a socket lock and 6308 * thus the bound address list can't change. 6309 */ 6310 list_for_each_entry(addr, &bp->address_list, list) { 6311 memcpy(&temp, &addr->a, sizeof(temp)); 6312 addrlen = sctp_get_pf_specific(sk->sk_family) 6313 ->addr_to_user(sp, &temp); 6314 if (space_left < addrlen) { 6315 err = -ENOMEM; /*fixme: right error?*/ 6316 goto out; 6317 } 6318 memcpy(buf, &temp, addrlen); 6319 buf += addrlen; 6320 bytes_copied += addrlen; 6321 cnt++; 6322 space_left -= addrlen; 6323 } 6324 6325 copy_getaddrs: 6326 if (copy_to_user(to, addrs, bytes_copied)) { 6327 err = -EFAULT; 6328 goto out; 6329 } 6330 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6331 err = -EFAULT; 6332 goto out; 6333 } 6334 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6335 * but we can't change it anymore. 6336 */ 6337 if (put_user(bytes_copied, optlen)) 6338 err = -EFAULT; 6339 out: 6340 kfree(addrs); 6341 return err; 6342 } 6343 6344 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6345 * 6346 * Requests that the local SCTP stack use the enclosed peer address as 6347 * the association primary. The enclosed address must be one of the 6348 * association peer's addresses. 6349 */ 6350 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6351 char __user *optval, int __user *optlen) 6352 { 6353 struct sctp_prim prim; 6354 struct sctp_association *asoc; 6355 struct sctp_sock *sp = sctp_sk(sk); 6356 6357 if (len < sizeof(struct sctp_prim)) 6358 return -EINVAL; 6359 6360 len = sizeof(struct sctp_prim); 6361 6362 if (copy_from_user(&prim, optval, len)) 6363 return -EFAULT; 6364 6365 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6366 if (!asoc) 6367 return -EINVAL; 6368 6369 if (!asoc->peer.primary_path) 6370 return -ENOTCONN; 6371 6372 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6373 asoc->peer.primary_path->af_specific->sockaddr_len); 6374 6375 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6376 (union sctp_addr *)&prim.ssp_addr); 6377 6378 if (put_user(len, optlen)) 6379 return -EFAULT; 6380 if (copy_to_user(optval, &prim, len)) 6381 return -EFAULT; 6382 6383 return 0; 6384 } 6385 6386 /* 6387 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6388 * 6389 * Requests that the local endpoint set the specified Adaptation Layer 6390 * Indication parameter for all future INIT and INIT-ACK exchanges. 6391 */ 6392 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6393 char __user *optval, int __user *optlen) 6394 { 6395 struct sctp_setadaptation adaptation; 6396 6397 if (len < sizeof(struct sctp_setadaptation)) 6398 return -EINVAL; 6399 6400 len = sizeof(struct sctp_setadaptation); 6401 6402 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6403 6404 if (put_user(len, optlen)) 6405 return -EFAULT; 6406 if (copy_to_user(optval, &adaptation, len)) 6407 return -EFAULT; 6408 6409 return 0; 6410 } 6411 6412 /* 6413 * 6414 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6415 * 6416 * Applications that wish to use the sendto() system call may wish to 6417 * specify a default set of parameters that would normally be supplied 6418 * through the inclusion of ancillary data. This socket option allows 6419 * such an application to set the default sctp_sndrcvinfo structure. 6420 6421 6422 * The application that wishes to use this socket option simply passes 6423 * in to this call the sctp_sndrcvinfo structure defined in Section 6424 * 5.2.2) The input parameters accepted by this call include 6425 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6426 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6427 * to this call if the caller is using the UDP model. 6428 * 6429 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6430 */ 6431 static int sctp_getsockopt_default_send_param(struct sock *sk, 6432 int len, char __user *optval, 6433 int __user *optlen) 6434 { 6435 struct sctp_sock *sp = sctp_sk(sk); 6436 struct sctp_association *asoc; 6437 struct sctp_sndrcvinfo info; 6438 6439 if (len < sizeof(info)) 6440 return -EINVAL; 6441 6442 len = sizeof(info); 6443 6444 if (copy_from_user(&info, optval, len)) 6445 return -EFAULT; 6446 6447 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6448 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6449 sctp_style(sk, UDP)) 6450 return -EINVAL; 6451 6452 if (asoc) { 6453 info.sinfo_stream = asoc->default_stream; 6454 info.sinfo_flags = asoc->default_flags; 6455 info.sinfo_ppid = asoc->default_ppid; 6456 info.sinfo_context = asoc->default_context; 6457 info.sinfo_timetolive = asoc->default_timetolive; 6458 } else { 6459 info.sinfo_stream = sp->default_stream; 6460 info.sinfo_flags = sp->default_flags; 6461 info.sinfo_ppid = sp->default_ppid; 6462 info.sinfo_context = sp->default_context; 6463 info.sinfo_timetolive = sp->default_timetolive; 6464 } 6465 6466 if (put_user(len, optlen)) 6467 return -EFAULT; 6468 if (copy_to_user(optval, &info, len)) 6469 return -EFAULT; 6470 6471 return 0; 6472 } 6473 6474 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6475 * (SCTP_DEFAULT_SNDINFO) 6476 */ 6477 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6478 char __user *optval, 6479 int __user *optlen) 6480 { 6481 struct sctp_sock *sp = sctp_sk(sk); 6482 struct sctp_association *asoc; 6483 struct sctp_sndinfo info; 6484 6485 if (len < sizeof(info)) 6486 return -EINVAL; 6487 6488 len = sizeof(info); 6489 6490 if (copy_from_user(&info, optval, len)) 6491 return -EFAULT; 6492 6493 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6494 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6495 sctp_style(sk, UDP)) 6496 return -EINVAL; 6497 6498 if (asoc) { 6499 info.snd_sid = asoc->default_stream; 6500 info.snd_flags = asoc->default_flags; 6501 info.snd_ppid = asoc->default_ppid; 6502 info.snd_context = asoc->default_context; 6503 } else { 6504 info.snd_sid = sp->default_stream; 6505 info.snd_flags = sp->default_flags; 6506 info.snd_ppid = sp->default_ppid; 6507 info.snd_context = sp->default_context; 6508 } 6509 6510 if (put_user(len, optlen)) 6511 return -EFAULT; 6512 if (copy_to_user(optval, &info, len)) 6513 return -EFAULT; 6514 6515 return 0; 6516 } 6517 6518 /* 6519 * 6520 * 7.1.5 SCTP_NODELAY 6521 * 6522 * Turn on/off any Nagle-like algorithm. This means that packets are 6523 * generally sent as soon as possible and no unnecessary delays are 6524 * introduced, at the cost of more packets in the network. Expects an 6525 * integer boolean flag. 6526 */ 6527 6528 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6529 char __user *optval, int __user *optlen) 6530 { 6531 int val; 6532 6533 if (len < sizeof(int)) 6534 return -EINVAL; 6535 6536 len = sizeof(int); 6537 val = (sctp_sk(sk)->nodelay == 1); 6538 if (put_user(len, optlen)) 6539 return -EFAULT; 6540 if (copy_to_user(optval, &val, len)) 6541 return -EFAULT; 6542 return 0; 6543 } 6544 6545 /* 6546 * 6547 * 7.1.1 SCTP_RTOINFO 6548 * 6549 * The protocol parameters used to initialize and bound retransmission 6550 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6551 * and modify these parameters. 6552 * All parameters are time values, in milliseconds. A value of 0, when 6553 * modifying the parameters, indicates that the current value should not 6554 * be changed. 6555 * 6556 */ 6557 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6558 char __user *optval, 6559 int __user *optlen) { 6560 struct sctp_rtoinfo rtoinfo; 6561 struct sctp_association *asoc; 6562 6563 if (len < sizeof (struct sctp_rtoinfo)) 6564 return -EINVAL; 6565 6566 len = sizeof(struct sctp_rtoinfo); 6567 6568 if (copy_from_user(&rtoinfo, optval, len)) 6569 return -EFAULT; 6570 6571 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6572 6573 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6574 sctp_style(sk, UDP)) 6575 return -EINVAL; 6576 6577 /* Values corresponding to the specific association. */ 6578 if (asoc) { 6579 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6580 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6581 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6582 } else { 6583 /* Values corresponding to the endpoint. */ 6584 struct sctp_sock *sp = sctp_sk(sk); 6585 6586 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6587 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6588 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6589 } 6590 6591 if (put_user(len, optlen)) 6592 return -EFAULT; 6593 6594 if (copy_to_user(optval, &rtoinfo, len)) 6595 return -EFAULT; 6596 6597 return 0; 6598 } 6599 6600 /* 6601 * 6602 * 7.1.2 SCTP_ASSOCINFO 6603 * 6604 * This option is used to tune the maximum retransmission attempts 6605 * of the association. 6606 * Returns an error if the new association retransmission value is 6607 * greater than the sum of the retransmission value of the peer. 6608 * See [SCTP] for more information. 6609 * 6610 */ 6611 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6612 char __user *optval, 6613 int __user *optlen) 6614 { 6615 6616 struct sctp_assocparams assocparams; 6617 struct sctp_association *asoc; 6618 struct list_head *pos; 6619 int cnt = 0; 6620 6621 if (len < sizeof (struct sctp_assocparams)) 6622 return -EINVAL; 6623 6624 len = sizeof(struct sctp_assocparams); 6625 6626 if (copy_from_user(&assocparams, optval, len)) 6627 return -EFAULT; 6628 6629 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6630 6631 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6632 sctp_style(sk, UDP)) 6633 return -EINVAL; 6634 6635 /* Values correspoinding to the specific association */ 6636 if (asoc) { 6637 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6638 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6639 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6640 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6641 6642 list_for_each(pos, &asoc->peer.transport_addr_list) { 6643 cnt++; 6644 } 6645 6646 assocparams.sasoc_number_peer_destinations = cnt; 6647 } else { 6648 /* Values corresponding to the endpoint */ 6649 struct sctp_sock *sp = sctp_sk(sk); 6650 6651 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6652 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6653 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6654 assocparams.sasoc_cookie_life = 6655 sp->assocparams.sasoc_cookie_life; 6656 assocparams.sasoc_number_peer_destinations = 6657 sp->assocparams. 6658 sasoc_number_peer_destinations; 6659 } 6660 6661 if (put_user(len, optlen)) 6662 return -EFAULT; 6663 6664 if (copy_to_user(optval, &assocparams, len)) 6665 return -EFAULT; 6666 6667 return 0; 6668 } 6669 6670 /* 6671 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6672 * 6673 * This socket option is a boolean flag which turns on or off mapped V4 6674 * addresses. If this option is turned on and the socket is type 6675 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6676 * If this option is turned off, then no mapping will be done of V4 6677 * addresses and a user will receive both PF_INET6 and PF_INET type 6678 * addresses on the socket. 6679 */ 6680 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6681 char __user *optval, int __user *optlen) 6682 { 6683 int val; 6684 struct sctp_sock *sp = sctp_sk(sk); 6685 6686 if (len < sizeof(int)) 6687 return -EINVAL; 6688 6689 len = sizeof(int); 6690 val = sp->v4mapped; 6691 if (put_user(len, optlen)) 6692 return -EFAULT; 6693 if (copy_to_user(optval, &val, len)) 6694 return -EFAULT; 6695 6696 return 0; 6697 } 6698 6699 /* 6700 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6701 * (chapter and verse is quoted at sctp_setsockopt_context()) 6702 */ 6703 static int sctp_getsockopt_context(struct sock *sk, int len, 6704 char __user *optval, int __user *optlen) 6705 { 6706 struct sctp_assoc_value params; 6707 struct sctp_association *asoc; 6708 6709 if (len < sizeof(struct sctp_assoc_value)) 6710 return -EINVAL; 6711 6712 len = sizeof(struct sctp_assoc_value); 6713 6714 if (copy_from_user(¶ms, optval, len)) 6715 return -EFAULT; 6716 6717 asoc = sctp_id2assoc(sk, params.assoc_id); 6718 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6719 sctp_style(sk, UDP)) 6720 return -EINVAL; 6721 6722 params.assoc_value = asoc ? asoc->default_rcv_context 6723 : sctp_sk(sk)->default_rcv_context; 6724 6725 if (put_user(len, optlen)) 6726 return -EFAULT; 6727 if (copy_to_user(optval, ¶ms, len)) 6728 return -EFAULT; 6729 6730 return 0; 6731 } 6732 6733 /* 6734 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6735 * This option will get or set the maximum size to put in any outgoing 6736 * SCTP DATA chunk. If a message is larger than this size it will be 6737 * fragmented by SCTP into the specified size. Note that the underlying 6738 * SCTP implementation may fragment into smaller sized chunks when the 6739 * PMTU of the underlying association is smaller than the value set by 6740 * the user. The default value for this option is '0' which indicates 6741 * the user is NOT limiting fragmentation and only the PMTU will effect 6742 * SCTP's choice of DATA chunk size. Note also that values set larger 6743 * than the maximum size of an IP datagram will effectively let SCTP 6744 * control fragmentation (i.e. the same as setting this option to 0). 6745 * 6746 * The following structure is used to access and modify this parameter: 6747 * 6748 * struct sctp_assoc_value { 6749 * sctp_assoc_t assoc_id; 6750 * uint32_t assoc_value; 6751 * }; 6752 * 6753 * assoc_id: This parameter is ignored for one-to-one style sockets. 6754 * For one-to-many style sockets this parameter indicates which 6755 * association the user is performing an action upon. Note that if 6756 * this field's value is zero then the endpoints default value is 6757 * changed (effecting future associations only). 6758 * assoc_value: This parameter specifies the maximum size in bytes. 6759 */ 6760 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6761 char __user *optval, int __user *optlen) 6762 { 6763 struct sctp_assoc_value params; 6764 struct sctp_association *asoc; 6765 6766 if (len == sizeof(int)) { 6767 pr_warn_ratelimited(DEPRECATED 6768 "%s (pid %d) " 6769 "Use of int in maxseg socket option.\n" 6770 "Use struct sctp_assoc_value instead\n", 6771 current->comm, task_pid_nr(current)); 6772 params.assoc_id = SCTP_FUTURE_ASSOC; 6773 } else if (len >= sizeof(struct sctp_assoc_value)) { 6774 len = sizeof(struct sctp_assoc_value); 6775 if (copy_from_user(¶ms, optval, len)) 6776 return -EFAULT; 6777 } else 6778 return -EINVAL; 6779 6780 asoc = sctp_id2assoc(sk, params.assoc_id); 6781 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6782 sctp_style(sk, UDP)) 6783 return -EINVAL; 6784 6785 if (asoc) 6786 params.assoc_value = asoc->frag_point; 6787 else 6788 params.assoc_value = sctp_sk(sk)->user_frag; 6789 6790 if (put_user(len, optlen)) 6791 return -EFAULT; 6792 if (len == sizeof(int)) { 6793 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6794 return -EFAULT; 6795 } else { 6796 if (copy_to_user(optval, ¶ms, len)) 6797 return -EFAULT; 6798 } 6799 6800 return 0; 6801 } 6802 6803 /* 6804 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6805 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6806 */ 6807 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6808 char __user *optval, int __user *optlen) 6809 { 6810 int val; 6811 6812 if (len < sizeof(int)) 6813 return -EINVAL; 6814 6815 len = sizeof(int); 6816 6817 val = sctp_sk(sk)->frag_interleave; 6818 if (put_user(len, optlen)) 6819 return -EFAULT; 6820 if (copy_to_user(optval, &val, len)) 6821 return -EFAULT; 6822 6823 return 0; 6824 } 6825 6826 /* 6827 * 7.1.25. Set or Get the sctp partial delivery point 6828 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6829 */ 6830 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6831 char __user *optval, 6832 int __user *optlen) 6833 { 6834 u32 val; 6835 6836 if (len < sizeof(u32)) 6837 return -EINVAL; 6838 6839 len = sizeof(u32); 6840 6841 val = sctp_sk(sk)->pd_point; 6842 if (put_user(len, optlen)) 6843 return -EFAULT; 6844 if (copy_to_user(optval, &val, len)) 6845 return -EFAULT; 6846 6847 return 0; 6848 } 6849 6850 /* 6851 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6852 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6853 */ 6854 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6855 char __user *optval, 6856 int __user *optlen) 6857 { 6858 struct sctp_assoc_value params; 6859 struct sctp_association *asoc; 6860 6861 if (len == sizeof(int)) { 6862 pr_warn_ratelimited(DEPRECATED 6863 "%s (pid %d) " 6864 "Use of int in max_burst socket option.\n" 6865 "Use struct sctp_assoc_value instead\n", 6866 current->comm, task_pid_nr(current)); 6867 params.assoc_id = SCTP_FUTURE_ASSOC; 6868 } else if (len >= sizeof(struct sctp_assoc_value)) { 6869 len = sizeof(struct sctp_assoc_value); 6870 if (copy_from_user(¶ms, optval, len)) 6871 return -EFAULT; 6872 } else 6873 return -EINVAL; 6874 6875 asoc = sctp_id2assoc(sk, params.assoc_id); 6876 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6877 sctp_style(sk, UDP)) 6878 return -EINVAL; 6879 6880 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6881 6882 if (len == sizeof(int)) { 6883 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6884 return -EFAULT; 6885 } else { 6886 if (copy_to_user(optval, ¶ms, len)) 6887 return -EFAULT; 6888 } 6889 6890 return 0; 6891 6892 } 6893 6894 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6895 char __user *optval, int __user *optlen) 6896 { 6897 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6898 struct sctp_hmacalgo __user *p = (void __user *)optval; 6899 struct sctp_hmac_algo_param *hmacs; 6900 __u16 data_len = 0; 6901 u32 num_idents; 6902 int i; 6903 6904 if (!ep->auth_enable) 6905 return -EACCES; 6906 6907 hmacs = ep->auth_hmacs_list; 6908 data_len = ntohs(hmacs->param_hdr.length) - 6909 sizeof(struct sctp_paramhdr); 6910 6911 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6912 return -EINVAL; 6913 6914 len = sizeof(struct sctp_hmacalgo) + data_len; 6915 num_idents = data_len / sizeof(u16); 6916 6917 if (put_user(len, optlen)) 6918 return -EFAULT; 6919 if (put_user(num_idents, &p->shmac_num_idents)) 6920 return -EFAULT; 6921 for (i = 0; i < num_idents; i++) { 6922 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6923 6924 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6925 return -EFAULT; 6926 } 6927 return 0; 6928 } 6929 6930 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6931 char __user *optval, int __user *optlen) 6932 { 6933 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6934 struct sctp_authkeyid val; 6935 struct sctp_association *asoc; 6936 6937 if (len < sizeof(struct sctp_authkeyid)) 6938 return -EINVAL; 6939 6940 len = sizeof(struct sctp_authkeyid); 6941 if (copy_from_user(&val, optval, len)) 6942 return -EFAULT; 6943 6944 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6945 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6946 return -EINVAL; 6947 6948 if (asoc) { 6949 if (!asoc->peer.auth_capable) 6950 return -EACCES; 6951 val.scact_keynumber = asoc->active_key_id; 6952 } else { 6953 if (!ep->auth_enable) 6954 return -EACCES; 6955 val.scact_keynumber = ep->active_key_id; 6956 } 6957 6958 if (put_user(len, optlen)) 6959 return -EFAULT; 6960 if (copy_to_user(optval, &val, len)) 6961 return -EFAULT; 6962 6963 return 0; 6964 } 6965 6966 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6967 char __user *optval, int __user *optlen) 6968 { 6969 struct sctp_authchunks __user *p = (void __user *)optval; 6970 struct sctp_authchunks val; 6971 struct sctp_association *asoc; 6972 struct sctp_chunks_param *ch; 6973 u32 num_chunks = 0; 6974 char __user *to; 6975 6976 if (len < sizeof(struct sctp_authchunks)) 6977 return -EINVAL; 6978 6979 if (copy_from_user(&val, optval, sizeof(val))) 6980 return -EFAULT; 6981 6982 to = p->gauth_chunks; 6983 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6984 if (!asoc) 6985 return -EINVAL; 6986 6987 if (!asoc->peer.auth_capable) 6988 return -EACCES; 6989 6990 ch = asoc->peer.peer_chunks; 6991 if (!ch) 6992 goto num; 6993 6994 /* See if the user provided enough room for all the data */ 6995 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6996 if (len < num_chunks) 6997 return -EINVAL; 6998 6999 if (copy_to_user(to, ch->chunks, num_chunks)) 7000 return -EFAULT; 7001 num: 7002 len = sizeof(struct sctp_authchunks) + num_chunks; 7003 if (put_user(len, optlen)) 7004 return -EFAULT; 7005 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7006 return -EFAULT; 7007 return 0; 7008 } 7009 7010 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7011 char __user *optval, int __user *optlen) 7012 { 7013 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7014 struct sctp_authchunks __user *p = (void __user *)optval; 7015 struct sctp_authchunks val; 7016 struct sctp_association *asoc; 7017 struct sctp_chunks_param *ch; 7018 u32 num_chunks = 0; 7019 char __user *to; 7020 7021 if (len < sizeof(struct sctp_authchunks)) 7022 return -EINVAL; 7023 7024 if (copy_from_user(&val, optval, sizeof(val))) 7025 return -EFAULT; 7026 7027 to = p->gauth_chunks; 7028 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7029 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7030 sctp_style(sk, UDP)) 7031 return -EINVAL; 7032 7033 if (asoc) { 7034 if (!asoc->peer.auth_capable) 7035 return -EACCES; 7036 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7037 } else { 7038 if (!ep->auth_enable) 7039 return -EACCES; 7040 ch = ep->auth_chunk_list; 7041 } 7042 if (!ch) 7043 goto num; 7044 7045 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7046 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7047 return -EINVAL; 7048 7049 if (copy_to_user(to, ch->chunks, num_chunks)) 7050 return -EFAULT; 7051 num: 7052 len = sizeof(struct sctp_authchunks) + num_chunks; 7053 if (put_user(len, optlen)) 7054 return -EFAULT; 7055 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7056 return -EFAULT; 7057 7058 return 0; 7059 } 7060 7061 /* 7062 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7063 * This option gets the current number of associations that are attached 7064 * to a one-to-many style socket. The option value is an uint32_t. 7065 */ 7066 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7067 char __user *optval, int __user *optlen) 7068 { 7069 struct sctp_sock *sp = sctp_sk(sk); 7070 struct sctp_association *asoc; 7071 u32 val = 0; 7072 7073 if (sctp_style(sk, TCP)) 7074 return -EOPNOTSUPP; 7075 7076 if (len < sizeof(u32)) 7077 return -EINVAL; 7078 7079 len = sizeof(u32); 7080 7081 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7082 val++; 7083 } 7084 7085 if (put_user(len, optlen)) 7086 return -EFAULT; 7087 if (copy_to_user(optval, &val, len)) 7088 return -EFAULT; 7089 7090 return 0; 7091 } 7092 7093 /* 7094 * 8.1.23 SCTP_AUTO_ASCONF 7095 * See the corresponding setsockopt entry as description 7096 */ 7097 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7098 char __user *optval, int __user *optlen) 7099 { 7100 int val = 0; 7101 7102 if (len < sizeof(int)) 7103 return -EINVAL; 7104 7105 len = sizeof(int); 7106 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7107 val = 1; 7108 if (put_user(len, optlen)) 7109 return -EFAULT; 7110 if (copy_to_user(optval, &val, len)) 7111 return -EFAULT; 7112 return 0; 7113 } 7114 7115 /* 7116 * 8.2.6. Get the Current Identifiers of Associations 7117 * (SCTP_GET_ASSOC_ID_LIST) 7118 * 7119 * This option gets the current list of SCTP association identifiers of 7120 * the SCTP associations handled by a one-to-many style socket. 7121 */ 7122 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7123 char __user *optval, int __user *optlen) 7124 { 7125 struct sctp_sock *sp = sctp_sk(sk); 7126 struct sctp_association *asoc; 7127 struct sctp_assoc_ids *ids; 7128 size_t ids_size; 7129 u32 num = 0; 7130 7131 if (sctp_style(sk, TCP)) 7132 return -EOPNOTSUPP; 7133 7134 if (len < sizeof(struct sctp_assoc_ids)) 7135 return -EINVAL; 7136 7137 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7138 num++; 7139 } 7140 7141 ids_size = struct_size(ids, gaids_assoc_id, num); 7142 if (len < ids_size) 7143 return -EINVAL; 7144 7145 len = ids_size; 7146 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7147 if (unlikely(!ids)) 7148 return -ENOMEM; 7149 7150 ids->gaids_number_of_ids = num; 7151 num = 0; 7152 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7153 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7154 } 7155 7156 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7157 kfree(ids); 7158 return -EFAULT; 7159 } 7160 7161 kfree(ids); 7162 return 0; 7163 } 7164 7165 /* 7166 * SCTP_PEER_ADDR_THLDS 7167 * 7168 * This option allows us to fetch the partially failed threshold for one or all 7169 * transports in an association. See Section 6.1 of: 7170 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7171 */ 7172 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7173 char __user *optval, int len, 7174 int __user *optlen, bool v2) 7175 { 7176 struct sctp_paddrthlds_v2 val; 7177 struct sctp_transport *trans; 7178 struct sctp_association *asoc; 7179 int min; 7180 7181 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7182 if (len < min) 7183 return -EINVAL; 7184 len = min; 7185 if (copy_from_user(&val, optval, len)) 7186 return -EFAULT; 7187 7188 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7189 trans = sctp_addr_id2transport(sk, &val.spt_address, 7190 val.spt_assoc_id); 7191 if (!trans) 7192 return -ENOENT; 7193 7194 val.spt_pathmaxrxt = trans->pathmaxrxt; 7195 val.spt_pathpfthld = trans->pf_retrans; 7196 val.spt_pathcpthld = trans->ps_retrans; 7197 7198 goto out; 7199 } 7200 7201 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7202 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7203 sctp_style(sk, UDP)) 7204 return -EINVAL; 7205 7206 if (asoc) { 7207 val.spt_pathpfthld = asoc->pf_retrans; 7208 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7209 val.spt_pathcpthld = asoc->ps_retrans; 7210 } else { 7211 struct sctp_sock *sp = sctp_sk(sk); 7212 7213 val.spt_pathpfthld = sp->pf_retrans; 7214 val.spt_pathmaxrxt = sp->pathmaxrxt; 7215 val.spt_pathcpthld = sp->ps_retrans; 7216 } 7217 7218 out: 7219 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7220 return -EFAULT; 7221 7222 return 0; 7223 } 7224 7225 /* 7226 * SCTP_GET_ASSOC_STATS 7227 * 7228 * This option retrieves local per endpoint statistics. It is modeled 7229 * after OpenSolaris' implementation 7230 */ 7231 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7232 char __user *optval, 7233 int __user *optlen) 7234 { 7235 struct sctp_assoc_stats sas; 7236 struct sctp_association *asoc = NULL; 7237 7238 /* User must provide at least the assoc id */ 7239 if (len < sizeof(sctp_assoc_t)) 7240 return -EINVAL; 7241 7242 /* Allow the struct to grow and fill in as much as possible */ 7243 len = min_t(size_t, len, sizeof(sas)); 7244 7245 if (copy_from_user(&sas, optval, len)) 7246 return -EFAULT; 7247 7248 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7249 if (!asoc) 7250 return -EINVAL; 7251 7252 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7253 sas.sas_gapcnt = asoc->stats.gapcnt; 7254 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7255 sas.sas_osacks = asoc->stats.osacks; 7256 sas.sas_isacks = asoc->stats.isacks; 7257 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7258 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7259 sas.sas_oodchunks = asoc->stats.oodchunks; 7260 sas.sas_iodchunks = asoc->stats.iodchunks; 7261 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7262 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7263 sas.sas_idupchunks = asoc->stats.idupchunks; 7264 sas.sas_opackets = asoc->stats.opackets; 7265 sas.sas_ipackets = asoc->stats.ipackets; 7266 7267 /* New high max rto observed, will return 0 if not a single 7268 * RTO update took place. obs_rto_ipaddr will be bogus 7269 * in such a case 7270 */ 7271 sas.sas_maxrto = asoc->stats.max_obs_rto; 7272 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7273 sizeof(struct sockaddr_storage)); 7274 7275 /* Mark beginning of a new observation period */ 7276 asoc->stats.max_obs_rto = asoc->rto_min; 7277 7278 if (put_user(len, optlen)) 7279 return -EFAULT; 7280 7281 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7282 7283 if (copy_to_user(optval, &sas, len)) 7284 return -EFAULT; 7285 7286 return 0; 7287 } 7288 7289 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7290 char __user *optval, 7291 int __user *optlen) 7292 { 7293 int val = 0; 7294 7295 if (len < sizeof(int)) 7296 return -EINVAL; 7297 7298 len = sizeof(int); 7299 if (sctp_sk(sk)->recvrcvinfo) 7300 val = 1; 7301 if (put_user(len, optlen)) 7302 return -EFAULT; 7303 if (copy_to_user(optval, &val, len)) 7304 return -EFAULT; 7305 7306 return 0; 7307 } 7308 7309 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7310 char __user *optval, 7311 int __user *optlen) 7312 { 7313 int val = 0; 7314 7315 if (len < sizeof(int)) 7316 return -EINVAL; 7317 7318 len = sizeof(int); 7319 if (sctp_sk(sk)->recvnxtinfo) 7320 val = 1; 7321 if (put_user(len, optlen)) 7322 return -EFAULT; 7323 if (copy_to_user(optval, &val, len)) 7324 return -EFAULT; 7325 7326 return 0; 7327 } 7328 7329 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7330 char __user *optval, 7331 int __user *optlen) 7332 { 7333 struct sctp_assoc_value params; 7334 struct sctp_association *asoc; 7335 int retval = -EFAULT; 7336 7337 if (len < sizeof(params)) { 7338 retval = -EINVAL; 7339 goto out; 7340 } 7341 7342 len = sizeof(params); 7343 if (copy_from_user(¶ms, optval, len)) 7344 goto out; 7345 7346 asoc = sctp_id2assoc(sk, params.assoc_id); 7347 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7348 sctp_style(sk, UDP)) { 7349 retval = -EINVAL; 7350 goto out; 7351 } 7352 7353 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7354 : sctp_sk(sk)->ep->prsctp_enable; 7355 7356 if (put_user(len, optlen)) 7357 goto out; 7358 7359 if (copy_to_user(optval, ¶ms, len)) 7360 goto out; 7361 7362 retval = 0; 7363 7364 out: 7365 return retval; 7366 } 7367 7368 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7369 char __user *optval, 7370 int __user *optlen) 7371 { 7372 struct sctp_default_prinfo info; 7373 struct sctp_association *asoc; 7374 int retval = -EFAULT; 7375 7376 if (len < sizeof(info)) { 7377 retval = -EINVAL; 7378 goto out; 7379 } 7380 7381 len = sizeof(info); 7382 if (copy_from_user(&info, optval, len)) 7383 goto out; 7384 7385 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7386 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7387 sctp_style(sk, UDP)) { 7388 retval = -EINVAL; 7389 goto out; 7390 } 7391 7392 if (asoc) { 7393 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7394 info.pr_value = asoc->default_timetolive; 7395 } else { 7396 struct sctp_sock *sp = sctp_sk(sk); 7397 7398 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7399 info.pr_value = sp->default_timetolive; 7400 } 7401 7402 if (put_user(len, optlen)) 7403 goto out; 7404 7405 if (copy_to_user(optval, &info, len)) 7406 goto out; 7407 7408 retval = 0; 7409 7410 out: 7411 return retval; 7412 } 7413 7414 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7415 char __user *optval, 7416 int __user *optlen) 7417 { 7418 struct sctp_prstatus params; 7419 struct sctp_association *asoc; 7420 int policy; 7421 int retval = -EINVAL; 7422 7423 if (len < sizeof(params)) 7424 goto out; 7425 7426 len = sizeof(params); 7427 if (copy_from_user(¶ms, optval, len)) { 7428 retval = -EFAULT; 7429 goto out; 7430 } 7431 7432 policy = params.sprstat_policy; 7433 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7434 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7435 goto out; 7436 7437 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7438 if (!asoc) 7439 goto out; 7440 7441 if (policy == SCTP_PR_SCTP_ALL) { 7442 params.sprstat_abandoned_unsent = 0; 7443 params.sprstat_abandoned_sent = 0; 7444 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7445 params.sprstat_abandoned_unsent += 7446 asoc->abandoned_unsent[policy]; 7447 params.sprstat_abandoned_sent += 7448 asoc->abandoned_sent[policy]; 7449 } 7450 } else { 7451 params.sprstat_abandoned_unsent = 7452 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7453 params.sprstat_abandoned_sent = 7454 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7455 } 7456 7457 if (put_user(len, optlen)) { 7458 retval = -EFAULT; 7459 goto out; 7460 } 7461 7462 if (copy_to_user(optval, ¶ms, len)) { 7463 retval = -EFAULT; 7464 goto out; 7465 } 7466 7467 retval = 0; 7468 7469 out: 7470 return retval; 7471 } 7472 7473 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7474 char __user *optval, 7475 int __user *optlen) 7476 { 7477 struct sctp_stream_out_ext *streamoute; 7478 struct sctp_association *asoc; 7479 struct sctp_prstatus params; 7480 int retval = -EINVAL; 7481 int policy; 7482 7483 if (len < sizeof(params)) 7484 goto out; 7485 7486 len = sizeof(params); 7487 if (copy_from_user(¶ms, optval, len)) { 7488 retval = -EFAULT; 7489 goto out; 7490 } 7491 7492 policy = params.sprstat_policy; 7493 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7494 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7495 goto out; 7496 7497 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7498 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7499 goto out; 7500 7501 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7502 if (!streamoute) { 7503 /* Not allocated yet, means all stats are 0 */ 7504 params.sprstat_abandoned_unsent = 0; 7505 params.sprstat_abandoned_sent = 0; 7506 retval = 0; 7507 goto out; 7508 } 7509 7510 if (policy == SCTP_PR_SCTP_ALL) { 7511 params.sprstat_abandoned_unsent = 0; 7512 params.sprstat_abandoned_sent = 0; 7513 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7514 params.sprstat_abandoned_unsent += 7515 streamoute->abandoned_unsent[policy]; 7516 params.sprstat_abandoned_sent += 7517 streamoute->abandoned_sent[policy]; 7518 } 7519 } else { 7520 params.sprstat_abandoned_unsent = 7521 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7522 params.sprstat_abandoned_sent = 7523 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7524 } 7525 7526 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7527 retval = -EFAULT; 7528 goto out; 7529 } 7530 7531 retval = 0; 7532 7533 out: 7534 return retval; 7535 } 7536 7537 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7538 char __user *optval, 7539 int __user *optlen) 7540 { 7541 struct sctp_assoc_value params; 7542 struct sctp_association *asoc; 7543 int retval = -EFAULT; 7544 7545 if (len < sizeof(params)) { 7546 retval = -EINVAL; 7547 goto out; 7548 } 7549 7550 len = sizeof(params); 7551 if (copy_from_user(¶ms, optval, len)) 7552 goto out; 7553 7554 asoc = sctp_id2assoc(sk, params.assoc_id); 7555 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7556 sctp_style(sk, UDP)) { 7557 retval = -EINVAL; 7558 goto out; 7559 } 7560 7561 params.assoc_value = asoc ? asoc->peer.reconf_capable 7562 : sctp_sk(sk)->ep->reconf_enable; 7563 7564 if (put_user(len, optlen)) 7565 goto out; 7566 7567 if (copy_to_user(optval, ¶ms, len)) 7568 goto out; 7569 7570 retval = 0; 7571 7572 out: 7573 return retval; 7574 } 7575 7576 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7577 char __user *optval, 7578 int __user *optlen) 7579 { 7580 struct sctp_assoc_value params; 7581 struct sctp_association *asoc; 7582 int retval = -EFAULT; 7583 7584 if (len < sizeof(params)) { 7585 retval = -EINVAL; 7586 goto out; 7587 } 7588 7589 len = sizeof(params); 7590 if (copy_from_user(¶ms, optval, len)) 7591 goto out; 7592 7593 asoc = sctp_id2assoc(sk, params.assoc_id); 7594 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7595 sctp_style(sk, UDP)) { 7596 retval = -EINVAL; 7597 goto out; 7598 } 7599 7600 params.assoc_value = asoc ? asoc->strreset_enable 7601 : sctp_sk(sk)->ep->strreset_enable; 7602 7603 if (put_user(len, optlen)) 7604 goto out; 7605 7606 if (copy_to_user(optval, ¶ms, len)) 7607 goto out; 7608 7609 retval = 0; 7610 7611 out: 7612 return retval; 7613 } 7614 7615 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7616 char __user *optval, 7617 int __user *optlen) 7618 { 7619 struct sctp_assoc_value params; 7620 struct sctp_association *asoc; 7621 int retval = -EFAULT; 7622 7623 if (len < sizeof(params)) { 7624 retval = -EINVAL; 7625 goto out; 7626 } 7627 7628 len = sizeof(params); 7629 if (copy_from_user(¶ms, optval, len)) 7630 goto out; 7631 7632 asoc = sctp_id2assoc(sk, params.assoc_id); 7633 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7634 sctp_style(sk, UDP)) { 7635 retval = -EINVAL; 7636 goto out; 7637 } 7638 7639 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7640 : sctp_sk(sk)->default_ss; 7641 7642 if (put_user(len, optlen)) 7643 goto out; 7644 7645 if (copy_to_user(optval, ¶ms, len)) 7646 goto out; 7647 7648 retval = 0; 7649 7650 out: 7651 return retval; 7652 } 7653 7654 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7655 char __user *optval, 7656 int __user *optlen) 7657 { 7658 struct sctp_stream_value params; 7659 struct sctp_association *asoc; 7660 int retval = -EFAULT; 7661 7662 if (len < sizeof(params)) { 7663 retval = -EINVAL; 7664 goto out; 7665 } 7666 7667 len = sizeof(params); 7668 if (copy_from_user(¶ms, optval, len)) 7669 goto out; 7670 7671 asoc = sctp_id2assoc(sk, params.assoc_id); 7672 if (!asoc) { 7673 retval = -EINVAL; 7674 goto out; 7675 } 7676 7677 retval = sctp_sched_get_value(asoc, params.stream_id, 7678 ¶ms.stream_value); 7679 if (retval) 7680 goto out; 7681 7682 if (put_user(len, optlen)) { 7683 retval = -EFAULT; 7684 goto out; 7685 } 7686 7687 if (copy_to_user(optval, ¶ms, len)) { 7688 retval = -EFAULT; 7689 goto out; 7690 } 7691 7692 out: 7693 return retval; 7694 } 7695 7696 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7697 char __user *optval, 7698 int __user *optlen) 7699 { 7700 struct sctp_assoc_value params; 7701 struct sctp_association *asoc; 7702 int retval = -EFAULT; 7703 7704 if (len < sizeof(params)) { 7705 retval = -EINVAL; 7706 goto out; 7707 } 7708 7709 len = sizeof(params); 7710 if (copy_from_user(¶ms, optval, len)) 7711 goto out; 7712 7713 asoc = sctp_id2assoc(sk, params.assoc_id); 7714 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7715 sctp_style(sk, UDP)) { 7716 retval = -EINVAL; 7717 goto out; 7718 } 7719 7720 params.assoc_value = asoc ? asoc->peer.intl_capable 7721 : sctp_sk(sk)->ep->intl_enable; 7722 7723 if (put_user(len, optlen)) 7724 goto out; 7725 7726 if (copy_to_user(optval, ¶ms, len)) 7727 goto out; 7728 7729 retval = 0; 7730 7731 out: 7732 return retval; 7733 } 7734 7735 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7736 char __user *optval, 7737 int __user *optlen) 7738 { 7739 int val; 7740 7741 if (len < sizeof(int)) 7742 return -EINVAL; 7743 7744 len = sizeof(int); 7745 val = sctp_sk(sk)->reuse; 7746 if (put_user(len, optlen)) 7747 return -EFAULT; 7748 7749 if (copy_to_user(optval, &val, len)) 7750 return -EFAULT; 7751 7752 return 0; 7753 } 7754 7755 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7756 int __user *optlen) 7757 { 7758 struct sctp_association *asoc; 7759 struct sctp_event param; 7760 __u16 subscribe; 7761 7762 if (len < sizeof(param)) 7763 return -EINVAL; 7764 7765 len = sizeof(param); 7766 if (copy_from_user(¶m, optval, len)) 7767 return -EFAULT; 7768 7769 if (param.se_type < SCTP_SN_TYPE_BASE || 7770 param.se_type > SCTP_SN_TYPE_MAX) 7771 return -EINVAL; 7772 7773 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7774 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7775 sctp_style(sk, UDP)) 7776 return -EINVAL; 7777 7778 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7779 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7780 7781 if (put_user(len, optlen)) 7782 return -EFAULT; 7783 7784 if (copy_to_user(optval, ¶m, len)) 7785 return -EFAULT; 7786 7787 return 0; 7788 } 7789 7790 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7791 char __user *optval, 7792 int __user *optlen) 7793 { 7794 struct sctp_assoc_value params; 7795 struct sctp_association *asoc; 7796 int retval = -EFAULT; 7797 7798 if (len < sizeof(params)) { 7799 retval = -EINVAL; 7800 goto out; 7801 } 7802 7803 len = sizeof(params); 7804 if (copy_from_user(¶ms, optval, len)) 7805 goto out; 7806 7807 asoc = sctp_id2assoc(sk, params.assoc_id); 7808 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7809 sctp_style(sk, UDP)) { 7810 retval = -EINVAL; 7811 goto out; 7812 } 7813 7814 params.assoc_value = asoc ? asoc->peer.asconf_capable 7815 : sctp_sk(sk)->ep->asconf_enable; 7816 7817 if (put_user(len, optlen)) 7818 goto out; 7819 7820 if (copy_to_user(optval, ¶ms, len)) 7821 goto out; 7822 7823 retval = 0; 7824 7825 out: 7826 return retval; 7827 } 7828 7829 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7830 char __user *optval, 7831 int __user *optlen) 7832 { 7833 struct sctp_assoc_value params; 7834 struct sctp_association *asoc; 7835 int retval = -EFAULT; 7836 7837 if (len < sizeof(params)) { 7838 retval = -EINVAL; 7839 goto out; 7840 } 7841 7842 len = sizeof(params); 7843 if (copy_from_user(¶ms, optval, len)) 7844 goto out; 7845 7846 asoc = sctp_id2assoc(sk, params.assoc_id); 7847 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7848 sctp_style(sk, UDP)) { 7849 retval = -EINVAL; 7850 goto out; 7851 } 7852 7853 params.assoc_value = asoc ? asoc->peer.auth_capable 7854 : sctp_sk(sk)->ep->auth_enable; 7855 7856 if (put_user(len, optlen)) 7857 goto out; 7858 7859 if (copy_to_user(optval, ¶ms, len)) 7860 goto out; 7861 7862 retval = 0; 7863 7864 out: 7865 return retval; 7866 } 7867 7868 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7869 char __user *optval, 7870 int __user *optlen) 7871 { 7872 struct sctp_assoc_value params; 7873 struct sctp_association *asoc; 7874 int retval = -EFAULT; 7875 7876 if (len < sizeof(params)) { 7877 retval = -EINVAL; 7878 goto out; 7879 } 7880 7881 len = sizeof(params); 7882 if (copy_from_user(¶ms, optval, len)) 7883 goto out; 7884 7885 asoc = sctp_id2assoc(sk, params.assoc_id); 7886 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7887 sctp_style(sk, UDP)) { 7888 retval = -EINVAL; 7889 goto out; 7890 } 7891 7892 params.assoc_value = asoc ? asoc->peer.ecn_capable 7893 : sctp_sk(sk)->ep->ecn_enable; 7894 7895 if (put_user(len, optlen)) 7896 goto out; 7897 7898 if (copy_to_user(optval, ¶ms, len)) 7899 goto out; 7900 7901 retval = 0; 7902 7903 out: 7904 return retval; 7905 } 7906 7907 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7908 char __user *optval, 7909 int __user *optlen) 7910 { 7911 struct sctp_assoc_value params; 7912 struct sctp_association *asoc; 7913 int retval = -EFAULT; 7914 7915 if (len < sizeof(params)) { 7916 retval = -EINVAL; 7917 goto out; 7918 } 7919 7920 len = sizeof(params); 7921 if (copy_from_user(¶ms, optval, len)) 7922 goto out; 7923 7924 asoc = sctp_id2assoc(sk, params.assoc_id); 7925 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7926 sctp_style(sk, UDP)) { 7927 retval = -EINVAL; 7928 goto out; 7929 } 7930 7931 params.assoc_value = asoc ? asoc->pf_expose 7932 : sctp_sk(sk)->pf_expose; 7933 7934 if (put_user(len, optlen)) 7935 goto out; 7936 7937 if (copy_to_user(optval, ¶ms, len)) 7938 goto out; 7939 7940 retval = 0; 7941 7942 out: 7943 return retval; 7944 } 7945 7946 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7947 char __user *optval, int __user *optlen) 7948 { 7949 struct sctp_association *asoc; 7950 struct sctp_udpencaps encap; 7951 struct sctp_transport *t; 7952 __be16 encap_port; 7953 7954 if (len < sizeof(encap)) 7955 return -EINVAL; 7956 7957 len = sizeof(encap); 7958 if (copy_from_user(&encap, optval, len)) 7959 return -EFAULT; 7960 7961 /* If an address other than INADDR_ANY is specified, and 7962 * no transport is found, then the request is invalid. 7963 */ 7964 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7965 t = sctp_addr_id2transport(sk, &encap.sue_address, 7966 encap.sue_assoc_id); 7967 if (!t) { 7968 pr_debug("%s: failed no transport\n", __func__); 7969 return -EINVAL; 7970 } 7971 7972 encap_port = t->encap_port; 7973 goto out; 7974 } 7975 7976 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7977 * socket is a one to many style socket, and an association 7978 * was not found, then the id was invalid. 7979 */ 7980 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7981 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7982 sctp_style(sk, UDP)) { 7983 pr_debug("%s: failed no association\n", __func__); 7984 return -EINVAL; 7985 } 7986 7987 if (asoc) { 7988 encap_port = asoc->encap_port; 7989 goto out; 7990 } 7991 7992 encap_port = sctp_sk(sk)->encap_port; 7993 7994 out: 7995 encap.sue_port = (__force uint16_t)encap_port; 7996 if (copy_to_user(optval, &encap, len)) 7997 return -EFAULT; 7998 7999 if (put_user(len, optlen)) 8000 return -EFAULT; 8001 8002 return 0; 8003 } 8004 8005 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 8006 char __user *optval, 8007 int __user *optlen) 8008 { 8009 struct sctp_probeinterval params; 8010 struct sctp_association *asoc; 8011 struct sctp_transport *t; 8012 __u32 probe_interval; 8013 8014 if (len < sizeof(params)) 8015 return -EINVAL; 8016 8017 len = sizeof(params); 8018 if (copy_from_user(¶ms, optval, len)) 8019 return -EFAULT; 8020 8021 /* If an address other than INADDR_ANY is specified, and 8022 * no transport is found, then the request is invalid. 8023 */ 8024 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 8025 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 8026 params.spi_assoc_id); 8027 if (!t) { 8028 pr_debug("%s: failed no transport\n", __func__); 8029 return -EINVAL; 8030 } 8031 8032 probe_interval = jiffies_to_msecs(t->probe_interval); 8033 goto out; 8034 } 8035 8036 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8037 * socket is a one to many style socket, and an association 8038 * was not found, then the id was invalid. 8039 */ 8040 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8041 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8042 sctp_style(sk, UDP)) { 8043 pr_debug("%s: failed no association\n", __func__); 8044 return -EINVAL; 8045 } 8046 8047 if (asoc) { 8048 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8049 goto out; 8050 } 8051 8052 probe_interval = sctp_sk(sk)->probe_interval; 8053 8054 out: 8055 params.spi_interval = probe_interval; 8056 if (copy_to_user(optval, ¶ms, len)) 8057 return -EFAULT; 8058 8059 if (put_user(len, optlen)) 8060 return -EFAULT; 8061 8062 return 0; 8063 } 8064 8065 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8066 char __user *optval, int __user *optlen) 8067 { 8068 int retval = 0; 8069 int len; 8070 8071 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8072 8073 /* I can hardly begin to describe how wrong this is. This is 8074 * so broken as to be worse than useless. The API draft 8075 * REALLY is NOT helpful here... I am not convinced that the 8076 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8077 * are at all well-founded. 8078 */ 8079 if (level != SOL_SCTP) { 8080 struct sctp_af *af = sctp_sk(sk)->pf->af; 8081 8082 retval = af->getsockopt(sk, level, optname, optval, optlen); 8083 return retval; 8084 } 8085 8086 if (get_user(len, optlen)) 8087 return -EFAULT; 8088 8089 if (len < 0) 8090 return -EINVAL; 8091 8092 lock_sock(sk); 8093 8094 switch (optname) { 8095 case SCTP_STATUS: 8096 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8097 break; 8098 case SCTP_DISABLE_FRAGMENTS: 8099 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8100 optlen); 8101 break; 8102 case SCTP_EVENTS: 8103 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8104 break; 8105 case SCTP_AUTOCLOSE: 8106 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8107 break; 8108 case SCTP_SOCKOPT_PEELOFF: 8109 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8110 break; 8111 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8112 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8113 break; 8114 case SCTP_PEER_ADDR_PARAMS: 8115 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8116 optlen); 8117 break; 8118 case SCTP_DELAYED_SACK: 8119 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8120 optlen); 8121 break; 8122 case SCTP_INITMSG: 8123 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8124 break; 8125 case SCTP_GET_PEER_ADDRS: 8126 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8127 optlen); 8128 break; 8129 case SCTP_GET_LOCAL_ADDRS: 8130 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8131 optlen); 8132 break; 8133 case SCTP_SOCKOPT_CONNECTX3: 8134 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8135 break; 8136 case SCTP_DEFAULT_SEND_PARAM: 8137 retval = sctp_getsockopt_default_send_param(sk, len, 8138 optval, optlen); 8139 break; 8140 case SCTP_DEFAULT_SNDINFO: 8141 retval = sctp_getsockopt_default_sndinfo(sk, len, 8142 optval, optlen); 8143 break; 8144 case SCTP_PRIMARY_ADDR: 8145 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8146 break; 8147 case SCTP_NODELAY: 8148 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8149 break; 8150 case SCTP_RTOINFO: 8151 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8152 break; 8153 case SCTP_ASSOCINFO: 8154 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8155 break; 8156 case SCTP_I_WANT_MAPPED_V4_ADDR: 8157 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8158 break; 8159 case SCTP_MAXSEG: 8160 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8161 break; 8162 case SCTP_GET_PEER_ADDR_INFO: 8163 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8164 optlen); 8165 break; 8166 case SCTP_ADAPTATION_LAYER: 8167 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8168 optlen); 8169 break; 8170 case SCTP_CONTEXT: 8171 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8172 break; 8173 case SCTP_FRAGMENT_INTERLEAVE: 8174 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8175 optlen); 8176 break; 8177 case SCTP_PARTIAL_DELIVERY_POINT: 8178 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8179 optlen); 8180 break; 8181 case SCTP_MAX_BURST: 8182 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8183 break; 8184 case SCTP_AUTH_KEY: 8185 case SCTP_AUTH_CHUNK: 8186 case SCTP_AUTH_DELETE_KEY: 8187 case SCTP_AUTH_DEACTIVATE_KEY: 8188 retval = -EOPNOTSUPP; 8189 break; 8190 case SCTP_HMAC_IDENT: 8191 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8192 break; 8193 case SCTP_AUTH_ACTIVE_KEY: 8194 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8195 break; 8196 case SCTP_PEER_AUTH_CHUNKS: 8197 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8198 optlen); 8199 break; 8200 case SCTP_LOCAL_AUTH_CHUNKS: 8201 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8202 optlen); 8203 break; 8204 case SCTP_GET_ASSOC_NUMBER: 8205 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8206 break; 8207 case SCTP_GET_ASSOC_ID_LIST: 8208 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8209 break; 8210 case SCTP_AUTO_ASCONF: 8211 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8212 break; 8213 case SCTP_PEER_ADDR_THLDS: 8214 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8215 optlen, false); 8216 break; 8217 case SCTP_PEER_ADDR_THLDS_V2: 8218 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8219 optlen, true); 8220 break; 8221 case SCTP_GET_ASSOC_STATS: 8222 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8223 break; 8224 case SCTP_RECVRCVINFO: 8225 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8226 break; 8227 case SCTP_RECVNXTINFO: 8228 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8229 break; 8230 case SCTP_PR_SUPPORTED: 8231 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8232 break; 8233 case SCTP_DEFAULT_PRINFO: 8234 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8235 optlen); 8236 break; 8237 case SCTP_PR_ASSOC_STATUS: 8238 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8239 optlen); 8240 break; 8241 case SCTP_PR_STREAM_STATUS: 8242 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8243 optlen); 8244 break; 8245 case SCTP_RECONFIG_SUPPORTED: 8246 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8247 optlen); 8248 break; 8249 case SCTP_ENABLE_STREAM_RESET: 8250 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8251 optlen); 8252 break; 8253 case SCTP_STREAM_SCHEDULER: 8254 retval = sctp_getsockopt_scheduler(sk, len, optval, 8255 optlen); 8256 break; 8257 case SCTP_STREAM_SCHEDULER_VALUE: 8258 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8259 optlen); 8260 break; 8261 case SCTP_INTERLEAVING_SUPPORTED: 8262 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8263 optlen); 8264 break; 8265 case SCTP_REUSE_PORT: 8266 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8267 break; 8268 case SCTP_EVENT: 8269 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8270 break; 8271 case SCTP_ASCONF_SUPPORTED: 8272 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8273 optlen); 8274 break; 8275 case SCTP_AUTH_SUPPORTED: 8276 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8277 optlen); 8278 break; 8279 case SCTP_ECN_SUPPORTED: 8280 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8281 break; 8282 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8283 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8284 break; 8285 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8286 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8287 break; 8288 case SCTP_PLPMTUD_PROBE_INTERVAL: 8289 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8290 break; 8291 default: 8292 retval = -ENOPROTOOPT; 8293 break; 8294 } 8295 8296 release_sock(sk); 8297 return retval; 8298 } 8299 8300 static bool sctp_bpf_bypass_getsockopt(int level, int optname) 8301 { 8302 if (level == SOL_SCTP) { 8303 switch (optname) { 8304 case SCTP_SOCKOPT_PEELOFF: 8305 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8306 case SCTP_SOCKOPT_CONNECTX3: 8307 return true; 8308 default: 8309 return false; 8310 } 8311 } 8312 8313 return false; 8314 } 8315 8316 static int sctp_hash(struct sock *sk) 8317 { 8318 /* STUB */ 8319 return 0; 8320 } 8321 8322 static void sctp_unhash(struct sock *sk) 8323 { 8324 sock_rps_delete_flow(sk); 8325 } 8326 8327 /* Check if port is acceptable. Possibly find first available port. 8328 * 8329 * The port hash table (contained in the 'global' SCTP protocol storage 8330 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8331 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8332 * list (the list number is the port number hashed out, so as you 8333 * would expect from a hash function, all the ports in a given list have 8334 * such a number that hashes out to the same list number; you were 8335 * expecting that, right?); so each list has a set of ports, with a 8336 * link to the socket (struct sock) that uses it, the port number and 8337 * a fastreuse flag (FIXME: NPI ipg). 8338 */ 8339 static struct sctp_bind_bucket *sctp_bucket_create( 8340 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8341 8342 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8343 { 8344 struct sctp_sock *sp = sctp_sk(sk); 8345 bool reuse = (sk->sk_reuse || sp->reuse); 8346 struct sctp_bind_hashbucket *head; /* hash list */ 8347 struct net *net = sock_net(sk); 8348 kuid_t uid = sock_i_uid(sk); 8349 struct sctp_bind_bucket *pp; 8350 unsigned short snum; 8351 int ret; 8352 8353 snum = ntohs(addr->v4.sin_port); 8354 8355 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8356 8357 if (snum == 0) { 8358 /* Search for an available port. */ 8359 int low, high, remaining, index; 8360 unsigned int rover; 8361 8362 inet_sk_get_local_port_range(sk, &low, &high); 8363 remaining = (high - low) + 1; 8364 rover = get_random_u32_below(remaining) + low; 8365 8366 do { 8367 rover++; 8368 if ((rover < low) || (rover > high)) 8369 rover = low; 8370 if (inet_is_local_reserved_port(net, rover)) 8371 continue; 8372 index = sctp_phashfn(net, rover); 8373 head = &sctp_port_hashtable[index]; 8374 spin_lock_bh(&head->lock); 8375 sctp_for_each_hentry(pp, &head->chain) 8376 if ((pp->port == rover) && 8377 net_eq(net, pp->net)) 8378 goto next; 8379 break; 8380 next: 8381 spin_unlock_bh(&head->lock); 8382 cond_resched(); 8383 } while (--remaining > 0); 8384 8385 /* Exhausted local port range during search? */ 8386 ret = 1; 8387 if (remaining <= 0) 8388 return ret; 8389 8390 /* OK, here is the one we will use. HEAD (the port 8391 * hash table list entry) is non-NULL and we hold it's 8392 * mutex. 8393 */ 8394 snum = rover; 8395 } else { 8396 /* We are given an specific port number; we verify 8397 * that it is not being used. If it is used, we will 8398 * exahust the search in the hash list corresponding 8399 * to the port number (snum) - we detect that with the 8400 * port iterator, pp being NULL. 8401 */ 8402 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8403 spin_lock_bh(&head->lock); 8404 sctp_for_each_hentry(pp, &head->chain) { 8405 if ((pp->port == snum) && net_eq(pp->net, net)) 8406 goto pp_found; 8407 } 8408 } 8409 pp = NULL; 8410 goto pp_not_found; 8411 pp_found: 8412 if (!hlist_empty(&pp->owner)) { 8413 /* We had a port hash table hit - there is an 8414 * available port (pp != NULL) and it is being 8415 * used by other socket (pp->owner not empty); that other 8416 * socket is going to be sk2. 8417 */ 8418 struct sock *sk2; 8419 8420 pr_debug("%s: found a possible match\n", __func__); 8421 8422 if ((pp->fastreuse && reuse && 8423 sk->sk_state != SCTP_SS_LISTENING) || 8424 (pp->fastreuseport && sk->sk_reuseport && 8425 uid_eq(pp->fastuid, uid))) 8426 goto success; 8427 8428 /* Run through the list of sockets bound to the port 8429 * (pp->port) [via the pointers bind_next and 8430 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8431 * we get the endpoint they describe and run through 8432 * the endpoint's list of IP (v4 or v6) addresses, 8433 * comparing each of the addresses with the address of 8434 * the socket sk. If we find a match, then that means 8435 * that this port/socket (sk) combination are already 8436 * in an endpoint. 8437 */ 8438 sk_for_each_bound(sk2, &pp->owner) { 8439 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 8440 struct sctp_sock *sp2 = sctp_sk(sk2); 8441 struct sctp_endpoint *ep2 = sp2->ep; 8442 8443 if (sk == sk2 || 8444 (reuse && (sk2->sk_reuse || sp2->reuse) && 8445 sk2->sk_state != SCTP_SS_LISTENING) || 8446 (sk->sk_reuseport && sk2->sk_reuseport && 8447 uid_eq(uid, sock_i_uid(sk2)))) 8448 continue; 8449 8450 if ((!sk->sk_bound_dev_if || !bound_dev_if2 || 8451 sk->sk_bound_dev_if == bound_dev_if2) && 8452 sctp_bind_addr_conflict(&ep2->base.bind_addr, 8453 addr, sp2, sp)) { 8454 ret = 1; 8455 goto fail_unlock; 8456 } 8457 } 8458 8459 pr_debug("%s: found a match\n", __func__); 8460 } 8461 pp_not_found: 8462 /* If there was a hash table miss, create a new port. */ 8463 ret = 1; 8464 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8465 goto fail_unlock; 8466 8467 /* In either case (hit or miss), make sure fastreuse is 1 only 8468 * if sk->sk_reuse is too (that is, if the caller requested 8469 * SO_REUSEADDR on this socket -sk-). 8470 */ 8471 if (hlist_empty(&pp->owner)) { 8472 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8473 pp->fastreuse = 1; 8474 else 8475 pp->fastreuse = 0; 8476 8477 if (sk->sk_reuseport) { 8478 pp->fastreuseport = 1; 8479 pp->fastuid = uid; 8480 } else { 8481 pp->fastreuseport = 0; 8482 } 8483 } else { 8484 if (pp->fastreuse && 8485 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8486 pp->fastreuse = 0; 8487 8488 if (pp->fastreuseport && 8489 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8490 pp->fastreuseport = 0; 8491 } 8492 8493 /* We are set, so fill up all the data in the hash table 8494 * entry, tie the socket list information with the rest of the 8495 * sockets FIXME: Blurry, NPI (ipg). 8496 */ 8497 success: 8498 if (!sp->bind_hash) { 8499 inet_sk(sk)->inet_num = snum; 8500 sk_add_bind_node(sk, &pp->owner); 8501 sp->bind_hash = pp; 8502 } 8503 ret = 0; 8504 8505 fail_unlock: 8506 spin_unlock_bh(&head->lock); 8507 return ret; 8508 } 8509 8510 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8511 * port is requested. 8512 */ 8513 static int sctp_get_port(struct sock *sk, unsigned short snum) 8514 { 8515 union sctp_addr addr; 8516 struct sctp_af *af = sctp_sk(sk)->pf->af; 8517 8518 /* Set up a dummy address struct from the sk. */ 8519 af->from_sk(&addr, sk); 8520 addr.v4.sin_port = htons(snum); 8521 8522 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8523 return sctp_get_port_local(sk, &addr); 8524 } 8525 8526 /* 8527 * Move a socket to LISTENING state. 8528 */ 8529 static int sctp_listen_start(struct sock *sk, int backlog) 8530 { 8531 struct sctp_sock *sp = sctp_sk(sk); 8532 struct sctp_endpoint *ep = sp->ep; 8533 struct crypto_shash *tfm = NULL; 8534 char alg[32]; 8535 int err; 8536 8537 /* Allocate HMAC for generating cookie. */ 8538 if (!sp->hmac && sp->sctp_hmac_alg) { 8539 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8540 tfm = crypto_alloc_shash(alg, 0, 0); 8541 if (IS_ERR(tfm)) { 8542 net_info_ratelimited("failed to load transform for %s: %ld\n", 8543 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8544 return -ENOSYS; 8545 } 8546 sctp_sk(sk)->hmac = tfm; 8547 } 8548 8549 /* 8550 * If a bind() or sctp_bindx() is not called prior to a listen() 8551 * call that allows new associations to be accepted, the system 8552 * picks an ephemeral port and will choose an address set equivalent 8553 * to binding with a wildcard address. 8554 * 8555 * This is not currently spelled out in the SCTP sockets 8556 * extensions draft, but follows the practice as seen in TCP 8557 * sockets. 8558 * 8559 */ 8560 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8561 if (!ep->base.bind_addr.port) { 8562 if (sctp_autobind(sk)) { 8563 err = -EAGAIN; 8564 goto err; 8565 } 8566 } else { 8567 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8568 err = -EADDRINUSE; 8569 goto err; 8570 } 8571 } 8572 8573 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8574 err = sctp_hash_endpoint(ep); 8575 if (err) 8576 goto err; 8577 8578 return 0; 8579 err: 8580 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8581 return err; 8582 } 8583 8584 /* 8585 * 4.1.3 / 5.1.3 listen() 8586 * 8587 * By default, new associations are not accepted for UDP style sockets. 8588 * An application uses listen() to mark a socket as being able to 8589 * accept new associations. 8590 * 8591 * On TCP style sockets, applications use listen() to ready the SCTP 8592 * endpoint for accepting inbound associations. 8593 * 8594 * On both types of endpoints a backlog of '0' disables listening. 8595 * 8596 * Move a socket to LISTENING state. 8597 */ 8598 int sctp_inet_listen(struct socket *sock, int backlog) 8599 { 8600 struct sock *sk = sock->sk; 8601 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8602 int err = -EINVAL; 8603 8604 if (unlikely(backlog < 0)) 8605 return err; 8606 8607 lock_sock(sk); 8608 8609 /* Peeled-off sockets are not allowed to listen(). */ 8610 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8611 goto out; 8612 8613 if (sock->state != SS_UNCONNECTED) 8614 goto out; 8615 8616 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8617 goto out; 8618 8619 /* If backlog is zero, disable listening. */ 8620 if (!backlog) { 8621 if (sctp_sstate(sk, CLOSED)) 8622 goto out; 8623 8624 err = 0; 8625 sctp_unhash_endpoint(ep); 8626 sk->sk_state = SCTP_SS_CLOSED; 8627 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8628 sctp_sk(sk)->bind_hash->fastreuse = 1; 8629 goto out; 8630 } 8631 8632 /* If we are already listening, just update the backlog */ 8633 if (sctp_sstate(sk, LISTENING)) 8634 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8635 else { 8636 err = sctp_listen_start(sk, backlog); 8637 if (err) 8638 goto out; 8639 } 8640 8641 err = 0; 8642 out: 8643 release_sock(sk); 8644 return err; 8645 } 8646 8647 /* 8648 * This function is done by modeling the current datagram_poll() and the 8649 * tcp_poll(). Note that, based on these implementations, we don't 8650 * lock the socket in this function, even though it seems that, 8651 * ideally, locking or some other mechanisms can be used to ensure 8652 * the integrity of the counters (sndbuf and wmem_alloc) used 8653 * in this place. We assume that we don't need locks either until proven 8654 * otherwise. 8655 * 8656 * Another thing to note is that we include the Async I/O support 8657 * here, again, by modeling the current TCP/UDP code. We don't have 8658 * a good way to test with it yet. 8659 */ 8660 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8661 { 8662 struct sock *sk = sock->sk; 8663 struct sctp_sock *sp = sctp_sk(sk); 8664 __poll_t mask; 8665 8666 poll_wait(file, sk_sleep(sk), wait); 8667 8668 sock_rps_record_flow(sk); 8669 8670 /* A TCP-style listening socket becomes readable when the accept queue 8671 * is not empty. 8672 */ 8673 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8674 return (!list_empty(&sp->ep->asocs)) ? 8675 (EPOLLIN | EPOLLRDNORM) : 0; 8676 8677 mask = 0; 8678 8679 /* Is there any exceptional events? */ 8680 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8681 mask |= EPOLLERR | 8682 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8683 if (sk->sk_shutdown & RCV_SHUTDOWN) 8684 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8685 if (sk->sk_shutdown == SHUTDOWN_MASK) 8686 mask |= EPOLLHUP; 8687 8688 /* Is it readable? Reconsider this code with TCP-style support. */ 8689 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8690 mask |= EPOLLIN | EPOLLRDNORM; 8691 8692 /* The association is either gone or not ready. */ 8693 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8694 return mask; 8695 8696 /* Is it writable? */ 8697 if (sctp_writeable(sk)) { 8698 mask |= EPOLLOUT | EPOLLWRNORM; 8699 } else { 8700 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8701 /* 8702 * Since the socket is not locked, the buffer 8703 * might be made available after the writeable check and 8704 * before the bit is set. This could cause a lost I/O 8705 * signal. tcp_poll() has a race breaker for this race 8706 * condition. Based on their implementation, we put 8707 * in the following code to cover it as well. 8708 */ 8709 if (sctp_writeable(sk)) 8710 mask |= EPOLLOUT | EPOLLWRNORM; 8711 } 8712 return mask; 8713 } 8714 8715 /******************************************************************** 8716 * 2nd Level Abstractions 8717 ********************************************************************/ 8718 8719 static struct sctp_bind_bucket *sctp_bucket_create( 8720 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8721 { 8722 struct sctp_bind_bucket *pp; 8723 8724 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8725 if (pp) { 8726 SCTP_DBG_OBJCNT_INC(bind_bucket); 8727 pp->port = snum; 8728 pp->fastreuse = 0; 8729 INIT_HLIST_HEAD(&pp->owner); 8730 pp->net = net; 8731 hlist_add_head(&pp->node, &head->chain); 8732 } 8733 return pp; 8734 } 8735 8736 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8737 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8738 { 8739 if (pp && hlist_empty(&pp->owner)) { 8740 __hlist_del(&pp->node); 8741 kmem_cache_free(sctp_bucket_cachep, pp); 8742 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8743 } 8744 } 8745 8746 /* Release this socket's reference to a local port. */ 8747 static inline void __sctp_put_port(struct sock *sk) 8748 { 8749 struct sctp_bind_hashbucket *head = 8750 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8751 inet_sk(sk)->inet_num)]; 8752 struct sctp_bind_bucket *pp; 8753 8754 spin_lock(&head->lock); 8755 pp = sctp_sk(sk)->bind_hash; 8756 __sk_del_bind_node(sk); 8757 sctp_sk(sk)->bind_hash = NULL; 8758 inet_sk(sk)->inet_num = 0; 8759 sctp_bucket_destroy(pp); 8760 spin_unlock(&head->lock); 8761 } 8762 8763 void sctp_put_port(struct sock *sk) 8764 { 8765 local_bh_disable(); 8766 __sctp_put_port(sk); 8767 local_bh_enable(); 8768 } 8769 8770 /* 8771 * The system picks an ephemeral port and choose an address set equivalent 8772 * to binding with a wildcard address. 8773 * One of those addresses will be the primary address for the association. 8774 * This automatically enables the multihoming capability of SCTP. 8775 */ 8776 static int sctp_autobind(struct sock *sk) 8777 { 8778 union sctp_addr autoaddr; 8779 struct sctp_af *af; 8780 __be16 port; 8781 8782 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8783 af = sctp_sk(sk)->pf->af; 8784 8785 port = htons(inet_sk(sk)->inet_num); 8786 af->inaddr_any(&autoaddr, port); 8787 8788 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8789 } 8790 8791 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8792 * 8793 * From RFC 2292 8794 * 4.2 The cmsghdr Structure * 8795 * 8796 * When ancillary data is sent or received, any number of ancillary data 8797 * objects can be specified by the msg_control and msg_controllen members of 8798 * the msghdr structure, because each object is preceded by 8799 * a cmsghdr structure defining the object's length (the cmsg_len member). 8800 * Historically Berkeley-derived implementations have passed only one object 8801 * at a time, but this API allows multiple objects to be 8802 * passed in a single call to sendmsg() or recvmsg(). The following example 8803 * shows two ancillary data objects in a control buffer. 8804 * 8805 * |<--------------------------- msg_controllen -------------------------->| 8806 * | | 8807 * 8808 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8809 * 8810 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8811 * | | | 8812 * 8813 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8814 * 8815 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8816 * | | | | | 8817 * 8818 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8819 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8820 * 8821 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8822 * 8823 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8824 * ^ 8825 * | 8826 * 8827 * msg_control 8828 * points here 8829 */ 8830 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8831 { 8832 struct msghdr *my_msg = (struct msghdr *)msg; 8833 struct cmsghdr *cmsg; 8834 8835 for_each_cmsghdr(cmsg, my_msg) { 8836 if (!CMSG_OK(my_msg, cmsg)) 8837 return -EINVAL; 8838 8839 /* Should we parse this header or ignore? */ 8840 if (cmsg->cmsg_level != IPPROTO_SCTP) 8841 continue; 8842 8843 /* Strictly check lengths following example in SCM code. */ 8844 switch (cmsg->cmsg_type) { 8845 case SCTP_INIT: 8846 /* SCTP Socket API Extension 8847 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8848 * 8849 * This cmsghdr structure provides information for 8850 * initializing new SCTP associations with sendmsg(). 8851 * The SCTP_INITMSG socket option uses this same data 8852 * structure. This structure is not used for 8853 * recvmsg(). 8854 * 8855 * cmsg_level cmsg_type cmsg_data[] 8856 * ------------ ------------ ---------------------- 8857 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8858 */ 8859 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8860 return -EINVAL; 8861 8862 cmsgs->init = CMSG_DATA(cmsg); 8863 break; 8864 8865 case SCTP_SNDRCV: 8866 /* SCTP Socket API Extension 8867 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8868 * 8869 * This cmsghdr structure specifies SCTP options for 8870 * sendmsg() and describes SCTP header information 8871 * about a received message through recvmsg(). 8872 * 8873 * cmsg_level cmsg_type cmsg_data[] 8874 * ------------ ------------ ---------------------- 8875 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8876 */ 8877 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8878 return -EINVAL; 8879 8880 cmsgs->srinfo = CMSG_DATA(cmsg); 8881 8882 if (cmsgs->srinfo->sinfo_flags & 8883 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8884 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8885 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8886 return -EINVAL; 8887 break; 8888 8889 case SCTP_SNDINFO: 8890 /* SCTP Socket API Extension 8891 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8892 * 8893 * This cmsghdr structure specifies SCTP options for 8894 * sendmsg(). This structure and SCTP_RCVINFO replaces 8895 * SCTP_SNDRCV which has been deprecated. 8896 * 8897 * cmsg_level cmsg_type cmsg_data[] 8898 * ------------ ------------ --------------------- 8899 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8900 */ 8901 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8902 return -EINVAL; 8903 8904 cmsgs->sinfo = CMSG_DATA(cmsg); 8905 8906 if (cmsgs->sinfo->snd_flags & 8907 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8908 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8909 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8910 return -EINVAL; 8911 break; 8912 case SCTP_PRINFO: 8913 /* SCTP Socket API Extension 8914 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8915 * 8916 * This cmsghdr structure specifies SCTP options for sendmsg(). 8917 * 8918 * cmsg_level cmsg_type cmsg_data[] 8919 * ------------ ------------ --------------------- 8920 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8921 */ 8922 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8923 return -EINVAL; 8924 8925 cmsgs->prinfo = CMSG_DATA(cmsg); 8926 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8927 return -EINVAL; 8928 8929 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8930 cmsgs->prinfo->pr_value = 0; 8931 break; 8932 case SCTP_AUTHINFO: 8933 /* SCTP Socket API Extension 8934 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8935 * 8936 * This cmsghdr structure specifies SCTP options for sendmsg(). 8937 * 8938 * cmsg_level cmsg_type cmsg_data[] 8939 * ------------ ------------ --------------------- 8940 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8941 */ 8942 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8943 return -EINVAL; 8944 8945 cmsgs->authinfo = CMSG_DATA(cmsg); 8946 break; 8947 case SCTP_DSTADDRV4: 8948 case SCTP_DSTADDRV6: 8949 /* SCTP Socket API Extension 8950 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8951 * 8952 * This cmsghdr structure specifies SCTP options for sendmsg(). 8953 * 8954 * cmsg_level cmsg_type cmsg_data[] 8955 * ------------ ------------ --------------------- 8956 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8957 * ------------ ------------ --------------------- 8958 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8959 */ 8960 cmsgs->addrs_msg = my_msg; 8961 break; 8962 default: 8963 return -EINVAL; 8964 } 8965 } 8966 8967 return 0; 8968 } 8969 8970 /* 8971 * Wait for a packet.. 8972 * Note: This function is the same function as in core/datagram.c 8973 * with a few modifications to make lksctp work. 8974 */ 8975 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8976 { 8977 int error; 8978 DEFINE_WAIT(wait); 8979 8980 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8981 8982 /* Socket errors? */ 8983 error = sock_error(sk); 8984 if (error) 8985 goto out; 8986 8987 if (!skb_queue_empty(&sk->sk_receive_queue)) 8988 goto ready; 8989 8990 /* Socket shut down? */ 8991 if (sk->sk_shutdown & RCV_SHUTDOWN) 8992 goto out; 8993 8994 /* Sequenced packets can come disconnected. If so we report the 8995 * problem. 8996 */ 8997 error = -ENOTCONN; 8998 8999 /* Is there a good reason to think that we may receive some data? */ 9000 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 9001 goto out; 9002 9003 /* Handle signals. */ 9004 if (signal_pending(current)) 9005 goto interrupted; 9006 9007 /* Let another process have a go. Since we are going to sleep 9008 * anyway. Note: This may cause odd behaviors if the message 9009 * does not fit in the user's buffer, but this seems to be the 9010 * only way to honor MSG_DONTWAIT realistically. 9011 */ 9012 release_sock(sk); 9013 *timeo_p = schedule_timeout(*timeo_p); 9014 lock_sock(sk); 9015 9016 ready: 9017 finish_wait(sk_sleep(sk), &wait); 9018 return 0; 9019 9020 interrupted: 9021 error = sock_intr_errno(*timeo_p); 9022 9023 out: 9024 finish_wait(sk_sleep(sk), &wait); 9025 *err = error; 9026 return error; 9027 } 9028 9029 /* Receive a datagram. 9030 * Note: This is pretty much the same routine as in core/datagram.c 9031 * with a few changes to make lksctp work. 9032 */ 9033 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) 9034 { 9035 int error; 9036 struct sk_buff *skb; 9037 long timeo; 9038 9039 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 9040 9041 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 9042 MAX_SCHEDULE_TIMEOUT); 9043 9044 do { 9045 /* Again only user level code calls this function, 9046 * so nothing interrupt level 9047 * will suddenly eat the receive_queue. 9048 * 9049 * Look at current nfs client by the way... 9050 * However, this function was correct in any case. 8) 9051 */ 9052 if (flags & MSG_PEEK) { 9053 skb = skb_peek(&sk->sk_receive_queue); 9054 if (skb) 9055 refcount_inc(&skb->users); 9056 } else { 9057 skb = __skb_dequeue(&sk->sk_receive_queue); 9058 } 9059 9060 if (skb) 9061 return skb; 9062 9063 /* Caller is allowed not to check sk->sk_err before calling. */ 9064 error = sock_error(sk); 9065 if (error) 9066 goto no_packet; 9067 9068 if (sk->sk_shutdown & RCV_SHUTDOWN) 9069 break; 9070 9071 9072 /* User doesn't want to wait. */ 9073 error = -EAGAIN; 9074 if (!timeo) 9075 goto no_packet; 9076 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9077 9078 return NULL; 9079 9080 no_packet: 9081 *err = error; 9082 return NULL; 9083 } 9084 9085 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9086 static void __sctp_write_space(struct sctp_association *asoc) 9087 { 9088 struct sock *sk = asoc->base.sk; 9089 9090 if (sctp_wspace(asoc) <= 0) 9091 return; 9092 9093 if (waitqueue_active(&asoc->wait)) 9094 wake_up_interruptible(&asoc->wait); 9095 9096 if (sctp_writeable(sk)) { 9097 struct socket_wq *wq; 9098 9099 rcu_read_lock(); 9100 wq = rcu_dereference(sk->sk_wq); 9101 if (wq) { 9102 if (waitqueue_active(&wq->wait)) 9103 wake_up_interruptible_poll(&wq->wait, EPOLLOUT | 9104 EPOLLWRNORM | EPOLLWRBAND); 9105 9106 /* Note that we try to include the Async I/O support 9107 * here by modeling from the current TCP/UDP code. 9108 * We have not tested with it yet. 9109 */ 9110 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9111 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9112 } 9113 rcu_read_unlock(); 9114 } 9115 } 9116 9117 static void sctp_wake_up_waiters(struct sock *sk, 9118 struct sctp_association *asoc) 9119 { 9120 struct sctp_association *tmp = asoc; 9121 9122 /* We do accounting for the sndbuf space per association, 9123 * so we only need to wake our own association. 9124 */ 9125 if (asoc->ep->sndbuf_policy) 9126 return __sctp_write_space(asoc); 9127 9128 /* If association goes down and is just flushing its 9129 * outq, then just normally notify others. 9130 */ 9131 if (asoc->base.dead) 9132 return sctp_write_space(sk); 9133 9134 /* Accounting for the sndbuf space is per socket, so we 9135 * need to wake up others, try to be fair and in case of 9136 * other associations, let them have a go first instead 9137 * of just doing a sctp_write_space() call. 9138 * 9139 * Note that we reach sctp_wake_up_waiters() only when 9140 * associations free up queued chunks, thus we are under 9141 * lock and the list of associations on a socket is 9142 * guaranteed not to change. 9143 */ 9144 for (tmp = list_next_entry(tmp, asocs); 1; 9145 tmp = list_next_entry(tmp, asocs)) { 9146 /* Manually skip the head element. */ 9147 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9148 continue; 9149 /* Wake up association. */ 9150 __sctp_write_space(tmp); 9151 /* We've reached the end. */ 9152 if (tmp == asoc) 9153 break; 9154 } 9155 } 9156 9157 /* Do accounting for the sndbuf space. 9158 * Decrement the used sndbuf space of the corresponding association by the 9159 * data size which was just transmitted(freed). 9160 */ 9161 static void sctp_wfree(struct sk_buff *skb) 9162 { 9163 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9164 struct sctp_association *asoc = chunk->asoc; 9165 struct sock *sk = asoc->base.sk; 9166 9167 sk_mem_uncharge(sk, skb->truesize); 9168 sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk))); 9169 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9170 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9171 &sk->sk_wmem_alloc)); 9172 9173 if (chunk->shkey) { 9174 struct sctp_shared_key *shkey = chunk->shkey; 9175 9176 /* refcnt == 2 and !list_empty mean after this release, it's 9177 * not being used anywhere, and it's time to notify userland 9178 * that this shkey can be freed if it's been deactivated. 9179 */ 9180 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9181 refcount_read(&shkey->refcnt) == 2) { 9182 struct sctp_ulpevent *ev; 9183 9184 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9185 SCTP_AUTH_FREE_KEY, 9186 GFP_KERNEL); 9187 if (ev) 9188 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9189 } 9190 sctp_auth_shkey_release(chunk->shkey); 9191 } 9192 9193 sock_wfree(skb); 9194 sctp_wake_up_waiters(sk, asoc); 9195 9196 sctp_association_put(asoc); 9197 } 9198 9199 /* Do accounting for the receive space on the socket. 9200 * Accounting for the association is done in ulpevent.c 9201 * We set this as a destructor for the cloned data skbs so that 9202 * accounting is done at the correct time. 9203 */ 9204 void sctp_sock_rfree(struct sk_buff *skb) 9205 { 9206 struct sock *sk = skb->sk; 9207 struct sctp_ulpevent *event = sctp_skb2event(skb); 9208 9209 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9210 9211 /* 9212 * Mimic the behavior of sock_rfree 9213 */ 9214 sk_mem_uncharge(sk, event->rmem_len); 9215 } 9216 9217 9218 /* Helper function to wait for space in the sndbuf. */ 9219 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, 9220 struct sctp_transport *transport, 9221 long *timeo_p, size_t msg_len) 9222 { 9223 struct sock *sk = asoc->base.sk; 9224 long current_timeo = *timeo_p; 9225 DEFINE_WAIT(wait); 9226 int err = 0; 9227 9228 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9229 *timeo_p, msg_len); 9230 9231 /* Increment the transport and association's refcnt. */ 9232 if (transport) 9233 sctp_transport_hold(transport); 9234 sctp_association_hold(asoc); 9235 9236 /* Wait on the association specific sndbuf space. */ 9237 for (;;) { 9238 prepare_to_wait_exclusive(&asoc->wait, &wait, 9239 TASK_INTERRUPTIBLE); 9240 if (asoc->base.dead) 9241 goto do_dead; 9242 if ((!*timeo_p) || (transport && transport->dead)) 9243 goto do_nonblock; 9244 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9245 goto do_error; 9246 if (signal_pending(current)) 9247 goto do_interrupted; 9248 if ((int)msg_len <= sctp_wspace(asoc) && 9249 sk_wmem_schedule(sk, msg_len)) 9250 break; 9251 9252 /* Let another process have a go. Since we are going 9253 * to sleep anyway. 9254 */ 9255 release_sock(sk); 9256 current_timeo = schedule_timeout(current_timeo); 9257 lock_sock(sk); 9258 if (sk != asoc->base.sk) 9259 goto do_error; 9260 9261 *timeo_p = current_timeo; 9262 } 9263 9264 out: 9265 finish_wait(&asoc->wait, &wait); 9266 9267 /* Release the transport and association's refcnt. */ 9268 if (transport) 9269 sctp_transport_put(transport); 9270 sctp_association_put(asoc); 9271 9272 return err; 9273 9274 do_dead: 9275 err = -ESRCH; 9276 goto out; 9277 9278 do_error: 9279 err = -EPIPE; 9280 goto out; 9281 9282 do_interrupted: 9283 err = sock_intr_errno(*timeo_p); 9284 goto out; 9285 9286 do_nonblock: 9287 err = -EAGAIN; 9288 goto out; 9289 } 9290 9291 void sctp_data_ready(struct sock *sk) 9292 { 9293 struct socket_wq *wq; 9294 9295 trace_sk_data_ready(sk); 9296 9297 rcu_read_lock(); 9298 wq = rcu_dereference(sk->sk_wq); 9299 if (skwq_has_sleeper(wq)) 9300 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9301 EPOLLRDNORM | EPOLLRDBAND); 9302 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); 9303 rcu_read_unlock(); 9304 } 9305 9306 /* If socket sndbuf has changed, wake up all per association waiters. */ 9307 void sctp_write_space(struct sock *sk) 9308 { 9309 struct sctp_association *asoc; 9310 9311 /* Wake up the tasks in each wait queue. */ 9312 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9313 __sctp_write_space(asoc); 9314 } 9315 } 9316 9317 /* Is there any sndbuf space available on the socket? 9318 * 9319 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9320 * associations on the same socket. For a UDP-style socket with 9321 * multiple associations, it is possible for it to be "unwriteable" 9322 * prematurely. I assume that this is acceptable because 9323 * a premature "unwriteable" is better than an accidental "writeable" which 9324 * would cause an unwanted block under certain circumstances. For the 1-1 9325 * UDP-style sockets or TCP-style sockets, this code should work. 9326 * - Daisy 9327 */ 9328 static bool sctp_writeable(const struct sock *sk) 9329 { 9330 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued); 9331 } 9332 9333 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9334 * returns immediately with EINPROGRESS. 9335 */ 9336 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9337 { 9338 struct sock *sk = asoc->base.sk; 9339 int err = 0; 9340 long current_timeo = *timeo_p; 9341 DEFINE_WAIT(wait); 9342 9343 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9344 9345 /* Increment the association's refcnt. */ 9346 sctp_association_hold(asoc); 9347 9348 for (;;) { 9349 prepare_to_wait_exclusive(&asoc->wait, &wait, 9350 TASK_INTERRUPTIBLE); 9351 if (!*timeo_p) 9352 goto do_nonblock; 9353 if (sk->sk_shutdown & RCV_SHUTDOWN) 9354 break; 9355 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9356 asoc->base.dead) 9357 goto do_error; 9358 if (signal_pending(current)) 9359 goto do_interrupted; 9360 9361 if (sctp_state(asoc, ESTABLISHED)) 9362 break; 9363 9364 /* Let another process have a go. Since we are going 9365 * to sleep anyway. 9366 */ 9367 release_sock(sk); 9368 current_timeo = schedule_timeout(current_timeo); 9369 lock_sock(sk); 9370 9371 *timeo_p = current_timeo; 9372 } 9373 9374 out: 9375 finish_wait(&asoc->wait, &wait); 9376 9377 /* Release the association's refcnt. */ 9378 sctp_association_put(asoc); 9379 9380 return err; 9381 9382 do_error: 9383 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9384 err = -ETIMEDOUT; 9385 else 9386 err = -ECONNREFUSED; 9387 goto out; 9388 9389 do_interrupted: 9390 err = sock_intr_errno(*timeo_p); 9391 goto out; 9392 9393 do_nonblock: 9394 err = -EINPROGRESS; 9395 goto out; 9396 } 9397 9398 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9399 { 9400 struct sctp_endpoint *ep; 9401 int err = 0; 9402 DEFINE_WAIT(wait); 9403 9404 ep = sctp_sk(sk)->ep; 9405 9406 9407 for (;;) { 9408 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9409 TASK_INTERRUPTIBLE); 9410 9411 if (list_empty(&ep->asocs)) { 9412 release_sock(sk); 9413 timeo = schedule_timeout(timeo); 9414 lock_sock(sk); 9415 } 9416 9417 err = -EINVAL; 9418 if (!sctp_sstate(sk, LISTENING) || 9419 (sk->sk_shutdown & RCV_SHUTDOWN)) 9420 break; 9421 9422 err = 0; 9423 if (!list_empty(&ep->asocs)) 9424 break; 9425 9426 err = sock_intr_errno(timeo); 9427 if (signal_pending(current)) 9428 break; 9429 9430 err = -EAGAIN; 9431 if (!timeo) 9432 break; 9433 } 9434 9435 finish_wait(sk_sleep(sk), &wait); 9436 9437 return err; 9438 } 9439 9440 static void sctp_wait_for_close(struct sock *sk, long timeout) 9441 { 9442 DEFINE_WAIT(wait); 9443 9444 do { 9445 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9446 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9447 break; 9448 release_sock(sk); 9449 timeout = schedule_timeout(timeout); 9450 lock_sock(sk); 9451 } while (!signal_pending(current) && timeout); 9452 9453 finish_wait(sk_sleep(sk), &wait); 9454 } 9455 9456 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9457 { 9458 struct sk_buff *frag; 9459 9460 if (!skb->data_len) 9461 goto done; 9462 9463 /* Don't forget the fragments. */ 9464 skb_walk_frags(skb, frag) 9465 sctp_skb_set_owner_r_frag(frag, sk); 9466 9467 done: 9468 sctp_skb_set_owner_r(skb, sk); 9469 } 9470 9471 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9472 struct sctp_association *asoc) 9473 { 9474 struct inet_sock *inet = inet_sk(sk); 9475 struct inet_sock *newinet; 9476 struct sctp_sock *sp = sctp_sk(sk); 9477 9478 newsk->sk_type = sk->sk_type; 9479 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9480 newsk->sk_flags = sk->sk_flags; 9481 newsk->sk_tsflags = sk->sk_tsflags; 9482 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9483 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9484 newsk->sk_reuse = sk->sk_reuse; 9485 sctp_sk(newsk)->reuse = sp->reuse; 9486 9487 newsk->sk_shutdown = sk->sk_shutdown; 9488 newsk->sk_destruct = sk->sk_destruct; 9489 newsk->sk_family = sk->sk_family; 9490 newsk->sk_protocol = IPPROTO_SCTP; 9491 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9492 newsk->sk_sndbuf = sk->sk_sndbuf; 9493 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9494 newsk->sk_lingertime = sk->sk_lingertime; 9495 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9496 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9497 newsk->sk_rxhash = sk->sk_rxhash; 9498 9499 newinet = inet_sk(newsk); 9500 9501 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9502 * getsockname() and getpeername() 9503 */ 9504 newinet->inet_sport = inet->inet_sport; 9505 newinet->inet_saddr = inet->inet_saddr; 9506 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9507 newinet->inet_dport = htons(asoc->peer.port); 9508 newinet->pmtudisc = inet->pmtudisc; 9509 atomic_set(&newinet->inet_id, get_random_u16()); 9510 9511 newinet->uc_ttl = inet->uc_ttl; 9512 inet_set_bit(MC_LOOP, newsk); 9513 newinet->mc_ttl = 1; 9514 newinet->mc_index = 0; 9515 newinet->mc_list = NULL; 9516 9517 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9518 net_enable_timestamp(); 9519 9520 /* Set newsk security attributes from original sk and connection 9521 * security attribute from asoc. 9522 */ 9523 security_sctp_sk_clone(asoc, sk, newsk); 9524 } 9525 9526 static inline void sctp_copy_descendant(struct sock *sk_to, 9527 const struct sock *sk_from) 9528 { 9529 size_t ancestor_size = sizeof(struct inet_sock); 9530 9531 ancestor_size += sk_from->sk_prot->obj_size; 9532 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9533 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9534 } 9535 9536 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9537 * and its messages to the newsk. 9538 */ 9539 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9540 struct sctp_association *assoc, 9541 enum sctp_socket_type type) 9542 { 9543 struct sctp_sock *oldsp = sctp_sk(oldsk); 9544 struct sctp_sock *newsp = sctp_sk(newsk); 9545 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9546 struct sctp_endpoint *newep = newsp->ep; 9547 struct sk_buff *skb, *tmp; 9548 struct sctp_ulpevent *event; 9549 struct sctp_bind_hashbucket *head; 9550 int err; 9551 9552 /* Migrate socket buffer sizes and all the socket level options to the 9553 * new socket. 9554 */ 9555 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9556 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9557 /* Brute force copy old sctp opt. */ 9558 sctp_copy_descendant(newsk, oldsk); 9559 9560 /* Restore the ep value that was overwritten with the above structure 9561 * copy. 9562 */ 9563 newsp->ep = newep; 9564 newsp->hmac = NULL; 9565 9566 /* Hook this new socket in to the bind_hash list. */ 9567 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9568 inet_sk(oldsk)->inet_num)]; 9569 spin_lock_bh(&head->lock); 9570 pp = sctp_sk(oldsk)->bind_hash; 9571 sk_add_bind_node(newsk, &pp->owner); 9572 sctp_sk(newsk)->bind_hash = pp; 9573 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9574 spin_unlock_bh(&head->lock); 9575 9576 /* Copy the bind_addr list from the original endpoint to the new 9577 * endpoint so that we can handle restarts properly 9578 */ 9579 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9580 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9581 if (err) 9582 return err; 9583 9584 /* New ep's auth_hmacs should be set if old ep's is set, in case 9585 * that net->sctp.auth_enable has been changed to 0 by users and 9586 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9587 */ 9588 if (oldsp->ep->auth_hmacs) { 9589 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9590 if (err) 9591 return err; 9592 } 9593 9594 sctp_auto_asconf_init(newsp); 9595 9596 /* Move any messages in the old socket's receive queue that are for the 9597 * peeled off association to the new socket's receive queue. 9598 */ 9599 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9600 event = sctp_skb2event(skb); 9601 if (event->asoc == assoc) { 9602 __skb_unlink(skb, &oldsk->sk_receive_queue); 9603 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9604 sctp_skb_set_owner_r_frag(skb, newsk); 9605 } 9606 } 9607 9608 /* Clean up any messages pending delivery due to partial 9609 * delivery. Three cases: 9610 * 1) No partial deliver; no work. 9611 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9612 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9613 */ 9614 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9615 9616 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9617 struct sk_buff_head *queue; 9618 9619 /* Decide which queue to move pd_lobby skbs to. */ 9620 if (assoc->ulpq.pd_mode) { 9621 queue = &newsp->pd_lobby; 9622 } else 9623 queue = &newsk->sk_receive_queue; 9624 9625 /* Walk through the pd_lobby, looking for skbs that 9626 * need moved to the new socket. 9627 */ 9628 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9629 event = sctp_skb2event(skb); 9630 if (event->asoc == assoc) { 9631 __skb_unlink(skb, &oldsp->pd_lobby); 9632 __skb_queue_tail(queue, skb); 9633 sctp_skb_set_owner_r_frag(skb, newsk); 9634 } 9635 } 9636 9637 /* Clear up any skbs waiting for the partial 9638 * delivery to finish. 9639 */ 9640 if (assoc->ulpq.pd_mode) 9641 sctp_clear_pd(oldsk, NULL); 9642 9643 } 9644 9645 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9646 9647 /* Set the type of socket to indicate that it is peeled off from the 9648 * original UDP-style socket or created with the accept() call on a 9649 * TCP-style socket.. 9650 */ 9651 newsp->type = type; 9652 9653 /* Mark the new socket "in-use" by the user so that any packets 9654 * that may arrive on the association after we've moved it are 9655 * queued to the backlog. This prevents a potential race between 9656 * backlog processing on the old socket and new-packet processing 9657 * on the new socket. 9658 * 9659 * The caller has just allocated newsk so we can guarantee that other 9660 * paths won't try to lock it and then oldsk. 9661 */ 9662 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9663 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9664 sctp_assoc_migrate(assoc, newsk); 9665 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9666 9667 /* If the association on the newsk is already closed before accept() 9668 * is called, set RCV_SHUTDOWN flag. 9669 */ 9670 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9671 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9672 newsk->sk_shutdown |= RCV_SHUTDOWN; 9673 } else { 9674 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9675 } 9676 9677 release_sock(newsk); 9678 9679 return 0; 9680 } 9681 9682 9683 /* This proto struct describes the ULP interface for SCTP. */ 9684 struct proto sctp_prot = { 9685 .name = "SCTP", 9686 .owner = THIS_MODULE, 9687 .close = sctp_close, 9688 .disconnect = sctp_disconnect, 9689 .accept = sctp_accept, 9690 .ioctl = sctp_ioctl, 9691 .init = sctp_init_sock, 9692 .destroy = sctp_destroy_sock, 9693 .shutdown = sctp_shutdown, 9694 .setsockopt = sctp_setsockopt, 9695 .getsockopt = sctp_getsockopt, 9696 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9697 .sendmsg = sctp_sendmsg, 9698 .recvmsg = sctp_recvmsg, 9699 .bind = sctp_bind, 9700 .bind_add = sctp_bind_add, 9701 .backlog_rcv = sctp_backlog_rcv, 9702 .hash = sctp_hash, 9703 .unhash = sctp_unhash, 9704 .no_autobind = true, 9705 .obj_size = sizeof(struct sctp_sock), 9706 .useroffset = offsetof(struct sctp_sock, subscribe), 9707 .usersize = offsetof(struct sctp_sock, initmsg) - 9708 offsetof(struct sctp_sock, subscribe) + 9709 sizeof_field(struct sctp_sock, initmsg), 9710 .sysctl_mem = sysctl_sctp_mem, 9711 .sysctl_rmem = sysctl_sctp_rmem, 9712 .sysctl_wmem = sysctl_sctp_wmem, 9713 .memory_pressure = &sctp_memory_pressure, 9714 .enter_memory_pressure = sctp_enter_memory_pressure, 9715 9716 .memory_allocated = &sctp_memory_allocated, 9717 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9718 9719 .sockets_allocated = &sctp_sockets_allocated, 9720 }; 9721 9722 #if IS_ENABLED(CONFIG_IPV6) 9723 9724 static void sctp_v6_destruct_sock(struct sock *sk) 9725 { 9726 sctp_destruct_common(sk); 9727 inet6_sock_destruct(sk); 9728 } 9729 9730 static int sctp_v6_init_sock(struct sock *sk) 9731 { 9732 int ret = sctp_init_sock(sk); 9733 9734 if (!ret) 9735 sk->sk_destruct = sctp_v6_destruct_sock; 9736 9737 return ret; 9738 } 9739 9740 struct proto sctpv6_prot = { 9741 .name = "SCTPv6", 9742 .owner = THIS_MODULE, 9743 .close = sctp_close, 9744 .disconnect = sctp_disconnect, 9745 .accept = sctp_accept, 9746 .ioctl = sctp_ioctl, 9747 .init = sctp_v6_init_sock, 9748 .destroy = sctp_destroy_sock, 9749 .shutdown = sctp_shutdown, 9750 .setsockopt = sctp_setsockopt, 9751 .getsockopt = sctp_getsockopt, 9752 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9753 .sendmsg = sctp_sendmsg, 9754 .recvmsg = sctp_recvmsg, 9755 .bind = sctp_bind, 9756 .bind_add = sctp_bind_add, 9757 .backlog_rcv = sctp_backlog_rcv, 9758 .hash = sctp_hash, 9759 .unhash = sctp_unhash, 9760 .no_autobind = true, 9761 .obj_size = sizeof(struct sctp6_sock), 9762 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6), 9763 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9764 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9765 offsetof(struct sctp6_sock, sctp.subscribe) + 9766 sizeof_field(struct sctp6_sock, sctp.initmsg), 9767 .sysctl_mem = sysctl_sctp_mem, 9768 .sysctl_rmem = sysctl_sctp_rmem, 9769 .sysctl_wmem = sysctl_sctp_wmem, 9770 .memory_pressure = &sctp_memory_pressure, 9771 .enter_memory_pressure = sctp_enter_memory_pressure, 9772 9773 .memory_allocated = &sctp_memory_allocated, 9774 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9775 9776 .sockets_allocated = &sctp_sockets_allocated, 9777 }; 9778 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9779