1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001 Intel Corp. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * This module provides the abstraction for an SCTP association. 12 * 13 * Please send any bug reports or fixes you make to the 14 * email address(es): 15 * lksctp developers <linux-sctp@vger.kernel.org> 16 * 17 * Written or modified by: 18 * La Monte H.P. Yarroll <piggy@acm.org> 19 * Karl Knutson <karl@athena.chicago.il.us> 20 * Jon Grimm <jgrimm@us.ibm.com> 21 * Xingang Guo <xingang.guo@intel.com> 22 * Hui Huang <hui.huang@nokia.com> 23 * Sridhar Samudrala <sri@us.ibm.com> 24 * Daisy Chang <daisyc@us.ibm.com> 25 * Ryan Layer <rmlayer@us.ibm.com> 26 * Kevin Gao <kevin.gao@intel.com> 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/types.h> 32 #include <linux/fcntl.h> 33 #include <linux/poll.h> 34 #include <linux/init.h> 35 36 #include <linux/slab.h> 37 #include <linux/in.h> 38 #include <net/ipv6.h> 39 #include <net/sctp/sctp.h> 40 #include <net/sctp/sm.h> 41 42 /* Forward declarations for internal functions. */ 43 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 44 static void sctp_assoc_bh_rcv(struct work_struct *work); 45 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 46 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 47 48 /* 1st Level Abstractions. */ 49 50 /* Initialize a new association from provided memory. */ 51 static struct sctp_association *sctp_association_init( 52 struct sctp_association *asoc, 53 const struct sctp_endpoint *ep, 54 const struct sock *sk, 55 enum sctp_scope scope, gfp_t gfp) 56 { 57 struct sctp_sock *sp; 58 struct sctp_paramhdr *p; 59 int i; 60 61 /* Retrieve the SCTP per socket area. */ 62 sp = sctp_sk((struct sock *)sk); 63 64 /* Discarding const is appropriate here. */ 65 asoc->ep = (struct sctp_endpoint *)ep; 66 asoc->base.sk = (struct sock *)sk; 67 asoc->base.net = sock_net(sk); 68 69 sctp_endpoint_hold(asoc->ep); 70 sock_hold(asoc->base.sk); 71 72 /* Initialize the common base substructure. */ 73 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 74 75 /* Initialize the object handling fields. */ 76 refcount_set(&asoc->base.refcnt, 1); 77 78 /* Initialize the bind addr area. */ 79 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 80 81 asoc->state = SCTP_STATE_CLOSED; 82 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 83 asoc->user_frag = sp->user_frag; 84 85 /* Set the association max_retrans and RTO values from the 86 * socket values. 87 */ 88 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 89 asoc->pf_retrans = sp->pf_retrans; 90 asoc->ps_retrans = sp->ps_retrans; 91 asoc->pf_expose = sp->pf_expose; 92 93 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 94 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 95 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 96 97 /* Initialize the association's heartbeat interval based on the 98 * sock configured value. 99 */ 100 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 101 asoc->probe_interval = msecs_to_jiffies(sp->probe_interval); 102 103 asoc->encap_port = sp->encap_port; 104 105 /* Initialize path max retrans value. */ 106 asoc->pathmaxrxt = sp->pathmaxrxt; 107 108 asoc->flowlabel = sp->flowlabel; 109 asoc->dscp = sp->dscp; 110 111 /* Set association default SACK delay */ 112 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 113 asoc->sackfreq = sp->sackfreq; 114 115 /* Set the association default flags controlling 116 * Heartbeat, SACK delay, and Path MTU Discovery. 117 */ 118 asoc->param_flags = sp->param_flags; 119 120 /* Initialize the maximum number of new data packets that can be sent 121 * in a burst. 122 */ 123 asoc->max_burst = sp->max_burst; 124 125 asoc->subscribe = sp->subscribe; 126 127 /* initialize association timers */ 128 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 129 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 130 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 131 132 /* sctpimpguide Section 2.12.2 133 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 134 * recommended value of 5 times 'RTO.Max'. 135 */ 136 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 137 = 5 * asoc->rto_max; 138 139 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 140 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 141 (unsigned long)sp->autoclose * HZ; 142 143 /* Initializes the timers */ 144 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 145 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0); 146 147 /* Pull default initialization values from the sock options. 148 * Note: This assumes that the values have already been 149 * validated in the sock. 150 */ 151 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 152 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 153 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 154 155 asoc->max_init_timeo = 156 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 157 158 /* Set the local window size for receive. 159 * This is also the rcvbuf space per association. 160 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 161 * 1500 bytes in one SCTP packet. 162 */ 163 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 164 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 165 else 166 asoc->rwnd = sk->sk_rcvbuf/2; 167 168 asoc->a_rwnd = asoc->rwnd; 169 170 /* Use my own max window until I learn something better. */ 171 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 172 173 /* Initialize the receive memory counter */ 174 atomic_set(&asoc->rmem_alloc, 0); 175 176 init_waitqueue_head(&asoc->wait); 177 178 asoc->c.my_vtag = sctp_generate_tag(ep); 179 asoc->c.my_port = ep->base.bind_addr.port; 180 181 asoc->c.initial_tsn = sctp_generate_tsn(ep); 182 183 asoc->next_tsn = asoc->c.initial_tsn; 184 185 asoc->ctsn_ack_point = asoc->next_tsn - 1; 186 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 187 asoc->highest_sacked = asoc->ctsn_ack_point; 188 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 189 190 /* ADDIP Section 4.1 Asconf Chunk Procedures 191 * 192 * When an endpoint has an ASCONF signaled change to be sent to the 193 * remote endpoint it should do the following: 194 * ... 195 * A2) a serial number should be assigned to the chunk. The serial 196 * number SHOULD be a monotonically increasing number. The serial 197 * numbers SHOULD be initialized at the start of the 198 * association to the same value as the initial TSN. 199 */ 200 asoc->addip_serial = asoc->c.initial_tsn; 201 asoc->strreset_outseq = asoc->c.initial_tsn; 202 203 INIT_LIST_HEAD(&asoc->addip_chunk_list); 204 INIT_LIST_HEAD(&asoc->asconf_ack_list); 205 206 /* Make an empty list of remote transport addresses. */ 207 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 208 209 /* RFC 2960 5.1 Normal Establishment of an Association 210 * 211 * After the reception of the first data chunk in an 212 * association the endpoint must immediately respond with a 213 * sack to acknowledge the data chunk. Subsequent 214 * acknowledgements should be done as described in Section 215 * 6.2. 216 * 217 * [We implement this by telling a new association that it 218 * already received one packet.] 219 */ 220 asoc->peer.sack_needed = 1; 221 asoc->peer.sack_generation = 1; 222 223 /* Create an input queue. */ 224 sctp_inq_init(&asoc->base.inqueue); 225 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 226 227 /* Create an output queue. */ 228 sctp_outq_init(asoc, &asoc->outqueue); 229 230 sctp_ulpq_init(&asoc->ulpq, asoc); 231 232 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 0, gfp)) 233 goto stream_free; 234 235 /* Initialize default path MTU. */ 236 asoc->pathmtu = sp->pathmtu; 237 sctp_assoc_update_frag_point(asoc); 238 239 /* Assume that peer would support both address types unless we are 240 * told otherwise. 241 */ 242 asoc->peer.ipv4_address = 1; 243 if (asoc->base.sk->sk_family == PF_INET6) 244 asoc->peer.ipv6_address = 1; 245 INIT_LIST_HEAD(&asoc->asocs); 246 247 asoc->default_stream = sp->default_stream; 248 asoc->default_ppid = sp->default_ppid; 249 asoc->default_flags = sp->default_flags; 250 asoc->default_context = sp->default_context; 251 asoc->default_timetolive = sp->default_timetolive; 252 asoc->default_rcv_context = sp->default_rcv_context; 253 254 /* AUTH related initializations */ 255 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 256 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp)) 257 goto stream_free; 258 259 asoc->active_key_id = ep->active_key_id; 260 asoc->strreset_enable = ep->strreset_enable; 261 262 /* Save the hmacs and chunks list into this association */ 263 if (ep->auth_hmacs_list) 264 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 265 ntohs(ep->auth_hmacs_list->param_hdr.length)); 266 if (ep->auth_chunk_list) 267 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 268 ntohs(ep->auth_chunk_list->param_hdr.length)); 269 270 /* Get the AUTH random number for this association */ 271 p = (struct sctp_paramhdr *)asoc->c.auth_random; 272 p->type = SCTP_PARAM_RANDOM; 273 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH); 274 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 275 276 return asoc; 277 278 stream_free: 279 sctp_stream_free(&asoc->stream); 280 sock_put(asoc->base.sk); 281 sctp_endpoint_put(asoc->ep); 282 return NULL; 283 } 284 285 /* Allocate and initialize a new association */ 286 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 287 const struct sock *sk, 288 enum sctp_scope scope, gfp_t gfp) 289 { 290 struct sctp_association *asoc; 291 292 asoc = kzalloc(sizeof(*asoc), gfp); 293 if (!asoc) 294 goto fail; 295 296 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 297 goto fail_init; 298 299 SCTP_DBG_OBJCNT_INC(assoc); 300 301 pr_debug("Created asoc %p\n", asoc); 302 303 return asoc; 304 305 fail_init: 306 kfree(asoc); 307 fail: 308 return NULL; 309 } 310 311 /* Free this association if possible. There may still be users, so 312 * the actual deallocation may be delayed. 313 */ 314 void sctp_association_free(struct sctp_association *asoc) 315 { 316 struct sock *sk = asoc->base.sk; 317 struct sctp_transport *transport; 318 struct list_head *pos, *temp; 319 int i; 320 321 /* Only real associations count against the endpoint, so 322 * don't bother for if this is a temporary association. 323 */ 324 if (!list_empty(&asoc->asocs)) { 325 list_del(&asoc->asocs); 326 327 /* Decrement the backlog value for a TCP-style listening 328 * socket. 329 */ 330 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 331 sk_acceptq_removed(sk); 332 } 333 334 /* Mark as dead, so other users can know this structure is 335 * going away. 336 */ 337 asoc->base.dead = true; 338 339 /* Dispose of any data lying around in the outqueue. */ 340 sctp_outq_free(&asoc->outqueue); 341 342 /* Dispose of any pending messages for the upper layer. */ 343 sctp_ulpq_free(&asoc->ulpq); 344 345 /* Dispose of any pending chunks on the inqueue. */ 346 sctp_inq_free(&asoc->base.inqueue); 347 348 sctp_tsnmap_free(&asoc->peer.tsn_map); 349 350 /* Free stream information. */ 351 sctp_stream_free(&asoc->stream); 352 353 if (asoc->strreset_chunk) 354 sctp_chunk_free(asoc->strreset_chunk); 355 356 /* Clean up the bound address list. */ 357 sctp_bind_addr_free(&asoc->base.bind_addr); 358 359 /* Do we need to go through all of our timers and 360 * delete them? To be safe we will try to delete all, but we 361 * should be able to go through and make a guess based 362 * on our state. 363 */ 364 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 365 if (timer_delete(&asoc->timers[i])) 366 sctp_association_put(asoc); 367 } 368 369 /* Free peer's cached cookie. */ 370 kfree(asoc->peer.cookie); 371 kfree(asoc->peer.peer_random); 372 kfree(asoc->peer.peer_chunks); 373 kfree(asoc->peer.peer_hmacs); 374 375 /* Release the transport structures. */ 376 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 377 transport = list_entry(pos, struct sctp_transport, transports); 378 list_del_rcu(pos); 379 sctp_unhash_transport(transport); 380 sctp_transport_free(transport); 381 } 382 383 asoc->peer.transport_count = 0; 384 385 sctp_asconf_queue_teardown(asoc); 386 387 /* Free pending address space being deleted */ 388 kfree(asoc->asconf_addr_del_pending); 389 390 /* AUTH - Free the endpoint shared keys */ 391 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 392 393 /* AUTH - Free the association shared key */ 394 sctp_auth_key_put(asoc->asoc_shared_key); 395 396 sctp_association_put(asoc); 397 } 398 399 /* Cleanup and free up an association. */ 400 static void sctp_association_destroy(struct sctp_association *asoc) 401 { 402 if (unlikely(!asoc->base.dead)) { 403 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 404 return; 405 } 406 407 sctp_endpoint_put(asoc->ep); 408 sock_put(asoc->base.sk); 409 410 if (asoc->assoc_id != 0) { 411 spin_lock_bh(&sctp_assocs_id_lock); 412 idr_remove(&sctp_assocs_id, asoc->assoc_id); 413 spin_unlock_bh(&sctp_assocs_id_lock); 414 } 415 416 WARN_ON(atomic_read(&asoc->rmem_alloc)); 417 418 kfree_rcu(asoc, rcu); 419 SCTP_DBG_OBJCNT_DEC(assoc); 420 } 421 422 /* Change the primary destination address for the peer. */ 423 void sctp_assoc_set_primary(struct sctp_association *asoc, 424 struct sctp_transport *transport) 425 { 426 int changeover = 0; 427 428 /* it's a changeover only if we already have a primary path 429 * that we are changing 430 */ 431 if (asoc->peer.primary_path != NULL && 432 asoc->peer.primary_path != transport) 433 changeover = 1 ; 434 435 asoc->peer.primary_path = transport; 436 sctp_ulpevent_notify_peer_addr_change(transport, 437 SCTP_ADDR_MADE_PRIM, 0); 438 439 /* Set a default msg_name for events. */ 440 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 441 sizeof(union sctp_addr)); 442 443 /* If the primary path is changing, assume that the 444 * user wants to use this new path. 445 */ 446 if ((transport->state == SCTP_ACTIVE) || 447 (transport->state == SCTP_UNKNOWN)) 448 asoc->peer.active_path = transport; 449 450 /* 451 * SFR-CACC algorithm: 452 * Upon the receipt of a request to change the primary 453 * destination address, on the data structure for the new 454 * primary destination, the sender MUST do the following: 455 * 456 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 457 * to this destination address earlier. The sender MUST set 458 * CYCLING_CHANGEOVER to indicate that this switch is a 459 * double switch to the same destination address. 460 * 461 * Really, only bother is we have data queued or outstanding on 462 * the association. 463 */ 464 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 465 return; 466 467 if (transport->cacc.changeover_active) 468 transport->cacc.cycling_changeover = changeover; 469 470 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 471 * a changeover has occurred. 472 */ 473 transport->cacc.changeover_active = changeover; 474 475 /* 3) The sender MUST store the next TSN to be sent in 476 * next_tsn_at_change. 477 */ 478 transport->cacc.next_tsn_at_change = asoc->next_tsn; 479 } 480 481 /* Remove a transport from an association. */ 482 void sctp_assoc_rm_peer(struct sctp_association *asoc, 483 struct sctp_transport *peer) 484 { 485 struct sctp_transport *transport; 486 struct list_head *pos; 487 struct sctp_chunk *ch; 488 489 pr_debug("%s: association:%p addr:%pISpc\n", 490 __func__, asoc, &peer->ipaddr.sa); 491 492 /* If we are to remove the current retran_path, update it 493 * to the next peer before removing this peer from the list. 494 */ 495 if (asoc->peer.retran_path == peer) 496 sctp_assoc_update_retran_path(asoc); 497 498 /* Remove this peer from the list. */ 499 list_del_rcu(&peer->transports); 500 /* Remove this peer from the transport hashtable */ 501 sctp_unhash_transport(peer); 502 503 /* Get the first transport of asoc. */ 504 pos = asoc->peer.transport_addr_list.next; 505 transport = list_entry(pos, struct sctp_transport, transports); 506 507 /* Update any entries that match the peer to be deleted. */ 508 if (asoc->peer.primary_path == peer) 509 sctp_assoc_set_primary(asoc, transport); 510 if (asoc->peer.active_path == peer) 511 asoc->peer.active_path = transport; 512 if (asoc->peer.retran_path == peer) 513 asoc->peer.retran_path = transport; 514 if (asoc->peer.last_data_from == peer) 515 asoc->peer.last_data_from = transport; 516 517 if (asoc->strreset_chunk && 518 asoc->strreset_chunk->transport == peer) { 519 asoc->strreset_chunk->transport = transport; 520 sctp_transport_reset_reconf_timer(transport); 521 } 522 523 /* If we remove the transport an INIT was last sent to, set it to 524 * NULL. Combined with the update of the retran path above, this 525 * will cause the next INIT to be sent to the next available 526 * transport, maintaining the cycle. 527 */ 528 if (asoc->init_last_sent_to == peer) 529 asoc->init_last_sent_to = NULL; 530 531 /* If we remove the transport an SHUTDOWN was last sent to, set it 532 * to NULL. Combined with the update of the retran path above, this 533 * will cause the next SHUTDOWN to be sent to the next available 534 * transport, maintaining the cycle. 535 */ 536 if (asoc->shutdown_last_sent_to == peer) 537 asoc->shutdown_last_sent_to = NULL; 538 539 /* If we remove the transport an ASCONF was last sent to, set it to 540 * NULL. 541 */ 542 if (asoc->addip_last_asconf && 543 asoc->addip_last_asconf->transport == peer) 544 asoc->addip_last_asconf->transport = NULL; 545 546 /* If we have something on the transmitted list, we have to 547 * save it off. The best place is the active path. 548 */ 549 if (!list_empty(&peer->transmitted)) { 550 struct sctp_transport *active = asoc->peer.active_path; 551 552 /* Reset the transport of each chunk on this list */ 553 list_for_each_entry(ch, &peer->transmitted, 554 transmitted_list) { 555 ch->transport = NULL; 556 ch->rtt_in_progress = 0; 557 } 558 559 list_splice_tail_init(&peer->transmitted, 560 &active->transmitted); 561 562 /* Start a T3 timer here in case it wasn't running so 563 * that these migrated packets have a chance to get 564 * retransmitted. 565 */ 566 if (!timer_pending(&active->T3_rtx_timer)) 567 if (!mod_timer(&active->T3_rtx_timer, 568 jiffies + active->rto)) 569 sctp_transport_hold(active); 570 } 571 572 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list) 573 if (ch->transport == peer) 574 ch->transport = NULL; 575 576 asoc->peer.transport_count--; 577 578 sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_REMOVED, 0); 579 sctp_transport_free(peer); 580 } 581 582 /* Add a transport address to an association. */ 583 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 584 const union sctp_addr *addr, 585 const gfp_t gfp, 586 const int peer_state) 587 { 588 struct sctp_transport *peer; 589 struct sctp_sock *sp; 590 unsigned short port; 591 592 sp = sctp_sk(asoc->base.sk); 593 594 /* AF_INET and AF_INET6 share common port field. */ 595 port = ntohs(addr->v4.sin_port); 596 597 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 598 asoc, &addr->sa, peer_state); 599 600 /* Set the port if it has not been set yet. */ 601 if (0 == asoc->peer.port) 602 asoc->peer.port = port; 603 604 /* Check to see if this is a duplicate. */ 605 peer = sctp_assoc_lookup_paddr(asoc, addr); 606 if (peer) { 607 /* An UNKNOWN state is only set on transports added by 608 * user in sctp_connectx() call. Such transports should be 609 * considered CONFIRMED per RFC 4960, Section 5.4. 610 */ 611 if (peer->state == SCTP_UNKNOWN) { 612 peer->state = SCTP_ACTIVE; 613 } 614 return peer; 615 } 616 617 peer = sctp_transport_new(asoc->base.net, addr, gfp); 618 if (!peer) 619 return NULL; 620 621 sctp_transport_set_owner(peer, asoc); 622 623 /* Initialize the peer's heartbeat interval based on the 624 * association configured value. 625 */ 626 peer->hbinterval = asoc->hbinterval; 627 peer->probe_interval = asoc->probe_interval; 628 629 peer->encap_port = asoc->encap_port; 630 631 /* Set the path max_retrans. */ 632 peer->pathmaxrxt = asoc->pathmaxrxt; 633 634 /* And the partial failure retrans threshold */ 635 peer->pf_retrans = asoc->pf_retrans; 636 /* And the primary path switchover retrans threshold */ 637 peer->ps_retrans = asoc->ps_retrans; 638 639 /* Initialize the peer's SACK delay timeout based on the 640 * association configured value. 641 */ 642 peer->sackdelay = asoc->sackdelay; 643 peer->sackfreq = asoc->sackfreq; 644 645 if (addr->sa.sa_family == AF_INET6) { 646 __be32 info = addr->v6.sin6_flowinfo; 647 648 if (info) { 649 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK); 650 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 651 } else { 652 peer->flowlabel = asoc->flowlabel; 653 } 654 } 655 peer->dscp = asoc->dscp; 656 657 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 658 * based on association setting. 659 */ 660 peer->param_flags = asoc->param_flags; 661 662 /* Initialize the pmtu of the transport. */ 663 sctp_transport_route(peer, NULL, sp); 664 665 /* If this is the first transport addr on this association, 666 * initialize the association PMTU to the peer's PMTU. 667 * If not and the current association PMTU is higher than the new 668 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 669 */ 670 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ? 671 min_t(int, peer->pathmtu, asoc->pathmtu) : 672 peer->pathmtu); 673 674 peer->pmtu_pending = 0; 675 676 /* The asoc->peer.port might not be meaningful yet, but 677 * initialize the packet structure anyway. 678 */ 679 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 680 asoc->peer.port); 681 682 /* 7.2.1 Slow-Start 683 * 684 * o The initial cwnd before DATA transmission or after a sufficiently 685 * long idle period MUST be set to 686 * min(4*MTU, max(2*MTU, 4380 bytes)) 687 * 688 * o The initial value of ssthresh MAY be arbitrarily high 689 * (for example, implementations MAY use the size of the 690 * receiver advertised window). 691 */ 692 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 693 694 /* At this point, we may not have the receiver's advertised window, 695 * so initialize ssthresh to the default value and it will be set 696 * later when we process the INIT. 697 */ 698 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 699 700 peer->partial_bytes_acked = 0; 701 peer->flight_size = 0; 702 peer->burst_limited = 0; 703 704 /* Set the transport's RTO.initial value */ 705 peer->rto = asoc->rto_initial; 706 sctp_max_rto(asoc, peer); 707 708 /* Set the peer's active state. */ 709 peer->state = peer_state; 710 711 /* Add this peer into the transport hashtable */ 712 if (sctp_hash_transport(peer)) { 713 sctp_transport_free(peer); 714 return NULL; 715 } 716 717 sctp_transport_pl_reset(peer); 718 719 /* Attach the remote transport to our asoc. */ 720 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 721 asoc->peer.transport_count++; 722 723 sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_ADDED, 0); 724 725 /* If we do not yet have a primary path, set one. */ 726 if (!asoc->peer.primary_path) { 727 sctp_assoc_set_primary(asoc, peer); 728 asoc->peer.retran_path = peer; 729 } 730 731 if (asoc->peer.active_path == asoc->peer.retran_path && 732 peer->state != SCTP_UNCONFIRMED) { 733 asoc->peer.retran_path = peer; 734 } 735 736 return peer; 737 } 738 739 /* Lookup a transport by address. */ 740 struct sctp_transport *sctp_assoc_lookup_paddr( 741 const struct sctp_association *asoc, 742 const union sctp_addr *address) 743 { 744 struct sctp_transport *t; 745 746 /* Cycle through all transports searching for a peer address. */ 747 748 list_for_each_entry(t, &asoc->peer.transport_addr_list, 749 transports) { 750 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 751 return t; 752 } 753 754 return NULL; 755 } 756 757 /* Remove all transports except a give one */ 758 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 759 struct sctp_transport *primary) 760 { 761 struct sctp_transport *temp; 762 struct sctp_transport *t; 763 764 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 765 transports) { 766 /* if the current transport is not the primary one, delete it */ 767 if (t != primary) 768 sctp_assoc_rm_peer(asoc, t); 769 } 770 } 771 772 /* Engage in transport control operations. 773 * Mark the transport up or down and send a notification to the user. 774 * Select and update the new active and retran paths. 775 */ 776 void sctp_assoc_control_transport(struct sctp_association *asoc, 777 struct sctp_transport *transport, 778 enum sctp_transport_cmd command, 779 sctp_sn_error_t error) 780 { 781 int spc_state = SCTP_ADDR_AVAILABLE; 782 bool ulp_notify = true; 783 784 /* Record the transition on the transport. */ 785 switch (command) { 786 case SCTP_TRANSPORT_UP: 787 /* If we are moving from UNCONFIRMED state due 788 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 789 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 790 */ 791 if (transport->state == SCTP_PF && 792 asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE) 793 ulp_notify = false; 794 else if (transport->state == SCTP_UNCONFIRMED && 795 error == SCTP_HEARTBEAT_SUCCESS) 796 spc_state = SCTP_ADDR_CONFIRMED; 797 798 transport->state = SCTP_ACTIVE; 799 sctp_transport_pl_reset(transport); 800 break; 801 802 case SCTP_TRANSPORT_DOWN: 803 /* If the transport was never confirmed, do not transition it 804 * to inactive state. Also, release the cached route since 805 * there may be a better route next time. 806 */ 807 if (transport->state != SCTP_UNCONFIRMED) { 808 transport->state = SCTP_INACTIVE; 809 sctp_transport_pl_reset(transport); 810 spc_state = SCTP_ADDR_UNREACHABLE; 811 } else { 812 sctp_transport_dst_release(transport); 813 ulp_notify = false; 814 } 815 break; 816 817 case SCTP_TRANSPORT_PF: 818 transport->state = SCTP_PF; 819 if (asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE) 820 ulp_notify = false; 821 else 822 spc_state = SCTP_ADDR_POTENTIALLY_FAILED; 823 break; 824 825 default: 826 return; 827 } 828 829 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 830 * to the user. 831 */ 832 if (ulp_notify) 833 sctp_ulpevent_notify_peer_addr_change(transport, 834 spc_state, error); 835 836 /* Select new active and retran paths. */ 837 sctp_select_active_and_retran_path(asoc); 838 } 839 840 /* Hold a reference to an association. */ 841 void sctp_association_hold(struct sctp_association *asoc) 842 { 843 refcount_inc(&asoc->base.refcnt); 844 } 845 846 /* Release a reference to an association and cleanup 847 * if there are no more references. 848 */ 849 void sctp_association_put(struct sctp_association *asoc) 850 { 851 if (refcount_dec_and_test(&asoc->base.refcnt)) 852 sctp_association_destroy(asoc); 853 } 854 855 /* Allocate the next TSN, Transmission Sequence Number, for the given 856 * association. 857 */ 858 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 859 { 860 /* From Section 1.6 Serial Number Arithmetic: 861 * Transmission Sequence Numbers wrap around when they reach 862 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 863 * after transmitting TSN = 2*32 - 1 is TSN = 0. 864 */ 865 __u32 retval = asoc->next_tsn; 866 asoc->next_tsn++; 867 asoc->unack_data++; 868 869 return retval; 870 } 871 872 /* Compare two addresses to see if they match. Wildcard addresses 873 * only match themselves. 874 */ 875 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 876 const union sctp_addr *ss2) 877 { 878 struct sctp_af *af; 879 880 af = sctp_get_af_specific(ss1->sa.sa_family); 881 if (unlikely(!af)) 882 return 0; 883 884 return af->cmp_addr(ss1, ss2); 885 } 886 887 /* Return an ecne chunk to get prepended to a packet. 888 * Note: We are sly and return a shared, prealloced chunk. FIXME: 889 * No we don't, but we could/should. 890 */ 891 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 892 { 893 if (!asoc->need_ecne) 894 return NULL; 895 896 /* Send ECNE if needed. 897 * Not being able to allocate a chunk here is not deadly. 898 */ 899 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 900 } 901 902 /* 903 * Find which transport this TSN was sent on. 904 */ 905 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 906 __u32 tsn) 907 { 908 struct sctp_transport *active; 909 struct sctp_transport *match; 910 struct sctp_transport *transport; 911 struct sctp_chunk *chunk; 912 __be32 key = htonl(tsn); 913 914 match = NULL; 915 916 /* 917 * FIXME: In general, find a more efficient data structure for 918 * searching. 919 */ 920 921 /* 922 * The general strategy is to search each transport's transmitted 923 * list. Return which transport this TSN lives on. 924 * 925 * Let's be hopeful and check the active_path first. 926 * Another optimization would be to know if there is only one 927 * outbound path and not have to look for the TSN at all. 928 * 929 */ 930 931 active = asoc->peer.active_path; 932 933 list_for_each_entry(chunk, &active->transmitted, 934 transmitted_list) { 935 936 if (key == chunk->subh.data_hdr->tsn) { 937 match = active; 938 goto out; 939 } 940 } 941 942 /* If not found, go search all the other transports. */ 943 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 944 transports) { 945 946 if (transport == active) 947 continue; 948 list_for_each_entry(chunk, &transport->transmitted, 949 transmitted_list) { 950 if (key == chunk->subh.data_hdr->tsn) { 951 match = transport; 952 goto out; 953 } 954 } 955 } 956 out: 957 return match; 958 } 959 960 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 961 static void sctp_assoc_bh_rcv(struct work_struct *work) 962 { 963 struct sctp_association *asoc = 964 container_of(work, struct sctp_association, 965 base.inqueue.immediate); 966 struct net *net = asoc->base.net; 967 union sctp_subtype subtype; 968 struct sctp_endpoint *ep; 969 struct sctp_chunk *chunk; 970 struct sctp_inq *inqueue; 971 int first_time = 1; /* is this the first time through the loop */ 972 int error = 0; 973 int state; 974 975 /* The association should be held so we should be safe. */ 976 ep = asoc->ep; 977 978 inqueue = &asoc->base.inqueue; 979 sctp_association_hold(asoc); 980 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 981 state = asoc->state; 982 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 983 984 /* If the first chunk in the packet is AUTH, do special 985 * processing specified in Section 6.3 of SCTP-AUTH spec 986 */ 987 if (first_time && subtype.chunk == SCTP_CID_AUTH) { 988 struct sctp_chunkhdr *next_hdr; 989 990 next_hdr = sctp_inq_peek(inqueue); 991 if (!next_hdr) 992 goto normal; 993 994 /* If the next chunk is COOKIE-ECHO, skip the AUTH 995 * chunk while saving a pointer to it so we can do 996 * Authentication later (during cookie-echo 997 * processing). 998 */ 999 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) { 1000 chunk->auth_chunk = skb_clone(chunk->skb, 1001 GFP_ATOMIC); 1002 chunk->auth = 1; 1003 continue; 1004 } 1005 } 1006 1007 normal: 1008 /* SCTP-AUTH, Section 6.3: 1009 * The receiver has a list of chunk types which it expects 1010 * to be received only after an AUTH-chunk. This list has 1011 * been sent to the peer during the association setup. It 1012 * MUST silently discard these chunks if they are not placed 1013 * after an AUTH chunk in the packet. 1014 */ 1015 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1016 continue; 1017 1018 /* Remember where the last DATA chunk came from so we 1019 * know where to send the SACK. 1020 */ 1021 if (sctp_chunk_is_data(chunk)) 1022 asoc->peer.last_data_from = chunk->transport; 1023 else { 1024 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1025 asoc->stats.ictrlchunks++; 1026 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1027 asoc->stats.isacks++; 1028 } 1029 1030 if (chunk->transport) 1031 chunk->transport->last_time_heard = ktime_get(); 1032 1033 /* Run through the state machine. */ 1034 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1035 state, ep, asoc, chunk, GFP_ATOMIC); 1036 1037 /* Check to see if the association is freed in response to 1038 * the incoming chunk. If so, get out of the while loop. 1039 */ 1040 if (asoc->base.dead) 1041 break; 1042 1043 /* If there is an error on chunk, discard this packet. */ 1044 if (error && chunk) 1045 chunk->pdiscard = 1; 1046 1047 if (first_time) 1048 first_time = 0; 1049 } 1050 sctp_association_put(asoc); 1051 } 1052 1053 /* This routine moves an association from its old sk to a new sk. */ 1054 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1055 { 1056 struct sctp_sock *newsp = sctp_sk(newsk); 1057 struct sock *oldsk = assoc->base.sk; 1058 1059 /* Delete the association from the old endpoint's list of 1060 * associations. 1061 */ 1062 list_del_init(&assoc->asocs); 1063 1064 /* Decrement the backlog value for a TCP-style socket. */ 1065 if (sctp_style(oldsk, TCP)) 1066 sk_acceptq_removed(oldsk); 1067 1068 /* Release references to the old endpoint and the sock. */ 1069 sctp_endpoint_put(assoc->ep); 1070 sock_put(assoc->base.sk); 1071 1072 /* Get a reference to the new endpoint. */ 1073 assoc->ep = newsp->ep; 1074 sctp_endpoint_hold(assoc->ep); 1075 1076 /* Get a reference to the new sock. */ 1077 assoc->base.sk = newsk; 1078 sock_hold(assoc->base.sk); 1079 1080 /* Add the association to the new endpoint's list of associations. */ 1081 sctp_endpoint_add_asoc(newsp->ep, assoc); 1082 } 1083 1084 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1085 int sctp_assoc_update(struct sctp_association *asoc, 1086 struct sctp_association *new) 1087 { 1088 struct sctp_transport *trans; 1089 struct list_head *pos, *temp; 1090 1091 /* Copy in new parameters of peer. */ 1092 asoc->c = new->c; 1093 asoc->peer.rwnd = new->peer.rwnd; 1094 asoc->peer.sack_needed = new->peer.sack_needed; 1095 asoc->peer.auth_capable = new->peer.auth_capable; 1096 asoc->peer.i = new->peer.i; 1097 1098 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1099 asoc->peer.i.initial_tsn, GFP_ATOMIC)) 1100 return -ENOMEM; 1101 1102 /* Remove any peer addresses not present in the new association. */ 1103 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1104 trans = list_entry(pos, struct sctp_transport, transports); 1105 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1106 sctp_assoc_rm_peer(asoc, trans); 1107 continue; 1108 } 1109 1110 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1111 sctp_transport_reset(trans); 1112 } 1113 1114 /* If the case is A (association restart), use 1115 * initial_tsn as next_tsn. If the case is B, use 1116 * current next_tsn in case data sent to peer 1117 * has been discarded and needs retransmission. 1118 */ 1119 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1120 asoc->next_tsn = new->next_tsn; 1121 asoc->ctsn_ack_point = new->ctsn_ack_point; 1122 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1123 1124 /* Reinitialize SSN for both local streams 1125 * and peer's streams. 1126 */ 1127 sctp_stream_clear(&asoc->stream); 1128 1129 /* Flush the ULP reassembly and ordered queue. 1130 * Any data there will now be stale and will 1131 * cause problems. 1132 */ 1133 sctp_ulpq_flush(&asoc->ulpq); 1134 1135 /* reset the overall association error count so 1136 * that the restarted association doesn't get torn 1137 * down on the next retransmission timer. 1138 */ 1139 asoc->overall_error_count = 0; 1140 1141 } else { 1142 /* Add any peer addresses from the new association. */ 1143 list_for_each_entry(trans, &new->peer.transport_addr_list, 1144 transports) 1145 if (!sctp_assoc_add_peer(asoc, &trans->ipaddr, 1146 GFP_ATOMIC, trans->state)) 1147 return -ENOMEM; 1148 1149 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1150 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1151 1152 if (sctp_state(asoc, COOKIE_WAIT)) 1153 sctp_stream_update(&asoc->stream, &new->stream); 1154 1155 /* get a new assoc id if we don't have one yet. */ 1156 if (sctp_assoc_set_id(asoc, GFP_ATOMIC)) 1157 return -ENOMEM; 1158 } 1159 1160 /* SCTP-AUTH: Save the peer parameters from the new associations 1161 * and also move the association shared keys over 1162 */ 1163 kfree(asoc->peer.peer_random); 1164 asoc->peer.peer_random = new->peer.peer_random; 1165 new->peer.peer_random = NULL; 1166 1167 kfree(asoc->peer.peer_chunks); 1168 asoc->peer.peer_chunks = new->peer.peer_chunks; 1169 new->peer.peer_chunks = NULL; 1170 1171 kfree(asoc->peer.peer_hmacs); 1172 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1173 new->peer.peer_hmacs = NULL; 1174 1175 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1176 } 1177 1178 /* Update the retran path for sending a retransmitted packet. 1179 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1180 * 1181 * When there is outbound data to send and the primary path 1182 * becomes inactive (e.g., due to failures), or where the 1183 * SCTP user explicitly requests to send data to an 1184 * inactive destination transport address, before reporting 1185 * an error to its ULP, the SCTP endpoint should try to send 1186 * the data to an alternate active destination transport 1187 * address if one exists. 1188 * 1189 * When retransmitting data that timed out, if the endpoint 1190 * is multihomed, it should consider each source-destination 1191 * address pair in its retransmission selection policy. 1192 * When retransmitting timed-out data, the endpoint should 1193 * attempt to pick the most divergent source-destination 1194 * pair from the original source-destination pair to which 1195 * the packet was transmitted. 1196 * 1197 * Note: Rules for picking the most divergent source-destination 1198 * pair are an implementation decision and are not specified 1199 * within this document. 1200 * 1201 * Our basic strategy is to round-robin transports in priorities 1202 * according to sctp_trans_score() e.g., if no such 1203 * transport with state SCTP_ACTIVE exists, round-robin through 1204 * SCTP_UNKNOWN, etc. You get the picture. 1205 */ 1206 static u8 sctp_trans_score(const struct sctp_transport *trans) 1207 { 1208 switch (trans->state) { 1209 case SCTP_ACTIVE: 1210 return 3; /* best case */ 1211 case SCTP_UNKNOWN: 1212 return 2; 1213 case SCTP_PF: 1214 return 1; 1215 default: /* case SCTP_INACTIVE */ 1216 return 0; /* worst case */ 1217 } 1218 } 1219 1220 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1221 struct sctp_transport *trans2) 1222 { 1223 if (trans1->error_count > trans2->error_count) { 1224 return trans2; 1225 } else if (trans1->error_count == trans2->error_count && 1226 ktime_after(trans2->last_time_heard, 1227 trans1->last_time_heard)) { 1228 return trans2; 1229 } else { 1230 return trans1; 1231 } 1232 } 1233 1234 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1235 struct sctp_transport *best) 1236 { 1237 u8 score_curr, score_best; 1238 1239 if (best == NULL || curr == best) 1240 return curr; 1241 1242 score_curr = sctp_trans_score(curr); 1243 score_best = sctp_trans_score(best); 1244 1245 /* First, try a score-based selection if both transport states 1246 * differ. If we're in a tie, lets try to make a more clever 1247 * decision here based on error counts and last time heard. 1248 */ 1249 if (score_curr > score_best) 1250 return curr; 1251 else if (score_curr == score_best) 1252 return sctp_trans_elect_tie(best, curr); 1253 else 1254 return best; 1255 } 1256 1257 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1258 { 1259 struct sctp_transport *trans = asoc->peer.retran_path; 1260 struct sctp_transport *trans_next = NULL; 1261 1262 /* We're done as we only have the one and only path. */ 1263 if (asoc->peer.transport_count == 1) 1264 return; 1265 /* If active_path and retran_path are the same and active, 1266 * then this is the only active path. Use it. 1267 */ 1268 if (asoc->peer.active_path == asoc->peer.retran_path && 1269 asoc->peer.active_path->state == SCTP_ACTIVE) 1270 return; 1271 1272 /* Iterate from retran_path's successor back to retran_path. */ 1273 for (trans = list_next_entry(trans, transports); 1; 1274 trans = list_next_entry(trans, transports)) { 1275 /* Manually skip the head element. */ 1276 if (&trans->transports == &asoc->peer.transport_addr_list) 1277 continue; 1278 if (trans->state == SCTP_UNCONFIRMED) 1279 continue; 1280 trans_next = sctp_trans_elect_best(trans, trans_next); 1281 /* Active is good enough for immediate return. */ 1282 if (trans_next->state == SCTP_ACTIVE) 1283 break; 1284 /* We've reached the end, time to update path. */ 1285 if (trans == asoc->peer.retran_path) 1286 break; 1287 } 1288 1289 asoc->peer.retran_path = trans_next; 1290 1291 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1292 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1293 } 1294 1295 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1296 { 1297 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1298 struct sctp_transport *trans_pf = NULL; 1299 1300 /* Look for the two most recently used active transports. */ 1301 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1302 transports) { 1303 /* Skip uninteresting transports. */ 1304 if (trans->state == SCTP_INACTIVE || 1305 trans->state == SCTP_UNCONFIRMED) 1306 continue; 1307 /* Keep track of the best PF transport from our 1308 * list in case we don't find an active one. 1309 */ 1310 if (trans->state == SCTP_PF) { 1311 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1312 continue; 1313 } 1314 /* For active transports, pick the most recent ones. */ 1315 if (trans_pri == NULL || 1316 ktime_after(trans->last_time_heard, 1317 trans_pri->last_time_heard)) { 1318 trans_sec = trans_pri; 1319 trans_pri = trans; 1320 } else if (trans_sec == NULL || 1321 ktime_after(trans->last_time_heard, 1322 trans_sec->last_time_heard)) { 1323 trans_sec = trans; 1324 } 1325 } 1326 1327 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1328 * 1329 * By default, an endpoint should always transmit to the primary 1330 * path, unless the SCTP user explicitly specifies the 1331 * destination transport address (and possibly source transport 1332 * address) to use. [If the primary is active but not most recent, 1333 * bump the most recently used transport.] 1334 */ 1335 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1336 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1337 asoc->peer.primary_path != trans_pri) { 1338 trans_sec = trans_pri; 1339 trans_pri = asoc->peer.primary_path; 1340 } 1341 1342 /* We did not find anything useful for a possible retransmission 1343 * path; either primary path that we found is the same as 1344 * the current one, or we didn't generally find an active one. 1345 */ 1346 if (trans_sec == NULL) 1347 trans_sec = trans_pri; 1348 1349 /* If we failed to find a usable transport, just camp on the 1350 * active or pick a PF iff it's the better choice. 1351 */ 1352 if (trans_pri == NULL) { 1353 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1354 trans_sec = trans_pri; 1355 } 1356 1357 /* Set the active and retran transports. */ 1358 asoc->peer.active_path = trans_pri; 1359 asoc->peer.retran_path = trans_sec; 1360 } 1361 1362 struct sctp_transport * 1363 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1364 struct sctp_transport *last_sent_to) 1365 { 1366 /* If this is the first time packet is sent, use the active path, 1367 * else use the retran path. If the last packet was sent over the 1368 * retran path, update the retran path and use it. 1369 */ 1370 if (last_sent_to == NULL) { 1371 return asoc->peer.active_path; 1372 } else { 1373 if (last_sent_to == asoc->peer.retran_path) 1374 sctp_assoc_update_retran_path(asoc); 1375 1376 return asoc->peer.retran_path; 1377 } 1378 } 1379 1380 void sctp_assoc_update_frag_point(struct sctp_association *asoc) 1381 { 1382 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu, 1383 sctp_datachk_len(&asoc->stream)); 1384 1385 if (asoc->user_frag) 1386 frag = min_t(int, frag, asoc->user_frag); 1387 1388 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN - 1389 sctp_datachk_len(&asoc->stream)); 1390 1391 asoc->frag_point = SCTP_TRUNC4(frag); 1392 } 1393 1394 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu) 1395 { 1396 if (asoc->pathmtu != pmtu) { 1397 asoc->pathmtu = pmtu; 1398 sctp_assoc_update_frag_point(asoc); 1399 } 1400 1401 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1402 asoc->pathmtu, asoc->frag_point); 1403 } 1404 1405 /* Update the association's pmtu and frag_point by going through all the 1406 * transports. This routine is called when a transport's PMTU has changed. 1407 */ 1408 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1409 { 1410 struct sctp_transport *t; 1411 __u32 pmtu = 0; 1412 1413 if (!asoc) 1414 return; 1415 1416 /* Get the lowest pmtu of all the transports. */ 1417 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 1418 if (t->pmtu_pending && t->dst) { 1419 sctp_transport_update_pmtu(t, 1420 atomic_read(&t->mtu_info)); 1421 t->pmtu_pending = 0; 1422 } 1423 if (!pmtu || (t->pathmtu < pmtu)) 1424 pmtu = t->pathmtu; 1425 } 1426 1427 sctp_assoc_set_pmtu(asoc, pmtu); 1428 } 1429 1430 /* Should we send a SACK to update our peer? */ 1431 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1432 { 1433 struct net *net = asoc->base.net; 1434 1435 switch (asoc->state) { 1436 case SCTP_STATE_ESTABLISHED: 1437 case SCTP_STATE_SHUTDOWN_PENDING: 1438 case SCTP_STATE_SHUTDOWN_RECEIVED: 1439 case SCTP_STATE_SHUTDOWN_SENT: 1440 if ((asoc->rwnd > asoc->a_rwnd) && 1441 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1442 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1443 asoc->pathmtu))) 1444 return true; 1445 break; 1446 default: 1447 break; 1448 } 1449 return false; 1450 } 1451 1452 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1453 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1454 { 1455 struct sctp_chunk *sack; 1456 struct timer_list *timer; 1457 1458 if (asoc->rwnd_over) { 1459 if (asoc->rwnd_over >= len) { 1460 asoc->rwnd_over -= len; 1461 } else { 1462 asoc->rwnd += (len - asoc->rwnd_over); 1463 asoc->rwnd_over = 0; 1464 } 1465 } else { 1466 asoc->rwnd += len; 1467 } 1468 1469 /* If we had window pressure, start recovering it 1470 * once our rwnd had reached the accumulated pressure 1471 * threshold. The idea is to recover slowly, but up 1472 * to the initial advertised window. 1473 */ 1474 if (asoc->rwnd_press) { 1475 int change = min(asoc->pathmtu, asoc->rwnd_press); 1476 asoc->rwnd += change; 1477 asoc->rwnd_press -= change; 1478 } 1479 1480 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1481 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1482 asoc->a_rwnd); 1483 1484 /* Send a window update SACK if the rwnd has increased by at least the 1485 * minimum of the association's PMTU and half of the receive buffer. 1486 * The algorithm used is similar to the one described in 1487 * Section 4.2.3.3 of RFC 1122. 1488 */ 1489 if (sctp_peer_needs_update(asoc)) { 1490 asoc->a_rwnd = asoc->rwnd; 1491 1492 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1493 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1494 asoc->a_rwnd); 1495 1496 sack = sctp_make_sack(asoc); 1497 if (!sack) 1498 return; 1499 1500 asoc->peer.sack_needed = 0; 1501 1502 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC); 1503 1504 /* Stop the SACK timer. */ 1505 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1506 if (timer_delete(timer)) 1507 sctp_association_put(asoc); 1508 } 1509 } 1510 1511 /* Decrease asoc's rwnd by len. */ 1512 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1513 { 1514 int rx_count; 1515 int over = 0; 1516 1517 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1518 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1519 "asoc->rwnd_over:%u!\n", __func__, asoc, 1520 asoc->rwnd, asoc->rwnd_over); 1521 1522 if (asoc->ep->rcvbuf_policy) 1523 rx_count = atomic_read(&asoc->rmem_alloc); 1524 else 1525 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1526 1527 /* If we've reached or overflowed our receive buffer, announce 1528 * a 0 rwnd if rwnd would still be positive. Store the 1529 * potential pressure overflow so that the window can be restored 1530 * back to original value. 1531 */ 1532 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1533 over = 1; 1534 1535 if (asoc->rwnd >= len) { 1536 asoc->rwnd -= len; 1537 if (over) { 1538 asoc->rwnd_press += asoc->rwnd; 1539 asoc->rwnd = 0; 1540 } 1541 } else { 1542 asoc->rwnd_over += len - asoc->rwnd; 1543 asoc->rwnd = 0; 1544 } 1545 1546 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1547 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1548 asoc->rwnd_press); 1549 } 1550 1551 /* Build the bind address list for the association based on info from the 1552 * local endpoint and the remote peer. 1553 */ 1554 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1555 enum sctp_scope scope, gfp_t gfp) 1556 { 1557 struct sock *sk = asoc->base.sk; 1558 int flags; 1559 1560 /* Use scoping rules to determine the subset of addresses from 1561 * the endpoint. 1562 */ 1563 flags = (PF_INET6 == sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1564 if (!inet_v6_ipv6only(sk)) 1565 flags |= SCTP_ADDR4_ALLOWED; 1566 if (asoc->peer.ipv4_address) 1567 flags |= SCTP_ADDR4_PEERSUPP; 1568 if (asoc->peer.ipv6_address) 1569 flags |= SCTP_ADDR6_PEERSUPP; 1570 1571 return sctp_bind_addr_copy(asoc->base.net, 1572 &asoc->base.bind_addr, 1573 &asoc->ep->base.bind_addr, 1574 scope, gfp, flags); 1575 } 1576 1577 /* Build the association's bind address list from the cookie. */ 1578 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1579 struct sctp_cookie *cookie, 1580 gfp_t gfp) 1581 { 1582 struct sctp_init_chunk *peer_init = (struct sctp_init_chunk *)(cookie + 1); 1583 int var_size2 = ntohs(peer_init->chunk_hdr.length); 1584 int var_size3 = cookie->raw_addr_list_len; 1585 __u8 *raw = (__u8 *)peer_init + var_size2; 1586 1587 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1588 asoc->ep->base.bind_addr.port, gfp); 1589 } 1590 1591 /* Lookup laddr in the bind address list of an association. */ 1592 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1593 const union sctp_addr *laddr) 1594 { 1595 int found = 0; 1596 1597 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1598 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1599 sctp_sk(asoc->base.sk))) 1600 found = 1; 1601 1602 return found; 1603 } 1604 1605 /* Set an association id for a given association */ 1606 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1607 { 1608 bool preload = gfpflags_allow_blocking(gfp); 1609 int ret; 1610 1611 /* If the id is already assigned, keep it. */ 1612 if (asoc->assoc_id) 1613 return 0; 1614 1615 if (preload) 1616 idr_preload(gfp); 1617 spin_lock_bh(&sctp_assocs_id_lock); 1618 /* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and 1619 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC. 1620 */ 1621 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0, 1622 GFP_NOWAIT); 1623 spin_unlock_bh(&sctp_assocs_id_lock); 1624 if (preload) 1625 idr_preload_end(); 1626 if (ret < 0) 1627 return ret; 1628 1629 asoc->assoc_id = (sctp_assoc_t)ret; 1630 return 0; 1631 } 1632 1633 /* Free the ASCONF queue */ 1634 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1635 { 1636 struct sctp_chunk *asconf; 1637 struct sctp_chunk *tmp; 1638 1639 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1640 list_del_init(&asconf->list); 1641 sctp_chunk_free(asconf); 1642 } 1643 } 1644 1645 /* Free asconf_ack cache */ 1646 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1647 { 1648 struct sctp_chunk *ack; 1649 struct sctp_chunk *tmp; 1650 1651 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1652 transmitted_list) { 1653 list_del_init(&ack->transmitted_list); 1654 sctp_chunk_free(ack); 1655 } 1656 } 1657 1658 /* Clean up the ASCONF_ACK queue */ 1659 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1660 { 1661 struct sctp_chunk *ack; 1662 struct sctp_chunk *tmp; 1663 1664 /* We can remove all the entries from the queue up to 1665 * the "Peer-Sequence-Number". 1666 */ 1667 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1668 transmitted_list) { 1669 if (ack->subh.addip_hdr->serial == 1670 htonl(asoc->peer.addip_serial)) 1671 break; 1672 1673 list_del_init(&ack->transmitted_list); 1674 sctp_chunk_free(ack); 1675 } 1676 } 1677 1678 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1679 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1680 const struct sctp_association *asoc, 1681 __be32 serial) 1682 { 1683 struct sctp_chunk *ack; 1684 1685 /* Walk through the list of cached ASCONF-ACKs and find the 1686 * ack chunk whose serial number matches that of the request. 1687 */ 1688 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1689 if (sctp_chunk_pending(ack)) 1690 continue; 1691 if (ack->subh.addip_hdr->serial == serial) { 1692 sctp_chunk_hold(ack); 1693 return ack; 1694 } 1695 } 1696 1697 return NULL; 1698 } 1699 1700 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1701 { 1702 /* Free any cached ASCONF_ACK chunk. */ 1703 sctp_assoc_free_asconf_acks(asoc); 1704 1705 /* Free the ASCONF queue. */ 1706 sctp_assoc_free_asconf_queue(asoc); 1707 1708 /* Free any cached ASCONF chunk. */ 1709 if (asoc->addip_last_asconf) 1710 sctp_chunk_free(asoc->addip_last_asconf); 1711 } 1712