1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* GSSAPI-based RxRPC security 3 * 4 * Copyright (C) 2025 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/net.h> 11 #include <linux/skbuff.h> 12 #include <linux/slab.h> 13 #include <linux/key-type.h> 14 #include "ar-internal.h" 15 #include "rxgk_common.h" 16 17 /* 18 * Parse the information from a server key 19 */ 20 static int rxgk_preparse_server_key(struct key_preparsed_payload *prep) 21 { 22 const struct krb5_enctype *krb5; 23 struct krb5_buffer *server_key = (void *)&prep->payload.data[2]; 24 unsigned int service, sec_class, kvno, enctype; 25 int n = 0; 26 27 _enter("%zu", prep->datalen); 28 29 if (sscanf(prep->orig_description, "%u:%u:%u:%u%n", 30 &service, &sec_class, &kvno, &enctype, &n) != 4) 31 return -EINVAL; 32 33 if (prep->orig_description[n]) 34 return -EINVAL; 35 36 krb5 = crypto_krb5_find_enctype(enctype); 37 if (!krb5) 38 return -ENOPKG; 39 40 prep->payload.data[0] = (struct krb5_enctype *)krb5; 41 42 if (prep->datalen != krb5->key_len) 43 return -EKEYREJECTED; 44 45 server_key->len = prep->datalen; 46 server_key->data = kmemdup(prep->data, prep->datalen, GFP_KERNEL); 47 if (!server_key->data) 48 return -ENOMEM; 49 50 _leave(" = 0"); 51 return 0; 52 } 53 54 static void rxgk_free_server_key(union key_payload *payload) 55 { 56 struct krb5_buffer *server_key = (void *)&payload->data[2]; 57 58 kfree_sensitive(server_key->data); 59 } 60 61 static void rxgk_free_preparse_server_key(struct key_preparsed_payload *prep) 62 { 63 rxgk_free_server_key(&prep->payload); 64 } 65 66 static void rxgk_destroy_server_key(struct key *key) 67 { 68 rxgk_free_server_key(&key->payload); 69 } 70 71 static void rxgk_describe_server_key(const struct key *key, struct seq_file *m) 72 { 73 const struct krb5_enctype *krb5 = key->payload.data[0]; 74 75 if (krb5) 76 seq_printf(m, ": %s", krb5->name); 77 } 78 79 /* 80 * Handle rekeying the connection when we see our limits overrun or when the 81 * far side decided to rekey. 82 * 83 * Returns a ref on the context if successful or -ESTALE if the key is out of 84 * date. 85 */ 86 static struct rxgk_context *rxgk_rekey(struct rxrpc_connection *conn, 87 const u16 *specific_key_number) 88 { 89 struct rxgk_context *gk, *dead = NULL; 90 unsigned int key_number, current_key, mask = ARRAY_SIZE(conn->rxgk.keys) - 1; 91 bool crank = false; 92 93 _enter("%d", specific_key_number ? *specific_key_number : -1); 94 95 mutex_lock(&conn->security_lock); 96 97 current_key = conn->rxgk.key_number; 98 if (!specific_key_number) { 99 key_number = current_key; 100 } else { 101 if (*specific_key_number == (u16)current_key) 102 key_number = current_key; 103 else if (*specific_key_number == (u16)(current_key - 1)) 104 key_number = current_key - 1; 105 else if (*specific_key_number == (u16)(current_key + 1)) 106 goto crank_window; 107 else 108 goto bad_key; 109 } 110 111 gk = conn->rxgk.keys[key_number & mask]; 112 if (!gk) 113 goto generate_key; 114 if (!specific_key_number && 115 test_bit(RXGK_TK_NEEDS_REKEY, &gk->flags)) 116 goto crank_window; 117 118 grab: 119 refcount_inc(&gk->usage); 120 mutex_unlock(&conn->security_lock); 121 rxgk_put(dead); 122 return gk; 123 124 crank_window: 125 trace_rxrpc_rxgk_rekey(conn, current_key, 126 specific_key_number ? *specific_key_number : -1); 127 if (current_key == UINT_MAX) 128 goto bad_key; 129 if (current_key + 1 == UINT_MAX) 130 set_bit(RXRPC_CONN_DONT_REUSE, &conn->flags); 131 132 key_number = current_key + 1; 133 if (WARN_ON(conn->rxgk.keys[key_number & mask])) 134 goto bad_key; 135 crank = true; 136 137 generate_key: 138 gk = conn->rxgk.keys[current_key & mask]; 139 gk = rxgk_generate_transport_key(conn, gk->key, key_number, GFP_NOFS); 140 if (IS_ERR(gk)) { 141 mutex_unlock(&conn->security_lock); 142 return gk; 143 } 144 145 write_lock(&conn->security_use_lock); 146 if (crank) { 147 current_key++; 148 conn->rxgk.key_number = current_key; 149 dead = conn->rxgk.keys[(current_key - 2) & mask]; 150 conn->rxgk.keys[(current_key - 2) & mask] = NULL; 151 } 152 conn->rxgk.keys[current_key & mask] = gk; 153 write_unlock(&conn->security_use_lock); 154 goto grab; 155 156 bad_key: 157 mutex_unlock(&conn->security_lock); 158 return ERR_PTR(-ESTALE); 159 } 160 161 /* 162 * Get the specified keying context. 163 * 164 * Returns a ref on the context if successful or -ESTALE if the key is out of 165 * date. 166 */ 167 static struct rxgk_context *rxgk_get_key(struct rxrpc_connection *conn, 168 const u16 *specific_key_number) 169 { 170 struct rxgk_context *gk; 171 unsigned int key_number, current_key, mask = ARRAY_SIZE(conn->rxgk.keys) - 1; 172 173 _enter("{%u},%d", 174 conn->rxgk.key_number, specific_key_number ? *specific_key_number : -1); 175 176 read_lock(&conn->security_use_lock); 177 178 current_key = conn->rxgk.key_number; 179 if (!specific_key_number) { 180 key_number = current_key; 181 } else { 182 /* Only the bottom 16 bits of the key number are exposed in the 183 * header, so we try and keep the upper 16 bits in step. The 184 * whole 32 bits are used to generate the TK. 185 */ 186 if (*specific_key_number == (u16)current_key) 187 key_number = current_key; 188 else if (*specific_key_number == (u16)(current_key - 1)) 189 key_number = current_key - 1; 190 else if (*specific_key_number == (u16)(current_key + 1)) 191 goto rekey; 192 else 193 goto bad_key; 194 } 195 196 gk = conn->rxgk.keys[key_number & mask]; 197 if (!gk) 198 goto slow_path; 199 if (!specific_key_number && 200 key_number < UINT_MAX) { 201 if (time_after(jiffies, gk->expiry) || 202 gk->bytes_remaining < 0) { 203 set_bit(RXGK_TK_NEEDS_REKEY, &gk->flags); 204 goto slow_path; 205 } 206 207 if (test_bit(RXGK_TK_NEEDS_REKEY, &gk->flags)) 208 goto slow_path; 209 } 210 211 refcount_inc(&gk->usage); 212 read_unlock(&conn->security_use_lock); 213 return gk; 214 215 rekey: 216 _debug("rekey"); 217 if (current_key == UINT_MAX) 218 goto bad_key; 219 gk = conn->rxgk.keys[current_key & mask]; 220 if (gk) 221 set_bit(RXGK_TK_NEEDS_REKEY, &gk->flags); 222 slow_path: 223 read_unlock(&conn->security_use_lock); 224 return rxgk_rekey(conn, specific_key_number); 225 bad_key: 226 read_unlock(&conn->security_use_lock); 227 return ERR_PTR(-ESTALE); 228 } 229 230 /* 231 * initialise connection security 232 */ 233 static int rxgk_init_connection_security(struct rxrpc_connection *conn, 234 struct rxrpc_key_token *token) 235 { 236 struct rxgk_context *gk; 237 int ret; 238 239 _enter("{%d,%u},{%x}", 240 conn->debug_id, conn->rxgk.key_number, key_serial(conn->key)); 241 242 conn->security_ix = token->security_index; 243 conn->security_level = token->rxgk->level; 244 245 if (rxrpc_conn_is_client(conn)) { 246 conn->rxgk.start_time = ktime_get(); 247 do_div(conn->rxgk.start_time, 100); 248 } 249 250 gk = rxgk_generate_transport_key(conn, token->rxgk, conn->rxgk.key_number, 251 GFP_NOFS); 252 if (IS_ERR(gk)) 253 return PTR_ERR(gk); 254 conn->rxgk.enctype = gk->krb5->etype; 255 conn->rxgk.keys[gk->key_number & 3] = gk; 256 257 switch (conn->security_level) { 258 case RXRPC_SECURITY_PLAIN: 259 case RXRPC_SECURITY_AUTH: 260 case RXRPC_SECURITY_ENCRYPT: 261 break; 262 default: 263 ret = -EKEYREJECTED; 264 goto error; 265 } 266 267 ret = 0; 268 error: 269 _leave(" = %d", ret); 270 return ret; 271 } 272 273 /* 274 * Clean up the crypto on a call. 275 */ 276 static void rxgk_free_call_crypto(struct rxrpc_call *call) 277 { 278 } 279 280 /* 281 * Work out how much data we can put in a packet. 282 */ 283 static struct rxrpc_txbuf *rxgk_alloc_txbuf(struct rxrpc_call *call, size_t remain, gfp_t gfp) 284 { 285 enum krb5_crypto_mode mode; 286 struct rxgk_context *gk; 287 struct rxrpc_txbuf *txb; 288 size_t shdr, alloc, limit, part, offset, gap; 289 290 switch (call->conn->security_level) { 291 default: 292 alloc = umin(remain, RXRPC_JUMBO_DATALEN); 293 return rxrpc_alloc_data_txbuf(call, alloc, 1, gfp); 294 case RXRPC_SECURITY_AUTH: 295 shdr = 0; 296 mode = KRB5_CHECKSUM_MODE; 297 break; 298 case RXRPC_SECURITY_ENCRYPT: 299 shdr = sizeof(struct rxgk_header); 300 mode = KRB5_ENCRYPT_MODE; 301 break; 302 } 303 304 gk = rxgk_get_key(call->conn, NULL); 305 if (IS_ERR(gk)) 306 return NULL; 307 308 /* Work out the maximum amount of data that will fit. */ 309 alloc = RXRPC_JUMBO_DATALEN; 310 limit = crypto_krb5_how_much_data(gk->krb5, mode, &alloc, &offset); 311 312 if (remain < limit - shdr) { 313 part = remain; 314 alloc = crypto_krb5_how_much_buffer(gk->krb5, mode, 315 shdr + part, &offset); 316 gap = 0; 317 } else { 318 part = limit - shdr; 319 gap = RXRPC_JUMBO_DATALEN - alloc; 320 alloc = RXRPC_JUMBO_DATALEN; 321 } 322 323 rxgk_put(gk); 324 325 txb = rxrpc_alloc_data_txbuf(call, alloc, 16, gfp); 326 if (!txb) 327 return NULL; 328 329 txb->crypto_header = offset; 330 txb->sec_header = shdr; 331 txb->offset += offset + shdr; 332 txb->space = part; 333 334 /* Clear excess space in the packet */ 335 if (gap) 336 memset(txb->data + alloc - gap, 0, gap); 337 return txb; 338 } 339 340 /* 341 * Integrity mode (sign a packet - level 1 security) 342 */ 343 static int rxgk_secure_packet_integrity(const struct rxrpc_call *call, 344 struct rxgk_context *gk, 345 struct rxrpc_txbuf *txb) 346 { 347 struct rxgk_header *hdr; 348 struct scatterlist sg[1]; 349 struct krb5_buffer metadata; 350 int ret = -ENOMEM; 351 352 _enter(""); 353 354 hdr = kzalloc(sizeof(*hdr), GFP_NOFS); 355 if (!hdr) 356 goto error_gk; 357 358 hdr->epoch = htonl(call->conn->proto.epoch); 359 hdr->cid = htonl(call->cid); 360 hdr->call_number = htonl(call->call_id); 361 hdr->seq = htonl(txb->seq); 362 hdr->sec_index = htonl(call->security_ix); 363 hdr->data_len = htonl(txb->len); 364 metadata.len = sizeof(*hdr); 365 metadata.data = hdr; 366 367 sg_init_table(sg, 1); 368 sg_set_buf(&sg[0], txb->data, txb->alloc_size); 369 370 ret = crypto_krb5_get_mic(gk->krb5, gk->tx_Kc, &metadata, 371 sg, 1, txb->alloc_size, 372 txb->crypto_header, txb->sec_header + txb->len); 373 if (ret >= 0) { 374 txb->pkt_len = ret; 375 if (txb->alloc_size == RXRPC_JUMBO_DATALEN) 376 txb->jumboable = true; 377 gk->bytes_remaining -= ret; 378 } 379 kfree(hdr); 380 error_gk: 381 rxgk_put(gk); 382 _leave(" = %d", ret); 383 return ret; 384 } 385 386 /* 387 * wholly encrypt a packet (level 2 security) 388 */ 389 static int rxgk_secure_packet_encrypted(const struct rxrpc_call *call, 390 struct rxgk_context *gk, 391 struct rxrpc_txbuf *txb) 392 { 393 struct rxgk_header *hdr; 394 struct scatterlist sg[1]; 395 int ret; 396 397 _enter("%x", txb->len); 398 399 /* Insert the header into the buffer. */ 400 hdr = txb->data + txb->crypto_header; 401 hdr->epoch = htonl(call->conn->proto.epoch); 402 hdr->cid = htonl(call->cid); 403 hdr->call_number = htonl(call->call_id); 404 hdr->seq = htonl(txb->seq); 405 hdr->sec_index = htonl(call->security_ix); 406 hdr->data_len = htonl(txb->len); 407 408 sg_init_table(sg, 1); 409 sg_set_buf(&sg[0], txb->data, txb->alloc_size); 410 411 ret = crypto_krb5_encrypt(gk->krb5, gk->tx_enc, 412 sg, 1, txb->alloc_size, 413 txb->crypto_header, txb->sec_header + txb->len, 414 false); 415 if (ret >= 0) { 416 txb->pkt_len = ret; 417 if (txb->alloc_size == RXRPC_JUMBO_DATALEN) 418 txb->jumboable = true; 419 gk->bytes_remaining -= ret; 420 } 421 422 rxgk_put(gk); 423 _leave(" = %d", ret); 424 return ret; 425 } 426 427 /* 428 * checksum an RxRPC packet header 429 */ 430 static int rxgk_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb) 431 { 432 struct rxgk_context *gk; 433 int ret; 434 435 _enter("{%d{%x}},{#%u},%u,", 436 call->debug_id, key_serial(call->conn->key), txb->seq, txb->len); 437 438 gk = rxgk_get_key(call->conn, NULL); 439 if (IS_ERR(gk)) 440 return PTR_ERR(gk) == -ESTALE ? -EKEYREJECTED : PTR_ERR(gk); 441 442 ret = key_validate(call->conn->key); 443 if (ret < 0) { 444 rxgk_put(gk); 445 return ret; 446 } 447 448 call->security_enctype = gk->krb5->etype; 449 txb->cksum = htons(gk->key_number); 450 451 switch (call->conn->security_level) { 452 case RXRPC_SECURITY_PLAIN: 453 rxgk_put(gk); 454 txb->pkt_len = txb->len; 455 return 0; 456 case RXRPC_SECURITY_AUTH: 457 return rxgk_secure_packet_integrity(call, gk, txb); 458 case RXRPC_SECURITY_ENCRYPT: 459 return rxgk_secure_packet_encrypted(call, gk, txb); 460 default: 461 rxgk_put(gk); 462 return -EPERM; 463 } 464 } 465 466 /* 467 * Integrity mode (check the signature on a packet - level 1 security) 468 */ 469 static int rxgk_verify_packet_integrity(struct rxrpc_call *call, 470 struct rxgk_context *gk, 471 struct sk_buff *skb) 472 { 473 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 474 struct rxgk_header *hdr; 475 struct krb5_buffer metadata; 476 unsigned int offset = sp->offset, len = sp->len; 477 size_t data_offset = 0, data_len = len; 478 u32 ac; 479 int ret = -ENOMEM; 480 481 _enter(""); 482 483 crypto_krb5_where_is_the_data(gk->krb5, KRB5_CHECKSUM_MODE, 484 &data_offset, &data_len); 485 486 hdr = kzalloc(sizeof(*hdr), GFP_NOFS); 487 if (!hdr) 488 goto put_gk; 489 490 hdr->epoch = htonl(call->conn->proto.epoch); 491 hdr->cid = htonl(call->cid); 492 hdr->call_number = htonl(call->call_id); 493 hdr->seq = htonl(sp->hdr.seq); 494 hdr->sec_index = htonl(call->security_ix); 495 hdr->data_len = htonl(data_len); 496 497 metadata.len = sizeof(*hdr); 498 metadata.data = hdr; 499 ret = rxgk_verify_mic_skb(gk->krb5, gk->rx_Kc, &metadata, 500 skb, &offset, &len, &ac); 501 kfree(hdr); 502 if (ret == -EPROTO) { 503 rxrpc_abort_eproto(call, skb, ac, 504 rxgk_abort_1_verify_mic_eproto); 505 } else { 506 sp->offset = offset; 507 sp->len = len; 508 } 509 510 put_gk: 511 rxgk_put(gk); 512 _leave(" = %d", ret); 513 return ret; 514 } 515 516 /* 517 * Decrypt an encrypted packet (level 2 security). 518 */ 519 static int rxgk_verify_packet_encrypted(struct rxrpc_call *call, 520 struct rxgk_context *gk, 521 struct sk_buff *skb) 522 { 523 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 524 struct rxgk_header hdr; 525 unsigned int offset = sp->offset, len = sp->len; 526 int ret; 527 u32 ac; 528 529 _enter(""); 530 531 ret = rxgk_decrypt_skb(gk->krb5, gk->rx_enc, skb, &offset, &len, &ac); 532 if (ret == -EPROTO) 533 rxrpc_abort_eproto(call, skb, ac, rxgk_abort_2_decrypt_eproto); 534 if (ret < 0) 535 goto error; 536 537 if (len < sizeof(hdr)) { 538 ret = rxrpc_abort_eproto(call, skb, RXGK_PACKETSHORT, 539 rxgk_abort_2_short_header); 540 goto error; 541 } 542 543 /* Extract the header from the skb */ 544 ret = skb_copy_bits(skb, offset, &hdr, sizeof(hdr)); 545 if (ret < 0) { 546 ret = rxrpc_abort_eproto(call, skb, RXGK_PACKETSHORT, 547 rxgk_abort_2_short_encdata); 548 goto error; 549 } 550 offset += sizeof(hdr); 551 len -= sizeof(hdr); 552 553 if (ntohl(hdr.epoch) != call->conn->proto.epoch || 554 ntohl(hdr.cid) != call->cid || 555 ntohl(hdr.call_number) != call->call_id || 556 ntohl(hdr.seq) != sp->hdr.seq || 557 ntohl(hdr.sec_index) != call->security_ix || 558 ntohl(hdr.data_len) > len) { 559 ret = rxrpc_abort_eproto(call, skb, RXGK_SEALEDINCON, 560 rxgk_abort_2_short_data); 561 goto error; 562 } 563 564 sp->offset = offset; 565 sp->len = ntohl(hdr.data_len); 566 ret = 0; 567 error: 568 rxgk_put(gk); 569 _leave(" = %d", ret); 570 return ret; 571 } 572 573 /* 574 * Verify the security on a received packet or subpacket (if part of a 575 * jumbo packet). 576 */ 577 static int rxgk_verify_packet(struct rxrpc_call *call, struct sk_buff *skb) 578 { 579 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 580 struct rxgk_context *gk; 581 u16 key_number = sp->hdr.cksum; 582 583 _enter("{%d{%x}},{#%u}", 584 call->debug_id, key_serial(call->conn->key), sp->hdr.seq); 585 586 gk = rxgk_get_key(call->conn, &key_number); 587 if (IS_ERR(gk)) { 588 switch (PTR_ERR(gk)) { 589 case -ESTALE: 590 return rxrpc_abort_eproto(call, skb, RXGK_BADKEYNO, 591 rxgk_abort_bad_key_number); 592 default: 593 return PTR_ERR(gk); 594 } 595 } 596 597 call->security_enctype = gk->krb5->etype; 598 switch (call->conn->security_level) { 599 case RXRPC_SECURITY_PLAIN: 600 rxgk_put(gk); 601 return 0; 602 case RXRPC_SECURITY_AUTH: 603 return rxgk_verify_packet_integrity(call, gk, skb); 604 case RXRPC_SECURITY_ENCRYPT: 605 return rxgk_verify_packet_encrypted(call, gk, skb); 606 default: 607 rxgk_put(gk); 608 return -ENOANO; 609 } 610 } 611 612 /* 613 * Allocate memory to hold a challenge or a response packet. We're not running 614 * in the io_thread, so we can't use ->tx_alloc. 615 */ 616 static struct page *rxgk_alloc_packet(size_t total_len) 617 { 618 gfp_t gfp = GFP_NOFS; 619 int order; 620 621 order = get_order(total_len); 622 if (order > 0) 623 gfp |= __GFP_COMP; 624 return alloc_pages(gfp, order); 625 } 626 627 /* 628 * Issue a challenge. 629 */ 630 static int rxgk_issue_challenge(struct rxrpc_connection *conn) 631 { 632 struct rxrpc_wire_header *whdr; 633 struct bio_vec bvec[1]; 634 struct msghdr msg; 635 struct page *page; 636 size_t len = sizeof(*whdr) + sizeof(conn->rxgk.nonce); 637 u32 serial; 638 int ret; 639 640 _enter("{%d}", conn->debug_id); 641 642 get_random_bytes(&conn->rxgk.nonce, sizeof(conn->rxgk.nonce)); 643 644 /* We can't use conn->tx_alloc without a lock */ 645 page = rxgk_alloc_packet(sizeof(*whdr) + sizeof(conn->rxgk.nonce)); 646 if (!page) 647 return -ENOMEM; 648 649 bvec_set_page(&bvec[0], page, len, 0); 650 iov_iter_bvec(&msg.msg_iter, WRITE, bvec, 1, len); 651 652 msg.msg_name = &conn->peer->srx.transport; 653 msg.msg_namelen = conn->peer->srx.transport_len; 654 msg.msg_control = NULL; 655 msg.msg_controllen = 0; 656 msg.msg_flags = MSG_SPLICE_PAGES; 657 658 whdr = page_address(page); 659 whdr->epoch = htonl(conn->proto.epoch); 660 whdr->cid = htonl(conn->proto.cid); 661 whdr->callNumber = 0; 662 whdr->seq = 0; 663 whdr->type = RXRPC_PACKET_TYPE_CHALLENGE; 664 whdr->flags = conn->out_clientflag; 665 whdr->userStatus = 0; 666 whdr->securityIndex = conn->security_ix; 667 whdr->_rsvd = 0; 668 whdr->serviceId = htons(conn->service_id); 669 670 memcpy(whdr + 1, conn->rxgk.nonce, sizeof(conn->rxgk.nonce)); 671 672 serial = rxrpc_get_next_serials(conn, 1); 673 whdr->serial = htonl(serial); 674 675 trace_rxrpc_tx_challenge(conn, serial, 0, *(u32 *)&conn->rxgk.nonce); 676 677 ret = do_udp_sendmsg(conn->local->socket, &msg, len); 678 if (ret > 0) 679 conn->peer->last_tx_at = ktime_get_seconds(); 680 __free_page(page); 681 682 if (ret < 0) { 683 trace_rxrpc_tx_fail(conn->debug_id, serial, ret, 684 rxrpc_tx_point_rxgk_challenge); 685 return -EAGAIN; 686 } 687 688 trace_rxrpc_tx_packet(conn->debug_id, whdr, 689 rxrpc_tx_point_rxgk_challenge); 690 _leave(" = 0"); 691 return 0; 692 } 693 694 /* 695 * Validate a challenge packet. 696 */ 697 static bool rxgk_validate_challenge(struct rxrpc_connection *conn, 698 struct sk_buff *skb) 699 { 700 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 701 u8 nonce[20]; 702 703 if (!conn->key) { 704 rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO, 705 rxgk_abort_chall_no_key); 706 return false; 707 } 708 709 if (key_validate(conn->key) < 0) { 710 rxrpc_abort_conn(conn, skb, RXGK_EXPIRED, -EPROTO, 711 rxgk_abort_chall_key_expired); 712 return false; 713 } 714 715 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header), 716 nonce, sizeof(nonce)) < 0) { 717 rxrpc_abort_conn(conn, skb, RXGK_PACKETSHORT, -EPROTO, 718 rxgk_abort_chall_short); 719 return false; 720 } 721 722 trace_rxrpc_rx_challenge(conn, sp->hdr.serial, 0, *(u32 *)nonce, 0); 723 return true; 724 } 725 726 /** 727 * rxgk_kernel_query_challenge - Query RxGK-specific challenge parameters 728 * @challenge: The challenge packet to query 729 * 730 * Return: The Kerberos 5 encoding type for the challenged connection. 731 */ 732 u32 rxgk_kernel_query_challenge(struct sk_buff *challenge) 733 { 734 struct rxrpc_skb_priv *sp = rxrpc_skb(challenge); 735 736 return sp->chall.conn->rxgk.enctype; 737 } 738 EXPORT_SYMBOL(rxgk_kernel_query_challenge); 739 740 /* 741 * Fill out the control message to pass to userspace to inform about the 742 * challenge. 743 */ 744 static int rxgk_challenge_to_recvmsg(struct rxrpc_connection *conn, 745 struct sk_buff *challenge, 746 struct msghdr *msg) 747 { 748 struct rxgk_challenge chall; 749 750 chall.base.service_id = conn->service_id; 751 chall.base.security_index = conn->security_ix; 752 chall.enctype = conn->rxgk.enctype; 753 754 return put_cmsg(msg, SOL_RXRPC, RXRPC_CHALLENGED, sizeof(chall), &chall); 755 } 756 757 /* 758 * Insert the requisite amount of XDR padding for the length given. 759 */ 760 static int rxgk_pad_out(struct sk_buff *response, size_t len, size_t offset) 761 { 762 __be32 zero = 0; 763 size_t pad = xdr_round_up(len) - len; 764 int ret; 765 766 if (!pad) 767 return 0; 768 769 ret = skb_store_bits(response, offset, &zero, pad); 770 if (ret < 0) 771 return ret; 772 return pad; 773 } 774 775 /* 776 * Insert the header into the response. 777 */ 778 static noinline ssize_t rxgk_insert_response_header(struct rxrpc_connection *conn, 779 struct rxgk_context *gk, 780 struct sk_buff *response, 781 size_t offset) 782 { 783 struct rxrpc_skb_priv *rsp = rxrpc_skb(response); 784 785 struct { 786 struct rxrpc_wire_header whdr; 787 __be32 start_time_msw; 788 __be32 start_time_lsw; 789 __be32 ticket_len; 790 } h; 791 int ret; 792 793 rsp->resp.kvno = gk->key_number; 794 rsp->resp.version = gk->krb5->etype; 795 796 h.whdr.epoch = htonl(conn->proto.epoch); 797 h.whdr.cid = htonl(conn->proto.cid); 798 h.whdr.callNumber = 0; 799 h.whdr.serial = 0; 800 h.whdr.seq = 0; 801 h.whdr.type = RXRPC_PACKET_TYPE_RESPONSE; 802 h.whdr.flags = conn->out_clientflag; 803 h.whdr.userStatus = 0; 804 h.whdr.securityIndex = conn->security_ix; 805 h.whdr.cksum = htons(gk->key_number); 806 h.whdr.serviceId = htons(conn->service_id); 807 h.start_time_msw = htonl(upper_32_bits(conn->rxgk.start_time)); 808 h.start_time_lsw = htonl(lower_32_bits(conn->rxgk.start_time)); 809 h.ticket_len = htonl(gk->key->ticket.len); 810 811 ret = skb_store_bits(response, offset, &h, sizeof(h)); 812 return ret < 0 ? ret : sizeof(h); 813 } 814 815 /* 816 * Construct the authenticator to go in the response packet 817 * 818 * struct RXGK_Authenticator { 819 * opaque nonce[20]; 820 * opaque appdata<>; 821 * RXGK_Level level; 822 * unsigned int epoch; 823 * unsigned int cid; 824 * unsigned int call_numbers<>; 825 * }; 826 */ 827 static ssize_t rxgk_construct_authenticator(struct rxrpc_connection *conn, 828 struct sk_buff *challenge, 829 const struct krb5_buffer *appdata, 830 struct sk_buff *response, 831 size_t offset) 832 { 833 struct { 834 u8 nonce[20]; 835 __be32 appdata_len; 836 } a; 837 struct { 838 __be32 level; 839 __be32 epoch; 840 __be32 cid; 841 __be32 call_numbers_count; 842 __be32 call_numbers[4]; 843 } b; 844 int ret; 845 846 ret = skb_copy_bits(challenge, sizeof(struct rxrpc_wire_header), 847 a.nonce, sizeof(a.nonce)); 848 if (ret < 0) 849 return -EPROTO; 850 851 a.appdata_len = htonl(appdata->len); 852 853 ret = skb_store_bits(response, offset, &a, sizeof(a)); 854 if (ret < 0) 855 return ret; 856 offset += sizeof(a); 857 858 if (appdata->len) { 859 ret = skb_store_bits(response, offset, appdata->data, appdata->len); 860 if (ret < 0) 861 return ret; 862 offset += appdata->len; 863 864 ret = rxgk_pad_out(response, appdata->len, offset); 865 if (ret < 0) 866 return ret; 867 offset += ret; 868 } 869 870 b.level = htonl(conn->security_level); 871 b.epoch = htonl(conn->proto.epoch); 872 b.cid = htonl(conn->proto.cid); 873 b.call_numbers_count = htonl(4); 874 b.call_numbers[0] = htonl(conn->channels[0].call_counter); 875 b.call_numbers[1] = htonl(conn->channels[1].call_counter); 876 b.call_numbers[2] = htonl(conn->channels[2].call_counter); 877 b.call_numbers[3] = htonl(conn->channels[3].call_counter); 878 879 ret = skb_store_bits(response, offset, &b, sizeof(b)); 880 if (ret < 0) 881 return ret; 882 return sizeof(a) + xdr_round_up(appdata->len) + sizeof(b); 883 } 884 885 static ssize_t rxgk_encrypt_authenticator(struct rxrpc_connection *conn, 886 struct rxgk_context *gk, 887 struct sk_buff *response, 888 size_t offset, 889 size_t alloc_len, 890 size_t auth_offset, 891 size_t auth_len) 892 { 893 struct scatterlist sg[16]; 894 int nr_sg; 895 896 sg_init_table(sg, ARRAY_SIZE(sg)); 897 nr_sg = skb_to_sgvec(response, sg, offset, alloc_len); 898 if (unlikely(nr_sg < 0)) 899 return nr_sg; 900 return crypto_krb5_encrypt(gk->krb5, gk->resp_enc, sg, nr_sg, alloc_len, 901 auth_offset, auth_len, false); 902 } 903 904 /* 905 * Construct the response. 906 * 907 * struct RXGK_Response { 908 * rxgkTime start_time; 909 * RXGK_Data token; 910 * opaque authenticator<RXGK_MAXAUTHENTICATOR> 911 * }; 912 */ 913 static int rxgk_construct_response(struct rxrpc_connection *conn, 914 struct sk_buff *challenge, 915 struct krb5_buffer *appdata) 916 { 917 struct rxrpc_skb_priv *csp, *rsp; 918 struct rxgk_context *gk; 919 struct sk_buff *response; 920 size_t len, auth_len, authx_len, offset, auth_offset, authx_offset; 921 __be32 tmp; 922 int ret; 923 924 gk = rxgk_get_key(conn, NULL); 925 if (IS_ERR(gk)) 926 return PTR_ERR(gk); 927 928 auth_len = 20 + (4 + appdata->len) + 12 + (1 + 4) * 4; 929 authx_len = crypto_krb5_how_much_buffer(gk->krb5, KRB5_ENCRYPT_MODE, 930 auth_len, &auth_offset); 931 len = sizeof(struct rxrpc_wire_header) + 932 8 + (4 + xdr_round_up(gk->key->ticket.len)) + (4 + authx_len); 933 934 response = alloc_skb_with_frags(0, len, 0, &ret, GFP_NOFS); 935 if (!response) 936 goto error; 937 rxrpc_new_skb(response, rxrpc_skb_new_response_rxgk); 938 response->len = len; 939 response->data_len = len; 940 941 ret = rxgk_insert_response_header(conn, gk, response, 0); 942 if (ret < 0) 943 goto error; 944 offset = ret; 945 946 ret = skb_store_bits(response, offset, gk->key->ticket.data, gk->key->ticket.len); 947 if (ret < 0) 948 goto error; 949 offset += gk->key->ticket.len; 950 ret = rxgk_pad_out(response, gk->key->ticket.len, offset); 951 if (ret < 0) 952 goto error; 953 954 authx_offset = offset + ret + 4; /* Leave a gap for the length. */ 955 956 ret = rxgk_construct_authenticator(conn, challenge, appdata, response, 957 authx_offset + auth_offset); 958 if (ret < 0) 959 goto error; 960 auth_len = ret; 961 962 ret = rxgk_encrypt_authenticator(conn, gk, response, 963 authx_offset, authx_len, 964 auth_offset, auth_len); 965 if (ret < 0) 966 goto error; 967 authx_len = ret; 968 969 tmp = htonl(authx_len); 970 ret = skb_store_bits(response, authx_offset - 4, &tmp, 4); 971 if (ret < 0) 972 goto error; 973 974 ret = rxgk_pad_out(response, authx_len, authx_offset + authx_len); 975 if (ret < 0) 976 goto error; 977 len = authx_offset + authx_len + ret; 978 979 if (len != response->len) { 980 response->len = len; 981 response->data_len = len; 982 } 983 984 csp = rxrpc_skb(challenge); 985 rsp = rxrpc_skb(response); 986 rsp->resp.len = len; 987 rsp->resp.challenge_serial = csp->hdr.serial; 988 rxrpc_post_response(conn, response); 989 response = NULL; 990 ret = 0; 991 992 error: 993 rxrpc_free_skb(response, rxrpc_skb_put_response); 994 rxgk_put(gk); 995 _leave(" = %d", ret); 996 return ret; 997 } 998 999 /* 1000 * Respond to a challenge packet. 1001 */ 1002 static int rxgk_respond_to_challenge(struct rxrpc_connection *conn, 1003 struct sk_buff *challenge, 1004 struct krb5_buffer *appdata) 1005 { 1006 _enter("{%d,%x}", conn->debug_id, key_serial(conn->key)); 1007 1008 if (key_validate(conn->key) < 0) 1009 return rxrpc_abort_conn(conn, NULL, RXGK_EXPIRED, -EPROTO, 1010 rxgk_abort_chall_key_expired); 1011 1012 return rxgk_construct_response(conn, challenge, appdata); 1013 } 1014 1015 static int rxgk_respond_to_challenge_no_appdata(struct rxrpc_connection *conn, 1016 struct sk_buff *challenge) 1017 { 1018 struct krb5_buffer appdata = {}; 1019 1020 return rxgk_respond_to_challenge(conn, challenge, &appdata); 1021 } 1022 1023 /** 1024 * rxgk_kernel_respond_to_challenge - Respond to a challenge with appdata 1025 * @challenge: The challenge to respond to 1026 * @appdata: The application data to include in the RESPONSE authenticator 1027 * 1028 * Allow a kernel application to respond to a CHALLENGE with application data 1029 * to be included in the RxGK RESPONSE Authenticator. 1030 * 1031 * Return: %0 if successful and a negative error code otherwise. 1032 */ 1033 int rxgk_kernel_respond_to_challenge(struct sk_buff *challenge, 1034 struct krb5_buffer *appdata) 1035 { 1036 struct rxrpc_skb_priv *csp = rxrpc_skb(challenge); 1037 1038 return rxgk_respond_to_challenge(csp->chall.conn, challenge, appdata); 1039 } 1040 EXPORT_SYMBOL(rxgk_kernel_respond_to_challenge); 1041 1042 /* 1043 * Parse sendmsg() control message and respond to challenge. We need to see if 1044 * there's an appdata to fish out. 1045 */ 1046 static int rxgk_sendmsg_respond_to_challenge(struct sk_buff *challenge, 1047 struct msghdr *msg) 1048 { 1049 struct krb5_buffer appdata = {}; 1050 struct cmsghdr *cmsg; 1051 1052 for_each_cmsghdr(cmsg, msg) { 1053 if (cmsg->cmsg_level != SOL_RXRPC || 1054 cmsg->cmsg_type != RXRPC_RESP_RXGK_APPDATA) 1055 continue; 1056 if (appdata.data) 1057 return -EINVAL; 1058 appdata.data = CMSG_DATA(cmsg); 1059 appdata.len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1060 } 1061 1062 return rxgk_kernel_respond_to_challenge(challenge, &appdata); 1063 } 1064 1065 /* 1066 * Verify the authenticator. 1067 * 1068 * struct RXGK_Authenticator { 1069 * opaque nonce[20]; 1070 * opaque appdata<>; 1071 * RXGK_Level level; 1072 * unsigned int epoch; 1073 * unsigned int cid; 1074 * unsigned int call_numbers<>; 1075 * }; 1076 */ 1077 static int rxgk_do_verify_authenticator(struct rxrpc_connection *conn, 1078 const struct krb5_enctype *krb5, 1079 struct sk_buff *skb, 1080 __be32 *p, __be32 *end) 1081 { 1082 u32 app_len, call_count, level, epoch, cid, i; 1083 1084 _enter(""); 1085 1086 if (memcmp(p, conn->rxgk.nonce, 20) != 0) 1087 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1088 rxgk_abort_resp_bad_nonce); 1089 p += 20 / sizeof(__be32); 1090 1091 app_len = ntohl(*p++); 1092 if (app_len > (end - p) * sizeof(__be32)) 1093 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1094 rxgk_abort_resp_short_applen); 1095 1096 p += xdr_round_up(app_len) / sizeof(__be32); 1097 if (end - p < 4) 1098 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1099 rxgk_abort_resp_short_applen); 1100 1101 level = ntohl(*p++); 1102 epoch = ntohl(*p++); 1103 cid = ntohl(*p++); 1104 call_count = ntohl(*p++); 1105 1106 if (level != conn->security_level || 1107 epoch != conn->proto.epoch || 1108 cid != conn->proto.cid || 1109 call_count > 4) 1110 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1111 rxgk_abort_resp_bad_param); 1112 1113 if (end - p < call_count) 1114 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1115 rxgk_abort_resp_short_call_list); 1116 1117 for (i = 0; i < call_count; i++) { 1118 u32 call_id = ntohl(*p++); 1119 1120 if (call_id > INT_MAX) 1121 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1122 rxgk_abort_resp_bad_callid); 1123 1124 if (call_id < conn->channels[i].call_counter) 1125 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1126 rxgk_abort_resp_call_ctr); 1127 1128 if (call_id > conn->channels[i].call_counter) { 1129 if (conn->channels[i].call) 1130 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1131 rxgk_abort_resp_call_state); 1132 1133 conn->channels[i].call_counter = call_id; 1134 } 1135 } 1136 1137 _leave(" = 0"); 1138 return 0; 1139 } 1140 1141 /* 1142 * Extract the authenticator and verify it. 1143 */ 1144 static int rxgk_verify_authenticator(struct rxrpc_connection *conn, 1145 const struct krb5_enctype *krb5, 1146 struct sk_buff *skb, 1147 unsigned int auth_offset, unsigned int auth_len) 1148 { 1149 void *auth; 1150 __be32 *p; 1151 int ret; 1152 1153 auth = kmalloc(auth_len, GFP_NOFS); 1154 if (!auth) 1155 return -ENOMEM; 1156 1157 ret = skb_copy_bits(skb, auth_offset, auth, auth_len); 1158 if (ret < 0) { 1159 ret = rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1160 rxgk_abort_resp_short_auth); 1161 goto error; 1162 } 1163 1164 p = auth; 1165 ret = rxgk_do_verify_authenticator(conn, krb5, skb, p, p + auth_len); 1166 error: 1167 kfree(auth); 1168 return ret; 1169 } 1170 1171 /* 1172 * Verify a response. 1173 * 1174 * struct RXGK_Response { 1175 * rxgkTime start_time; 1176 * RXGK_Data token; 1177 * opaque authenticator<RXGK_MAXAUTHENTICATOR> 1178 * }; 1179 */ 1180 static int rxgk_verify_response(struct rxrpc_connection *conn, 1181 struct sk_buff *skb) 1182 { 1183 const struct krb5_enctype *krb5; 1184 struct rxrpc_key_token *token; 1185 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 1186 struct rxgk_response rhdr; 1187 struct rxgk_context *gk; 1188 struct key *key = NULL; 1189 unsigned int offset = sizeof(struct rxrpc_wire_header); 1190 unsigned int len = skb->len - sizeof(struct rxrpc_wire_header); 1191 unsigned int token_offset, token_len; 1192 unsigned int auth_offset, auth_len; 1193 __be32 xauth_len; 1194 int ret, ec; 1195 1196 _enter("{%d}", conn->debug_id); 1197 1198 /* Parse the RXGK_Response object */ 1199 if (sizeof(rhdr) + sizeof(__be32) > len) 1200 goto short_packet; 1201 1202 if (skb_copy_bits(skb, offset, &rhdr, sizeof(rhdr)) < 0) 1203 goto short_packet; 1204 offset += sizeof(rhdr); 1205 len -= sizeof(rhdr); 1206 1207 token_offset = offset; 1208 token_len = ntohl(rhdr.token_len); 1209 if (xdr_round_up(token_len) + sizeof(__be32) > len) 1210 goto short_packet; 1211 1212 trace_rxrpc_rx_response(conn, sp->hdr.serial, 0, sp->hdr.cksum, token_len); 1213 1214 offset += xdr_round_up(token_len); 1215 len -= xdr_round_up(token_len); 1216 1217 if (skb_copy_bits(skb, offset, &xauth_len, sizeof(xauth_len)) < 0) 1218 goto short_packet; 1219 offset += sizeof(xauth_len); 1220 len -= sizeof(xauth_len); 1221 1222 auth_offset = offset; 1223 auth_len = ntohl(xauth_len); 1224 if (auth_len < len) 1225 goto short_packet; 1226 if (auth_len & 3) 1227 goto inconsistent; 1228 if (auth_len < 20 + 9 * 4) 1229 goto auth_too_short; 1230 1231 /* We need to extract and decrypt the token and instantiate a session 1232 * key for it. This bit, however, is application-specific. If 1233 * possible, we use a default parser, but we might end up bumping this 1234 * to the app to deal with - which might mean a round trip to 1235 * userspace. 1236 */ 1237 ret = rxgk_extract_token(conn, skb, token_offset, token_len, &key); 1238 if (ret < 0) 1239 goto out; 1240 1241 /* We now have a key instantiated from the decrypted ticket. We can 1242 * pass this to the application so that they can parse the ticket 1243 * content and we can use the session key it contains to derive the 1244 * keys we need. 1245 * 1246 * Note that we have to switch enctype at this point as the enctype of 1247 * the ticket doesn't necessarily match that of the transport. 1248 */ 1249 token = key->payload.data[0]; 1250 conn->security_level = token->rxgk->level; 1251 conn->rxgk.start_time = __be64_to_cpu(rhdr.start_time); 1252 1253 gk = rxgk_generate_transport_key(conn, token->rxgk, sp->hdr.cksum, GFP_NOFS); 1254 if (IS_ERR(gk)) { 1255 ret = PTR_ERR(gk); 1256 goto cant_get_token; 1257 } 1258 1259 krb5 = gk->krb5; 1260 1261 trace_rxrpc_rx_response(conn, sp->hdr.serial, krb5->etype, sp->hdr.cksum, token_len); 1262 1263 /* Decrypt, parse and verify the authenticator. */ 1264 ret = rxgk_decrypt_skb(krb5, gk->resp_enc, skb, 1265 &auth_offset, &auth_len, &ec); 1266 if (ret < 0) { 1267 rxrpc_abort_conn(conn, skb, RXGK_SEALEDINCON, ret, 1268 rxgk_abort_resp_auth_dec); 1269 goto out; 1270 } 1271 1272 ret = rxgk_verify_authenticator(conn, krb5, skb, auth_offset, auth_len); 1273 if (ret < 0) 1274 goto out; 1275 1276 conn->key = key; 1277 key = NULL; 1278 ret = 0; 1279 out: 1280 key_put(key); 1281 _leave(" = %d", ret); 1282 return ret; 1283 1284 inconsistent: 1285 ret = rxrpc_abort_conn(conn, skb, RXGK_INCONSISTENCY, -EPROTO, 1286 rxgk_abort_resp_xdr_align); 1287 goto out; 1288 auth_too_short: 1289 ret = rxrpc_abort_conn(conn, skb, RXGK_PACKETSHORT, -EPROTO, 1290 rxgk_abort_resp_short_auth); 1291 goto out; 1292 short_packet: 1293 ret = rxrpc_abort_conn(conn, skb, RXGK_PACKETSHORT, -EPROTO, 1294 rxgk_abort_resp_short_packet); 1295 goto out; 1296 1297 cant_get_token: 1298 switch (ret) { 1299 case -ENOMEM: 1300 goto temporary_error; 1301 case -EINVAL: 1302 ret = rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EKEYREJECTED, 1303 rxgk_abort_resp_internal_error); 1304 goto out; 1305 case -ENOPKG: 1306 ret = rxrpc_abort_conn(conn, skb, KRB5_PROG_KEYTYPE_NOSUPP, 1307 -EKEYREJECTED, rxgk_abort_resp_nopkg); 1308 goto out; 1309 } 1310 1311 temporary_error: 1312 /* Ignore the response packet if we got a temporary error such as 1313 * ENOMEM. We just want to send the challenge again. Note that we 1314 * also come out this way if the ticket decryption fails. 1315 */ 1316 goto out; 1317 } 1318 1319 /* 1320 * clear the connection security 1321 */ 1322 static void rxgk_clear(struct rxrpc_connection *conn) 1323 { 1324 int i; 1325 1326 for (i = 0; i < ARRAY_SIZE(conn->rxgk.keys); i++) 1327 rxgk_put(conn->rxgk.keys[i]); 1328 } 1329 1330 /* 1331 * Initialise the RxGK security service. 1332 */ 1333 static int rxgk_init(void) 1334 { 1335 return 0; 1336 } 1337 1338 /* 1339 * Clean up the RxGK security service. 1340 */ 1341 static void rxgk_exit(void) 1342 { 1343 } 1344 1345 /* 1346 * RxRPC YFS GSSAPI-based security 1347 */ 1348 const struct rxrpc_security rxgk_yfs = { 1349 .name = "yfs-rxgk", 1350 .security_index = RXRPC_SECURITY_YFS_RXGK, 1351 .no_key_abort = RXGK_NOTAUTH, 1352 .init = rxgk_init, 1353 .exit = rxgk_exit, 1354 .preparse_server_key = rxgk_preparse_server_key, 1355 .free_preparse_server_key = rxgk_free_preparse_server_key, 1356 .destroy_server_key = rxgk_destroy_server_key, 1357 .describe_server_key = rxgk_describe_server_key, 1358 .init_connection_security = rxgk_init_connection_security, 1359 .alloc_txbuf = rxgk_alloc_txbuf, 1360 .secure_packet = rxgk_secure_packet, 1361 .verify_packet = rxgk_verify_packet, 1362 .free_call_crypto = rxgk_free_call_crypto, 1363 .issue_challenge = rxgk_issue_challenge, 1364 .validate_challenge = rxgk_validate_challenge, 1365 .challenge_to_recvmsg = rxgk_challenge_to_recvmsg, 1366 .sendmsg_respond_to_challenge = rxgk_sendmsg_respond_to_challenge, 1367 .respond_to_challenge = rxgk_respond_to_challenge_no_appdata, 1368 .verify_response = rxgk_verify_response, 1369 .clear = rxgk_clear, 1370 .default_decode_ticket = rxgk_yfs_decode_ticket, 1371 }; 1372