1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * xt_hashlimit - Netfilter module to limit the number of packets per time 4 * separately for each hashbucket (sourceip/sourceport/dstip/dstport) 5 * 6 * (C) 2003-2004 by Harald Welte <laforge@netfilter.org> 7 * (C) 2006-2012 Patrick McHardy <kaber@trash.net> 8 * Copyright © CC Computer Consultants GmbH, 2007 - 2008 9 * 10 * Development of this code was funded by Astaro AG, http://www.astaro.com/ 11 */ 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 #include <linux/module.h> 14 #include <linux/spinlock.h> 15 #include <linux/random.h> 16 #include <linux/jhash.h> 17 #include <linux/slab.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/list.h> 21 #include <linux/skbuff.h> 22 #include <linux/mm.h> 23 #include <linux/in.h> 24 #include <linux/ip.h> 25 #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) 26 #include <linux/ipv6.h> 27 #include <net/ipv6.h> 28 #endif 29 30 #include <net/net_namespace.h> 31 #include <net/netns/generic.h> 32 33 #include <linux/netfilter/x_tables.h> 34 #include <linux/netfilter_ipv4/ip_tables.h> 35 #include <linux/netfilter_ipv6/ip6_tables.h> 36 #include <linux/mutex.h> 37 #include <linux/kernel.h> 38 #include <linux/refcount.h> 39 #include <uapi/linux/netfilter/xt_hashlimit.h> 40 41 #define XT_HASHLIMIT_ALL (XT_HASHLIMIT_HASH_DIP | XT_HASHLIMIT_HASH_DPT | \ 42 XT_HASHLIMIT_HASH_SIP | XT_HASHLIMIT_HASH_SPT | \ 43 XT_HASHLIMIT_INVERT | XT_HASHLIMIT_BYTES |\ 44 XT_HASHLIMIT_RATE_MATCH) 45 46 MODULE_LICENSE("GPL"); 47 MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>"); 48 MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>"); 49 MODULE_DESCRIPTION("Xtables: per hash-bucket rate-limit match"); 50 MODULE_ALIAS("ipt_hashlimit"); 51 MODULE_ALIAS("ip6t_hashlimit"); 52 53 struct hashlimit_net { 54 struct hlist_head htables; 55 struct proc_dir_entry *ipt_hashlimit; 56 struct proc_dir_entry *ip6t_hashlimit; 57 }; 58 59 static unsigned int hashlimit_net_id; 60 static inline struct hashlimit_net *hashlimit_pernet(struct net *net) 61 { 62 return net_generic(net, hashlimit_net_id); 63 } 64 65 /* need to declare this at the top */ 66 static const struct seq_operations dl_seq_ops_v2; 67 static const struct seq_operations dl_seq_ops_v1; 68 static const struct seq_operations dl_seq_ops; 69 70 /* hash table crap */ 71 struct dsthash_dst { 72 union { 73 struct { 74 __be32 src; 75 __be32 dst; 76 } ip; 77 #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) 78 struct { 79 __be32 src[4]; 80 __be32 dst[4]; 81 } ip6; 82 #endif 83 }; 84 __be16 src_port; 85 __be16 dst_port; 86 }; 87 88 struct dsthash_ent { 89 /* static / read-only parts in the beginning */ 90 struct hlist_node node; 91 struct dsthash_dst dst; 92 93 /* modified structure members in the end */ 94 spinlock_t lock; 95 unsigned long expires; /* precalculated expiry time */ 96 struct { 97 unsigned long prev; /* last modification */ 98 union { 99 struct { 100 u_int64_t credit; 101 u_int64_t credit_cap; 102 u_int64_t cost; 103 }; 104 struct { 105 u_int32_t interval, prev_window; 106 u_int64_t current_rate; 107 u_int64_t rate; 108 int64_t burst; 109 }; 110 }; 111 } rateinfo; 112 struct rcu_head rcu; 113 }; 114 115 struct xt_hashlimit_htable { 116 struct hlist_node node; /* global list of all htables */ 117 refcount_t use; 118 u_int8_t family; 119 bool rnd_initialized; 120 121 struct hashlimit_cfg3 cfg; /* config */ 122 123 /* used internally */ 124 spinlock_t lock; /* lock for list_head */ 125 u_int32_t rnd; /* random seed for hash */ 126 unsigned int count; /* number entries in table */ 127 struct delayed_work gc_work; 128 129 /* seq_file stuff */ 130 struct proc_dir_entry *pde; 131 const char *name; 132 struct net *net; 133 134 struct hlist_head hash[]; /* hashtable itself */ 135 }; 136 137 static int 138 cfg_copy(struct hashlimit_cfg3 *to, const void *from, int revision) 139 { 140 if (revision == 1) { 141 struct hashlimit_cfg1 *cfg = (struct hashlimit_cfg1 *)from; 142 143 to->mode = cfg->mode; 144 to->avg = cfg->avg; 145 to->burst = cfg->burst; 146 to->size = cfg->size; 147 to->max = cfg->max; 148 to->gc_interval = cfg->gc_interval; 149 to->expire = cfg->expire; 150 to->srcmask = cfg->srcmask; 151 to->dstmask = cfg->dstmask; 152 } else if (revision == 2) { 153 struct hashlimit_cfg2 *cfg = (struct hashlimit_cfg2 *)from; 154 155 to->mode = cfg->mode; 156 to->avg = cfg->avg; 157 to->burst = cfg->burst; 158 to->size = cfg->size; 159 to->max = cfg->max; 160 to->gc_interval = cfg->gc_interval; 161 to->expire = cfg->expire; 162 to->srcmask = cfg->srcmask; 163 to->dstmask = cfg->dstmask; 164 } else if (revision == 3) { 165 memcpy(to, from, sizeof(struct hashlimit_cfg3)); 166 } else { 167 return -EINVAL; 168 } 169 170 return 0; 171 } 172 173 static DEFINE_MUTEX(hashlimit_mutex); /* protects htables list */ 174 static struct kmem_cache *hashlimit_cachep __read_mostly; 175 176 static inline bool dst_cmp(const struct dsthash_ent *ent, 177 const struct dsthash_dst *b) 178 { 179 return !memcmp(&ent->dst, b, sizeof(ent->dst)); 180 } 181 182 static u_int32_t 183 hash_dst(const struct xt_hashlimit_htable *ht, const struct dsthash_dst *dst) 184 { 185 u_int32_t hash = jhash2((const u32 *)dst, 186 sizeof(*dst)/sizeof(u32), 187 ht->rnd); 188 /* 189 * Instead of returning hash % ht->cfg.size (implying a divide) 190 * we return the high 32 bits of the (hash * ht->cfg.size) that will 191 * give results between [0 and cfg.size-1] and same hash distribution, 192 * but using a multiply, less expensive than a divide 193 */ 194 return reciprocal_scale(hash, ht->cfg.size); 195 } 196 197 static struct dsthash_ent * 198 dsthash_find(const struct xt_hashlimit_htable *ht, 199 const struct dsthash_dst *dst) 200 { 201 struct dsthash_ent *ent; 202 u_int32_t hash = hash_dst(ht, dst); 203 204 if (!hlist_empty(&ht->hash[hash])) { 205 hlist_for_each_entry_rcu(ent, &ht->hash[hash], node) 206 if (dst_cmp(ent, dst)) { 207 spin_lock(&ent->lock); 208 return ent; 209 } 210 } 211 return NULL; 212 } 213 214 /* allocate dsthash_ent, initialize dst, put in htable and lock it */ 215 static struct dsthash_ent * 216 dsthash_alloc_init(struct xt_hashlimit_htable *ht, 217 const struct dsthash_dst *dst, bool *race) 218 { 219 struct dsthash_ent *ent; 220 221 spin_lock(&ht->lock); 222 223 /* Two or more packets may race to create the same entry in the 224 * hashtable, double check if this packet lost race. 225 */ 226 ent = dsthash_find(ht, dst); 227 if (ent != NULL) { 228 spin_unlock(&ht->lock); 229 *race = true; 230 return ent; 231 } 232 233 /* initialize hash with random val at the time we allocate 234 * the first hashtable entry */ 235 if (unlikely(!ht->rnd_initialized)) { 236 get_random_bytes(&ht->rnd, sizeof(ht->rnd)); 237 ht->rnd_initialized = true; 238 } 239 240 if (ht->cfg.max && ht->count >= ht->cfg.max) { 241 /* FIXME: do something. question is what.. */ 242 net_err_ratelimited("max count of %u reached\n", ht->cfg.max); 243 ent = NULL; 244 } else 245 ent = kmem_cache_alloc(hashlimit_cachep, GFP_ATOMIC); 246 if (ent) { 247 memcpy(&ent->dst, dst, sizeof(ent->dst)); 248 spin_lock_init(&ent->lock); 249 250 spin_lock(&ent->lock); 251 hlist_add_head_rcu(&ent->node, &ht->hash[hash_dst(ht, dst)]); 252 ht->count++; 253 } 254 spin_unlock(&ht->lock); 255 return ent; 256 } 257 258 static void dsthash_free_rcu(struct rcu_head *head) 259 { 260 struct dsthash_ent *ent = container_of(head, struct dsthash_ent, rcu); 261 262 kmem_cache_free(hashlimit_cachep, ent); 263 } 264 265 static inline void 266 dsthash_free(struct xt_hashlimit_htable *ht, struct dsthash_ent *ent) 267 { 268 hlist_del_rcu(&ent->node); 269 call_rcu(&ent->rcu, dsthash_free_rcu); 270 ht->count--; 271 } 272 static void htable_gc(struct work_struct *work); 273 274 static int htable_create(struct net *net, struct hashlimit_cfg3 *cfg, 275 const char *name, u_int8_t family, 276 struct xt_hashlimit_htable **out_hinfo, 277 int revision) 278 { 279 struct hashlimit_net *hashlimit_net = hashlimit_pernet(net); 280 struct xt_hashlimit_htable *hinfo; 281 const struct seq_operations *ops; 282 unsigned int size, i; 283 unsigned long nr_pages = totalram_pages(); 284 int ret; 285 286 if (cfg->size) { 287 size = cfg->size; 288 } else { 289 size = (nr_pages << PAGE_SHIFT) / 16384 / 290 sizeof(struct hlist_head); 291 if (nr_pages > 1024 * 1024 * 1024 / PAGE_SIZE) 292 size = 8192; 293 if (size < 16) 294 size = 16; 295 } 296 hinfo = kvmalloc(struct_size(hinfo, hash, size), GFP_KERNEL); 297 if (hinfo == NULL) 298 return -ENOMEM; 299 *out_hinfo = hinfo; 300 301 /* copy match config into hashtable config */ 302 ret = cfg_copy(&hinfo->cfg, (void *)cfg, 3); 303 if (ret) { 304 kvfree(hinfo); 305 return ret; 306 } 307 308 hinfo->cfg.size = size; 309 if (hinfo->cfg.max == 0) 310 hinfo->cfg.max = 8 * hinfo->cfg.size; 311 else if (hinfo->cfg.max < hinfo->cfg.size) 312 hinfo->cfg.max = hinfo->cfg.size; 313 314 for (i = 0; i < hinfo->cfg.size; i++) 315 INIT_HLIST_HEAD(&hinfo->hash[i]); 316 317 refcount_set(&hinfo->use, 1); 318 hinfo->count = 0; 319 hinfo->family = family; 320 hinfo->rnd_initialized = false; 321 hinfo->name = kstrdup(name, GFP_KERNEL); 322 if (!hinfo->name) { 323 kvfree(hinfo); 324 return -ENOMEM; 325 } 326 spin_lock_init(&hinfo->lock); 327 328 switch (revision) { 329 case 1: 330 ops = &dl_seq_ops_v1; 331 break; 332 case 2: 333 ops = &dl_seq_ops_v2; 334 break; 335 default: 336 ops = &dl_seq_ops; 337 } 338 339 hinfo->pde = proc_create_seq_data(name, 0, 340 (family == NFPROTO_IPV4) ? 341 hashlimit_net->ipt_hashlimit : hashlimit_net->ip6t_hashlimit, 342 ops, hinfo); 343 if (hinfo->pde == NULL) { 344 kfree(hinfo->name); 345 kvfree(hinfo); 346 return -ENOMEM; 347 } 348 hinfo->net = net; 349 350 INIT_DEFERRABLE_WORK(&hinfo->gc_work, htable_gc); 351 queue_delayed_work(system_power_efficient_wq, &hinfo->gc_work, 352 msecs_to_jiffies(hinfo->cfg.gc_interval)); 353 354 hlist_add_head(&hinfo->node, &hashlimit_net->htables); 355 356 return 0; 357 } 358 359 static void htable_selective_cleanup(struct xt_hashlimit_htable *ht, bool select_all) 360 { 361 unsigned int i; 362 363 for (i = 0; i < ht->cfg.size; i++) { 364 struct hlist_head *head = &ht->hash[i]; 365 struct dsthash_ent *dh; 366 struct hlist_node *n; 367 368 if (hlist_empty(head)) 369 continue; 370 371 spin_lock_bh(&ht->lock); 372 hlist_for_each_entry_safe(dh, n, head, node) { 373 if (time_after_eq(jiffies, dh->expires) || select_all) 374 dsthash_free(ht, dh); 375 } 376 spin_unlock_bh(&ht->lock); 377 cond_resched(); 378 } 379 } 380 381 static void htable_gc(struct work_struct *work) 382 { 383 struct xt_hashlimit_htable *ht; 384 385 ht = container_of(work, struct xt_hashlimit_htable, gc_work.work); 386 387 htable_selective_cleanup(ht, false); 388 389 queue_delayed_work(system_power_efficient_wq, 390 &ht->gc_work, msecs_to_jiffies(ht->cfg.gc_interval)); 391 } 392 393 static void htable_remove_proc_entry(struct xt_hashlimit_htable *hinfo) 394 { 395 struct hashlimit_net *hashlimit_net = hashlimit_pernet(hinfo->net); 396 struct proc_dir_entry *parent; 397 398 if (hinfo->family == NFPROTO_IPV4) 399 parent = hashlimit_net->ipt_hashlimit; 400 else 401 parent = hashlimit_net->ip6t_hashlimit; 402 403 if (parent != NULL) 404 remove_proc_entry(hinfo->name, parent); 405 } 406 407 static struct xt_hashlimit_htable *htable_find_get(struct net *net, 408 const char *name, 409 u_int8_t family) 410 { 411 struct hashlimit_net *hashlimit_net = hashlimit_pernet(net); 412 struct xt_hashlimit_htable *hinfo; 413 414 hlist_for_each_entry(hinfo, &hashlimit_net->htables, node) { 415 if (!strcmp(name, hinfo->name) && 416 hinfo->family == family) { 417 refcount_inc(&hinfo->use); 418 return hinfo; 419 } 420 } 421 return NULL; 422 } 423 424 static void htable_put(struct xt_hashlimit_htable *hinfo) 425 { 426 if (refcount_dec_and_mutex_lock(&hinfo->use, &hashlimit_mutex)) { 427 hlist_del(&hinfo->node); 428 htable_remove_proc_entry(hinfo); 429 mutex_unlock(&hashlimit_mutex); 430 431 cancel_delayed_work_sync(&hinfo->gc_work); 432 htable_selective_cleanup(hinfo, true); 433 kfree(hinfo->name); 434 kvfree(hinfo); 435 } 436 } 437 438 /* The algorithm used is the Simple Token Bucket Filter (TBF) 439 * see net/sched/sch_tbf.c in the linux source tree 440 */ 441 442 /* Rusty: This is my (non-mathematically-inclined) understanding of 443 this algorithm. The `average rate' in jiffies becomes your initial 444 amount of credit `credit' and the most credit you can ever have 445 `credit_cap'. The `peak rate' becomes the cost of passing the 446 test, `cost'. 447 448 `prev' tracks the last packet hit: you gain one credit per jiffy. 449 If you get credit balance more than this, the extra credit is 450 discarded. Every time the match passes, you lose `cost' credits; 451 if you don't have that many, the test fails. 452 453 See Alexey's formal explanation in net/sched/sch_tbf.c. 454 455 To get the maximum range, we multiply by this factor (ie. you get N 456 credits per jiffy). We want to allow a rate as low as 1 per day 457 (slowest userspace tool allows), which means 458 CREDITS_PER_JIFFY*HZ*60*60*24 < 2^32 ie. 459 */ 460 #define MAX_CPJ_v1 (0xFFFFFFFF / (HZ*60*60*24)) 461 #define MAX_CPJ (0xFFFFFFFFFFFFFFFFULL / (HZ*60*60*24)) 462 463 /* Repeated shift and or gives us all 1s, final shift and add 1 gives 464 * us the power of 2 below the theoretical max, so GCC simply does a 465 * shift. */ 466 #define _POW2_BELOW2(x) ((x)|((x)>>1)) 467 #define _POW2_BELOW4(x) (_POW2_BELOW2(x)|_POW2_BELOW2((x)>>2)) 468 #define _POW2_BELOW8(x) (_POW2_BELOW4(x)|_POW2_BELOW4((x)>>4)) 469 #define _POW2_BELOW16(x) (_POW2_BELOW8(x)|_POW2_BELOW8((x)>>8)) 470 #define _POW2_BELOW32(x) (_POW2_BELOW16(x)|_POW2_BELOW16((x)>>16)) 471 #define _POW2_BELOW64(x) (_POW2_BELOW32(x)|_POW2_BELOW32((x)>>32)) 472 #define POW2_BELOW32(x) ((_POW2_BELOW32(x)>>1) + 1) 473 #define POW2_BELOW64(x) ((_POW2_BELOW64(x)>>1) + 1) 474 475 #define CREDITS_PER_JIFFY POW2_BELOW64(MAX_CPJ) 476 #define CREDITS_PER_JIFFY_v1 POW2_BELOW32(MAX_CPJ_v1) 477 478 /* in byte mode, the lowest possible rate is one packet/second. 479 * credit_cap is used as a counter that tells us how many times we can 480 * refill the "credits available" counter when it becomes empty. 481 */ 482 #define MAX_CPJ_BYTES (0xFFFFFFFF / HZ) 483 #define CREDITS_PER_JIFFY_BYTES POW2_BELOW32(MAX_CPJ_BYTES) 484 485 static u32 xt_hashlimit_len_to_chunks(u32 len) 486 { 487 return (len >> XT_HASHLIMIT_BYTE_SHIFT) + 1; 488 } 489 490 /* Precision saver. */ 491 static u64 user2credits(u64 user, int revision) 492 { 493 u64 scale = (revision == 1) ? 494 XT_HASHLIMIT_SCALE : XT_HASHLIMIT_SCALE_v2; 495 u64 cpj = (revision == 1) ? 496 CREDITS_PER_JIFFY_v1 : CREDITS_PER_JIFFY; 497 498 /* Avoid overflow: divide the constant operands first */ 499 if (scale >= HZ * cpj) 500 return div64_u64(user, div64_u64(scale, HZ * cpj)); 501 502 return user * div64_u64(HZ * cpj, scale); 503 } 504 505 static u32 user2credits_byte(u32 user) 506 { 507 u64 us = user; 508 us *= HZ * CREDITS_PER_JIFFY_BYTES; 509 return (u32) (us >> 32); 510 } 511 512 static u64 user2rate(u64 user) 513 { 514 if (user != 0) { 515 return div64_u64(XT_HASHLIMIT_SCALE_v2, user); 516 } else { 517 pr_info_ratelimited("invalid rate from userspace: %llu\n", 518 user); 519 return 0; 520 } 521 } 522 523 static u64 user2rate_bytes(u32 user) 524 { 525 u64 r; 526 527 r = user ? U32_MAX / user : U32_MAX; 528 return (r - 1) << XT_HASHLIMIT_BYTE_SHIFT; 529 } 530 531 static void rateinfo_recalc(struct dsthash_ent *dh, unsigned long now, 532 u32 mode, int revision) 533 { 534 unsigned long delta = now - dh->rateinfo.prev; 535 u64 cap, cpj; 536 537 if (delta == 0) 538 return; 539 540 if (revision >= 3 && mode & XT_HASHLIMIT_RATE_MATCH) { 541 u64 interval = dh->rateinfo.interval * HZ; 542 543 if (delta < interval) 544 return; 545 546 dh->rateinfo.prev = now; 547 dh->rateinfo.prev_window = 548 ((dh->rateinfo.current_rate * interval) > 549 (delta * dh->rateinfo.rate)); 550 dh->rateinfo.current_rate = 0; 551 552 return; 553 } 554 555 dh->rateinfo.prev = now; 556 557 if (mode & XT_HASHLIMIT_BYTES) { 558 u64 tmp = dh->rateinfo.credit; 559 dh->rateinfo.credit += CREDITS_PER_JIFFY_BYTES * delta; 560 cap = CREDITS_PER_JIFFY_BYTES * HZ; 561 if (tmp >= dh->rateinfo.credit) {/* overflow */ 562 dh->rateinfo.credit = cap; 563 return; 564 } 565 } else { 566 cpj = (revision == 1) ? 567 CREDITS_PER_JIFFY_v1 : CREDITS_PER_JIFFY; 568 dh->rateinfo.credit += delta * cpj; 569 cap = dh->rateinfo.credit_cap; 570 } 571 if (dh->rateinfo.credit > cap) 572 dh->rateinfo.credit = cap; 573 } 574 575 static void rateinfo_init(struct dsthash_ent *dh, 576 struct xt_hashlimit_htable *hinfo, int revision) 577 { 578 dh->rateinfo.prev = jiffies; 579 if (revision >= 3 && hinfo->cfg.mode & XT_HASHLIMIT_RATE_MATCH) { 580 dh->rateinfo.prev_window = 0; 581 dh->rateinfo.current_rate = 0; 582 if (hinfo->cfg.mode & XT_HASHLIMIT_BYTES) { 583 dh->rateinfo.rate = 584 user2rate_bytes((u32)hinfo->cfg.avg); 585 if (hinfo->cfg.burst) 586 dh->rateinfo.burst = 587 hinfo->cfg.burst * dh->rateinfo.rate; 588 else 589 dh->rateinfo.burst = dh->rateinfo.rate; 590 } else { 591 dh->rateinfo.rate = user2rate(hinfo->cfg.avg); 592 dh->rateinfo.burst = 593 hinfo->cfg.burst + dh->rateinfo.rate; 594 } 595 dh->rateinfo.interval = hinfo->cfg.interval; 596 } else if (hinfo->cfg.mode & XT_HASHLIMIT_BYTES) { 597 dh->rateinfo.credit = CREDITS_PER_JIFFY_BYTES * HZ; 598 dh->rateinfo.cost = user2credits_byte(hinfo->cfg.avg); 599 dh->rateinfo.credit_cap = hinfo->cfg.burst; 600 } else { 601 dh->rateinfo.credit = user2credits(hinfo->cfg.avg * 602 hinfo->cfg.burst, revision); 603 dh->rateinfo.cost = user2credits(hinfo->cfg.avg, revision); 604 dh->rateinfo.credit_cap = dh->rateinfo.credit; 605 } 606 } 607 608 static inline __be32 maskl(__be32 a, unsigned int l) 609 { 610 return l ? htonl(ntohl(a) & ~0 << (32 - l)) : 0; 611 } 612 613 #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) 614 static void hashlimit_ipv6_mask(__be32 *i, unsigned int p) 615 { 616 switch (p) { 617 case 0 ... 31: 618 i[0] = maskl(i[0], p); 619 i[1] = i[2] = i[3] = 0; 620 break; 621 case 32 ... 63: 622 i[1] = maskl(i[1], p - 32); 623 i[2] = i[3] = 0; 624 break; 625 case 64 ... 95: 626 i[2] = maskl(i[2], p - 64); 627 i[3] = 0; 628 break; 629 case 96 ... 127: 630 i[3] = maskl(i[3], p - 96); 631 break; 632 case 128: 633 break; 634 } 635 } 636 #endif 637 638 static int 639 hashlimit_init_dst(const struct xt_hashlimit_htable *hinfo, 640 struct dsthash_dst *dst, 641 const struct sk_buff *skb, unsigned int protoff) 642 { 643 __be16 _ports[2], *ports; 644 u8 nexthdr; 645 int poff; 646 647 memset(dst, 0, sizeof(*dst)); 648 649 switch (hinfo->family) { 650 case NFPROTO_IPV4: 651 if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_DIP) 652 dst->ip.dst = maskl(ip_hdr(skb)->daddr, 653 hinfo->cfg.dstmask); 654 if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_SIP) 655 dst->ip.src = maskl(ip_hdr(skb)->saddr, 656 hinfo->cfg.srcmask); 657 658 if (!(hinfo->cfg.mode & 659 (XT_HASHLIMIT_HASH_DPT | XT_HASHLIMIT_HASH_SPT))) 660 return 0; 661 nexthdr = ip_hdr(skb)->protocol; 662 break; 663 #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) 664 case NFPROTO_IPV6: 665 { 666 __be16 frag_off; 667 668 if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_DIP) { 669 memcpy(&dst->ip6.dst, &ipv6_hdr(skb)->daddr, 670 sizeof(dst->ip6.dst)); 671 hashlimit_ipv6_mask(dst->ip6.dst, hinfo->cfg.dstmask); 672 } 673 if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_SIP) { 674 memcpy(&dst->ip6.src, &ipv6_hdr(skb)->saddr, 675 sizeof(dst->ip6.src)); 676 hashlimit_ipv6_mask(dst->ip6.src, hinfo->cfg.srcmask); 677 } 678 679 if (!(hinfo->cfg.mode & 680 (XT_HASHLIMIT_HASH_DPT | XT_HASHLIMIT_HASH_SPT))) 681 return 0; 682 nexthdr = ipv6_hdr(skb)->nexthdr; 683 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, &frag_off); 684 if ((int)protoff < 0) 685 return -1; 686 break; 687 } 688 #endif 689 default: 690 BUG(); 691 return 0; 692 } 693 694 poff = proto_ports_offset(nexthdr); 695 if (poff >= 0) { 696 ports = skb_header_pointer(skb, protoff + poff, sizeof(_ports), 697 &_ports); 698 } else { 699 _ports[0] = _ports[1] = 0; 700 ports = _ports; 701 } 702 if (!ports) 703 return -1; 704 if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_SPT) 705 dst->src_port = ports[0]; 706 if (hinfo->cfg.mode & XT_HASHLIMIT_HASH_DPT) 707 dst->dst_port = ports[1]; 708 return 0; 709 } 710 711 static u32 hashlimit_byte_cost(unsigned int len, struct dsthash_ent *dh) 712 { 713 u64 tmp = xt_hashlimit_len_to_chunks(len); 714 tmp = tmp * dh->rateinfo.cost; 715 716 if (unlikely(tmp > CREDITS_PER_JIFFY_BYTES * HZ)) 717 tmp = CREDITS_PER_JIFFY_BYTES * HZ; 718 719 if (dh->rateinfo.credit < tmp && dh->rateinfo.credit_cap) { 720 dh->rateinfo.credit_cap--; 721 dh->rateinfo.credit = CREDITS_PER_JIFFY_BYTES * HZ; 722 } 723 return (u32) tmp; 724 } 725 726 static bool 727 hashlimit_mt_common(const struct sk_buff *skb, struct xt_action_param *par, 728 struct xt_hashlimit_htable *hinfo, 729 const struct hashlimit_cfg3 *cfg, int revision) 730 { 731 unsigned long now = jiffies; 732 struct dsthash_ent *dh; 733 struct dsthash_dst dst; 734 bool race = false; 735 u64 cost; 736 737 if (hashlimit_init_dst(hinfo, &dst, skb, par->thoff) < 0) 738 goto hotdrop; 739 740 local_bh_disable(); 741 dh = dsthash_find(hinfo, &dst); 742 if (dh == NULL) { 743 dh = dsthash_alloc_init(hinfo, &dst, &race); 744 if (dh == NULL) { 745 local_bh_enable(); 746 goto hotdrop; 747 } else if (race) { 748 /* Already got an entry, update expiration timeout */ 749 dh->expires = now + msecs_to_jiffies(hinfo->cfg.expire); 750 rateinfo_recalc(dh, now, hinfo->cfg.mode, revision); 751 } else { 752 dh->expires = jiffies + msecs_to_jiffies(hinfo->cfg.expire); 753 rateinfo_init(dh, hinfo, revision); 754 } 755 } else { 756 /* update expiration timeout */ 757 dh->expires = now + msecs_to_jiffies(hinfo->cfg.expire); 758 rateinfo_recalc(dh, now, hinfo->cfg.mode, revision); 759 } 760 761 if (cfg->mode & XT_HASHLIMIT_RATE_MATCH) { 762 cost = (cfg->mode & XT_HASHLIMIT_BYTES) ? skb->len : 1; 763 dh->rateinfo.current_rate += cost; 764 765 if (!dh->rateinfo.prev_window && 766 (dh->rateinfo.current_rate <= dh->rateinfo.burst)) { 767 spin_unlock(&dh->lock); 768 local_bh_enable(); 769 return !(cfg->mode & XT_HASHLIMIT_INVERT); 770 } else { 771 goto overlimit; 772 } 773 } 774 775 if (cfg->mode & XT_HASHLIMIT_BYTES) 776 cost = hashlimit_byte_cost(skb->len, dh); 777 else 778 cost = dh->rateinfo.cost; 779 780 if (dh->rateinfo.credit >= cost) { 781 /* below the limit */ 782 dh->rateinfo.credit -= cost; 783 spin_unlock(&dh->lock); 784 local_bh_enable(); 785 return !(cfg->mode & XT_HASHLIMIT_INVERT); 786 } 787 788 overlimit: 789 spin_unlock(&dh->lock); 790 local_bh_enable(); 791 /* default match is underlimit - so over the limit, we need to invert */ 792 return cfg->mode & XT_HASHLIMIT_INVERT; 793 794 hotdrop: 795 par->hotdrop = true; 796 return false; 797 } 798 799 static bool 800 hashlimit_mt_v1(const struct sk_buff *skb, struct xt_action_param *par) 801 { 802 const struct xt_hashlimit_mtinfo1 *info = par->matchinfo; 803 struct xt_hashlimit_htable *hinfo = info->hinfo; 804 struct hashlimit_cfg3 cfg = {}; 805 int ret; 806 807 ret = cfg_copy(&cfg, (void *)&info->cfg, 1); 808 if (ret) 809 return ret; 810 811 return hashlimit_mt_common(skb, par, hinfo, &cfg, 1); 812 } 813 814 static bool 815 hashlimit_mt_v2(const struct sk_buff *skb, struct xt_action_param *par) 816 { 817 const struct xt_hashlimit_mtinfo2 *info = par->matchinfo; 818 struct xt_hashlimit_htable *hinfo = info->hinfo; 819 struct hashlimit_cfg3 cfg = {}; 820 int ret; 821 822 ret = cfg_copy(&cfg, (void *)&info->cfg, 2); 823 if (ret) 824 return ret; 825 826 return hashlimit_mt_common(skb, par, hinfo, &cfg, 2); 827 } 828 829 static bool 830 hashlimit_mt(const struct sk_buff *skb, struct xt_action_param *par) 831 { 832 const struct xt_hashlimit_mtinfo3 *info = par->matchinfo; 833 struct xt_hashlimit_htable *hinfo = info->hinfo; 834 835 return hashlimit_mt_common(skb, par, hinfo, &info->cfg, 3); 836 } 837 838 #define HASHLIMIT_MAX_SIZE 1048576 839 840 static int hashlimit_mt_check_common(const struct xt_mtchk_param *par, 841 struct xt_hashlimit_htable **hinfo, 842 struct hashlimit_cfg3 *cfg, 843 const char *name, int revision) 844 { 845 struct net *net = par->net; 846 int ret; 847 848 if (cfg->gc_interval == 0 || cfg->expire == 0) 849 return -EINVAL; 850 if (cfg->size > HASHLIMIT_MAX_SIZE) { 851 cfg->size = HASHLIMIT_MAX_SIZE; 852 pr_info_ratelimited("size too large, truncated to %u\n", cfg->size); 853 } 854 if (cfg->max > HASHLIMIT_MAX_SIZE) { 855 cfg->max = HASHLIMIT_MAX_SIZE; 856 pr_info_ratelimited("max too large, truncated to %u\n", cfg->max); 857 } 858 if (par->family == NFPROTO_IPV4) { 859 if (cfg->srcmask > 32 || cfg->dstmask > 32) 860 return -EINVAL; 861 } else { 862 if (cfg->srcmask > 128 || cfg->dstmask > 128) 863 return -EINVAL; 864 } 865 866 if (cfg->mode & ~XT_HASHLIMIT_ALL) { 867 pr_info_ratelimited("Unknown mode mask %X, kernel too old?\n", 868 cfg->mode); 869 return -EINVAL; 870 } 871 872 /* Check for overflow. */ 873 if (revision >= 3 && cfg->mode & XT_HASHLIMIT_RATE_MATCH) { 874 if (cfg->avg == 0 || cfg->avg > U32_MAX) { 875 pr_info_ratelimited("invalid rate\n"); 876 return -ERANGE; 877 } 878 879 if (cfg->interval == 0) { 880 pr_info_ratelimited("invalid interval\n"); 881 return -EINVAL; 882 } 883 } else if (cfg->mode & XT_HASHLIMIT_BYTES) { 884 if (user2credits_byte(cfg->avg) == 0) { 885 pr_info_ratelimited("overflow, rate too high: %llu\n", 886 cfg->avg); 887 return -EINVAL; 888 } 889 } else if (cfg->burst == 0 || 890 user2credits(cfg->avg * cfg->burst, revision) < 891 user2credits(cfg->avg, revision)) { 892 pr_info_ratelimited("overflow, try lower: %llu/%llu\n", 893 cfg->avg, cfg->burst); 894 return -ERANGE; 895 } 896 897 mutex_lock(&hashlimit_mutex); 898 *hinfo = htable_find_get(net, name, par->family); 899 if (*hinfo == NULL) { 900 ret = htable_create(net, cfg, name, par->family, 901 hinfo, revision); 902 if (ret < 0) { 903 mutex_unlock(&hashlimit_mutex); 904 return ret; 905 } 906 } 907 mutex_unlock(&hashlimit_mutex); 908 909 return 0; 910 } 911 912 static int hashlimit_mt_check_v1(const struct xt_mtchk_param *par) 913 { 914 struct xt_hashlimit_mtinfo1 *info = par->matchinfo; 915 struct hashlimit_cfg3 cfg = {}; 916 int ret; 917 918 ret = xt_check_proc_name(info->name, sizeof(info->name)); 919 if (ret) 920 return ret; 921 922 ret = cfg_copy(&cfg, (void *)&info->cfg, 1); 923 if (ret) 924 return ret; 925 926 return hashlimit_mt_check_common(par, &info->hinfo, 927 &cfg, info->name, 1); 928 } 929 930 static int hashlimit_mt_check_v2(const struct xt_mtchk_param *par) 931 { 932 struct xt_hashlimit_mtinfo2 *info = par->matchinfo; 933 struct hashlimit_cfg3 cfg = {}; 934 int ret; 935 936 ret = xt_check_proc_name(info->name, sizeof(info->name)); 937 if (ret) 938 return ret; 939 940 ret = cfg_copy(&cfg, (void *)&info->cfg, 2); 941 if (ret) 942 return ret; 943 944 return hashlimit_mt_check_common(par, &info->hinfo, 945 &cfg, info->name, 2); 946 } 947 948 static int hashlimit_mt_check(const struct xt_mtchk_param *par) 949 { 950 struct xt_hashlimit_mtinfo3 *info = par->matchinfo; 951 int ret; 952 953 ret = xt_check_proc_name(info->name, sizeof(info->name)); 954 if (ret) 955 return ret; 956 957 return hashlimit_mt_check_common(par, &info->hinfo, &info->cfg, 958 info->name, 3); 959 } 960 961 static void hashlimit_mt_destroy_v2(const struct xt_mtdtor_param *par) 962 { 963 const struct xt_hashlimit_mtinfo2 *info = par->matchinfo; 964 965 htable_put(info->hinfo); 966 } 967 968 static void hashlimit_mt_destroy_v1(const struct xt_mtdtor_param *par) 969 { 970 const struct xt_hashlimit_mtinfo1 *info = par->matchinfo; 971 972 htable_put(info->hinfo); 973 } 974 975 static void hashlimit_mt_destroy(const struct xt_mtdtor_param *par) 976 { 977 const struct xt_hashlimit_mtinfo3 *info = par->matchinfo; 978 979 htable_put(info->hinfo); 980 } 981 982 static struct xt_match hashlimit_mt_reg[] __read_mostly = { 983 { 984 .name = "hashlimit", 985 .revision = 1, 986 .family = NFPROTO_IPV4, 987 .match = hashlimit_mt_v1, 988 .matchsize = sizeof(struct xt_hashlimit_mtinfo1), 989 .usersize = offsetof(struct xt_hashlimit_mtinfo1, hinfo), 990 .checkentry = hashlimit_mt_check_v1, 991 .destroy = hashlimit_mt_destroy_v1, 992 .me = THIS_MODULE, 993 }, 994 { 995 .name = "hashlimit", 996 .revision = 2, 997 .family = NFPROTO_IPV4, 998 .match = hashlimit_mt_v2, 999 .matchsize = sizeof(struct xt_hashlimit_mtinfo2), 1000 .usersize = offsetof(struct xt_hashlimit_mtinfo2, hinfo), 1001 .checkentry = hashlimit_mt_check_v2, 1002 .destroy = hashlimit_mt_destroy_v2, 1003 .me = THIS_MODULE, 1004 }, 1005 { 1006 .name = "hashlimit", 1007 .revision = 3, 1008 .family = NFPROTO_IPV4, 1009 .match = hashlimit_mt, 1010 .matchsize = sizeof(struct xt_hashlimit_mtinfo3), 1011 .usersize = offsetof(struct xt_hashlimit_mtinfo3, hinfo), 1012 .checkentry = hashlimit_mt_check, 1013 .destroy = hashlimit_mt_destroy, 1014 .me = THIS_MODULE, 1015 }, 1016 #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) 1017 { 1018 .name = "hashlimit", 1019 .revision = 1, 1020 .family = NFPROTO_IPV6, 1021 .match = hashlimit_mt_v1, 1022 .matchsize = sizeof(struct xt_hashlimit_mtinfo1), 1023 .usersize = offsetof(struct xt_hashlimit_mtinfo1, hinfo), 1024 .checkentry = hashlimit_mt_check_v1, 1025 .destroy = hashlimit_mt_destroy_v1, 1026 .me = THIS_MODULE, 1027 }, 1028 { 1029 .name = "hashlimit", 1030 .revision = 2, 1031 .family = NFPROTO_IPV6, 1032 .match = hashlimit_mt_v2, 1033 .matchsize = sizeof(struct xt_hashlimit_mtinfo2), 1034 .usersize = offsetof(struct xt_hashlimit_mtinfo2, hinfo), 1035 .checkentry = hashlimit_mt_check_v2, 1036 .destroy = hashlimit_mt_destroy_v2, 1037 .me = THIS_MODULE, 1038 }, 1039 { 1040 .name = "hashlimit", 1041 .revision = 3, 1042 .family = NFPROTO_IPV6, 1043 .match = hashlimit_mt, 1044 .matchsize = sizeof(struct xt_hashlimit_mtinfo3), 1045 .usersize = offsetof(struct xt_hashlimit_mtinfo3, hinfo), 1046 .checkentry = hashlimit_mt_check, 1047 .destroy = hashlimit_mt_destroy, 1048 .me = THIS_MODULE, 1049 }, 1050 #endif 1051 }; 1052 1053 /* PROC stuff */ 1054 static void *dl_seq_start(struct seq_file *s, loff_t *pos) 1055 __acquires(htable->lock) 1056 { 1057 struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); 1058 unsigned int *bucket; 1059 1060 spin_lock_bh(&htable->lock); 1061 if (*pos >= htable->cfg.size) 1062 return NULL; 1063 1064 bucket = kmalloc(sizeof(unsigned int), GFP_ATOMIC); 1065 if (!bucket) 1066 return ERR_PTR(-ENOMEM); 1067 1068 *bucket = *pos; 1069 return bucket; 1070 } 1071 1072 static void *dl_seq_next(struct seq_file *s, void *v, loff_t *pos) 1073 { 1074 struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); 1075 unsigned int *bucket = v; 1076 1077 *pos = ++(*bucket); 1078 if (*pos >= htable->cfg.size) { 1079 kfree(v); 1080 return NULL; 1081 } 1082 return bucket; 1083 } 1084 1085 static void dl_seq_stop(struct seq_file *s, void *v) 1086 __releases(htable->lock) 1087 { 1088 struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); 1089 unsigned int *bucket = v; 1090 1091 if (!IS_ERR(bucket)) 1092 kfree(bucket); 1093 spin_unlock_bh(&htable->lock); 1094 } 1095 1096 static void dl_seq_print(struct dsthash_ent *ent, u_int8_t family, 1097 struct seq_file *s) 1098 { 1099 switch (family) { 1100 case NFPROTO_IPV4: 1101 seq_printf(s, "%ld %pI4:%u->%pI4:%u %llu %llu %llu\n", 1102 (long)(ent->expires - jiffies)/HZ, 1103 &ent->dst.ip.src, 1104 ntohs(ent->dst.src_port), 1105 &ent->dst.ip.dst, 1106 ntohs(ent->dst.dst_port), 1107 ent->rateinfo.credit, ent->rateinfo.credit_cap, 1108 ent->rateinfo.cost); 1109 break; 1110 #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) 1111 case NFPROTO_IPV6: 1112 seq_printf(s, "%ld %pI6:%u->%pI6:%u %llu %llu %llu\n", 1113 (long)(ent->expires - jiffies)/HZ, 1114 &ent->dst.ip6.src, 1115 ntohs(ent->dst.src_port), 1116 &ent->dst.ip6.dst, 1117 ntohs(ent->dst.dst_port), 1118 ent->rateinfo.credit, ent->rateinfo.credit_cap, 1119 ent->rateinfo.cost); 1120 break; 1121 #endif 1122 default: 1123 BUG(); 1124 } 1125 } 1126 1127 static int dl_seq_real_show_v2(struct dsthash_ent *ent, u_int8_t family, 1128 struct seq_file *s) 1129 { 1130 struct xt_hashlimit_htable *ht = pde_data(file_inode(s->file)); 1131 1132 spin_lock(&ent->lock); 1133 /* recalculate to show accurate numbers */ 1134 rateinfo_recalc(ent, jiffies, ht->cfg.mode, 2); 1135 1136 dl_seq_print(ent, family, s); 1137 1138 spin_unlock(&ent->lock); 1139 return seq_has_overflowed(s); 1140 } 1141 1142 static int dl_seq_real_show_v1(struct dsthash_ent *ent, u_int8_t family, 1143 struct seq_file *s) 1144 { 1145 struct xt_hashlimit_htable *ht = pde_data(file_inode(s->file)); 1146 1147 spin_lock(&ent->lock); 1148 /* recalculate to show accurate numbers */ 1149 rateinfo_recalc(ent, jiffies, ht->cfg.mode, 1); 1150 1151 dl_seq_print(ent, family, s); 1152 1153 spin_unlock(&ent->lock); 1154 return seq_has_overflowed(s); 1155 } 1156 1157 static int dl_seq_real_show(struct dsthash_ent *ent, u_int8_t family, 1158 struct seq_file *s) 1159 { 1160 struct xt_hashlimit_htable *ht = pde_data(file_inode(s->file)); 1161 1162 spin_lock(&ent->lock); 1163 /* recalculate to show accurate numbers */ 1164 rateinfo_recalc(ent, jiffies, ht->cfg.mode, 3); 1165 1166 dl_seq_print(ent, family, s); 1167 1168 spin_unlock(&ent->lock); 1169 return seq_has_overflowed(s); 1170 } 1171 1172 static int dl_seq_show_v2(struct seq_file *s, void *v) 1173 { 1174 struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); 1175 unsigned int *bucket = (unsigned int *)v; 1176 struct dsthash_ent *ent; 1177 1178 if (!hlist_empty(&htable->hash[*bucket])) { 1179 hlist_for_each_entry(ent, &htable->hash[*bucket], node) 1180 if (dl_seq_real_show_v2(ent, htable->family, s)) 1181 return -1; 1182 } 1183 return 0; 1184 } 1185 1186 static int dl_seq_show_v1(struct seq_file *s, void *v) 1187 { 1188 struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); 1189 unsigned int *bucket = v; 1190 struct dsthash_ent *ent; 1191 1192 if (!hlist_empty(&htable->hash[*bucket])) { 1193 hlist_for_each_entry(ent, &htable->hash[*bucket], node) 1194 if (dl_seq_real_show_v1(ent, htable->family, s)) 1195 return -1; 1196 } 1197 return 0; 1198 } 1199 1200 static int dl_seq_show(struct seq_file *s, void *v) 1201 { 1202 struct xt_hashlimit_htable *htable = pde_data(file_inode(s->file)); 1203 unsigned int *bucket = v; 1204 struct dsthash_ent *ent; 1205 1206 if (!hlist_empty(&htable->hash[*bucket])) { 1207 hlist_for_each_entry(ent, &htable->hash[*bucket], node) 1208 if (dl_seq_real_show(ent, htable->family, s)) 1209 return -1; 1210 } 1211 return 0; 1212 } 1213 1214 static const struct seq_operations dl_seq_ops_v1 = { 1215 .start = dl_seq_start, 1216 .next = dl_seq_next, 1217 .stop = dl_seq_stop, 1218 .show = dl_seq_show_v1 1219 }; 1220 1221 static const struct seq_operations dl_seq_ops_v2 = { 1222 .start = dl_seq_start, 1223 .next = dl_seq_next, 1224 .stop = dl_seq_stop, 1225 .show = dl_seq_show_v2 1226 }; 1227 1228 static const struct seq_operations dl_seq_ops = { 1229 .start = dl_seq_start, 1230 .next = dl_seq_next, 1231 .stop = dl_seq_stop, 1232 .show = dl_seq_show 1233 }; 1234 1235 static int __net_init hashlimit_proc_net_init(struct net *net) 1236 { 1237 struct hashlimit_net *hashlimit_net = hashlimit_pernet(net); 1238 1239 hashlimit_net->ipt_hashlimit = proc_mkdir("ipt_hashlimit", net->proc_net); 1240 if (!hashlimit_net->ipt_hashlimit) 1241 return -ENOMEM; 1242 #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) 1243 hashlimit_net->ip6t_hashlimit = proc_mkdir("ip6t_hashlimit", net->proc_net); 1244 if (!hashlimit_net->ip6t_hashlimit) { 1245 remove_proc_entry("ipt_hashlimit", net->proc_net); 1246 return -ENOMEM; 1247 } 1248 #endif 1249 return 0; 1250 } 1251 1252 static void __net_exit hashlimit_proc_net_exit(struct net *net) 1253 { 1254 struct xt_hashlimit_htable *hinfo; 1255 struct hashlimit_net *hashlimit_net = hashlimit_pernet(net); 1256 1257 /* hashlimit_net_exit() is called before hashlimit_mt_destroy(). 1258 * Make sure that the parent ipt_hashlimit and ip6t_hashlimit proc 1259 * entries is empty before trying to remove it. 1260 */ 1261 mutex_lock(&hashlimit_mutex); 1262 hlist_for_each_entry(hinfo, &hashlimit_net->htables, node) 1263 htable_remove_proc_entry(hinfo); 1264 hashlimit_net->ipt_hashlimit = NULL; 1265 hashlimit_net->ip6t_hashlimit = NULL; 1266 mutex_unlock(&hashlimit_mutex); 1267 1268 remove_proc_entry("ipt_hashlimit", net->proc_net); 1269 #if IS_ENABLED(CONFIG_IP6_NF_IPTABLES) 1270 remove_proc_entry("ip6t_hashlimit", net->proc_net); 1271 #endif 1272 } 1273 1274 static int __net_init hashlimit_net_init(struct net *net) 1275 { 1276 struct hashlimit_net *hashlimit_net = hashlimit_pernet(net); 1277 1278 INIT_HLIST_HEAD(&hashlimit_net->htables); 1279 return hashlimit_proc_net_init(net); 1280 } 1281 1282 static void __net_exit hashlimit_net_exit(struct net *net) 1283 { 1284 hashlimit_proc_net_exit(net); 1285 } 1286 1287 static struct pernet_operations hashlimit_net_ops = { 1288 .init = hashlimit_net_init, 1289 .exit = hashlimit_net_exit, 1290 .id = &hashlimit_net_id, 1291 .size = sizeof(struct hashlimit_net), 1292 }; 1293 1294 static int __init hashlimit_mt_init(void) 1295 { 1296 int err; 1297 1298 err = register_pernet_subsys(&hashlimit_net_ops); 1299 if (err < 0) 1300 return err; 1301 err = xt_register_matches(hashlimit_mt_reg, 1302 ARRAY_SIZE(hashlimit_mt_reg)); 1303 if (err < 0) 1304 goto err1; 1305 1306 err = -ENOMEM; 1307 hashlimit_cachep = kmem_cache_create("xt_hashlimit", 1308 sizeof(struct dsthash_ent), 0, 0, 1309 NULL); 1310 if (!hashlimit_cachep) { 1311 pr_warn("unable to create slab cache\n"); 1312 goto err2; 1313 } 1314 return 0; 1315 1316 err2: 1317 xt_unregister_matches(hashlimit_mt_reg, ARRAY_SIZE(hashlimit_mt_reg)); 1318 err1: 1319 unregister_pernet_subsys(&hashlimit_net_ops); 1320 return err; 1321 1322 } 1323 1324 static void __exit hashlimit_mt_exit(void) 1325 { 1326 xt_unregister_matches(hashlimit_mt_reg, ARRAY_SIZE(hashlimit_mt_reg)); 1327 unregister_pernet_subsys(&hashlimit_net_ops); 1328 1329 rcu_barrier(); 1330 kmem_cache_destroy(hashlimit_cachep); 1331 } 1332 1333 module_init(hashlimit_mt_init); 1334 module_exit(hashlimit_mt_exit); 1335