1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <linux/sock_diag.h> 97 #include <net/tcp_states.h> 98 #include <linux/skbuff.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <net/net_namespace.h> 102 #include <net/icmp.h> 103 #include <net/inet_hashtables.h> 104 #include <net/ip.h> 105 #include <net/ip_tunnels.h> 106 #include <net/route.h> 107 #include <net/checksum.h> 108 #include <net/gso.h> 109 #include <net/xfrm.h> 110 #include <trace/events/udp.h> 111 #include <linux/static_key.h> 112 #include <linux/btf_ids.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 #include <net/udp_tunnel.h> 119 #include <net/gro.h> 120 #if IS_ENABLED(CONFIG_IPV6) 121 #include <net/ipv6_stubs.h> 122 #endif 123 #include <net/rps.h> 124 125 struct udp_table udp_table __read_mostly; 126 127 long sysctl_udp_mem[3] __read_mostly; 128 EXPORT_IPV6_MOD(sysctl_udp_mem); 129 130 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 131 EXPORT_IPV6_MOD(udp_memory_allocated); 132 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 133 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 134 135 #define MAX_UDP_PORTS 65536 136 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 137 138 static struct udp_table *udp_get_table_prot(struct sock *sk) 139 { 140 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 141 } 142 143 static int udp_lib_lport_inuse(struct net *net, __u16 num, 144 const struct udp_hslot *hslot, 145 unsigned long *bitmap, 146 struct sock *sk, unsigned int log) 147 { 148 struct sock *sk2; 149 kuid_t uid = sock_i_uid(sk); 150 151 sk_for_each(sk2, &hslot->head) { 152 if (net_eq(sock_net(sk2), net) && 153 sk2 != sk && 154 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 155 (!sk2->sk_reuse || !sk->sk_reuse) && 156 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 157 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 158 inet_rcv_saddr_equal(sk, sk2, true)) { 159 if (sk2->sk_reuseport && sk->sk_reuseport && 160 !rcu_access_pointer(sk->sk_reuseport_cb) && 161 uid_eq(uid, sock_i_uid(sk2))) { 162 if (!bitmap) 163 return 0; 164 } else { 165 if (!bitmap) 166 return 1; 167 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 168 bitmap); 169 } 170 } 171 } 172 return 0; 173 } 174 175 /* 176 * Note: we still hold spinlock of primary hash chain, so no other writer 177 * can insert/delete a socket with local_port == num 178 */ 179 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 180 struct udp_hslot *hslot2, 181 struct sock *sk) 182 { 183 struct sock *sk2; 184 kuid_t uid = sock_i_uid(sk); 185 int res = 0; 186 187 spin_lock(&hslot2->lock); 188 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 189 if (net_eq(sock_net(sk2), net) && 190 sk2 != sk && 191 (udp_sk(sk2)->udp_port_hash == num) && 192 (!sk2->sk_reuse || !sk->sk_reuse) && 193 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 194 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 195 inet_rcv_saddr_equal(sk, sk2, true)) { 196 if (sk2->sk_reuseport && sk->sk_reuseport && 197 !rcu_access_pointer(sk->sk_reuseport_cb) && 198 uid_eq(uid, sock_i_uid(sk2))) { 199 res = 0; 200 } else { 201 res = 1; 202 } 203 break; 204 } 205 } 206 spin_unlock(&hslot2->lock); 207 return res; 208 } 209 210 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 211 { 212 struct net *net = sock_net(sk); 213 kuid_t uid = sock_i_uid(sk); 214 struct sock *sk2; 215 216 sk_for_each(sk2, &hslot->head) { 217 if (net_eq(sock_net(sk2), net) && 218 sk2 != sk && 219 sk2->sk_family == sk->sk_family && 220 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 221 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 222 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 223 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 224 inet_rcv_saddr_equal(sk, sk2, false)) { 225 return reuseport_add_sock(sk, sk2, 226 inet_rcv_saddr_any(sk)); 227 } 228 } 229 230 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 231 } 232 233 /** 234 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 235 * 236 * @sk: socket struct in question 237 * @snum: port number to look up 238 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 239 * with NULL address 240 */ 241 int udp_lib_get_port(struct sock *sk, unsigned short snum, 242 unsigned int hash2_nulladdr) 243 { 244 struct udp_table *udptable = udp_get_table_prot(sk); 245 struct udp_hslot *hslot, *hslot2; 246 struct net *net = sock_net(sk); 247 int error = -EADDRINUSE; 248 249 if (!snum) { 250 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 251 unsigned short first, last; 252 int low, high, remaining; 253 unsigned int rand; 254 255 inet_sk_get_local_port_range(sk, &low, &high); 256 remaining = (high - low) + 1; 257 258 rand = get_random_u32(); 259 first = reciprocal_scale(rand, remaining) + low; 260 /* 261 * force rand to be an odd multiple of UDP_HTABLE_SIZE 262 */ 263 rand = (rand | 1) * (udptable->mask + 1); 264 last = first + udptable->mask + 1; 265 do { 266 hslot = udp_hashslot(udptable, net, first); 267 bitmap_zero(bitmap, PORTS_PER_CHAIN); 268 spin_lock_bh(&hslot->lock); 269 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 270 udptable->log); 271 272 snum = first; 273 /* 274 * Iterate on all possible values of snum for this hash. 275 * Using steps of an odd multiple of UDP_HTABLE_SIZE 276 * give us randomization and full range coverage. 277 */ 278 do { 279 if (low <= snum && snum <= high && 280 !test_bit(snum >> udptable->log, bitmap) && 281 !inet_is_local_reserved_port(net, snum)) 282 goto found; 283 snum += rand; 284 } while (snum != first); 285 spin_unlock_bh(&hslot->lock); 286 cond_resched(); 287 } while (++first != last); 288 goto fail; 289 } else { 290 hslot = udp_hashslot(udptable, net, snum); 291 spin_lock_bh(&hslot->lock); 292 if (hslot->count > 10) { 293 int exist; 294 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 295 296 slot2 &= udptable->mask; 297 hash2_nulladdr &= udptable->mask; 298 299 hslot2 = udp_hashslot2(udptable, slot2); 300 if (hslot->count < hslot2->count) 301 goto scan_primary_hash; 302 303 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 304 if (!exist && (hash2_nulladdr != slot2)) { 305 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 306 exist = udp_lib_lport_inuse2(net, snum, hslot2, 307 sk); 308 } 309 if (exist) 310 goto fail_unlock; 311 else 312 goto found; 313 } 314 scan_primary_hash: 315 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 316 goto fail_unlock; 317 } 318 found: 319 inet_sk(sk)->inet_num = snum; 320 udp_sk(sk)->udp_port_hash = snum; 321 udp_sk(sk)->udp_portaddr_hash ^= snum; 322 if (sk_unhashed(sk)) { 323 if (sk->sk_reuseport && 324 udp_reuseport_add_sock(sk, hslot)) { 325 inet_sk(sk)->inet_num = 0; 326 udp_sk(sk)->udp_port_hash = 0; 327 udp_sk(sk)->udp_portaddr_hash ^= snum; 328 goto fail_unlock; 329 } 330 331 sock_set_flag(sk, SOCK_RCU_FREE); 332 333 sk_add_node_rcu(sk, &hslot->head); 334 hslot->count++; 335 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 336 337 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 338 spin_lock(&hslot2->lock); 339 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 340 sk->sk_family == AF_INET6) 341 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 342 &hslot2->head); 343 else 344 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 345 &hslot2->head); 346 hslot2->count++; 347 spin_unlock(&hslot2->lock); 348 } 349 350 error = 0; 351 fail_unlock: 352 spin_unlock_bh(&hslot->lock); 353 fail: 354 return error; 355 } 356 EXPORT_IPV6_MOD(udp_lib_get_port); 357 358 int udp_v4_get_port(struct sock *sk, unsigned short snum) 359 { 360 unsigned int hash2_nulladdr = 361 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 362 unsigned int hash2_partial = 363 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 364 365 /* precompute partial secondary hash */ 366 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 367 return udp_lib_get_port(sk, snum, hash2_nulladdr); 368 } 369 370 static int compute_score(struct sock *sk, const struct net *net, 371 __be32 saddr, __be16 sport, 372 __be32 daddr, unsigned short hnum, 373 int dif, int sdif) 374 { 375 int score; 376 struct inet_sock *inet; 377 bool dev_match; 378 379 if (!net_eq(sock_net(sk), net) || 380 udp_sk(sk)->udp_port_hash != hnum || 381 ipv6_only_sock(sk)) 382 return -1; 383 384 if (sk->sk_rcv_saddr != daddr) 385 return -1; 386 387 score = (sk->sk_family == PF_INET) ? 2 : 1; 388 389 inet = inet_sk(sk); 390 if (inet->inet_daddr) { 391 if (inet->inet_daddr != saddr) 392 return -1; 393 score += 4; 394 } 395 396 if (inet->inet_dport) { 397 if (inet->inet_dport != sport) 398 return -1; 399 score += 4; 400 } 401 402 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 403 dif, sdif); 404 if (!dev_match) 405 return -1; 406 if (sk->sk_bound_dev_if) 407 score += 4; 408 409 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 410 score++; 411 return score; 412 } 413 414 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 415 const __be32 faddr, const __be16 fport) 416 { 417 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 418 419 return __inet_ehashfn(laddr, lport, faddr, fport, 420 udp_ehash_secret + net_hash_mix(net)); 421 } 422 EXPORT_IPV6_MOD(udp_ehashfn); 423 424 /** 425 * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port) 426 * @net: Network namespace 427 * @saddr: Source address, network order 428 * @sport: Source port, network order 429 * @daddr: Destination address, network order 430 * @hnum: Destination port, host order 431 * @dif: Destination interface index 432 * @sdif: Destination bridge port index, if relevant 433 * @udptable: Set of UDP hash tables 434 * 435 * Simplified lookup to be used as fallback if no sockets are found due to a 436 * potential race between (receive) address change, and lookup happening before 437 * the rehash operation. This function ignores SO_REUSEPORT groups while scoring 438 * result sockets, because if we have one, we don't need the fallback at all. 439 * 440 * Called under rcu_read_lock(). 441 * 442 * Return: socket with highest matching score if any, NULL if none 443 */ 444 static struct sock *udp4_lib_lookup1(const struct net *net, 445 __be32 saddr, __be16 sport, 446 __be32 daddr, unsigned int hnum, 447 int dif, int sdif, 448 const struct udp_table *udptable) 449 { 450 unsigned int slot = udp_hashfn(net, hnum, udptable->mask); 451 struct udp_hslot *hslot = &udptable->hash[slot]; 452 struct sock *sk, *result = NULL; 453 int score, badness = 0; 454 455 sk_for_each_rcu(sk, &hslot->head) { 456 score = compute_score(sk, net, 457 saddr, sport, daddr, hnum, dif, sdif); 458 if (score > badness) { 459 result = sk; 460 badness = score; 461 } 462 } 463 464 return result; 465 } 466 467 /* called with rcu_read_lock() */ 468 static struct sock *udp4_lib_lookup2(const struct net *net, 469 __be32 saddr, __be16 sport, 470 __be32 daddr, unsigned int hnum, 471 int dif, int sdif, 472 struct udp_hslot *hslot2, 473 struct sk_buff *skb) 474 { 475 struct sock *sk, *result; 476 int score, badness; 477 bool need_rescore; 478 479 result = NULL; 480 badness = 0; 481 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 482 need_rescore = false; 483 rescore: 484 score = compute_score(need_rescore ? result : sk, net, saddr, 485 sport, daddr, hnum, dif, sdif); 486 if (score > badness) { 487 badness = score; 488 489 if (need_rescore) 490 continue; 491 492 if (sk->sk_state == TCP_ESTABLISHED) { 493 result = sk; 494 continue; 495 } 496 497 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 498 saddr, sport, daddr, hnum, udp_ehashfn); 499 if (!result) { 500 result = sk; 501 continue; 502 } 503 504 /* Fall back to scoring if group has connections */ 505 if (!reuseport_has_conns(sk)) 506 return result; 507 508 /* Reuseport logic returned an error, keep original score. */ 509 if (IS_ERR(result)) 510 continue; 511 512 /* compute_score is too long of a function to be 513 * inlined, and calling it again here yields 514 * measureable overhead for some 515 * workloads. Work around it by jumping 516 * backwards to rescore 'result'. 517 */ 518 need_rescore = true; 519 goto rescore; 520 } 521 } 522 return result; 523 } 524 525 #if IS_ENABLED(CONFIG_BASE_SMALL) 526 static struct sock *udp4_lib_lookup4(const struct net *net, 527 __be32 saddr, __be16 sport, 528 __be32 daddr, unsigned int hnum, 529 int dif, int sdif, 530 struct udp_table *udptable) 531 { 532 return NULL; 533 } 534 535 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 536 u16 newhash4) 537 { 538 } 539 540 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 541 { 542 } 543 #else /* !CONFIG_BASE_SMALL */ 544 static struct sock *udp4_lib_lookup4(const struct net *net, 545 __be32 saddr, __be16 sport, 546 __be32 daddr, unsigned int hnum, 547 int dif, int sdif, 548 struct udp_table *udptable) 549 { 550 const __portpair ports = INET_COMBINED_PORTS(sport, hnum); 551 const struct hlist_nulls_node *node; 552 struct udp_hslot *hslot4; 553 unsigned int hash4, slot; 554 struct udp_sock *up; 555 struct sock *sk; 556 557 hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport); 558 slot = hash4 & udptable->mask; 559 hslot4 = &udptable->hash4[slot]; 560 INET_ADDR_COOKIE(acookie, saddr, daddr); 561 562 begin: 563 /* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */ 564 udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) { 565 sk = (struct sock *)up; 566 if (inet_match(net, sk, acookie, ports, dif, sdif)) 567 return sk; 568 } 569 570 /* if the nulls value we got at the end of this lookup is not the 571 * expected one, we must restart lookup. We probably met an item that 572 * was moved to another chain due to rehash. 573 */ 574 if (get_nulls_value(node) != slot) 575 goto begin; 576 577 return NULL; 578 } 579 580 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */ 581 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 582 u16 newhash4) 583 { 584 struct udp_hslot *hslot4, *nhslot4; 585 586 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 587 nhslot4 = udp_hashslot4(udptable, newhash4); 588 udp_sk(sk)->udp_lrpa_hash = newhash4; 589 590 if (hslot4 != nhslot4) { 591 spin_lock_bh(&hslot4->lock); 592 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 593 hslot4->count--; 594 spin_unlock_bh(&hslot4->lock); 595 596 spin_lock_bh(&nhslot4->lock); 597 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 598 &nhslot4->nulls_head); 599 nhslot4->count++; 600 spin_unlock_bh(&nhslot4->lock); 601 } 602 } 603 604 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 605 { 606 struct udp_hslot *hslot2, *hslot4; 607 608 if (udp_hashed4(sk)) { 609 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 610 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 611 612 spin_lock(&hslot4->lock); 613 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 614 hslot4->count--; 615 spin_unlock(&hslot4->lock); 616 617 spin_lock(&hslot2->lock); 618 udp_hash4_dec(hslot2); 619 spin_unlock(&hslot2->lock); 620 } 621 } 622 623 void udp_lib_hash4(struct sock *sk, u16 hash) 624 { 625 struct udp_hslot *hslot, *hslot2, *hslot4; 626 struct net *net = sock_net(sk); 627 struct udp_table *udptable; 628 629 /* Connected udp socket can re-connect to another remote address, which 630 * will be handled by rehash. Thus no need to redo hash4 here. 631 */ 632 if (udp_hashed4(sk)) 633 return; 634 635 udptable = net->ipv4.udp_table; 636 hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash); 637 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 638 hslot4 = udp_hashslot4(udptable, hash); 639 udp_sk(sk)->udp_lrpa_hash = hash; 640 641 spin_lock_bh(&hslot->lock); 642 if (rcu_access_pointer(sk->sk_reuseport_cb)) 643 reuseport_detach_sock(sk); 644 645 spin_lock(&hslot4->lock); 646 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 647 &hslot4->nulls_head); 648 hslot4->count++; 649 spin_unlock(&hslot4->lock); 650 651 spin_lock(&hslot2->lock); 652 udp_hash4_inc(hslot2); 653 spin_unlock(&hslot2->lock); 654 655 spin_unlock_bh(&hslot->lock); 656 } 657 EXPORT_IPV6_MOD(udp_lib_hash4); 658 659 /* call with sock lock */ 660 void udp4_hash4(struct sock *sk) 661 { 662 struct net *net = sock_net(sk); 663 unsigned int hash; 664 665 if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY)) 666 return; 667 668 hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num, 669 sk->sk_daddr, sk->sk_dport); 670 671 udp_lib_hash4(sk, hash); 672 } 673 EXPORT_IPV6_MOD(udp4_hash4); 674 #endif /* CONFIG_BASE_SMALL */ 675 676 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 677 * harder than this. -DaveM 678 */ 679 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, 680 __be16 sport, __be32 daddr, __be16 dport, int dif, 681 int sdif, struct udp_table *udptable, struct sk_buff *skb) 682 { 683 unsigned short hnum = ntohs(dport); 684 struct udp_hslot *hslot2; 685 struct sock *result, *sk; 686 unsigned int hash2; 687 688 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 689 hslot2 = udp_hashslot2(udptable, hash2); 690 691 if (udp_has_hash4(hslot2)) { 692 result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum, 693 dif, sdif, udptable); 694 if (result) /* udp4_lib_lookup4 return sk or NULL */ 695 return result; 696 } 697 698 /* Lookup connected or non-wildcard socket */ 699 result = udp4_lib_lookup2(net, saddr, sport, 700 daddr, hnum, dif, sdif, 701 hslot2, skb); 702 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 703 goto done; 704 705 /* Lookup redirect from BPF */ 706 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 707 udptable == net->ipv4.udp_table) { 708 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 709 saddr, sport, daddr, hnum, dif, 710 udp_ehashfn); 711 if (sk) { 712 result = sk; 713 goto done; 714 } 715 } 716 717 /* Got non-wildcard socket or error on first lookup */ 718 if (result) 719 goto done; 720 721 /* Lookup wildcard sockets */ 722 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 723 hslot2 = udp_hashslot2(udptable, hash2); 724 725 result = udp4_lib_lookup2(net, saddr, sport, 726 htonl(INADDR_ANY), hnum, dif, sdif, 727 hslot2, skb); 728 if (!IS_ERR_OR_NULL(result)) 729 goto done; 730 731 /* Primary hash (destination port) lookup as fallback for this race: 732 * 1. __ip4_datagram_connect() sets sk_rcv_saddr 733 * 2. lookup (this function): new sk_rcv_saddr, hashes not updated yet 734 * 3. rehash operation updating _secondary and four-tuple_ hashes 735 * The primary hash doesn't need an update after 1., so, thanks to this 736 * further step, 1. and 3. don't need to be atomic against the lookup. 737 */ 738 result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif, 739 udptable); 740 741 done: 742 if (IS_ERR(result)) 743 return NULL; 744 return result; 745 } 746 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 747 748 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 749 __be16 sport, __be16 dport, 750 struct udp_table *udptable) 751 { 752 const struct iphdr *iph = ip_hdr(skb); 753 754 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 755 iph->daddr, dport, inet_iif(skb), 756 inet_sdif(skb), udptable, skb); 757 } 758 759 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 760 __be16 sport, __be16 dport) 761 { 762 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; 763 const struct iphdr *iph = (struct iphdr *)(skb->data + offset); 764 struct net *net = dev_net(skb->dev); 765 int iif, sdif; 766 767 inet_get_iif_sdif(skb, &iif, &sdif); 768 769 return __udp4_lib_lookup(net, iph->saddr, sport, 770 iph->daddr, dport, iif, 771 sdif, net->ipv4.udp_table, NULL); 772 } 773 774 /* Must be called under rcu_read_lock(). 775 * Does increment socket refcount. 776 */ 777 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 778 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, 779 __be32 daddr, __be16 dport, int dif) 780 { 781 struct sock *sk; 782 783 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 784 dif, 0, net->ipv4.udp_table, NULL); 785 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 786 sk = NULL; 787 return sk; 788 } 789 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 790 #endif 791 792 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 793 __be16 loc_port, __be32 loc_addr, 794 __be16 rmt_port, __be32 rmt_addr, 795 int dif, int sdif, unsigned short hnum) 796 { 797 const struct inet_sock *inet = inet_sk(sk); 798 799 if (!net_eq(sock_net(sk), net) || 800 udp_sk(sk)->udp_port_hash != hnum || 801 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 802 (inet->inet_dport != rmt_port && inet->inet_dport) || 803 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 804 ipv6_only_sock(sk) || 805 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 806 return false; 807 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 808 return false; 809 return true; 810 } 811 812 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 813 EXPORT_IPV6_MOD(udp_encap_needed_key); 814 815 #if IS_ENABLED(CONFIG_IPV6) 816 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 817 EXPORT_IPV6_MOD(udpv6_encap_needed_key); 818 #endif 819 820 void udp_encap_enable(void) 821 { 822 static_branch_inc(&udp_encap_needed_key); 823 } 824 EXPORT_SYMBOL(udp_encap_enable); 825 826 void udp_encap_disable(void) 827 { 828 static_branch_dec(&udp_encap_needed_key); 829 } 830 EXPORT_SYMBOL(udp_encap_disable); 831 832 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 833 * through error handlers in encapsulations looking for a match. 834 */ 835 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 836 { 837 int i; 838 839 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 840 int (*handler)(struct sk_buff *skb, u32 info); 841 const struct ip_tunnel_encap_ops *encap; 842 843 encap = rcu_dereference(iptun_encaps[i]); 844 if (!encap) 845 continue; 846 handler = encap->err_handler; 847 if (handler && !handler(skb, info)) 848 return 0; 849 } 850 851 return -ENOENT; 852 } 853 854 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 855 * reversing source and destination port: this will match tunnels that force the 856 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 857 * lwtunnels might actually break this assumption by being configured with 858 * different destination ports on endpoints, in this case we won't be able to 859 * trace ICMP messages back to them. 860 * 861 * If this doesn't match any socket, probe tunnels with arbitrary destination 862 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 863 * we've sent packets to won't necessarily match the local destination port. 864 * 865 * Then ask the tunnel implementation to match the error against a valid 866 * association. 867 * 868 * Return an error if we can't find a match, the socket if we need further 869 * processing, zero otherwise. 870 */ 871 static struct sock *__udp4_lib_err_encap(struct net *net, 872 const struct iphdr *iph, 873 struct udphdr *uh, 874 struct udp_table *udptable, 875 struct sock *sk, 876 struct sk_buff *skb, u32 info) 877 { 878 int (*lookup)(struct sock *sk, struct sk_buff *skb); 879 int network_offset, transport_offset; 880 struct udp_sock *up; 881 882 network_offset = skb_network_offset(skb); 883 transport_offset = skb_transport_offset(skb); 884 885 /* Network header needs to point to the outer IPv4 header inside ICMP */ 886 skb_reset_network_header(skb); 887 888 /* Transport header needs to point to the UDP header */ 889 skb_set_transport_header(skb, iph->ihl << 2); 890 891 if (sk) { 892 up = udp_sk(sk); 893 894 lookup = READ_ONCE(up->encap_err_lookup); 895 if (lookup && lookup(sk, skb)) 896 sk = NULL; 897 898 goto out; 899 } 900 901 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 902 iph->saddr, uh->dest, skb->dev->ifindex, 0, 903 udptable, NULL); 904 if (sk) { 905 up = udp_sk(sk); 906 907 lookup = READ_ONCE(up->encap_err_lookup); 908 if (!lookup || lookup(sk, skb)) 909 sk = NULL; 910 } 911 912 out: 913 if (!sk) 914 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 915 916 skb_set_transport_header(skb, transport_offset); 917 skb_set_network_header(skb, network_offset); 918 919 return sk; 920 } 921 922 /* 923 * This routine is called by the ICMP module when it gets some 924 * sort of error condition. If err < 0 then the socket should 925 * be closed and the error returned to the user. If err > 0 926 * it's just the icmp type << 8 | icmp code. 927 * Header points to the ip header of the error packet. We move 928 * on past this. Then (as it used to claim before adjustment) 929 * header points to the first 8 bytes of the udp header. We need 930 * to find the appropriate port. 931 */ 932 933 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 934 { 935 struct inet_sock *inet; 936 const struct iphdr *iph = (const struct iphdr *)skb->data; 937 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 938 const int type = icmp_hdr(skb)->type; 939 const int code = icmp_hdr(skb)->code; 940 bool tunnel = false; 941 struct sock *sk; 942 int harderr; 943 int err; 944 struct net *net = dev_net(skb->dev); 945 946 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 947 iph->saddr, uh->source, skb->dev->ifindex, 948 inet_sdif(skb), udptable, NULL); 949 950 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 951 /* No socket for error: try tunnels before discarding */ 952 if (static_branch_unlikely(&udp_encap_needed_key)) { 953 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 954 info); 955 if (!sk) 956 return 0; 957 } else 958 sk = ERR_PTR(-ENOENT); 959 960 if (IS_ERR(sk)) { 961 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 962 return PTR_ERR(sk); 963 } 964 965 tunnel = true; 966 } 967 968 err = 0; 969 harderr = 0; 970 inet = inet_sk(sk); 971 972 switch (type) { 973 default: 974 case ICMP_TIME_EXCEEDED: 975 err = EHOSTUNREACH; 976 break; 977 case ICMP_SOURCE_QUENCH: 978 goto out; 979 case ICMP_PARAMETERPROB: 980 err = EPROTO; 981 harderr = 1; 982 break; 983 case ICMP_DEST_UNREACH: 984 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 985 ipv4_sk_update_pmtu(skb, sk, info); 986 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 987 err = EMSGSIZE; 988 harderr = 1; 989 break; 990 } 991 goto out; 992 } 993 err = EHOSTUNREACH; 994 if (code <= NR_ICMP_UNREACH) { 995 harderr = icmp_err_convert[code].fatal; 996 err = icmp_err_convert[code].errno; 997 } 998 break; 999 case ICMP_REDIRECT: 1000 ipv4_sk_redirect(skb, sk); 1001 goto out; 1002 } 1003 1004 /* 1005 * RFC1122: OK. Passes ICMP errors back to application, as per 1006 * 4.1.3.3. 1007 */ 1008 if (tunnel) { 1009 /* ...not for tunnels though: we don't have a sending socket */ 1010 if (udp_sk(sk)->encap_err_rcv) 1011 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 1012 (u8 *)(uh+1)); 1013 goto out; 1014 } 1015 if (!inet_test_bit(RECVERR, sk)) { 1016 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 1017 goto out; 1018 } else 1019 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 1020 1021 sk->sk_err = err; 1022 sk_error_report(sk); 1023 out: 1024 return 0; 1025 } 1026 1027 int udp_err(struct sk_buff *skb, u32 info) 1028 { 1029 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 1030 } 1031 1032 /* 1033 * Throw away all pending data and cancel the corking. Socket is locked. 1034 */ 1035 void udp_flush_pending_frames(struct sock *sk) 1036 { 1037 struct udp_sock *up = udp_sk(sk); 1038 1039 if (up->pending) { 1040 up->len = 0; 1041 WRITE_ONCE(up->pending, 0); 1042 ip_flush_pending_frames(sk); 1043 } 1044 } 1045 EXPORT_IPV6_MOD(udp_flush_pending_frames); 1046 1047 /** 1048 * udp4_hwcsum - handle outgoing HW checksumming 1049 * @skb: sk_buff containing the filled-in UDP header 1050 * (checksum field must be zeroed out) 1051 * @src: source IP address 1052 * @dst: destination IP address 1053 */ 1054 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 1055 { 1056 struct udphdr *uh = udp_hdr(skb); 1057 int offset = skb_transport_offset(skb); 1058 int len = skb->len - offset; 1059 int hlen = len; 1060 __wsum csum = 0; 1061 1062 if (!skb_has_frag_list(skb)) { 1063 /* 1064 * Only one fragment on the socket. 1065 */ 1066 skb->csum_start = skb_transport_header(skb) - skb->head; 1067 skb->csum_offset = offsetof(struct udphdr, check); 1068 uh->check = ~csum_tcpudp_magic(src, dst, len, 1069 IPPROTO_UDP, 0); 1070 } else { 1071 struct sk_buff *frags; 1072 1073 /* 1074 * HW-checksum won't work as there are two or more 1075 * fragments on the socket so that all csums of sk_buffs 1076 * should be together 1077 */ 1078 skb_walk_frags(skb, frags) { 1079 csum = csum_add(csum, frags->csum); 1080 hlen -= frags->len; 1081 } 1082 1083 csum = skb_checksum(skb, offset, hlen, csum); 1084 skb->ip_summed = CHECKSUM_NONE; 1085 1086 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 1087 if (uh->check == 0) 1088 uh->check = CSUM_MANGLED_0; 1089 } 1090 } 1091 EXPORT_SYMBOL_GPL(udp4_hwcsum); 1092 1093 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 1094 * for the simple case like when setting the checksum for a UDP tunnel. 1095 */ 1096 void udp_set_csum(bool nocheck, struct sk_buff *skb, 1097 __be32 saddr, __be32 daddr, int len) 1098 { 1099 struct udphdr *uh = udp_hdr(skb); 1100 1101 if (nocheck) { 1102 uh->check = 0; 1103 } else if (skb_is_gso(skb)) { 1104 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1105 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 1106 uh->check = 0; 1107 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 1108 if (uh->check == 0) 1109 uh->check = CSUM_MANGLED_0; 1110 } else { 1111 skb->ip_summed = CHECKSUM_PARTIAL; 1112 skb->csum_start = skb_transport_header(skb) - skb->head; 1113 skb->csum_offset = offsetof(struct udphdr, check); 1114 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1115 } 1116 } 1117 EXPORT_SYMBOL(udp_set_csum); 1118 1119 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 1120 struct inet_cork *cork) 1121 { 1122 struct sock *sk = skb->sk; 1123 struct inet_sock *inet = inet_sk(sk); 1124 struct udphdr *uh; 1125 int err; 1126 int is_udplite = IS_UDPLITE(sk); 1127 int offset = skb_transport_offset(skb); 1128 int len = skb->len - offset; 1129 int datalen = len - sizeof(*uh); 1130 __wsum csum = 0; 1131 1132 /* 1133 * Create a UDP header 1134 */ 1135 uh = udp_hdr(skb); 1136 uh->source = inet->inet_sport; 1137 uh->dest = fl4->fl4_dport; 1138 uh->len = htons(len); 1139 uh->check = 0; 1140 1141 if (cork->gso_size) { 1142 const int hlen = skb_network_header_len(skb) + 1143 sizeof(struct udphdr); 1144 1145 if (hlen + min(datalen, cork->gso_size) > cork->fragsize) { 1146 kfree_skb(skb); 1147 return -EMSGSIZE; 1148 } 1149 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 1150 kfree_skb(skb); 1151 return -EINVAL; 1152 } 1153 if (sk->sk_no_check_tx) { 1154 kfree_skb(skb); 1155 return -EINVAL; 1156 } 1157 if (is_udplite || dst_xfrm(skb_dst(skb))) { 1158 kfree_skb(skb); 1159 return -EIO; 1160 } 1161 1162 if (datalen > cork->gso_size) { 1163 skb_shinfo(skb)->gso_size = cork->gso_size; 1164 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 1165 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 1166 cork->gso_size); 1167 1168 /* Don't checksum the payload, skb will get segmented */ 1169 goto csum_partial; 1170 } 1171 } 1172 1173 if (is_udplite) /* UDP-Lite */ 1174 csum = udplite_csum(skb); 1175 1176 else if (sk->sk_no_check_tx) { /* UDP csum off */ 1177 1178 skb->ip_summed = CHECKSUM_NONE; 1179 goto send; 1180 1181 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 1182 csum_partial: 1183 1184 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 1185 goto send; 1186 1187 } else 1188 csum = udp_csum(skb); 1189 1190 /* add protocol-dependent pseudo-header */ 1191 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 1192 sk->sk_protocol, csum); 1193 if (uh->check == 0) 1194 uh->check = CSUM_MANGLED_0; 1195 1196 send: 1197 err = ip_send_skb(sock_net(sk), skb); 1198 if (err) { 1199 if (err == -ENOBUFS && 1200 !inet_test_bit(RECVERR, sk)) { 1201 UDP_INC_STATS(sock_net(sk), 1202 UDP_MIB_SNDBUFERRORS, is_udplite); 1203 err = 0; 1204 } 1205 } else 1206 UDP_INC_STATS(sock_net(sk), 1207 UDP_MIB_OUTDATAGRAMS, is_udplite); 1208 return err; 1209 } 1210 1211 /* 1212 * Push out all pending data as one UDP datagram. Socket is locked. 1213 */ 1214 int udp_push_pending_frames(struct sock *sk) 1215 { 1216 struct udp_sock *up = udp_sk(sk); 1217 struct inet_sock *inet = inet_sk(sk); 1218 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1219 struct sk_buff *skb; 1220 int err = 0; 1221 1222 skb = ip_finish_skb(sk, fl4); 1223 if (!skb) 1224 goto out; 1225 1226 err = udp_send_skb(skb, fl4, &inet->cork.base); 1227 1228 out: 1229 up->len = 0; 1230 WRITE_ONCE(up->pending, 0); 1231 return err; 1232 } 1233 EXPORT_IPV6_MOD(udp_push_pending_frames); 1234 1235 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1236 { 1237 switch (cmsg->cmsg_type) { 1238 case UDP_SEGMENT: 1239 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1240 return -EINVAL; 1241 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1242 return 0; 1243 default: 1244 return -EINVAL; 1245 } 1246 } 1247 1248 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1249 { 1250 struct cmsghdr *cmsg; 1251 bool need_ip = false; 1252 int err; 1253 1254 for_each_cmsghdr(cmsg, msg) { 1255 if (!CMSG_OK(msg, cmsg)) 1256 return -EINVAL; 1257 1258 if (cmsg->cmsg_level != SOL_UDP) { 1259 need_ip = true; 1260 continue; 1261 } 1262 1263 err = __udp_cmsg_send(cmsg, gso_size); 1264 if (err) 1265 return err; 1266 } 1267 1268 return need_ip; 1269 } 1270 EXPORT_IPV6_MOD_GPL(udp_cmsg_send); 1271 1272 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1273 { 1274 struct inet_sock *inet = inet_sk(sk); 1275 struct udp_sock *up = udp_sk(sk); 1276 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1277 struct flowi4 fl4_stack; 1278 struct flowi4 *fl4; 1279 int ulen = len; 1280 struct ipcm_cookie ipc; 1281 struct rtable *rt = NULL; 1282 int free = 0; 1283 int connected = 0; 1284 __be32 daddr, faddr, saddr; 1285 u8 scope; 1286 __be16 dport; 1287 int err, is_udplite = IS_UDPLITE(sk); 1288 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1289 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1290 struct sk_buff *skb; 1291 struct ip_options_data opt_copy; 1292 int uc_index; 1293 1294 if (len > 0xFFFF) 1295 return -EMSGSIZE; 1296 1297 /* 1298 * Check the flags. 1299 */ 1300 1301 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1302 return -EOPNOTSUPP; 1303 1304 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1305 1306 fl4 = &inet->cork.fl.u.ip4; 1307 if (READ_ONCE(up->pending)) { 1308 /* 1309 * There are pending frames. 1310 * The socket lock must be held while it's corked. 1311 */ 1312 lock_sock(sk); 1313 if (likely(up->pending)) { 1314 if (unlikely(up->pending != AF_INET)) { 1315 release_sock(sk); 1316 return -EINVAL; 1317 } 1318 goto do_append_data; 1319 } 1320 release_sock(sk); 1321 } 1322 ulen += sizeof(struct udphdr); 1323 1324 /* 1325 * Get and verify the address. 1326 */ 1327 if (usin) { 1328 if (msg->msg_namelen < sizeof(*usin)) 1329 return -EINVAL; 1330 if (usin->sin_family != AF_INET) { 1331 if (usin->sin_family != AF_UNSPEC) 1332 return -EAFNOSUPPORT; 1333 } 1334 1335 daddr = usin->sin_addr.s_addr; 1336 dport = usin->sin_port; 1337 if (dport == 0) 1338 return -EINVAL; 1339 } else { 1340 if (sk->sk_state != TCP_ESTABLISHED) 1341 return -EDESTADDRREQ; 1342 daddr = inet->inet_daddr; 1343 dport = inet->inet_dport; 1344 /* Open fast path for connected socket. 1345 Route will not be used, if at least one option is set. 1346 */ 1347 connected = 1; 1348 } 1349 1350 ipcm_init_sk(&ipc, inet); 1351 ipc.gso_size = READ_ONCE(up->gso_size); 1352 1353 if (msg->msg_controllen) { 1354 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1355 if (err > 0) { 1356 err = ip_cmsg_send(sk, msg, &ipc, 1357 sk->sk_family == AF_INET6); 1358 connected = 0; 1359 } 1360 if (unlikely(err < 0)) { 1361 kfree(ipc.opt); 1362 return err; 1363 } 1364 if (ipc.opt) 1365 free = 1; 1366 } 1367 if (!ipc.opt) { 1368 struct ip_options_rcu *inet_opt; 1369 1370 rcu_read_lock(); 1371 inet_opt = rcu_dereference(inet->inet_opt); 1372 if (inet_opt) { 1373 memcpy(&opt_copy, inet_opt, 1374 sizeof(*inet_opt) + inet_opt->opt.optlen); 1375 ipc.opt = &opt_copy.opt; 1376 } 1377 rcu_read_unlock(); 1378 } 1379 1380 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1381 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1382 (struct sockaddr *)usin, 1383 &msg->msg_namelen, 1384 &ipc.addr); 1385 if (err) 1386 goto out_free; 1387 if (usin) { 1388 if (usin->sin_port == 0) { 1389 /* BPF program set invalid port. Reject it. */ 1390 err = -EINVAL; 1391 goto out_free; 1392 } 1393 daddr = usin->sin_addr.s_addr; 1394 dport = usin->sin_port; 1395 } 1396 } 1397 1398 saddr = ipc.addr; 1399 ipc.addr = faddr = daddr; 1400 1401 if (ipc.opt && ipc.opt->opt.srr) { 1402 if (!daddr) { 1403 err = -EINVAL; 1404 goto out_free; 1405 } 1406 faddr = ipc.opt->opt.faddr; 1407 connected = 0; 1408 } 1409 scope = ip_sendmsg_scope(inet, &ipc, msg); 1410 if (scope == RT_SCOPE_LINK) 1411 connected = 0; 1412 1413 uc_index = READ_ONCE(inet->uc_index); 1414 if (ipv4_is_multicast(daddr)) { 1415 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1416 ipc.oif = READ_ONCE(inet->mc_index); 1417 if (!saddr) 1418 saddr = READ_ONCE(inet->mc_addr); 1419 connected = 0; 1420 } else if (!ipc.oif) { 1421 ipc.oif = uc_index; 1422 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1423 /* oif is set, packet is to local broadcast and 1424 * uc_index is set. oif is most likely set 1425 * by sk_bound_dev_if. If uc_index != oif check if the 1426 * oif is an L3 master and uc_index is an L3 slave. 1427 * If so, we want to allow the send using the uc_index. 1428 */ 1429 if (ipc.oif != uc_index && 1430 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1431 uc_index)) { 1432 ipc.oif = uc_index; 1433 } 1434 } 1435 1436 if (connected) 1437 rt = dst_rtable(sk_dst_check(sk, 0)); 1438 1439 if (!rt) { 1440 struct net *net = sock_net(sk); 1441 __u8 flow_flags = inet_sk_flowi_flags(sk); 1442 1443 fl4 = &fl4_stack; 1444 1445 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, 1446 ipc.tos & INET_DSCP_MASK, scope, 1447 sk->sk_protocol, flow_flags, faddr, saddr, 1448 dport, inet->inet_sport, sk->sk_uid); 1449 1450 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1451 rt = ip_route_output_flow(net, fl4, sk); 1452 if (IS_ERR(rt)) { 1453 err = PTR_ERR(rt); 1454 rt = NULL; 1455 if (err == -ENETUNREACH) 1456 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1457 goto out; 1458 } 1459 1460 err = -EACCES; 1461 if ((rt->rt_flags & RTCF_BROADCAST) && 1462 !sock_flag(sk, SOCK_BROADCAST)) 1463 goto out; 1464 if (connected) 1465 sk_dst_set(sk, dst_clone(&rt->dst)); 1466 } 1467 1468 if (msg->msg_flags&MSG_CONFIRM) 1469 goto do_confirm; 1470 back_from_confirm: 1471 1472 saddr = fl4->saddr; 1473 if (!ipc.addr) 1474 daddr = ipc.addr = fl4->daddr; 1475 1476 /* Lockless fast path for the non-corking case. */ 1477 if (!corkreq) { 1478 struct inet_cork cork; 1479 1480 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1481 sizeof(struct udphdr), &ipc, &rt, 1482 &cork, msg->msg_flags); 1483 err = PTR_ERR(skb); 1484 if (!IS_ERR_OR_NULL(skb)) 1485 err = udp_send_skb(skb, fl4, &cork); 1486 goto out; 1487 } 1488 1489 lock_sock(sk); 1490 if (unlikely(up->pending)) { 1491 /* The socket is already corked while preparing it. */ 1492 /* ... which is an evident application bug. --ANK */ 1493 release_sock(sk); 1494 1495 net_dbg_ratelimited("socket already corked\n"); 1496 err = -EINVAL; 1497 goto out; 1498 } 1499 /* 1500 * Now cork the socket to pend data. 1501 */ 1502 fl4 = &inet->cork.fl.u.ip4; 1503 fl4->daddr = daddr; 1504 fl4->saddr = saddr; 1505 fl4->fl4_dport = dport; 1506 fl4->fl4_sport = inet->inet_sport; 1507 WRITE_ONCE(up->pending, AF_INET); 1508 1509 do_append_data: 1510 up->len += ulen; 1511 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1512 sizeof(struct udphdr), &ipc, &rt, 1513 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1514 if (err) 1515 udp_flush_pending_frames(sk); 1516 else if (!corkreq) 1517 err = udp_push_pending_frames(sk); 1518 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1519 WRITE_ONCE(up->pending, 0); 1520 release_sock(sk); 1521 1522 out: 1523 ip_rt_put(rt); 1524 out_free: 1525 if (free) 1526 kfree(ipc.opt); 1527 if (!err) 1528 return len; 1529 /* 1530 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1531 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1532 * we don't have a good statistic (IpOutDiscards but it can be too many 1533 * things). We could add another new stat but at least for now that 1534 * seems like overkill. 1535 */ 1536 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1537 UDP_INC_STATS(sock_net(sk), 1538 UDP_MIB_SNDBUFERRORS, is_udplite); 1539 } 1540 return err; 1541 1542 do_confirm: 1543 if (msg->msg_flags & MSG_PROBE) 1544 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1545 if (!(msg->msg_flags&MSG_PROBE) || len) 1546 goto back_from_confirm; 1547 err = 0; 1548 goto out; 1549 } 1550 EXPORT_SYMBOL(udp_sendmsg); 1551 1552 void udp_splice_eof(struct socket *sock) 1553 { 1554 struct sock *sk = sock->sk; 1555 struct udp_sock *up = udp_sk(sk); 1556 1557 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1558 return; 1559 1560 lock_sock(sk); 1561 if (up->pending && !udp_test_bit(CORK, sk)) 1562 udp_push_pending_frames(sk); 1563 release_sock(sk); 1564 } 1565 EXPORT_IPV6_MOD_GPL(udp_splice_eof); 1566 1567 #define UDP_SKB_IS_STATELESS 0x80000000 1568 1569 /* all head states (dst, sk, nf conntrack) except skb extensions are 1570 * cleared by udp_rcv(). 1571 * 1572 * We need to preserve secpath, if present, to eventually process 1573 * IP_CMSG_PASSSEC at recvmsg() time. 1574 * 1575 * Other extensions can be cleared. 1576 */ 1577 static bool udp_try_make_stateless(struct sk_buff *skb) 1578 { 1579 if (!skb_has_extensions(skb)) 1580 return true; 1581 1582 if (!secpath_exists(skb)) { 1583 skb_ext_reset(skb); 1584 return true; 1585 } 1586 1587 return false; 1588 } 1589 1590 static void udp_set_dev_scratch(struct sk_buff *skb) 1591 { 1592 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1593 1594 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1595 scratch->_tsize_state = skb->truesize; 1596 #if BITS_PER_LONG == 64 1597 scratch->len = skb->len; 1598 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1599 scratch->is_linear = !skb_is_nonlinear(skb); 1600 #endif 1601 if (udp_try_make_stateless(skb)) 1602 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1603 } 1604 1605 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1606 { 1607 /* We come here after udp_lib_checksum_complete() returned 0. 1608 * This means that __skb_checksum_complete() might have 1609 * set skb->csum_valid to 1. 1610 * On 64bit platforms, we can set csum_unnecessary 1611 * to true, but only if the skb is not shared. 1612 */ 1613 #if BITS_PER_LONG == 64 1614 if (!skb_shared(skb)) 1615 udp_skb_scratch(skb)->csum_unnecessary = true; 1616 #endif 1617 } 1618 1619 static int udp_skb_truesize(struct sk_buff *skb) 1620 { 1621 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1622 } 1623 1624 static bool udp_skb_has_head_state(struct sk_buff *skb) 1625 { 1626 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1627 } 1628 1629 /* fully reclaim rmem/fwd memory allocated for skb */ 1630 static void udp_rmem_release(struct sock *sk, unsigned int size, 1631 int partial, bool rx_queue_lock_held) 1632 { 1633 struct udp_sock *up = udp_sk(sk); 1634 struct sk_buff_head *sk_queue; 1635 unsigned int amt; 1636 1637 if (likely(partial)) { 1638 up->forward_deficit += size; 1639 size = up->forward_deficit; 1640 if (size < READ_ONCE(up->forward_threshold) && 1641 !skb_queue_empty(&up->reader_queue)) 1642 return; 1643 } else { 1644 size += up->forward_deficit; 1645 } 1646 up->forward_deficit = 0; 1647 1648 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1649 * if the called don't held it already 1650 */ 1651 sk_queue = &sk->sk_receive_queue; 1652 if (!rx_queue_lock_held) 1653 spin_lock(&sk_queue->lock); 1654 1655 amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1656 sk_forward_alloc_add(sk, size - amt); 1657 1658 if (amt) 1659 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1660 1661 atomic_sub(size, &sk->sk_rmem_alloc); 1662 1663 /* this can save us from acquiring the rx queue lock on next receive */ 1664 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1665 1666 if (!rx_queue_lock_held) 1667 spin_unlock(&sk_queue->lock); 1668 } 1669 1670 /* Note: called with reader_queue.lock held. 1671 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1672 * This avoids a cache line miss while receive_queue lock is held. 1673 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1674 */ 1675 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1676 { 1677 prefetch(&skb->data); 1678 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1679 } 1680 EXPORT_IPV6_MOD(udp_skb_destructor); 1681 1682 /* as above, but the caller held the rx queue lock, too */ 1683 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1684 { 1685 prefetch(&skb->data); 1686 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1687 } 1688 1689 /* Idea of busylocks is to let producers grab an extra spinlock 1690 * to relieve pressure on the receive_queue spinlock shared by consumer. 1691 * Under flood, this means that only one producer can be in line 1692 * trying to acquire the receive_queue spinlock. 1693 * These busylock can be allocated on a per cpu manner, instead of a 1694 * per socket one (that would consume a cache line per socket) 1695 */ 1696 static int udp_busylocks_log __read_mostly; 1697 static spinlock_t *udp_busylocks __read_mostly; 1698 1699 static spinlock_t *busylock_acquire(void *ptr) 1700 { 1701 spinlock_t *busy; 1702 1703 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1704 spin_lock(busy); 1705 return busy; 1706 } 1707 1708 static void busylock_release(spinlock_t *busy) 1709 { 1710 if (busy) 1711 spin_unlock(busy); 1712 } 1713 1714 static int udp_rmem_schedule(struct sock *sk, int size) 1715 { 1716 int delta; 1717 1718 delta = size - sk->sk_forward_alloc; 1719 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1720 return -ENOBUFS; 1721 1722 return 0; 1723 } 1724 1725 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1726 { 1727 struct sk_buff_head *list = &sk->sk_receive_queue; 1728 unsigned int rmem, rcvbuf; 1729 spinlock_t *busy = NULL; 1730 int size, err = -ENOMEM; 1731 1732 rmem = atomic_read(&sk->sk_rmem_alloc); 1733 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1734 size = skb->truesize; 1735 1736 /* Immediately drop when the receive queue is full. 1737 * Cast to unsigned int performs the boundary check for INT_MAX. 1738 */ 1739 if (rmem + size > rcvbuf) { 1740 if (rcvbuf > INT_MAX >> 1) 1741 goto drop; 1742 1743 /* Always allow at least one packet for small buffer. */ 1744 if (rmem > rcvbuf) 1745 goto drop; 1746 } 1747 1748 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1749 * having linear skbs : 1750 * - Reduce memory overhead and thus increase receive queue capacity 1751 * - Less cache line misses at copyout() time 1752 * - Less work at consume_skb() (less alien page frag freeing) 1753 */ 1754 if (rmem > (rcvbuf >> 1)) { 1755 skb_condense(skb); 1756 size = skb->truesize; 1757 busy = busylock_acquire(sk); 1758 } 1759 1760 udp_set_dev_scratch(skb); 1761 1762 atomic_add(size, &sk->sk_rmem_alloc); 1763 1764 spin_lock(&list->lock); 1765 err = udp_rmem_schedule(sk, size); 1766 if (err) { 1767 spin_unlock(&list->lock); 1768 goto uncharge_drop; 1769 } 1770 1771 sk_forward_alloc_add(sk, -size); 1772 1773 /* no need to setup a destructor, we will explicitly release the 1774 * forward allocated memory on dequeue 1775 */ 1776 sock_skb_set_dropcount(sk, skb); 1777 1778 __skb_queue_tail(list, skb); 1779 spin_unlock(&list->lock); 1780 1781 if (!sock_flag(sk, SOCK_DEAD)) 1782 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1783 1784 busylock_release(busy); 1785 return 0; 1786 1787 uncharge_drop: 1788 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1789 1790 drop: 1791 atomic_inc(&sk->sk_drops); 1792 busylock_release(busy); 1793 return err; 1794 } 1795 EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb); 1796 1797 void udp_destruct_common(struct sock *sk) 1798 { 1799 /* reclaim completely the forward allocated memory */ 1800 struct udp_sock *up = udp_sk(sk); 1801 unsigned int total = 0; 1802 struct sk_buff *skb; 1803 1804 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1805 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1806 total += skb->truesize; 1807 kfree_skb(skb); 1808 } 1809 udp_rmem_release(sk, total, 0, true); 1810 } 1811 EXPORT_IPV6_MOD_GPL(udp_destruct_common); 1812 1813 static void udp_destruct_sock(struct sock *sk) 1814 { 1815 udp_destruct_common(sk); 1816 inet_sock_destruct(sk); 1817 } 1818 1819 int udp_init_sock(struct sock *sk) 1820 { 1821 udp_lib_init_sock(sk); 1822 sk->sk_destruct = udp_destruct_sock; 1823 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1824 return 0; 1825 } 1826 1827 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1828 { 1829 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) 1830 sk_peek_offset_bwd(sk, len); 1831 1832 if (!skb_unref(skb)) 1833 return; 1834 1835 /* In the more common cases we cleared the head states previously, 1836 * see __udp_queue_rcv_skb(). 1837 */ 1838 if (unlikely(udp_skb_has_head_state(skb))) 1839 skb_release_head_state(skb); 1840 __consume_stateless_skb(skb); 1841 } 1842 EXPORT_IPV6_MOD_GPL(skb_consume_udp); 1843 1844 static struct sk_buff *__first_packet_length(struct sock *sk, 1845 struct sk_buff_head *rcvq, 1846 unsigned int *total) 1847 { 1848 struct sk_buff *skb; 1849 1850 while ((skb = skb_peek(rcvq)) != NULL) { 1851 if (udp_lib_checksum_complete(skb)) { 1852 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1853 IS_UDPLITE(sk)); 1854 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1855 IS_UDPLITE(sk)); 1856 atomic_inc(&sk->sk_drops); 1857 __skb_unlink(skb, rcvq); 1858 *total += skb->truesize; 1859 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 1860 } else { 1861 udp_skb_csum_unnecessary_set(skb); 1862 break; 1863 } 1864 } 1865 return skb; 1866 } 1867 1868 /** 1869 * first_packet_length - return length of first packet in receive queue 1870 * @sk: socket 1871 * 1872 * Drops all bad checksum frames, until a valid one is found. 1873 * Returns the length of found skb, or -1 if none is found. 1874 */ 1875 static int first_packet_length(struct sock *sk) 1876 { 1877 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1878 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1879 unsigned int total = 0; 1880 struct sk_buff *skb; 1881 int res; 1882 1883 spin_lock_bh(&rcvq->lock); 1884 skb = __first_packet_length(sk, rcvq, &total); 1885 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1886 spin_lock(&sk_queue->lock); 1887 skb_queue_splice_tail_init(sk_queue, rcvq); 1888 spin_unlock(&sk_queue->lock); 1889 1890 skb = __first_packet_length(sk, rcvq, &total); 1891 } 1892 res = skb ? skb->len : -1; 1893 if (total) 1894 udp_rmem_release(sk, total, 1, false); 1895 spin_unlock_bh(&rcvq->lock); 1896 return res; 1897 } 1898 1899 /* 1900 * IOCTL requests applicable to the UDP protocol 1901 */ 1902 1903 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1904 { 1905 switch (cmd) { 1906 case SIOCOUTQ: 1907 { 1908 *karg = sk_wmem_alloc_get(sk); 1909 return 0; 1910 } 1911 1912 case SIOCINQ: 1913 { 1914 *karg = max_t(int, 0, first_packet_length(sk)); 1915 return 0; 1916 } 1917 1918 default: 1919 return -ENOIOCTLCMD; 1920 } 1921 1922 return 0; 1923 } 1924 EXPORT_IPV6_MOD(udp_ioctl); 1925 1926 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1927 int *off, int *err) 1928 { 1929 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1930 struct sk_buff_head *queue; 1931 struct sk_buff *last; 1932 long timeo; 1933 int error; 1934 1935 queue = &udp_sk(sk)->reader_queue; 1936 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1937 do { 1938 struct sk_buff *skb; 1939 1940 error = sock_error(sk); 1941 if (error) 1942 break; 1943 1944 error = -EAGAIN; 1945 do { 1946 spin_lock_bh(&queue->lock); 1947 skb = __skb_try_recv_from_queue(queue, flags, off, err, 1948 &last); 1949 if (skb) { 1950 if (!(flags & MSG_PEEK)) 1951 udp_skb_destructor(sk, skb); 1952 spin_unlock_bh(&queue->lock); 1953 return skb; 1954 } 1955 1956 if (skb_queue_empty_lockless(sk_queue)) { 1957 spin_unlock_bh(&queue->lock); 1958 goto busy_check; 1959 } 1960 1961 /* refill the reader queue and walk it again 1962 * keep both queues locked to avoid re-acquiring 1963 * the sk_receive_queue lock if fwd memory scheduling 1964 * is needed. 1965 */ 1966 spin_lock(&sk_queue->lock); 1967 skb_queue_splice_tail_init(sk_queue, queue); 1968 1969 skb = __skb_try_recv_from_queue(queue, flags, off, err, 1970 &last); 1971 if (skb && !(flags & MSG_PEEK)) 1972 udp_skb_dtor_locked(sk, skb); 1973 spin_unlock(&sk_queue->lock); 1974 spin_unlock_bh(&queue->lock); 1975 if (skb) 1976 return skb; 1977 1978 busy_check: 1979 if (!sk_can_busy_loop(sk)) 1980 break; 1981 1982 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1983 } while (!skb_queue_empty_lockless(sk_queue)); 1984 1985 /* sk_queue is empty, reader_queue may contain peeked packets */ 1986 } while (timeo && 1987 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1988 &error, &timeo, 1989 (struct sk_buff *)sk_queue)); 1990 1991 *err = error; 1992 return NULL; 1993 } 1994 EXPORT_SYMBOL(__skb_recv_udp); 1995 1996 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1997 { 1998 struct sk_buff *skb; 1999 int err; 2000 2001 try_again: 2002 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 2003 if (!skb) 2004 return err; 2005 2006 if (udp_lib_checksum_complete(skb)) { 2007 int is_udplite = IS_UDPLITE(sk); 2008 struct net *net = sock_net(sk); 2009 2010 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 2011 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 2012 atomic_inc(&sk->sk_drops); 2013 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 2014 goto try_again; 2015 } 2016 2017 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 2018 return recv_actor(sk, skb); 2019 } 2020 EXPORT_IPV6_MOD(udp_read_skb); 2021 2022 /* 2023 * This should be easy, if there is something there we 2024 * return it, otherwise we block. 2025 */ 2026 2027 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2028 int *addr_len) 2029 { 2030 struct inet_sock *inet = inet_sk(sk); 2031 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 2032 struct sk_buff *skb; 2033 unsigned int ulen, copied; 2034 int off, err, peeking = flags & MSG_PEEK; 2035 int is_udplite = IS_UDPLITE(sk); 2036 bool checksum_valid = false; 2037 2038 if (flags & MSG_ERRQUEUE) 2039 return ip_recv_error(sk, msg, len, addr_len); 2040 2041 try_again: 2042 off = sk_peek_offset(sk, flags); 2043 skb = __skb_recv_udp(sk, flags, &off, &err); 2044 if (!skb) 2045 return err; 2046 2047 ulen = udp_skb_len(skb); 2048 copied = len; 2049 if (copied > ulen - off) 2050 copied = ulen - off; 2051 else if (copied < ulen) 2052 msg->msg_flags |= MSG_TRUNC; 2053 2054 /* 2055 * If checksum is needed at all, try to do it while copying the 2056 * data. If the data is truncated, or if we only want a partial 2057 * coverage checksum (UDP-Lite), do it before the copy. 2058 */ 2059 2060 if (copied < ulen || peeking || 2061 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 2062 checksum_valid = udp_skb_csum_unnecessary(skb) || 2063 !__udp_lib_checksum_complete(skb); 2064 if (!checksum_valid) 2065 goto csum_copy_err; 2066 } 2067 2068 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 2069 if (udp_skb_is_linear(skb)) 2070 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 2071 else 2072 err = skb_copy_datagram_msg(skb, off, msg, copied); 2073 } else { 2074 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 2075 2076 if (err == -EINVAL) 2077 goto csum_copy_err; 2078 } 2079 2080 if (unlikely(err)) { 2081 if (!peeking) { 2082 atomic_inc(&sk->sk_drops); 2083 UDP_INC_STATS(sock_net(sk), 2084 UDP_MIB_INERRORS, is_udplite); 2085 } 2086 kfree_skb(skb); 2087 return err; 2088 } 2089 2090 if (!peeking) 2091 UDP_INC_STATS(sock_net(sk), 2092 UDP_MIB_INDATAGRAMS, is_udplite); 2093 2094 sock_recv_cmsgs(msg, sk, skb); 2095 2096 /* Copy the address. */ 2097 if (sin) { 2098 sin->sin_family = AF_INET; 2099 sin->sin_port = udp_hdr(skb)->source; 2100 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 2101 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2102 *addr_len = sizeof(*sin); 2103 2104 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 2105 (struct sockaddr *)sin, 2106 addr_len); 2107 } 2108 2109 if (udp_test_bit(GRO_ENABLED, sk)) 2110 udp_cmsg_recv(msg, sk, skb); 2111 2112 if (inet_cmsg_flags(inet)) 2113 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 2114 2115 err = copied; 2116 if (flags & MSG_TRUNC) 2117 err = ulen; 2118 2119 skb_consume_udp(sk, skb, peeking ? -err : err); 2120 return err; 2121 2122 csum_copy_err: 2123 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 2124 udp_skb_destructor)) { 2125 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2126 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2127 } 2128 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 2129 2130 /* starting over for a new packet, but check if we need to yield */ 2131 cond_resched(); 2132 msg->msg_flags &= ~MSG_TRUNC; 2133 goto try_again; 2134 } 2135 2136 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2137 { 2138 /* This check is replicated from __ip4_datagram_connect() and 2139 * intended to prevent BPF program called below from accessing bytes 2140 * that are out of the bound specified by user in addr_len. 2141 */ 2142 if (addr_len < sizeof(struct sockaddr_in)) 2143 return -EINVAL; 2144 2145 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 2146 } 2147 EXPORT_IPV6_MOD(udp_pre_connect); 2148 2149 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2150 { 2151 int res; 2152 2153 lock_sock(sk); 2154 res = __ip4_datagram_connect(sk, uaddr, addr_len); 2155 if (!res) 2156 udp4_hash4(sk); 2157 release_sock(sk); 2158 return res; 2159 } 2160 2161 int __udp_disconnect(struct sock *sk, int flags) 2162 { 2163 struct inet_sock *inet = inet_sk(sk); 2164 /* 2165 * 1003.1g - break association. 2166 */ 2167 2168 sk->sk_state = TCP_CLOSE; 2169 inet->inet_daddr = 0; 2170 inet->inet_dport = 0; 2171 sock_rps_reset_rxhash(sk); 2172 sk->sk_bound_dev_if = 0; 2173 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 2174 inet_reset_saddr(sk); 2175 if (sk->sk_prot->rehash && 2176 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2177 sk->sk_prot->rehash(sk); 2178 } 2179 2180 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 2181 sk->sk_prot->unhash(sk); 2182 inet->inet_sport = 0; 2183 } 2184 sk_dst_reset(sk); 2185 return 0; 2186 } 2187 EXPORT_SYMBOL(__udp_disconnect); 2188 2189 int udp_disconnect(struct sock *sk, int flags) 2190 { 2191 lock_sock(sk); 2192 __udp_disconnect(sk, flags); 2193 release_sock(sk); 2194 return 0; 2195 } 2196 EXPORT_IPV6_MOD(udp_disconnect); 2197 2198 void udp_lib_unhash(struct sock *sk) 2199 { 2200 if (sk_hashed(sk)) { 2201 struct udp_table *udptable = udp_get_table_prot(sk); 2202 struct udp_hslot *hslot, *hslot2; 2203 2204 sock_rps_delete_flow(sk); 2205 hslot = udp_hashslot(udptable, sock_net(sk), 2206 udp_sk(sk)->udp_port_hash); 2207 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2208 2209 spin_lock_bh(&hslot->lock); 2210 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2211 reuseport_detach_sock(sk); 2212 if (sk_del_node_init_rcu(sk)) { 2213 hslot->count--; 2214 inet_sk(sk)->inet_num = 0; 2215 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2216 2217 spin_lock(&hslot2->lock); 2218 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2219 hslot2->count--; 2220 spin_unlock(&hslot2->lock); 2221 2222 udp_unhash4(udptable, sk); 2223 } 2224 spin_unlock_bh(&hslot->lock); 2225 } 2226 } 2227 EXPORT_IPV6_MOD(udp_lib_unhash); 2228 2229 /* 2230 * inet_rcv_saddr was changed, we must rehash secondary hash 2231 */ 2232 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4) 2233 { 2234 if (sk_hashed(sk)) { 2235 struct udp_table *udptable = udp_get_table_prot(sk); 2236 struct udp_hslot *hslot, *hslot2, *nhslot2; 2237 2238 hslot = udp_hashslot(udptable, sock_net(sk), 2239 udp_sk(sk)->udp_port_hash); 2240 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2241 nhslot2 = udp_hashslot2(udptable, newhash); 2242 udp_sk(sk)->udp_portaddr_hash = newhash; 2243 2244 if (hslot2 != nhslot2 || 2245 rcu_access_pointer(sk->sk_reuseport_cb)) { 2246 /* we must lock primary chain too */ 2247 spin_lock_bh(&hslot->lock); 2248 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2249 reuseport_detach_sock(sk); 2250 2251 if (hslot2 != nhslot2) { 2252 spin_lock(&hslot2->lock); 2253 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2254 hslot2->count--; 2255 spin_unlock(&hslot2->lock); 2256 2257 spin_lock(&nhslot2->lock); 2258 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2259 &nhslot2->head); 2260 nhslot2->count++; 2261 spin_unlock(&nhslot2->lock); 2262 } 2263 2264 spin_unlock_bh(&hslot->lock); 2265 } 2266 2267 /* Now process hash4 if necessary: 2268 * (1) update hslot4; 2269 * (2) update hslot2->hash4_cnt. 2270 * Note that hslot2/hslot4 should be checked separately, as 2271 * either of them may change with the other unchanged. 2272 */ 2273 if (udp_hashed4(sk)) { 2274 spin_lock_bh(&hslot->lock); 2275 2276 udp_rehash4(udptable, sk, newhash4); 2277 if (hslot2 != nhslot2) { 2278 spin_lock(&hslot2->lock); 2279 udp_hash4_dec(hslot2); 2280 spin_unlock(&hslot2->lock); 2281 2282 spin_lock(&nhslot2->lock); 2283 udp_hash4_inc(nhslot2); 2284 spin_unlock(&nhslot2->lock); 2285 } 2286 2287 spin_unlock_bh(&hslot->lock); 2288 } 2289 } 2290 } 2291 EXPORT_IPV6_MOD(udp_lib_rehash); 2292 2293 void udp_v4_rehash(struct sock *sk) 2294 { 2295 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2296 inet_sk(sk)->inet_rcv_saddr, 2297 inet_sk(sk)->inet_num); 2298 u16 new_hash4 = udp_ehashfn(sock_net(sk), 2299 sk->sk_rcv_saddr, sk->sk_num, 2300 sk->sk_daddr, sk->sk_dport); 2301 2302 udp_lib_rehash(sk, new_hash, new_hash4); 2303 } 2304 2305 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2306 { 2307 int rc; 2308 2309 if (inet_sk(sk)->inet_daddr) { 2310 sock_rps_save_rxhash(sk, skb); 2311 sk_mark_napi_id(sk, skb); 2312 sk_incoming_cpu_update(sk); 2313 } else { 2314 sk_mark_napi_id_once(sk, skb); 2315 } 2316 2317 rc = __udp_enqueue_schedule_skb(sk, skb); 2318 if (rc < 0) { 2319 int is_udplite = IS_UDPLITE(sk); 2320 int drop_reason; 2321 2322 /* Note that an ENOMEM error is charged twice */ 2323 if (rc == -ENOMEM) { 2324 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2325 is_udplite); 2326 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2327 } else { 2328 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2329 is_udplite); 2330 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2331 } 2332 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2333 trace_udp_fail_queue_rcv_skb(rc, sk, skb); 2334 sk_skb_reason_drop(sk, skb, drop_reason); 2335 return -1; 2336 } 2337 2338 return 0; 2339 } 2340 2341 /* returns: 2342 * -1: error 2343 * 0: success 2344 * >0: "udp encap" protocol resubmission 2345 * 2346 * Note that in the success and error cases, the skb is assumed to 2347 * have either been requeued or freed. 2348 */ 2349 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2350 { 2351 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2352 struct udp_sock *up = udp_sk(sk); 2353 int is_udplite = IS_UDPLITE(sk); 2354 2355 /* 2356 * Charge it to the socket, dropping if the queue is full. 2357 */ 2358 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2359 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2360 goto drop; 2361 } 2362 nf_reset_ct(skb); 2363 2364 if (static_branch_unlikely(&udp_encap_needed_key) && 2365 READ_ONCE(up->encap_type)) { 2366 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2367 2368 /* 2369 * This is an encapsulation socket so pass the skb to 2370 * the socket's udp_encap_rcv() hook. Otherwise, just 2371 * fall through and pass this up the UDP socket. 2372 * up->encap_rcv() returns the following value: 2373 * =0 if skb was successfully passed to the encap 2374 * handler or was discarded by it. 2375 * >0 if skb should be passed on to UDP. 2376 * <0 if skb should be resubmitted as proto -N 2377 */ 2378 2379 /* if we're overly short, let UDP handle it */ 2380 encap_rcv = READ_ONCE(up->encap_rcv); 2381 if (encap_rcv) { 2382 int ret; 2383 2384 /* Verify checksum before giving to encap */ 2385 if (udp_lib_checksum_complete(skb)) 2386 goto csum_error; 2387 2388 ret = encap_rcv(sk, skb); 2389 if (ret <= 0) { 2390 __UDP_INC_STATS(sock_net(sk), 2391 UDP_MIB_INDATAGRAMS, 2392 is_udplite); 2393 return -ret; 2394 } 2395 } 2396 2397 /* FALLTHROUGH -- it's a UDP Packet */ 2398 } 2399 2400 /* 2401 * UDP-Lite specific tests, ignored on UDP sockets 2402 */ 2403 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2404 u16 pcrlen = READ_ONCE(up->pcrlen); 2405 2406 /* 2407 * MIB statistics other than incrementing the error count are 2408 * disabled for the following two types of errors: these depend 2409 * on the application settings, not on the functioning of the 2410 * protocol stack as such. 2411 * 2412 * RFC 3828 here recommends (sec 3.3): "There should also be a 2413 * way ... to ... at least let the receiving application block 2414 * delivery of packets with coverage values less than a value 2415 * provided by the application." 2416 */ 2417 if (pcrlen == 0) { /* full coverage was set */ 2418 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2419 UDP_SKB_CB(skb)->cscov, skb->len); 2420 goto drop; 2421 } 2422 /* The next case involves violating the min. coverage requested 2423 * by the receiver. This is subtle: if receiver wants x and x is 2424 * greater than the buffersize/MTU then receiver will complain 2425 * that it wants x while sender emits packets of smaller size y. 2426 * Therefore the above ...()->partial_cov statement is essential. 2427 */ 2428 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2429 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2430 UDP_SKB_CB(skb)->cscov, pcrlen); 2431 goto drop; 2432 } 2433 } 2434 2435 prefetch(&sk->sk_rmem_alloc); 2436 if (rcu_access_pointer(sk->sk_filter) && 2437 udp_lib_checksum_complete(skb)) 2438 goto csum_error; 2439 2440 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2441 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2442 goto drop; 2443 } 2444 2445 udp_csum_pull_header(skb); 2446 2447 ipv4_pktinfo_prepare(sk, skb, true); 2448 return __udp_queue_rcv_skb(sk, skb); 2449 2450 csum_error: 2451 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2452 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2453 drop: 2454 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2455 atomic_inc(&sk->sk_drops); 2456 sk_skb_reason_drop(sk, skb, drop_reason); 2457 return -1; 2458 } 2459 2460 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2461 { 2462 struct sk_buff *next, *segs; 2463 int ret; 2464 2465 if (likely(!udp_unexpected_gso(sk, skb))) 2466 return udp_queue_rcv_one_skb(sk, skb); 2467 2468 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2469 __skb_push(skb, -skb_mac_offset(skb)); 2470 segs = udp_rcv_segment(sk, skb, true); 2471 skb_list_walk_safe(segs, skb, next) { 2472 __skb_pull(skb, skb_transport_offset(skb)); 2473 2474 udp_post_segment_fix_csum(skb); 2475 ret = udp_queue_rcv_one_skb(sk, skb); 2476 if (ret > 0) 2477 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2478 } 2479 return 0; 2480 } 2481 2482 /* For TCP sockets, sk_rx_dst is protected by socket lock 2483 * For UDP, we use xchg() to guard against concurrent changes. 2484 */ 2485 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2486 { 2487 struct dst_entry *old; 2488 2489 if (dst_hold_safe(dst)) { 2490 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); 2491 dst_release(old); 2492 return old != dst; 2493 } 2494 return false; 2495 } 2496 EXPORT_IPV6_MOD(udp_sk_rx_dst_set); 2497 2498 /* 2499 * Multicasts and broadcasts go to each listener. 2500 * 2501 * Note: called only from the BH handler context. 2502 */ 2503 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2504 struct udphdr *uh, 2505 __be32 saddr, __be32 daddr, 2506 struct udp_table *udptable, 2507 int proto) 2508 { 2509 struct sock *sk, *first = NULL; 2510 unsigned short hnum = ntohs(uh->dest); 2511 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2512 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2513 unsigned int offset = offsetof(typeof(*sk), sk_node); 2514 int dif = skb->dev->ifindex; 2515 int sdif = inet_sdif(skb); 2516 struct hlist_node *node; 2517 struct sk_buff *nskb; 2518 2519 if (use_hash2) { 2520 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2521 udptable->mask; 2522 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2523 start_lookup: 2524 hslot = &udptable->hash2[hash2].hslot; 2525 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2526 } 2527 2528 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2529 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2530 uh->source, saddr, dif, sdif, hnum)) 2531 continue; 2532 2533 if (!first) { 2534 first = sk; 2535 continue; 2536 } 2537 nskb = skb_clone(skb, GFP_ATOMIC); 2538 2539 if (unlikely(!nskb)) { 2540 atomic_inc(&sk->sk_drops); 2541 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2542 IS_UDPLITE(sk)); 2543 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2544 IS_UDPLITE(sk)); 2545 continue; 2546 } 2547 if (udp_queue_rcv_skb(sk, nskb) > 0) 2548 consume_skb(nskb); 2549 } 2550 2551 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2552 if (use_hash2 && hash2 != hash2_any) { 2553 hash2 = hash2_any; 2554 goto start_lookup; 2555 } 2556 2557 if (first) { 2558 if (udp_queue_rcv_skb(first, skb) > 0) 2559 consume_skb(skb); 2560 } else { 2561 kfree_skb(skb); 2562 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2563 proto == IPPROTO_UDPLITE); 2564 } 2565 return 0; 2566 } 2567 2568 /* Initialize UDP checksum. If exited with zero value (success), 2569 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2570 * Otherwise, csum completion requires checksumming packet body, 2571 * including udp header and folding it to skb->csum. 2572 */ 2573 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2574 int proto) 2575 { 2576 int err; 2577 2578 UDP_SKB_CB(skb)->partial_cov = 0; 2579 UDP_SKB_CB(skb)->cscov = skb->len; 2580 2581 if (proto == IPPROTO_UDPLITE) { 2582 err = udplite_checksum_init(skb, uh); 2583 if (err) 2584 return err; 2585 2586 if (UDP_SKB_CB(skb)->partial_cov) { 2587 skb->csum = inet_compute_pseudo(skb, proto); 2588 return 0; 2589 } 2590 } 2591 2592 /* Note, we are only interested in != 0 or == 0, thus the 2593 * force to int. 2594 */ 2595 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2596 inet_compute_pseudo); 2597 if (err) 2598 return err; 2599 2600 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2601 /* If SW calculated the value, we know it's bad */ 2602 if (skb->csum_complete_sw) 2603 return 1; 2604 2605 /* HW says the value is bad. Let's validate that. 2606 * skb->csum is no longer the full packet checksum, 2607 * so don't treat it as such. 2608 */ 2609 skb_checksum_complete_unset(skb); 2610 } 2611 2612 return 0; 2613 } 2614 2615 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2616 * return code conversion for ip layer consumption 2617 */ 2618 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2619 struct udphdr *uh) 2620 { 2621 int ret; 2622 2623 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2624 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2625 2626 ret = udp_queue_rcv_skb(sk, skb); 2627 2628 /* a return value > 0 means to resubmit the input, but 2629 * it wants the return to be -protocol, or 0 2630 */ 2631 if (ret > 0) 2632 return -ret; 2633 return 0; 2634 } 2635 2636 /* 2637 * All we need to do is get the socket, and then do a checksum. 2638 */ 2639 2640 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2641 int proto) 2642 { 2643 struct sock *sk = NULL; 2644 struct udphdr *uh; 2645 unsigned short ulen; 2646 struct rtable *rt = skb_rtable(skb); 2647 __be32 saddr, daddr; 2648 struct net *net = dev_net(skb->dev); 2649 bool refcounted; 2650 int drop_reason; 2651 2652 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2653 2654 /* 2655 * Validate the packet. 2656 */ 2657 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2658 goto drop; /* No space for header. */ 2659 2660 uh = udp_hdr(skb); 2661 ulen = ntohs(uh->len); 2662 saddr = ip_hdr(skb)->saddr; 2663 daddr = ip_hdr(skb)->daddr; 2664 2665 if (ulen > skb->len) 2666 goto short_packet; 2667 2668 if (proto == IPPROTO_UDP) { 2669 /* UDP validates ulen. */ 2670 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2671 goto short_packet; 2672 uh = udp_hdr(skb); 2673 } 2674 2675 if (udp4_csum_init(skb, uh, proto)) 2676 goto csum_error; 2677 2678 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2679 &refcounted, udp_ehashfn); 2680 if (IS_ERR(sk)) 2681 goto no_sk; 2682 2683 if (sk) { 2684 struct dst_entry *dst = skb_dst(skb); 2685 int ret; 2686 2687 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2688 udp_sk_rx_dst_set(sk, dst); 2689 2690 ret = udp_unicast_rcv_skb(sk, skb, uh); 2691 if (refcounted) 2692 sock_put(sk); 2693 return ret; 2694 } 2695 2696 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2697 return __udp4_lib_mcast_deliver(net, skb, uh, 2698 saddr, daddr, udptable, proto); 2699 2700 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2701 if (sk) 2702 return udp_unicast_rcv_skb(sk, skb, uh); 2703 no_sk: 2704 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2705 goto drop; 2706 nf_reset_ct(skb); 2707 2708 /* No socket. Drop packet silently, if checksum is wrong */ 2709 if (udp_lib_checksum_complete(skb)) 2710 goto csum_error; 2711 2712 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2713 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2714 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2715 2716 /* 2717 * Hmm. We got an UDP packet to a port to which we 2718 * don't wanna listen. Ignore it. 2719 */ 2720 sk_skb_reason_drop(sk, skb, drop_reason); 2721 return 0; 2722 2723 short_packet: 2724 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2725 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2726 proto == IPPROTO_UDPLITE ? "Lite" : "", 2727 &saddr, ntohs(uh->source), 2728 ulen, skb->len, 2729 &daddr, ntohs(uh->dest)); 2730 goto drop; 2731 2732 csum_error: 2733 /* 2734 * RFC1122: OK. Discards the bad packet silently (as far as 2735 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2736 */ 2737 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2738 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2739 proto == IPPROTO_UDPLITE ? "Lite" : "", 2740 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2741 ulen); 2742 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2743 drop: 2744 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2745 sk_skb_reason_drop(sk, skb, drop_reason); 2746 return 0; 2747 } 2748 2749 /* We can only early demux multicast if there is a single matching socket. 2750 * If more than one socket found returns NULL 2751 */ 2752 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2753 __be16 loc_port, __be32 loc_addr, 2754 __be16 rmt_port, __be32 rmt_addr, 2755 int dif, int sdif) 2756 { 2757 struct udp_table *udptable = net->ipv4.udp_table; 2758 unsigned short hnum = ntohs(loc_port); 2759 struct sock *sk, *result; 2760 struct udp_hslot *hslot; 2761 unsigned int slot; 2762 2763 slot = udp_hashfn(net, hnum, udptable->mask); 2764 hslot = &udptable->hash[slot]; 2765 2766 /* Do not bother scanning a too big list */ 2767 if (hslot->count > 10) 2768 return NULL; 2769 2770 result = NULL; 2771 sk_for_each_rcu(sk, &hslot->head) { 2772 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2773 rmt_port, rmt_addr, dif, sdif, hnum)) { 2774 if (result) 2775 return NULL; 2776 result = sk; 2777 } 2778 } 2779 2780 return result; 2781 } 2782 2783 /* For unicast we should only early demux connected sockets or we can 2784 * break forwarding setups. The chains here can be long so only check 2785 * if the first socket is an exact match and if not move on. 2786 */ 2787 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2788 __be16 loc_port, __be32 loc_addr, 2789 __be16 rmt_port, __be32 rmt_addr, 2790 int dif, int sdif) 2791 { 2792 struct udp_table *udptable = net->ipv4.udp_table; 2793 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2794 unsigned short hnum = ntohs(loc_port); 2795 struct udp_hslot *hslot2; 2796 unsigned int hash2; 2797 __portpair ports; 2798 struct sock *sk; 2799 2800 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2801 hslot2 = udp_hashslot2(udptable, hash2); 2802 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2803 2804 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2805 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2806 return sk; 2807 /* Only check first socket in chain */ 2808 break; 2809 } 2810 return NULL; 2811 } 2812 2813 int udp_v4_early_demux(struct sk_buff *skb) 2814 { 2815 struct net *net = dev_net(skb->dev); 2816 struct in_device *in_dev = NULL; 2817 const struct iphdr *iph; 2818 const struct udphdr *uh; 2819 struct sock *sk = NULL; 2820 struct dst_entry *dst; 2821 int dif = skb->dev->ifindex; 2822 int sdif = inet_sdif(skb); 2823 int ours; 2824 2825 /* validate the packet */ 2826 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2827 return 0; 2828 2829 iph = ip_hdr(skb); 2830 uh = udp_hdr(skb); 2831 2832 if (skb->pkt_type == PACKET_MULTICAST) { 2833 in_dev = __in_dev_get_rcu(skb->dev); 2834 2835 if (!in_dev) 2836 return 0; 2837 2838 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2839 iph->protocol); 2840 if (!ours) 2841 return 0; 2842 2843 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2844 uh->source, iph->saddr, 2845 dif, sdif); 2846 } else if (skb->pkt_type == PACKET_HOST) { 2847 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2848 uh->source, iph->saddr, dif, sdif); 2849 } 2850 2851 if (!sk) 2852 return 0; 2853 2854 skb->sk = sk; 2855 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); 2856 skb->destructor = sock_pfree; 2857 dst = rcu_dereference(sk->sk_rx_dst); 2858 2859 if (dst) 2860 dst = dst_check(dst, 0); 2861 if (dst) { 2862 u32 itag = 0; 2863 2864 /* set noref for now. 2865 * any place which wants to hold dst has to call 2866 * dst_hold_safe() 2867 */ 2868 skb_dst_set_noref(skb, dst); 2869 2870 /* for unconnected multicast sockets we need to validate 2871 * the source on each packet 2872 */ 2873 if (!inet_sk(sk)->inet_daddr && in_dev) 2874 return ip_mc_validate_source(skb, iph->daddr, 2875 iph->saddr, 2876 ip4h_dscp(iph), 2877 skb->dev, in_dev, &itag); 2878 } 2879 return 0; 2880 } 2881 2882 int udp_rcv(struct sk_buff *skb) 2883 { 2884 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2885 } 2886 2887 void udp_destroy_sock(struct sock *sk) 2888 { 2889 struct udp_sock *up = udp_sk(sk); 2890 bool slow = lock_sock_fast(sk); 2891 2892 /* protects from races with udp_abort() */ 2893 sock_set_flag(sk, SOCK_DEAD); 2894 udp_flush_pending_frames(sk); 2895 unlock_sock_fast(sk, slow); 2896 if (static_branch_unlikely(&udp_encap_needed_key)) { 2897 if (up->encap_type) { 2898 void (*encap_destroy)(struct sock *sk); 2899 encap_destroy = READ_ONCE(up->encap_destroy); 2900 if (encap_destroy) 2901 encap_destroy(sk); 2902 } 2903 if (udp_test_bit(ENCAP_ENABLED, sk)) { 2904 static_branch_dec(&udp_encap_needed_key); 2905 udp_tunnel_cleanup_gro(sk); 2906 } 2907 } 2908 } 2909 2910 typedef struct sk_buff *(*udp_gro_receive_t)(struct sock *sk, 2911 struct list_head *head, 2912 struct sk_buff *skb); 2913 2914 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, 2915 struct sock *sk) 2916 { 2917 #ifdef CONFIG_XFRM 2918 udp_gro_receive_t new_gro_receive; 2919 2920 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { 2921 if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 2922 new_gro_receive = ipv6_stub->xfrm6_gro_udp_encap_rcv; 2923 else 2924 new_gro_receive = xfrm4_gro_udp_encap_rcv; 2925 2926 if (udp_sk(sk)->gro_receive != new_gro_receive) { 2927 /* 2928 * With IPV6_ADDRFORM the gro callback could change 2929 * after being set, unregister the old one, if valid. 2930 */ 2931 if (udp_sk(sk)->gro_receive) 2932 udp_tunnel_update_gro_rcv(sk, false); 2933 2934 WRITE_ONCE(udp_sk(sk)->gro_receive, new_gro_receive); 2935 udp_tunnel_update_gro_rcv(sk, true); 2936 } 2937 } 2938 #endif 2939 } 2940 2941 /* 2942 * Socket option code for UDP 2943 */ 2944 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2945 sockptr_t optval, unsigned int optlen, 2946 int (*push_pending_frames)(struct sock *)) 2947 { 2948 struct udp_sock *up = udp_sk(sk); 2949 int val, valbool; 2950 int err = 0; 2951 int is_udplite = IS_UDPLITE(sk); 2952 2953 if (level == SOL_SOCKET) { 2954 err = sk_setsockopt(sk, level, optname, optval, optlen); 2955 2956 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2957 sockopt_lock_sock(sk); 2958 /* paired with READ_ONCE in udp_rmem_release() */ 2959 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2960 sockopt_release_sock(sk); 2961 } 2962 return err; 2963 } 2964 2965 if (optlen < sizeof(int)) 2966 return -EINVAL; 2967 2968 if (copy_from_sockptr(&val, optval, sizeof(val))) 2969 return -EFAULT; 2970 2971 valbool = val ? 1 : 0; 2972 2973 switch (optname) { 2974 case UDP_CORK: 2975 if (val != 0) { 2976 udp_set_bit(CORK, sk); 2977 } else { 2978 udp_clear_bit(CORK, sk); 2979 lock_sock(sk); 2980 push_pending_frames(sk); 2981 release_sock(sk); 2982 } 2983 break; 2984 2985 case UDP_ENCAP: 2986 sockopt_lock_sock(sk); 2987 switch (val) { 2988 case 0: 2989 #ifdef CONFIG_XFRM 2990 case UDP_ENCAP_ESPINUDP: 2991 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); 2992 #if IS_ENABLED(CONFIG_IPV6) 2993 if (sk->sk_family == AF_INET6) 2994 WRITE_ONCE(up->encap_rcv, 2995 ipv6_stub->xfrm6_udp_encap_rcv); 2996 else 2997 #endif 2998 WRITE_ONCE(up->encap_rcv, 2999 xfrm4_udp_encap_rcv); 3000 #endif 3001 fallthrough; 3002 case UDP_ENCAP_L2TPINUDP: 3003 WRITE_ONCE(up->encap_type, val); 3004 udp_tunnel_encap_enable(sk); 3005 break; 3006 default: 3007 err = -ENOPROTOOPT; 3008 break; 3009 } 3010 sockopt_release_sock(sk); 3011 break; 3012 3013 case UDP_NO_CHECK6_TX: 3014 udp_set_no_check6_tx(sk, valbool); 3015 break; 3016 3017 case UDP_NO_CHECK6_RX: 3018 udp_set_no_check6_rx(sk, valbool); 3019 break; 3020 3021 case UDP_SEGMENT: 3022 if (val < 0 || val > USHRT_MAX) 3023 return -EINVAL; 3024 WRITE_ONCE(up->gso_size, val); 3025 break; 3026 3027 case UDP_GRO: 3028 sockopt_lock_sock(sk); 3029 /* when enabling GRO, accept the related GSO packet type */ 3030 if (valbool) 3031 udp_tunnel_encap_enable(sk); 3032 udp_assign_bit(GRO_ENABLED, sk, valbool); 3033 udp_assign_bit(ACCEPT_L4, sk, valbool); 3034 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); 3035 sockopt_release_sock(sk); 3036 break; 3037 3038 /* 3039 * UDP-Lite's partial checksum coverage (RFC 3828). 3040 */ 3041 /* The sender sets actual checksum coverage length via this option. 3042 * The case coverage > packet length is handled by send module. */ 3043 case UDPLITE_SEND_CSCOV: 3044 if (!is_udplite) /* Disable the option on UDP sockets */ 3045 return -ENOPROTOOPT; 3046 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 3047 val = 8; 3048 else if (val > USHRT_MAX) 3049 val = USHRT_MAX; 3050 WRITE_ONCE(up->pcslen, val); 3051 udp_set_bit(UDPLITE_SEND_CC, sk); 3052 break; 3053 3054 /* The receiver specifies a minimum checksum coverage value. To make 3055 * sense, this should be set to at least 8 (as done below). If zero is 3056 * used, this again means full checksum coverage. */ 3057 case UDPLITE_RECV_CSCOV: 3058 if (!is_udplite) /* Disable the option on UDP sockets */ 3059 return -ENOPROTOOPT; 3060 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 3061 val = 8; 3062 else if (val > USHRT_MAX) 3063 val = USHRT_MAX; 3064 WRITE_ONCE(up->pcrlen, val); 3065 udp_set_bit(UDPLITE_RECV_CC, sk); 3066 break; 3067 3068 default: 3069 err = -ENOPROTOOPT; 3070 break; 3071 } 3072 3073 return err; 3074 } 3075 EXPORT_IPV6_MOD(udp_lib_setsockopt); 3076 3077 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3078 unsigned int optlen) 3079 { 3080 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 3081 return udp_lib_setsockopt(sk, level, optname, 3082 optval, optlen, 3083 udp_push_pending_frames); 3084 return ip_setsockopt(sk, level, optname, optval, optlen); 3085 } 3086 3087 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 3088 char __user *optval, int __user *optlen) 3089 { 3090 struct udp_sock *up = udp_sk(sk); 3091 int val, len; 3092 3093 if (get_user(len, optlen)) 3094 return -EFAULT; 3095 3096 if (len < 0) 3097 return -EINVAL; 3098 3099 len = min_t(unsigned int, len, sizeof(int)); 3100 3101 switch (optname) { 3102 case UDP_CORK: 3103 val = udp_test_bit(CORK, sk); 3104 break; 3105 3106 case UDP_ENCAP: 3107 val = READ_ONCE(up->encap_type); 3108 break; 3109 3110 case UDP_NO_CHECK6_TX: 3111 val = udp_get_no_check6_tx(sk); 3112 break; 3113 3114 case UDP_NO_CHECK6_RX: 3115 val = udp_get_no_check6_rx(sk); 3116 break; 3117 3118 case UDP_SEGMENT: 3119 val = READ_ONCE(up->gso_size); 3120 break; 3121 3122 case UDP_GRO: 3123 val = udp_test_bit(GRO_ENABLED, sk); 3124 break; 3125 3126 /* The following two cannot be changed on UDP sockets, the return is 3127 * always 0 (which corresponds to the full checksum coverage of UDP). */ 3128 case UDPLITE_SEND_CSCOV: 3129 val = READ_ONCE(up->pcslen); 3130 break; 3131 3132 case UDPLITE_RECV_CSCOV: 3133 val = READ_ONCE(up->pcrlen); 3134 break; 3135 3136 default: 3137 return -ENOPROTOOPT; 3138 } 3139 3140 if (put_user(len, optlen)) 3141 return -EFAULT; 3142 if (copy_to_user(optval, &val, len)) 3143 return -EFAULT; 3144 return 0; 3145 } 3146 EXPORT_IPV6_MOD(udp_lib_getsockopt); 3147 3148 int udp_getsockopt(struct sock *sk, int level, int optname, 3149 char __user *optval, int __user *optlen) 3150 { 3151 if (level == SOL_UDP || level == SOL_UDPLITE) 3152 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 3153 return ip_getsockopt(sk, level, optname, optval, optlen); 3154 } 3155 3156 /** 3157 * udp_poll - wait for a UDP event. 3158 * @file: - file struct 3159 * @sock: - socket 3160 * @wait: - poll table 3161 * 3162 * This is same as datagram poll, except for the special case of 3163 * blocking sockets. If application is using a blocking fd 3164 * and a packet with checksum error is in the queue; 3165 * then it could get return from select indicating data available 3166 * but then block when reading it. Add special case code 3167 * to work around these arguably broken applications. 3168 */ 3169 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 3170 { 3171 __poll_t mask = datagram_poll(file, sock, wait); 3172 struct sock *sk = sock->sk; 3173 3174 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 3175 mask |= EPOLLIN | EPOLLRDNORM; 3176 3177 /* Check for false positives due to checksum errors */ 3178 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 3179 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 3180 mask &= ~(EPOLLIN | EPOLLRDNORM); 3181 3182 /* psock ingress_msg queue should not contain any bad checksum frames */ 3183 if (sk_is_readable(sk)) 3184 mask |= EPOLLIN | EPOLLRDNORM; 3185 return mask; 3186 3187 } 3188 EXPORT_IPV6_MOD(udp_poll); 3189 3190 int udp_abort(struct sock *sk, int err) 3191 { 3192 if (!has_current_bpf_ctx()) 3193 lock_sock(sk); 3194 3195 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 3196 * with close() 3197 */ 3198 if (sock_flag(sk, SOCK_DEAD)) 3199 goto out; 3200 3201 sk->sk_err = err; 3202 sk_error_report(sk); 3203 __udp_disconnect(sk, 0); 3204 3205 out: 3206 if (!has_current_bpf_ctx()) 3207 release_sock(sk); 3208 3209 return 0; 3210 } 3211 EXPORT_IPV6_MOD_GPL(udp_abort); 3212 3213 struct proto udp_prot = { 3214 .name = "UDP", 3215 .owner = THIS_MODULE, 3216 .close = udp_lib_close, 3217 .pre_connect = udp_pre_connect, 3218 .connect = udp_connect, 3219 .disconnect = udp_disconnect, 3220 .ioctl = udp_ioctl, 3221 .init = udp_init_sock, 3222 .destroy = udp_destroy_sock, 3223 .setsockopt = udp_setsockopt, 3224 .getsockopt = udp_getsockopt, 3225 .sendmsg = udp_sendmsg, 3226 .recvmsg = udp_recvmsg, 3227 .splice_eof = udp_splice_eof, 3228 .release_cb = ip4_datagram_release_cb, 3229 .hash = udp_lib_hash, 3230 .unhash = udp_lib_unhash, 3231 .rehash = udp_v4_rehash, 3232 .get_port = udp_v4_get_port, 3233 .put_port = udp_lib_unhash, 3234 #ifdef CONFIG_BPF_SYSCALL 3235 .psock_update_sk_prot = udp_bpf_update_proto, 3236 #endif 3237 .memory_allocated = &udp_memory_allocated, 3238 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 3239 3240 .sysctl_mem = sysctl_udp_mem, 3241 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 3242 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 3243 .obj_size = sizeof(struct udp_sock), 3244 .h.udp_table = NULL, 3245 .diag_destroy = udp_abort, 3246 }; 3247 EXPORT_SYMBOL(udp_prot); 3248 3249 /* ------------------------------------------------------------------------ */ 3250 #ifdef CONFIG_PROC_FS 3251 3252 static unsigned short seq_file_family(const struct seq_file *seq); 3253 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 3254 { 3255 unsigned short family = seq_file_family(seq); 3256 3257 /* AF_UNSPEC is used as a match all */ 3258 return ((family == AF_UNSPEC || family == sk->sk_family) && 3259 net_eq(sock_net(sk), seq_file_net(seq))); 3260 } 3261 3262 #ifdef CONFIG_BPF_SYSCALL 3263 static const struct seq_operations bpf_iter_udp_seq_ops; 3264 #endif 3265 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 3266 struct net *net) 3267 { 3268 const struct udp_seq_afinfo *afinfo; 3269 3270 #ifdef CONFIG_BPF_SYSCALL 3271 if (seq->op == &bpf_iter_udp_seq_ops) 3272 return net->ipv4.udp_table; 3273 #endif 3274 3275 afinfo = pde_data(file_inode(seq->file)); 3276 return afinfo->udp_table ? : net->ipv4.udp_table; 3277 } 3278 3279 static struct sock *udp_get_first(struct seq_file *seq, int start) 3280 { 3281 struct udp_iter_state *state = seq->private; 3282 struct net *net = seq_file_net(seq); 3283 struct udp_table *udptable; 3284 struct sock *sk; 3285 3286 udptable = udp_get_table_seq(seq, net); 3287 3288 for (state->bucket = start; state->bucket <= udptable->mask; 3289 ++state->bucket) { 3290 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3291 3292 if (hlist_empty(&hslot->head)) 3293 continue; 3294 3295 spin_lock_bh(&hslot->lock); 3296 sk_for_each(sk, &hslot->head) { 3297 if (seq_sk_match(seq, sk)) 3298 goto found; 3299 } 3300 spin_unlock_bh(&hslot->lock); 3301 } 3302 sk = NULL; 3303 found: 3304 return sk; 3305 } 3306 3307 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3308 { 3309 struct udp_iter_state *state = seq->private; 3310 struct net *net = seq_file_net(seq); 3311 struct udp_table *udptable; 3312 3313 do { 3314 sk = sk_next(sk); 3315 } while (sk && !seq_sk_match(seq, sk)); 3316 3317 if (!sk) { 3318 udptable = udp_get_table_seq(seq, net); 3319 3320 if (state->bucket <= udptable->mask) 3321 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3322 3323 return udp_get_first(seq, state->bucket + 1); 3324 } 3325 return sk; 3326 } 3327 3328 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3329 { 3330 struct sock *sk = udp_get_first(seq, 0); 3331 3332 if (sk) 3333 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3334 --pos; 3335 return pos ? NULL : sk; 3336 } 3337 3338 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3339 { 3340 struct udp_iter_state *state = seq->private; 3341 state->bucket = MAX_UDP_PORTS; 3342 3343 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3344 } 3345 EXPORT_IPV6_MOD(udp_seq_start); 3346 3347 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3348 { 3349 struct sock *sk; 3350 3351 if (v == SEQ_START_TOKEN) 3352 sk = udp_get_idx(seq, 0); 3353 else 3354 sk = udp_get_next(seq, v); 3355 3356 ++*pos; 3357 return sk; 3358 } 3359 EXPORT_IPV6_MOD(udp_seq_next); 3360 3361 void udp_seq_stop(struct seq_file *seq, void *v) 3362 { 3363 struct udp_iter_state *state = seq->private; 3364 struct udp_table *udptable; 3365 3366 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3367 3368 if (state->bucket <= udptable->mask) 3369 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3370 } 3371 EXPORT_IPV6_MOD(udp_seq_stop); 3372 3373 /* ------------------------------------------------------------------------ */ 3374 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3375 int bucket) 3376 { 3377 struct inet_sock *inet = inet_sk(sp); 3378 __be32 dest = inet->inet_daddr; 3379 __be32 src = inet->inet_rcv_saddr; 3380 __u16 destp = ntohs(inet->inet_dport); 3381 __u16 srcp = ntohs(inet->inet_sport); 3382 3383 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3384 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3385 bucket, src, srcp, dest, destp, sp->sk_state, 3386 sk_wmem_alloc_get(sp), 3387 udp_rqueue_get(sp), 3388 0, 0L, 0, 3389 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3390 0, sock_i_ino(sp), 3391 refcount_read(&sp->sk_refcnt), sp, 3392 atomic_read(&sp->sk_drops)); 3393 } 3394 3395 int udp4_seq_show(struct seq_file *seq, void *v) 3396 { 3397 seq_setwidth(seq, 127); 3398 if (v == SEQ_START_TOKEN) 3399 seq_puts(seq, " sl local_address rem_address st tx_queue " 3400 "rx_queue tr tm->when retrnsmt uid timeout " 3401 "inode ref pointer drops"); 3402 else { 3403 struct udp_iter_state *state = seq->private; 3404 3405 udp4_format_sock(v, seq, state->bucket); 3406 } 3407 seq_pad(seq, '\n'); 3408 return 0; 3409 } 3410 3411 #ifdef CONFIG_BPF_SYSCALL 3412 struct bpf_iter__udp { 3413 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3414 __bpf_md_ptr(struct udp_sock *, udp_sk); 3415 uid_t uid __aligned(8); 3416 int bucket __aligned(8); 3417 }; 3418 3419 union bpf_udp_iter_batch_item { 3420 struct sock *sk; 3421 __u64 cookie; 3422 }; 3423 3424 struct bpf_udp_iter_state { 3425 struct udp_iter_state state; 3426 unsigned int cur_sk; 3427 unsigned int end_sk; 3428 unsigned int max_sk; 3429 union bpf_udp_iter_batch_item *batch; 3430 }; 3431 3432 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3433 unsigned int new_batch_sz, gfp_t flags); 3434 static struct sock *bpf_iter_udp_resume(struct sock *first_sk, 3435 union bpf_udp_iter_batch_item *cookies, 3436 int n_cookies) 3437 { 3438 struct sock *sk = NULL; 3439 int i; 3440 3441 for (i = 0; i < n_cookies; i++) { 3442 sk = first_sk; 3443 udp_portaddr_for_each_entry_from(sk) 3444 if (cookies[i].cookie == atomic64_read(&sk->sk_cookie)) 3445 goto done; 3446 } 3447 done: 3448 return sk; 3449 } 3450 3451 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3452 { 3453 struct bpf_udp_iter_state *iter = seq->private; 3454 struct udp_iter_state *state = &iter->state; 3455 unsigned int find_cookie, end_cookie; 3456 struct net *net = seq_file_net(seq); 3457 struct udp_table *udptable; 3458 unsigned int batch_sks = 0; 3459 int resume_bucket; 3460 int resizes = 0; 3461 struct sock *sk; 3462 int err = 0; 3463 3464 resume_bucket = state->bucket; 3465 3466 /* The current batch is done, so advance the bucket. */ 3467 if (iter->cur_sk == iter->end_sk) 3468 state->bucket++; 3469 3470 udptable = udp_get_table_seq(seq, net); 3471 3472 again: 3473 /* New batch for the next bucket. 3474 * Iterate over the hash table to find a bucket with sockets matching 3475 * the iterator attributes, and return the first matching socket from 3476 * the bucket. The remaining matched sockets from the bucket are batched 3477 * before releasing the bucket lock. This allows BPF programs that are 3478 * called in seq_show to acquire the bucket lock if needed. 3479 */ 3480 find_cookie = iter->cur_sk; 3481 end_cookie = iter->end_sk; 3482 iter->cur_sk = 0; 3483 iter->end_sk = 0; 3484 batch_sks = 0; 3485 3486 for (; state->bucket <= udptable->mask; state->bucket++) { 3487 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot; 3488 3489 if (hlist_empty(&hslot2->head)) 3490 goto next_bucket; 3491 3492 spin_lock_bh(&hslot2->lock); 3493 sk = hlist_entry_safe(hslot2->head.first, struct sock, 3494 __sk_common.skc_portaddr_node); 3495 /* Resume from the first (in iteration order) unseen socket from 3496 * the last batch that still exists in resume_bucket. Most of 3497 * the time this will just be where the last iteration left off 3498 * in resume_bucket unless that socket disappeared between 3499 * reads. 3500 */ 3501 if (state->bucket == resume_bucket) 3502 sk = bpf_iter_udp_resume(sk, &iter->batch[find_cookie], 3503 end_cookie - find_cookie); 3504 fill_batch: 3505 udp_portaddr_for_each_entry_from(sk) { 3506 if (seq_sk_match(seq, sk)) { 3507 if (iter->end_sk < iter->max_sk) { 3508 sock_hold(sk); 3509 iter->batch[iter->end_sk++].sk = sk; 3510 } 3511 batch_sks++; 3512 } 3513 } 3514 3515 /* Allocate a larger batch and try again. */ 3516 if (unlikely(resizes <= 1 && iter->end_sk && 3517 iter->end_sk != batch_sks)) { 3518 resizes++; 3519 3520 /* First, try with GFP_USER to maximize the chances of 3521 * grabbing more memory. 3522 */ 3523 if (resizes == 1) { 3524 spin_unlock_bh(&hslot2->lock); 3525 err = bpf_iter_udp_realloc_batch(iter, 3526 batch_sks * 3 / 2, 3527 GFP_USER); 3528 if (err) 3529 return ERR_PTR(err); 3530 /* Start over. */ 3531 goto again; 3532 } 3533 3534 /* Next, hold onto the lock, so the bucket doesn't 3535 * change while we get the rest of the sockets. 3536 */ 3537 err = bpf_iter_udp_realloc_batch(iter, batch_sks, 3538 GFP_NOWAIT); 3539 if (err) { 3540 spin_unlock_bh(&hslot2->lock); 3541 return ERR_PTR(err); 3542 } 3543 3544 /* Pick up where we left off. */ 3545 sk = iter->batch[iter->end_sk - 1].sk; 3546 sk = hlist_entry_safe(sk->__sk_common.skc_portaddr_node.next, 3547 struct sock, 3548 __sk_common.skc_portaddr_node); 3549 batch_sks = iter->end_sk; 3550 goto fill_batch; 3551 } 3552 3553 spin_unlock_bh(&hslot2->lock); 3554 3555 if (iter->end_sk) 3556 break; 3557 next_bucket: 3558 resizes = 0; 3559 } 3560 3561 WARN_ON_ONCE(iter->end_sk != batch_sks); 3562 return iter->end_sk ? iter->batch[0].sk : NULL; 3563 } 3564 3565 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3566 { 3567 struct bpf_udp_iter_state *iter = seq->private; 3568 struct sock *sk; 3569 3570 /* Whenever seq_next() is called, the iter->cur_sk is 3571 * done with seq_show(), so unref the iter->cur_sk. 3572 */ 3573 if (iter->cur_sk < iter->end_sk) 3574 sock_put(iter->batch[iter->cur_sk++].sk); 3575 3576 /* After updating iter->cur_sk, check if there are more sockets 3577 * available in the current bucket batch. 3578 */ 3579 if (iter->cur_sk < iter->end_sk) 3580 sk = iter->batch[iter->cur_sk].sk; 3581 else 3582 /* Prepare a new batch. */ 3583 sk = bpf_iter_udp_batch(seq); 3584 3585 ++*pos; 3586 return sk; 3587 } 3588 3589 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3590 { 3591 /* bpf iter does not support lseek, so it always 3592 * continue from where it was stop()-ped. 3593 */ 3594 if (*pos) 3595 return bpf_iter_udp_batch(seq); 3596 3597 return SEQ_START_TOKEN; 3598 } 3599 3600 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3601 struct udp_sock *udp_sk, uid_t uid, int bucket) 3602 { 3603 struct bpf_iter__udp ctx; 3604 3605 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3606 ctx.meta = meta; 3607 ctx.udp_sk = udp_sk; 3608 ctx.uid = uid; 3609 ctx.bucket = bucket; 3610 return bpf_iter_run_prog(prog, &ctx); 3611 } 3612 3613 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3614 { 3615 struct udp_iter_state *state = seq->private; 3616 struct bpf_iter_meta meta; 3617 struct bpf_prog *prog; 3618 struct sock *sk = v; 3619 uid_t uid; 3620 int ret; 3621 3622 if (v == SEQ_START_TOKEN) 3623 return 0; 3624 3625 lock_sock(sk); 3626 3627 if (unlikely(sk_unhashed(sk))) { 3628 ret = SEQ_SKIP; 3629 goto unlock; 3630 } 3631 3632 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3633 meta.seq = seq; 3634 prog = bpf_iter_get_info(&meta, false); 3635 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3636 3637 unlock: 3638 release_sock(sk); 3639 return ret; 3640 } 3641 3642 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3643 { 3644 union bpf_udp_iter_batch_item *item; 3645 unsigned int cur_sk = iter->cur_sk; 3646 __u64 cookie; 3647 3648 /* Remember the cookies of the sockets we haven't seen yet, so we can 3649 * pick up where we left off next time around. 3650 */ 3651 while (cur_sk < iter->end_sk) { 3652 item = &iter->batch[cur_sk++]; 3653 cookie = sock_gen_cookie(item->sk); 3654 sock_put(item->sk); 3655 item->cookie = cookie; 3656 } 3657 } 3658 3659 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3660 { 3661 struct bpf_udp_iter_state *iter = seq->private; 3662 struct bpf_iter_meta meta; 3663 struct bpf_prog *prog; 3664 3665 if (!v) { 3666 meta.seq = seq; 3667 prog = bpf_iter_get_info(&meta, true); 3668 if (prog) 3669 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3670 } 3671 3672 if (iter->cur_sk < iter->end_sk) 3673 bpf_iter_udp_put_batch(iter); 3674 } 3675 3676 static const struct seq_operations bpf_iter_udp_seq_ops = { 3677 .start = bpf_iter_udp_seq_start, 3678 .next = bpf_iter_udp_seq_next, 3679 .stop = bpf_iter_udp_seq_stop, 3680 .show = bpf_iter_udp_seq_show, 3681 }; 3682 #endif 3683 3684 static unsigned short seq_file_family(const struct seq_file *seq) 3685 { 3686 const struct udp_seq_afinfo *afinfo; 3687 3688 #ifdef CONFIG_BPF_SYSCALL 3689 /* BPF iterator: bpf programs to filter sockets. */ 3690 if (seq->op == &bpf_iter_udp_seq_ops) 3691 return AF_UNSPEC; 3692 #endif 3693 3694 /* Proc fs iterator */ 3695 afinfo = pde_data(file_inode(seq->file)); 3696 return afinfo->family; 3697 } 3698 3699 const struct seq_operations udp_seq_ops = { 3700 .start = udp_seq_start, 3701 .next = udp_seq_next, 3702 .stop = udp_seq_stop, 3703 .show = udp4_seq_show, 3704 }; 3705 EXPORT_IPV6_MOD(udp_seq_ops); 3706 3707 static struct udp_seq_afinfo udp4_seq_afinfo = { 3708 .family = AF_INET, 3709 .udp_table = NULL, 3710 }; 3711 3712 static int __net_init udp4_proc_init_net(struct net *net) 3713 { 3714 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3715 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3716 return -ENOMEM; 3717 return 0; 3718 } 3719 3720 static void __net_exit udp4_proc_exit_net(struct net *net) 3721 { 3722 remove_proc_entry("udp", net->proc_net); 3723 } 3724 3725 static struct pernet_operations udp4_net_ops = { 3726 .init = udp4_proc_init_net, 3727 .exit = udp4_proc_exit_net, 3728 }; 3729 3730 int __init udp4_proc_init(void) 3731 { 3732 return register_pernet_subsys(&udp4_net_ops); 3733 } 3734 3735 void udp4_proc_exit(void) 3736 { 3737 unregister_pernet_subsys(&udp4_net_ops); 3738 } 3739 #endif /* CONFIG_PROC_FS */ 3740 3741 static __initdata unsigned long uhash_entries; 3742 static int __init set_uhash_entries(char *str) 3743 { 3744 ssize_t ret; 3745 3746 if (!str) 3747 return 0; 3748 3749 ret = kstrtoul(str, 0, &uhash_entries); 3750 if (ret) 3751 return 0; 3752 3753 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3754 uhash_entries = UDP_HTABLE_SIZE_MIN; 3755 return 1; 3756 } 3757 __setup("uhash_entries=", set_uhash_entries); 3758 3759 void __init udp_table_init(struct udp_table *table, const char *name) 3760 { 3761 unsigned int i, slot_size; 3762 3763 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3764 udp_hash4_slot_size(); 3765 table->hash = alloc_large_system_hash(name, 3766 slot_size, 3767 uhash_entries, 3768 21, /* one slot per 2 MB */ 3769 0, 3770 &table->log, 3771 &table->mask, 3772 UDP_HTABLE_SIZE_MIN, 3773 UDP_HTABLE_SIZE_MAX); 3774 3775 table->hash2 = (void *)(table->hash + (table->mask + 1)); 3776 for (i = 0; i <= table->mask; i++) { 3777 INIT_HLIST_HEAD(&table->hash[i].head); 3778 table->hash[i].count = 0; 3779 spin_lock_init(&table->hash[i].lock); 3780 } 3781 for (i = 0; i <= table->mask; i++) { 3782 INIT_HLIST_HEAD(&table->hash2[i].hslot.head); 3783 table->hash2[i].hslot.count = 0; 3784 spin_lock_init(&table->hash2[i].hslot.lock); 3785 } 3786 udp_table_hash4_init(table); 3787 } 3788 3789 u32 udp_flow_hashrnd(void) 3790 { 3791 static u32 hashrnd __read_mostly; 3792 3793 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3794 3795 return hashrnd; 3796 } 3797 EXPORT_SYMBOL(udp_flow_hashrnd); 3798 3799 static void __net_init udp_sysctl_init(struct net *net) 3800 { 3801 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3802 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3803 3804 #ifdef CONFIG_NET_L3_MASTER_DEV 3805 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3806 #endif 3807 } 3808 3809 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3810 { 3811 struct udp_table *udptable; 3812 unsigned int slot_size; 3813 int i; 3814 3815 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3816 if (!udptable) 3817 goto out; 3818 3819 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3820 udp_hash4_slot_size(); 3821 udptable->hash = vmalloc_huge(hash_entries * slot_size, 3822 GFP_KERNEL_ACCOUNT); 3823 if (!udptable->hash) 3824 goto free_table; 3825 3826 udptable->hash2 = (void *)(udptable->hash + hash_entries); 3827 udptable->mask = hash_entries - 1; 3828 udptable->log = ilog2(hash_entries); 3829 3830 for (i = 0; i < hash_entries; i++) { 3831 INIT_HLIST_HEAD(&udptable->hash[i].head); 3832 udptable->hash[i].count = 0; 3833 spin_lock_init(&udptable->hash[i].lock); 3834 3835 INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head); 3836 udptable->hash2[i].hslot.count = 0; 3837 spin_lock_init(&udptable->hash2[i].hslot.lock); 3838 } 3839 udp_table_hash4_init(udptable); 3840 3841 return udptable; 3842 3843 free_table: 3844 kfree(udptable); 3845 out: 3846 return NULL; 3847 } 3848 3849 static void __net_exit udp_pernet_table_free(struct net *net) 3850 { 3851 struct udp_table *udptable = net->ipv4.udp_table; 3852 3853 if (udptable == &udp_table) 3854 return; 3855 3856 kvfree(udptable->hash); 3857 kfree(udptable); 3858 } 3859 3860 static void __net_init udp_set_table(struct net *net) 3861 { 3862 struct udp_table *udptable; 3863 unsigned int hash_entries; 3864 struct net *old_net; 3865 3866 if (net_eq(net, &init_net)) 3867 goto fallback; 3868 3869 old_net = current->nsproxy->net_ns; 3870 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3871 if (!hash_entries) 3872 goto fallback; 3873 3874 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3875 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3876 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3877 else 3878 hash_entries = roundup_pow_of_two(hash_entries); 3879 3880 udptable = udp_pernet_table_alloc(hash_entries); 3881 if (udptable) { 3882 net->ipv4.udp_table = udptable; 3883 } else { 3884 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3885 "for a netns, fallback to the global one\n", 3886 hash_entries); 3887 fallback: 3888 net->ipv4.udp_table = &udp_table; 3889 } 3890 } 3891 3892 static int __net_init udp_pernet_init(struct net *net) 3893 { 3894 #if IS_ENABLED(CONFIG_NET_UDP_TUNNEL) 3895 int i; 3896 3897 /* No tunnel is configured */ 3898 for (i = 0; i < ARRAY_SIZE(net->ipv4.udp_tunnel_gro); ++i) { 3899 INIT_HLIST_HEAD(&net->ipv4.udp_tunnel_gro[i].list); 3900 RCU_INIT_POINTER(net->ipv4.udp_tunnel_gro[i].sk, NULL); 3901 } 3902 #endif 3903 udp_sysctl_init(net); 3904 udp_set_table(net); 3905 3906 return 0; 3907 } 3908 3909 static void __net_exit udp_pernet_exit(struct net *net) 3910 { 3911 udp_pernet_table_free(net); 3912 } 3913 3914 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3915 .init = udp_pernet_init, 3916 .exit = udp_pernet_exit, 3917 }; 3918 3919 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3920 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3921 struct udp_sock *udp_sk, uid_t uid, int bucket) 3922 3923 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3924 unsigned int new_batch_sz, gfp_t flags) 3925 { 3926 union bpf_udp_iter_batch_item *new_batch; 3927 3928 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3929 flags | __GFP_NOWARN); 3930 if (!new_batch) 3931 return -ENOMEM; 3932 3933 if (flags != GFP_NOWAIT) 3934 bpf_iter_udp_put_batch(iter); 3935 3936 memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk); 3937 kvfree(iter->batch); 3938 iter->batch = new_batch; 3939 iter->max_sk = new_batch_sz; 3940 3941 return 0; 3942 } 3943 3944 #define INIT_BATCH_SZ 16 3945 3946 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3947 { 3948 struct bpf_udp_iter_state *iter = priv_data; 3949 int ret; 3950 3951 ret = bpf_iter_init_seq_net(priv_data, aux); 3952 if (ret) 3953 return ret; 3954 3955 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER); 3956 if (ret) 3957 bpf_iter_fini_seq_net(priv_data); 3958 3959 iter->state.bucket = -1; 3960 3961 return ret; 3962 } 3963 3964 static void bpf_iter_fini_udp(void *priv_data) 3965 { 3966 struct bpf_udp_iter_state *iter = priv_data; 3967 3968 bpf_iter_fini_seq_net(priv_data); 3969 kvfree(iter->batch); 3970 } 3971 3972 static const struct bpf_iter_seq_info udp_seq_info = { 3973 .seq_ops = &bpf_iter_udp_seq_ops, 3974 .init_seq_private = bpf_iter_init_udp, 3975 .fini_seq_private = bpf_iter_fini_udp, 3976 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3977 }; 3978 3979 static struct bpf_iter_reg udp_reg_info = { 3980 .target = "udp", 3981 .ctx_arg_info_size = 1, 3982 .ctx_arg_info = { 3983 { offsetof(struct bpf_iter__udp, udp_sk), 3984 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3985 }, 3986 .seq_info = &udp_seq_info, 3987 }; 3988 3989 static void __init bpf_iter_register(void) 3990 { 3991 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3992 if (bpf_iter_reg_target(&udp_reg_info)) 3993 pr_warn("Warning: could not register bpf iterator udp\n"); 3994 } 3995 #endif 3996 3997 void __init udp_init(void) 3998 { 3999 unsigned long limit; 4000 unsigned int i; 4001 4002 udp_table_init(&udp_table, "UDP"); 4003 limit = nr_free_buffer_pages() / 8; 4004 limit = max(limit, 128UL); 4005 sysctl_udp_mem[0] = limit / 4 * 3; 4006 sysctl_udp_mem[1] = limit; 4007 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 4008 4009 /* 16 spinlocks per cpu */ 4010 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 4011 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 4012 GFP_KERNEL); 4013 if (!udp_busylocks) 4014 panic("UDP: failed to alloc udp_busylocks\n"); 4015 for (i = 0; i < (1U << udp_busylocks_log); i++) 4016 spin_lock_init(udp_busylocks + i); 4017 4018 if (register_pernet_subsys(&udp_sysctl_ops)) 4019 panic("UDP: failed to init sysctl parameters.\n"); 4020 4021 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 4022 bpf_iter_register(); 4023 #endif 4024 } 4025