1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <linux/sock_diag.h>
97 #include <net/tcp_states.h>
98 #include <linux/skbuff.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <net/net_namespace.h>
102 #include <net/icmp.h>
103 #include <net/inet_hashtables.h>
104 #include <net/ip.h>
105 #include <net/ip_tunnels.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/gso.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <linux/btf_ids.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 #include <net/udp_tunnel.h>
119 #include <net/gro.h>
120 #if IS_ENABLED(CONFIG_IPV6)
121 #include <net/ipv6_stubs.h>
122 #endif
123 #include <net/rps.h>
124 
125 struct udp_table udp_table __read_mostly;
126 
127 long sysctl_udp_mem[3] __read_mostly;
128 EXPORT_IPV6_MOD(sysctl_udp_mem);
129 
130 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
131 EXPORT_IPV6_MOD(udp_memory_allocated);
132 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
133 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
134 
135 #define MAX_UDP_PORTS 65536
136 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
137 
138 static struct udp_table *udp_get_table_prot(struct sock *sk)
139 {
140 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
141 }
142 
143 static int udp_lib_lport_inuse(struct net *net, __u16 num,
144 			       const struct udp_hslot *hslot,
145 			       unsigned long *bitmap,
146 			       struct sock *sk, unsigned int log)
147 {
148 	struct sock *sk2;
149 	kuid_t uid = sock_i_uid(sk);
150 
151 	sk_for_each(sk2, &hslot->head) {
152 		if (net_eq(sock_net(sk2), net) &&
153 		    sk2 != sk &&
154 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
155 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
156 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
157 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
158 		    inet_rcv_saddr_equal(sk, sk2, true)) {
159 			if (sk2->sk_reuseport && sk->sk_reuseport &&
160 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
161 			    uid_eq(uid, sock_i_uid(sk2))) {
162 				if (!bitmap)
163 					return 0;
164 			} else {
165 				if (!bitmap)
166 					return 1;
167 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
168 					  bitmap);
169 			}
170 		}
171 	}
172 	return 0;
173 }
174 
175 /*
176  * Note: we still hold spinlock of primary hash chain, so no other writer
177  * can insert/delete a socket with local_port == num
178  */
179 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
180 				struct udp_hslot *hslot2,
181 				struct sock *sk)
182 {
183 	struct sock *sk2;
184 	kuid_t uid = sock_i_uid(sk);
185 	int res = 0;
186 
187 	spin_lock(&hslot2->lock);
188 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
189 		if (net_eq(sock_net(sk2), net) &&
190 		    sk2 != sk &&
191 		    (udp_sk(sk2)->udp_port_hash == num) &&
192 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
193 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
194 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
195 		    inet_rcv_saddr_equal(sk, sk2, true)) {
196 			if (sk2->sk_reuseport && sk->sk_reuseport &&
197 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
198 			    uid_eq(uid, sock_i_uid(sk2))) {
199 				res = 0;
200 			} else {
201 				res = 1;
202 			}
203 			break;
204 		}
205 	}
206 	spin_unlock(&hslot2->lock);
207 	return res;
208 }
209 
210 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
211 {
212 	struct net *net = sock_net(sk);
213 	kuid_t uid = sock_i_uid(sk);
214 	struct sock *sk2;
215 
216 	sk_for_each(sk2, &hslot->head) {
217 		if (net_eq(sock_net(sk2), net) &&
218 		    sk2 != sk &&
219 		    sk2->sk_family == sk->sk_family &&
220 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
221 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
222 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
223 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
224 		    inet_rcv_saddr_equal(sk, sk2, false)) {
225 			return reuseport_add_sock(sk, sk2,
226 						  inet_rcv_saddr_any(sk));
227 		}
228 	}
229 
230 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
231 }
232 
233 /**
234  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
235  *
236  *  @sk:          socket struct in question
237  *  @snum:        port number to look up
238  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
239  *                   with NULL address
240  */
241 int udp_lib_get_port(struct sock *sk, unsigned short snum,
242 		     unsigned int hash2_nulladdr)
243 {
244 	struct udp_table *udptable = udp_get_table_prot(sk);
245 	struct udp_hslot *hslot, *hslot2;
246 	struct net *net = sock_net(sk);
247 	int error = -EADDRINUSE;
248 
249 	if (!snum) {
250 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
251 		unsigned short first, last;
252 		int low, high, remaining;
253 		unsigned int rand;
254 
255 		inet_sk_get_local_port_range(sk, &low, &high);
256 		remaining = (high - low) + 1;
257 
258 		rand = get_random_u32();
259 		first = reciprocal_scale(rand, remaining) + low;
260 		/*
261 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
262 		 */
263 		rand = (rand | 1) * (udptable->mask + 1);
264 		last = first + udptable->mask + 1;
265 		do {
266 			hslot = udp_hashslot(udptable, net, first);
267 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
268 			spin_lock_bh(&hslot->lock);
269 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
270 					    udptable->log);
271 
272 			snum = first;
273 			/*
274 			 * Iterate on all possible values of snum for this hash.
275 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
276 			 * give us randomization and full range coverage.
277 			 */
278 			do {
279 				if (low <= snum && snum <= high &&
280 				    !test_bit(snum >> udptable->log, bitmap) &&
281 				    !inet_is_local_reserved_port(net, snum))
282 					goto found;
283 				snum += rand;
284 			} while (snum != first);
285 			spin_unlock_bh(&hslot->lock);
286 			cond_resched();
287 		} while (++first != last);
288 		goto fail;
289 	} else {
290 		hslot = udp_hashslot(udptable, net, snum);
291 		spin_lock_bh(&hslot->lock);
292 		if (hslot->count > 10) {
293 			int exist;
294 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
295 
296 			slot2          &= udptable->mask;
297 			hash2_nulladdr &= udptable->mask;
298 
299 			hslot2 = udp_hashslot2(udptable, slot2);
300 			if (hslot->count < hslot2->count)
301 				goto scan_primary_hash;
302 
303 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
304 			if (!exist && (hash2_nulladdr != slot2)) {
305 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
306 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
307 							     sk);
308 			}
309 			if (exist)
310 				goto fail_unlock;
311 			else
312 				goto found;
313 		}
314 scan_primary_hash:
315 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
316 			goto fail_unlock;
317 	}
318 found:
319 	inet_sk(sk)->inet_num = snum;
320 	udp_sk(sk)->udp_port_hash = snum;
321 	udp_sk(sk)->udp_portaddr_hash ^= snum;
322 	if (sk_unhashed(sk)) {
323 		if (sk->sk_reuseport &&
324 		    udp_reuseport_add_sock(sk, hslot)) {
325 			inet_sk(sk)->inet_num = 0;
326 			udp_sk(sk)->udp_port_hash = 0;
327 			udp_sk(sk)->udp_portaddr_hash ^= snum;
328 			goto fail_unlock;
329 		}
330 
331 		sock_set_flag(sk, SOCK_RCU_FREE);
332 
333 		sk_add_node_rcu(sk, &hslot->head);
334 		hslot->count++;
335 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
336 
337 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
338 		spin_lock(&hslot2->lock);
339 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
340 		    sk->sk_family == AF_INET6)
341 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
342 					   &hslot2->head);
343 		else
344 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
345 					   &hslot2->head);
346 		hslot2->count++;
347 		spin_unlock(&hslot2->lock);
348 	}
349 
350 	error = 0;
351 fail_unlock:
352 	spin_unlock_bh(&hslot->lock);
353 fail:
354 	return error;
355 }
356 EXPORT_IPV6_MOD(udp_lib_get_port);
357 
358 int udp_v4_get_port(struct sock *sk, unsigned short snum)
359 {
360 	unsigned int hash2_nulladdr =
361 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
362 	unsigned int hash2_partial =
363 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
364 
365 	/* precompute partial secondary hash */
366 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
367 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
368 }
369 
370 static int compute_score(struct sock *sk, const struct net *net,
371 			 __be32 saddr, __be16 sport,
372 			 __be32 daddr, unsigned short hnum,
373 			 int dif, int sdif)
374 {
375 	int score;
376 	struct inet_sock *inet;
377 	bool dev_match;
378 
379 	if (!net_eq(sock_net(sk), net) ||
380 	    udp_sk(sk)->udp_port_hash != hnum ||
381 	    ipv6_only_sock(sk))
382 		return -1;
383 
384 	if (sk->sk_rcv_saddr != daddr)
385 		return -1;
386 
387 	score = (sk->sk_family == PF_INET) ? 2 : 1;
388 
389 	inet = inet_sk(sk);
390 	if (inet->inet_daddr) {
391 		if (inet->inet_daddr != saddr)
392 			return -1;
393 		score += 4;
394 	}
395 
396 	if (inet->inet_dport) {
397 		if (inet->inet_dport != sport)
398 			return -1;
399 		score += 4;
400 	}
401 
402 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
403 					dif, sdif);
404 	if (!dev_match)
405 		return -1;
406 	if (sk->sk_bound_dev_if)
407 		score += 4;
408 
409 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
410 		score++;
411 	return score;
412 }
413 
414 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
415 		const __be32 faddr, const __be16 fport)
416 {
417 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
418 
419 	return __inet_ehashfn(laddr, lport, faddr, fport,
420 			      udp_ehash_secret + net_hash_mix(net));
421 }
422 EXPORT_IPV6_MOD(udp_ehashfn);
423 
424 /**
425  * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
426  * @net:	Network namespace
427  * @saddr:	Source address, network order
428  * @sport:	Source port, network order
429  * @daddr:	Destination address, network order
430  * @hnum:	Destination port, host order
431  * @dif:	Destination interface index
432  * @sdif:	Destination bridge port index, if relevant
433  * @udptable:	Set of UDP hash tables
434  *
435  * Simplified lookup to be used as fallback if no sockets are found due to a
436  * potential race between (receive) address change, and lookup happening before
437  * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
438  * result sockets, because if we have one, we don't need the fallback at all.
439  *
440  * Called under rcu_read_lock().
441  *
442  * Return: socket with highest matching score if any, NULL if none
443  */
444 static struct sock *udp4_lib_lookup1(const struct net *net,
445 				     __be32 saddr, __be16 sport,
446 				     __be32 daddr, unsigned int hnum,
447 				     int dif, int sdif,
448 				     const struct udp_table *udptable)
449 {
450 	unsigned int slot = udp_hashfn(net, hnum, udptable->mask);
451 	struct udp_hslot *hslot = &udptable->hash[slot];
452 	struct sock *sk, *result = NULL;
453 	int score, badness = 0;
454 
455 	sk_for_each_rcu(sk, &hslot->head) {
456 		score = compute_score(sk, net,
457 				      saddr, sport, daddr, hnum, dif, sdif);
458 		if (score > badness) {
459 			result = sk;
460 			badness = score;
461 		}
462 	}
463 
464 	return result;
465 }
466 
467 /* called with rcu_read_lock() */
468 static struct sock *udp4_lib_lookup2(const struct net *net,
469 				     __be32 saddr, __be16 sport,
470 				     __be32 daddr, unsigned int hnum,
471 				     int dif, int sdif,
472 				     struct udp_hslot *hslot2,
473 				     struct sk_buff *skb)
474 {
475 	struct sock *sk, *result;
476 	int score, badness;
477 	bool need_rescore;
478 
479 	result = NULL;
480 	badness = 0;
481 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
482 		need_rescore = false;
483 rescore:
484 		score = compute_score(need_rescore ? result : sk, net, saddr,
485 				      sport, daddr, hnum, dif, sdif);
486 		if (score > badness) {
487 			badness = score;
488 
489 			if (need_rescore)
490 				continue;
491 
492 			if (sk->sk_state == TCP_ESTABLISHED) {
493 				result = sk;
494 				continue;
495 			}
496 
497 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
498 						       saddr, sport, daddr, hnum, udp_ehashfn);
499 			if (!result) {
500 				result = sk;
501 				continue;
502 			}
503 
504 			/* Fall back to scoring if group has connections */
505 			if (!reuseport_has_conns(sk))
506 				return result;
507 
508 			/* Reuseport logic returned an error, keep original score. */
509 			if (IS_ERR(result))
510 				continue;
511 
512 			/* compute_score is too long of a function to be
513 			 * inlined, and calling it again here yields
514 			 * measureable overhead for some
515 			 * workloads. Work around it by jumping
516 			 * backwards to rescore 'result'.
517 			 */
518 			need_rescore = true;
519 			goto rescore;
520 		}
521 	}
522 	return result;
523 }
524 
525 #if IS_ENABLED(CONFIG_BASE_SMALL)
526 static struct sock *udp4_lib_lookup4(const struct net *net,
527 				     __be32 saddr, __be16 sport,
528 				     __be32 daddr, unsigned int hnum,
529 				     int dif, int sdif,
530 				     struct udp_table *udptable)
531 {
532 	return NULL;
533 }
534 
535 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
536 			u16 newhash4)
537 {
538 }
539 
540 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
541 {
542 }
543 #else /* !CONFIG_BASE_SMALL */
544 static struct sock *udp4_lib_lookup4(const struct net *net,
545 				     __be32 saddr, __be16 sport,
546 				     __be32 daddr, unsigned int hnum,
547 				     int dif, int sdif,
548 				     struct udp_table *udptable)
549 {
550 	const __portpair ports = INET_COMBINED_PORTS(sport, hnum);
551 	const struct hlist_nulls_node *node;
552 	struct udp_hslot *hslot4;
553 	unsigned int hash4, slot;
554 	struct udp_sock *up;
555 	struct sock *sk;
556 
557 	hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport);
558 	slot = hash4 & udptable->mask;
559 	hslot4 = &udptable->hash4[slot];
560 	INET_ADDR_COOKIE(acookie, saddr, daddr);
561 
562 begin:
563 	/* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */
564 	udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) {
565 		sk = (struct sock *)up;
566 		if (inet_match(net, sk, acookie, ports, dif, sdif))
567 			return sk;
568 	}
569 
570 	/* if the nulls value we got at the end of this lookup is not the
571 	 * expected one, we must restart lookup. We probably met an item that
572 	 * was moved to another chain due to rehash.
573 	 */
574 	if (get_nulls_value(node) != slot)
575 		goto begin;
576 
577 	return NULL;
578 }
579 
580 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */
581 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
582 			u16 newhash4)
583 {
584 	struct udp_hslot *hslot4, *nhslot4;
585 
586 	hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
587 	nhslot4 = udp_hashslot4(udptable, newhash4);
588 	udp_sk(sk)->udp_lrpa_hash = newhash4;
589 
590 	if (hslot4 != nhslot4) {
591 		spin_lock_bh(&hslot4->lock);
592 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
593 		hslot4->count--;
594 		spin_unlock_bh(&hslot4->lock);
595 
596 		spin_lock_bh(&nhslot4->lock);
597 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
598 					 &nhslot4->nulls_head);
599 		nhslot4->count++;
600 		spin_unlock_bh(&nhslot4->lock);
601 	}
602 }
603 
604 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
605 {
606 	struct udp_hslot *hslot2, *hslot4;
607 
608 	if (udp_hashed4(sk)) {
609 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
610 		hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
611 
612 		spin_lock(&hslot4->lock);
613 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
614 		hslot4->count--;
615 		spin_unlock(&hslot4->lock);
616 
617 		spin_lock(&hslot2->lock);
618 		udp_hash4_dec(hslot2);
619 		spin_unlock(&hslot2->lock);
620 	}
621 }
622 
623 void udp_lib_hash4(struct sock *sk, u16 hash)
624 {
625 	struct udp_hslot *hslot, *hslot2, *hslot4;
626 	struct net *net = sock_net(sk);
627 	struct udp_table *udptable;
628 
629 	/* Connected udp socket can re-connect to another remote address, which
630 	 * will be handled by rehash. Thus no need to redo hash4 here.
631 	 */
632 	if (udp_hashed4(sk))
633 		return;
634 
635 	udptable = net->ipv4.udp_table;
636 	hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash);
637 	hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
638 	hslot4 = udp_hashslot4(udptable, hash);
639 	udp_sk(sk)->udp_lrpa_hash = hash;
640 
641 	spin_lock_bh(&hslot->lock);
642 	if (rcu_access_pointer(sk->sk_reuseport_cb))
643 		reuseport_detach_sock(sk);
644 
645 	spin_lock(&hslot4->lock);
646 	hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
647 				 &hslot4->nulls_head);
648 	hslot4->count++;
649 	spin_unlock(&hslot4->lock);
650 
651 	spin_lock(&hslot2->lock);
652 	udp_hash4_inc(hslot2);
653 	spin_unlock(&hslot2->lock);
654 
655 	spin_unlock_bh(&hslot->lock);
656 }
657 EXPORT_IPV6_MOD(udp_lib_hash4);
658 
659 /* call with sock lock */
660 void udp4_hash4(struct sock *sk)
661 {
662 	struct net *net = sock_net(sk);
663 	unsigned int hash;
664 
665 	if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY))
666 		return;
667 
668 	hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num,
669 			   sk->sk_daddr, sk->sk_dport);
670 
671 	udp_lib_hash4(sk, hash);
672 }
673 EXPORT_IPV6_MOD(udp4_hash4);
674 #endif /* CONFIG_BASE_SMALL */
675 
676 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
677  * harder than this. -DaveM
678  */
679 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
680 		__be16 sport, __be32 daddr, __be16 dport, int dif,
681 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
682 {
683 	unsigned short hnum = ntohs(dport);
684 	struct udp_hslot *hslot2;
685 	struct sock *result, *sk;
686 	unsigned int hash2;
687 
688 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
689 	hslot2 = udp_hashslot2(udptable, hash2);
690 
691 	if (udp_has_hash4(hslot2)) {
692 		result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum,
693 					  dif, sdif, udptable);
694 		if (result) /* udp4_lib_lookup4 return sk or NULL */
695 			return result;
696 	}
697 
698 	/* Lookup connected or non-wildcard socket */
699 	result = udp4_lib_lookup2(net, saddr, sport,
700 				  daddr, hnum, dif, sdif,
701 				  hslot2, skb);
702 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
703 		goto done;
704 
705 	/* Lookup redirect from BPF */
706 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
707 	    udptable == net->ipv4.udp_table) {
708 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
709 					       saddr, sport, daddr, hnum, dif,
710 					       udp_ehashfn);
711 		if (sk) {
712 			result = sk;
713 			goto done;
714 		}
715 	}
716 
717 	/* Got non-wildcard socket or error on first lookup */
718 	if (result)
719 		goto done;
720 
721 	/* Lookup wildcard sockets */
722 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
723 	hslot2 = udp_hashslot2(udptable, hash2);
724 
725 	result = udp4_lib_lookup2(net, saddr, sport,
726 				  htonl(INADDR_ANY), hnum, dif, sdif,
727 				  hslot2, skb);
728 	if (!IS_ERR_OR_NULL(result))
729 		goto done;
730 
731 	/* Primary hash (destination port) lookup as fallback for this race:
732 	 *   1. __ip4_datagram_connect() sets sk_rcv_saddr
733 	 *   2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
734 	 *   3. rehash operation updating _secondary and four-tuple_ hashes
735 	 * The primary hash doesn't need an update after 1., so, thanks to this
736 	 * further step, 1. and 3. don't need to be atomic against the lookup.
737 	 */
738 	result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
739 				  udptable);
740 
741 done:
742 	if (IS_ERR(result))
743 		return NULL;
744 	return result;
745 }
746 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
747 
748 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
749 						 __be16 sport, __be16 dport,
750 						 struct udp_table *udptable)
751 {
752 	const struct iphdr *iph = ip_hdr(skb);
753 
754 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
755 				 iph->daddr, dport, inet_iif(skb),
756 				 inet_sdif(skb), udptable, skb);
757 }
758 
759 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
760 				 __be16 sport, __be16 dport)
761 {
762 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
763 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
764 	struct net *net = dev_net(skb->dev);
765 	int iif, sdif;
766 
767 	inet_get_iif_sdif(skb, &iif, &sdif);
768 
769 	return __udp4_lib_lookup(net, iph->saddr, sport,
770 				 iph->daddr, dport, iif,
771 				 sdif, net->ipv4.udp_table, NULL);
772 }
773 
774 /* Must be called under rcu_read_lock().
775  * Does increment socket refcount.
776  */
777 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
778 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
779 			     __be32 daddr, __be16 dport, int dif)
780 {
781 	struct sock *sk;
782 
783 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
784 			       dif, 0, net->ipv4.udp_table, NULL);
785 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
786 		sk = NULL;
787 	return sk;
788 }
789 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
790 #endif
791 
792 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
793 				       __be16 loc_port, __be32 loc_addr,
794 				       __be16 rmt_port, __be32 rmt_addr,
795 				       int dif, int sdif, unsigned short hnum)
796 {
797 	const struct inet_sock *inet = inet_sk(sk);
798 
799 	if (!net_eq(sock_net(sk), net) ||
800 	    udp_sk(sk)->udp_port_hash != hnum ||
801 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
802 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
803 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
804 	    ipv6_only_sock(sk) ||
805 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
806 		return false;
807 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
808 		return false;
809 	return true;
810 }
811 
812 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
813 EXPORT_IPV6_MOD(udp_encap_needed_key);
814 
815 #if IS_ENABLED(CONFIG_IPV6)
816 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
817 EXPORT_IPV6_MOD(udpv6_encap_needed_key);
818 #endif
819 
820 void udp_encap_enable(void)
821 {
822 	static_branch_inc(&udp_encap_needed_key);
823 }
824 EXPORT_SYMBOL(udp_encap_enable);
825 
826 void udp_encap_disable(void)
827 {
828 	static_branch_dec(&udp_encap_needed_key);
829 }
830 EXPORT_SYMBOL(udp_encap_disable);
831 
832 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
833  * through error handlers in encapsulations looking for a match.
834  */
835 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
836 {
837 	int i;
838 
839 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
840 		int (*handler)(struct sk_buff *skb, u32 info);
841 		const struct ip_tunnel_encap_ops *encap;
842 
843 		encap = rcu_dereference(iptun_encaps[i]);
844 		if (!encap)
845 			continue;
846 		handler = encap->err_handler;
847 		if (handler && !handler(skb, info))
848 			return 0;
849 	}
850 
851 	return -ENOENT;
852 }
853 
854 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
855  * reversing source and destination port: this will match tunnels that force the
856  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
857  * lwtunnels might actually break this assumption by being configured with
858  * different destination ports on endpoints, in this case we won't be able to
859  * trace ICMP messages back to them.
860  *
861  * If this doesn't match any socket, probe tunnels with arbitrary destination
862  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
863  * we've sent packets to won't necessarily match the local destination port.
864  *
865  * Then ask the tunnel implementation to match the error against a valid
866  * association.
867  *
868  * Return an error if we can't find a match, the socket if we need further
869  * processing, zero otherwise.
870  */
871 static struct sock *__udp4_lib_err_encap(struct net *net,
872 					 const struct iphdr *iph,
873 					 struct udphdr *uh,
874 					 struct udp_table *udptable,
875 					 struct sock *sk,
876 					 struct sk_buff *skb, u32 info)
877 {
878 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
879 	int network_offset, transport_offset;
880 	struct udp_sock *up;
881 
882 	network_offset = skb_network_offset(skb);
883 	transport_offset = skb_transport_offset(skb);
884 
885 	/* Network header needs to point to the outer IPv4 header inside ICMP */
886 	skb_reset_network_header(skb);
887 
888 	/* Transport header needs to point to the UDP header */
889 	skb_set_transport_header(skb, iph->ihl << 2);
890 
891 	if (sk) {
892 		up = udp_sk(sk);
893 
894 		lookup = READ_ONCE(up->encap_err_lookup);
895 		if (lookup && lookup(sk, skb))
896 			sk = NULL;
897 
898 		goto out;
899 	}
900 
901 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
902 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
903 			       udptable, NULL);
904 	if (sk) {
905 		up = udp_sk(sk);
906 
907 		lookup = READ_ONCE(up->encap_err_lookup);
908 		if (!lookup || lookup(sk, skb))
909 			sk = NULL;
910 	}
911 
912 out:
913 	if (!sk)
914 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
915 
916 	skb_set_transport_header(skb, transport_offset);
917 	skb_set_network_header(skb, network_offset);
918 
919 	return sk;
920 }
921 
922 /*
923  * This routine is called by the ICMP module when it gets some
924  * sort of error condition.  If err < 0 then the socket should
925  * be closed and the error returned to the user.  If err > 0
926  * it's just the icmp type << 8 | icmp code.
927  * Header points to the ip header of the error packet. We move
928  * on past this. Then (as it used to claim before adjustment)
929  * header points to the first 8 bytes of the udp header.  We need
930  * to find the appropriate port.
931  */
932 
933 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
934 {
935 	struct inet_sock *inet;
936 	const struct iphdr *iph = (const struct iphdr *)skb->data;
937 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
938 	const int type = icmp_hdr(skb)->type;
939 	const int code = icmp_hdr(skb)->code;
940 	bool tunnel = false;
941 	struct sock *sk;
942 	int harderr;
943 	int err;
944 	struct net *net = dev_net(skb->dev);
945 
946 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
947 			       iph->saddr, uh->source, skb->dev->ifindex,
948 			       inet_sdif(skb), udptable, NULL);
949 
950 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
951 		/* No socket for error: try tunnels before discarding */
952 		if (static_branch_unlikely(&udp_encap_needed_key)) {
953 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
954 						  info);
955 			if (!sk)
956 				return 0;
957 		} else
958 			sk = ERR_PTR(-ENOENT);
959 
960 		if (IS_ERR(sk)) {
961 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
962 			return PTR_ERR(sk);
963 		}
964 
965 		tunnel = true;
966 	}
967 
968 	err = 0;
969 	harderr = 0;
970 	inet = inet_sk(sk);
971 
972 	switch (type) {
973 	default:
974 	case ICMP_TIME_EXCEEDED:
975 		err = EHOSTUNREACH;
976 		break;
977 	case ICMP_SOURCE_QUENCH:
978 		goto out;
979 	case ICMP_PARAMETERPROB:
980 		err = EPROTO;
981 		harderr = 1;
982 		break;
983 	case ICMP_DEST_UNREACH:
984 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
985 			ipv4_sk_update_pmtu(skb, sk, info);
986 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
987 				err = EMSGSIZE;
988 				harderr = 1;
989 				break;
990 			}
991 			goto out;
992 		}
993 		err = EHOSTUNREACH;
994 		if (code <= NR_ICMP_UNREACH) {
995 			harderr = icmp_err_convert[code].fatal;
996 			err = icmp_err_convert[code].errno;
997 		}
998 		break;
999 	case ICMP_REDIRECT:
1000 		ipv4_sk_redirect(skb, sk);
1001 		goto out;
1002 	}
1003 
1004 	/*
1005 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
1006 	 *	4.1.3.3.
1007 	 */
1008 	if (tunnel) {
1009 		/* ...not for tunnels though: we don't have a sending socket */
1010 		if (udp_sk(sk)->encap_err_rcv)
1011 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
1012 						  (u8 *)(uh+1));
1013 		goto out;
1014 	}
1015 	if (!inet_test_bit(RECVERR, sk)) {
1016 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
1017 			goto out;
1018 	} else
1019 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
1020 
1021 	sk->sk_err = err;
1022 	sk_error_report(sk);
1023 out:
1024 	return 0;
1025 }
1026 
1027 int udp_err(struct sk_buff *skb, u32 info)
1028 {
1029 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
1030 }
1031 
1032 /*
1033  * Throw away all pending data and cancel the corking. Socket is locked.
1034  */
1035 void udp_flush_pending_frames(struct sock *sk)
1036 {
1037 	struct udp_sock *up = udp_sk(sk);
1038 
1039 	if (up->pending) {
1040 		up->len = 0;
1041 		WRITE_ONCE(up->pending, 0);
1042 		ip_flush_pending_frames(sk);
1043 	}
1044 }
1045 EXPORT_IPV6_MOD(udp_flush_pending_frames);
1046 
1047 /**
1048  * 	udp4_hwcsum  -  handle outgoing HW checksumming
1049  * 	@skb: 	sk_buff containing the filled-in UDP header
1050  * 	        (checksum field must be zeroed out)
1051  *	@src:	source IP address
1052  *	@dst:	destination IP address
1053  */
1054 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
1055 {
1056 	struct udphdr *uh = udp_hdr(skb);
1057 	int offset = skb_transport_offset(skb);
1058 	int len = skb->len - offset;
1059 	int hlen = len;
1060 	__wsum csum = 0;
1061 
1062 	if (!skb_has_frag_list(skb)) {
1063 		/*
1064 		 * Only one fragment on the socket.
1065 		 */
1066 		skb->csum_start = skb_transport_header(skb) - skb->head;
1067 		skb->csum_offset = offsetof(struct udphdr, check);
1068 		uh->check = ~csum_tcpudp_magic(src, dst, len,
1069 					       IPPROTO_UDP, 0);
1070 	} else {
1071 		struct sk_buff *frags;
1072 
1073 		/*
1074 		 * HW-checksum won't work as there are two or more
1075 		 * fragments on the socket so that all csums of sk_buffs
1076 		 * should be together
1077 		 */
1078 		skb_walk_frags(skb, frags) {
1079 			csum = csum_add(csum, frags->csum);
1080 			hlen -= frags->len;
1081 		}
1082 
1083 		csum = skb_checksum(skb, offset, hlen, csum);
1084 		skb->ip_summed = CHECKSUM_NONE;
1085 
1086 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
1087 		if (uh->check == 0)
1088 			uh->check = CSUM_MANGLED_0;
1089 	}
1090 }
1091 EXPORT_SYMBOL_GPL(udp4_hwcsum);
1092 
1093 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
1094  * for the simple case like when setting the checksum for a UDP tunnel.
1095  */
1096 void udp_set_csum(bool nocheck, struct sk_buff *skb,
1097 		  __be32 saddr, __be32 daddr, int len)
1098 {
1099 	struct udphdr *uh = udp_hdr(skb);
1100 
1101 	if (nocheck) {
1102 		uh->check = 0;
1103 	} else if (skb_is_gso(skb)) {
1104 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1105 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1106 		uh->check = 0;
1107 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
1108 		if (uh->check == 0)
1109 			uh->check = CSUM_MANGLED_0;
1110 	} else {
1111 		skb->ip_summed = CHECKSUM_PARTIAL;
1112 		skb->csum_start = skb_transport_header(skb) - skb->head;
1113 		skb->csum_offset = offsetof(struct udphdr, check);
1114 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1115 	}
1116 }
1117 EXPORT_SYMBOL(udp_set_csum);
1118 
1119 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
1120 			struct inet_cork *cork)
1121 {
1122 	struct sock *sk = skb->sk;
1123 	struct inet_sock *inet = inet_sk(sk);
1124 	struct udphdr *uh;
1125 	int err;
1126 	int is_udplite = IS_UDPLITE(sk);
1127 	int offset = skb_transport_offset(skb);
1128 	int len = skb->len - offset;
1129 	int datalen = len - sizeof(*uh);
1130 	__wsum csum = 0;
1131 
1132 	/*
1133 	 * Create a UDP header
1134 	 */
1135 	uh = udp_hdr(skb);
1136 	uh->source = inet->inet_sport;
1137 	uh->dest = fl4->fl4_dport;
1138 	uh->len = htons(len);
1139 	uh->check = 0;
1140 
1141 	if (cork->gso_size) {
1142 		const int hlen = skb_network_header_len(skb) +
1143 				 sizeof(struct udphdr);
1144 
1145 		if (hlen + min(datalen, cork->gso_size) > cork->fragsize) {
1146 			kfree_skb(skb);
1147 			return -EMSGSIZE;
1148 		}
1149 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
1150 			kfree_skb(skb);
1151 			return -EINVAL;
1152 		}
1153 		if (sk->sk_no_check_tx) {
1154 			kfree_skb(skb);
1155 			return -EINVAL;
1156 		}
1157 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
1158 			kfree_skb(skb);
1159 			return -EIO;
1160 		}
1161 
1162 		if (datalen > cork->gso_size) {
1163 			skb_shinfo(skb)->gso_size = cork->gso_size;
1164 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1165 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1166 								 cork->gso_size);
1167 
1168 			/* Don't checksum the payload, skb will get segmented */
1169 			goto csum_partial;
1170 		}
1171 	}
1172 
1173 	if (is_udplite)  				 /*     UDP-Lite      */
1174 		csum = udplite_csum(skb);
1175 
1176 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
1177 
1178 		skb->ip_summed = CHECKSUM_NONE;
1179 		goto send;
1180 
1181 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1182 csum_partial:
1183 
1184 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1185 		goto send;
1186 
1187 	} else
1188 		csum = udp_csum(skb);
1189 
1190 	/* add protocol-dependent pseudo-header */
1191 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1192 				      sk->sk_protocol, csum);
1193 	if (uh->check == 0)
1194 		uh->check = CSUM_MANGLED_0;
1195 
1196 send:
1197 	err = ip_send_skb(sock_net(sk), skb);
1198 	if (err) {
1199 		if (err == -ENOBUFS &&
1200 		    !inet_test_bit(RECVERR, sk)) {
1201 			UDP_INC_STATS(sock_net(sk),
1202 				      UDP_MIB_SNDBUFERRORS, is_udplite);
1203 			err = 0;
1204 		}
1205 	} else
1206 		UDP_INC_STATS(sock_net(sk),
1207 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
1208 	return err;
1209 }
1210 
1211 /*
1212  * Push out all pending data as one UDP datagram. Socket is locked.
1213  */
1214 int udp_push_pending_frames(struct sock *sk)
1215 {
1216 	struct udp_sock  *up = udp_sk(sk);
1217 	struct inet_sock *inet = inet_sk(sk);
1218 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1219 	struct sk_buff *skb;
1220 	int err = 0;
1221 
1222 	skb = ip_finish_skb(sk, fl4);
1223 	if (!skb)
1224 		goto out;
1225 
1226 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1227 
1228 out:
1229 	up->len = 0;
1230 	WRITE_ONCE(up->pending, 0);
1231 	return err;
1232 }
1233 EXPORT_IPV6_MOD(udp_push_pending_frames);
1234 
1235 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1236 {
1237 	switch (cmsg->cmsg_type) {
1238 	case UDP_SEGMENT:
1239 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1240 			return -EINVAL;
1241 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1242 		return 0;
1243 	default:
1244 		return -EINVAL;
1245 	}
1246 }
1247 
1248 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1249 {
1250 	struct cmsghdr *cmsg;
1251 	bool need_ip = false;
1252 	int err;
1253 
1254 	for_each_cmsghdr(cmsg, msg) {
1255 		if (!CMSG_OK(msg, cmsg))
1256 			return -EINVAL;
1257 
1258 		if (cmsg->cmsg_level != SOL_UDP) {
1259 			need_ip = true;
1260 			continue;
1261 		}
1262 
1263 		err = __udp_cmsg_send(cmsg, gso_size);
1264 		if (err)
1265 			return err;
1266 	}
1267 
1268 	return need_ip;
1269 }
1270 EXPORT_IPV6_MOD_GPL(udp_cmsg_send);
1271 
1272 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1273 {
1274 	struct inet_sock *inet = inet_sk(sk);
1275 	struct udp_sock *up = udp_sk(sk);
1276 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1277 	struct flowi4 fl4_stack;
1278 	struct flowi4 *fl4;
1279 	int ulen = len;
1280 	struct ipcm_cookie ipc;
1281 	struct rtable *rt = NULL;
1282 	int free = 0;
1283 	int connected = 0;
1284 	__be32 daddr, faddr, saddr;
1285 	u8 scope;
1286 	__be16 dport;
1287 	int err, is_udplite = IS_UDPLITE(sk);
1288 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1289 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1290 	struct sk_buff *skb;
1291 	struct ip_options_data opt_copy;
1292 	int uc_index;
1293 
1294 	if (len > 0xFFFF)
1295 		return -EMSGSIZE;
1296 
1297 	/*
1298 	 *	Check the flags.
1299 	 */
1300 
1301 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1302 		return -EOPNOTSUPP;
1303 
1304 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1305 
1306 	fl4 = &inet->cork.fl.u.ip4;
1307 	if (READ_ONCE(up->pending)) {
1308 		/*
1309 		 * There are pending frames.
1310 		 * The socket lock must be held while it's corked.
1311 		 */
1312 		lock_sock(sk);
1313 		if (likely(up->pending)) {
1314 			if (unlikely(up->pending != AF_INET)) {
1315 				release_sock(sk);
1316 				return -EINVAL;
1317 			}
1318 			goto do_append_data;
1319 		}
1320 		release_sock(sk);
1321 	}
1322 	ulen += sizeof(struct udphdr);
1323 
1324 	/*
1325 	 *	Get and verify the address.
1326 	 */
1327 	if (usin) {
1328 		if (msg->msg_namelen < sizeof(*usin))
1329 			return -EINVAL;
1330 		if (usin->sin_family != AF_INET) {
1331 			if (usin->sin_family != AF_UNSPEC)
1332 				return -EAFNOSUPPORT;
1333 		}
1334 
1335 		daddr = usin->sin_addr.s_addr;
1336 		dport = usin->sin_port;
1337 		if (dport == 0)
1338 			return -EINVAL;
1339 	} else {
1340 		if (sk->sk_state != TCP_ESTABLISHED)
1341 			return -EDESTADDRREQ;
1342 		daddr = inet->inet_daddr;
1343 		dport = inet->inet_dport;
1344 		/* Open fast path for connected socket.
1345 		   Route will not be used, if at least one option is set.
1346 		 */
1347 		connected = 1;
1348 	}
1349 
1350 	ipcm_init_sk(&ipc, inet);
1351 	ipc.gso_size = READ_ONCE(up->gso_size);
1352 
1353 	if (msg->msg_controllen) {
1354 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1355 		if (err > 0) {
1356 			err = ip_cmsg_send(sk, msg, &ipc,
1357 					   sk->sk_family == AF_INET6);
1358 			connected = 0;
1359 		}
1360 		if (unlikely(err < 0)) {
1361 			kfree(ipc.opt);
1362 			return err;
1363 		}
1364 		if (ipc.opt)
1365 			free = 1;
1366 	}
1367 	if (!ipc.opt) {
1368 		struct ip_options_rcu *inet_opt;
1369 
1370 		rcu_read_lock();
1371 		inet_opt = rcu_dereference(inet->inet_opt);
1372 		if (inet_opt) {
1373 			memcpy(&opt_copy, inet_opt,
1374 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1375 			ipc.opt = &opt_copy.opt;
1376 		}
1377 		rcu_read_unlock();
1378 	}
1379 
1380 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1381 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1382 					    (struct sockaddr *)usin,
1383 					    &msg->msg_namelen,
1384 					    &ipc.addr);
1385 		if (err)
1386 			goto out_free;
1387 		if (usin) {
1388 			if (usin->sin_port == 0) {
1389 				/* BPF program set invalid port. Reject it. */
1390 				err = -EINVAL;
1391 				goto out_free;
1392 			}
1393 			daddr = usin->sin_addr.s_addr;
1394 			dport = usin->sin_port;
1395 		}
1396 	}
1397 
1398 	saddr = ipc.addr;
1399 	ipc.addr = faddr = daddr;
1400 
1401 	if (ipc.opt && ipc.opt->opt.srr) {
1402 		if (!daddr) {
1403 			err = -EINVAL;
1404 			goto out_free;
1405 		}
1406 		faddr = ipc.opt->opt.faddr;
1407 		connected = 0;
1408 	}
1409 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1410 	if (scope == RT_SCOPE_LINK)
1411 		connected = 0;
1412 
1413 	uc_index = READ_ONCE(inet->uc_index);
1414 	if (ipv4_is_multicast(daddr)) {
1415 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1416 			ipc.oif = READ_ONCE(inet->mc_index);
1417 		if (!saddr)
1418 			saddr = READ_ONCE(inet->mc_addr);
1419 		connected = 0;
1420 	} else if (!ipc.oif) {
1421 		ipc.oif = uc_index;
1422 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1423 		/* oif is set, packet is to local broadcast and
1424 		 * uc_index is set. oif is most likely set
1425 		 * by sk_bound_dev_if. If uc_index != oif check if the
1426 		 * oif is an L3 master and uc_index is an L3 slave.
1427 		 * If so, we want to allow the send using the uc_index.
1428 		 */
1429 		if (ipc.oif != uc_index &&
1430 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1431 							      uc_index)) {
1432 			ipc.oif = uc_index;
1433 		}
1434 	}
1435 
1436 	if (connected)
1437 		rt = dst_rtable(sk_dst_check(sk, 0));
1438 
1439 	if (!rt) {
1440 		struct net *net = sock_net(sk);
1441 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1442 
1443 		fl4 = &fl4_stack;
1444 
1445 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark,
1446 				   ipc.tos & INET_DSCP_MASK, scope,
1447 				   sk->sk_protocol, flow_flags, faddr, saddr,
1448 				   dport, inet->inet_sport, sk->sk_uid);
1449 
1450 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1451 		rt = ip_route_output_flow(net, fl4, sk);
1452 		if (IS_ERR(rt)) {
1453 			err = PTR_ERR(rt);
1454 			rt = NULL;
1455 			if (err == -ENETUNREACH)
1456 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1457 			goto out;
1458 		}
1459 
1460 		err = -EACCES;
1461 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1462 		    !sock_flag(sk, SOCK_BROADCAST))
1463 			goto out;
1464 		if (connected)
1465 			sk_dst_set(sk, dst_clone(&rt->dst));
1466 	}
1467 
1468 	if (msg->msg_flags&MSG_CONFIRM)
1469 		goto do_confirm;
1470 back_from_confirm:
1471 
1472 	saddr = fl4->saddr;
1473 	if (!ipc.addr)
1474 		daddr = ipc.addr = fl4->daddr;
1475 
1476 	/* Lockless fast path for the non-corking case. */
1477 	if (!corkreq) {
1478 		struct inet_cork cork;
1479 
1480 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1481 				  sizeof(struct udphdr), &ipc, &rt,
1482 				  &cork, msg->msg_flags);
1483 		err = PTR_ERR(skb);
1484 		if (!IS_ERR_OR_NULL(skb))
1485 			err = udp_send_skb(skb, fl4, &cork);
1486 		goto out;
1487 	}
1488 
1489 	lock_sock(sk);
1490 	if (unlikely(up->pending)) {
1491 		/* The socket is already corked while preparing it. */
1492 		/* ... which is an evident application bug. --ANK */
1493 		release_sock(sk);
1494 
1495 		net_dbg_ratelimited("socket already corked\n");
1496 		err = -EINVAL;
1497 		goto out;
1498 	}
1499 	/*
1500 	 *	Now cork the socket to pend data.
1501 	 */
1502 	fl4 = &inet->cork.fl.u.ip4;
1503 	fl4->daddr = daddr;
1504 	fl4->saddr = saddr;
1505 	fl4->fl4_dport = dport;
1506 	fl4->fl4_sport = inet->inet_sport;
1507 	WRITE_ONCE(up->pending, AF_INET);
1508 
1509 do_append_data:
1510 	up->len += ulen;
1511 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1512 			     sizeof(struct udphdr), &ipc, &rt,
1513 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1514 	if (err)
1515 		udp_flush_pending_frames(sk);
1516 	else if (!corkreq)
1517 		err = udp_push_pending_frames(sk);
1518 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1519 		WRITE_ONCE(up->pending, 0);
1520 	release_sock(sk);
1521 
1522 out:
1523 	ip_rt_put(rt);
1524 out_free:
1525 	if (free)
1526 		kfree(ipc.opt);
1527 	if (!err)
1528 		return len;
1529 	/*
1530 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1531 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1532 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1533 	 * things).  We could add another new stat but at least for now that
1534 	 * seems like overkill.
1535 	 */
1536 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1537 		UDP_INC_STATS(sock_net(sk),
1538 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1539 	}
1540 	return err;
1541 
1542 do_confirm:
1543 	if (msg->msg_flags & MSG_PROBE)
1544 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1545 	if (!(msg->msg_flags&MSG_PROBE) || len)
1546 		goto back_from_confirm;
1547 	err = 0;
1548 	goto out;
1549 }
1550 EXPORT_SYMBOL(udp_sendmsg);
1551 
1552 void udp_splice_eof(struct socket *sock)
1553 {
1554 	struct sock *sk = sock->sk;
1555 	struct udp_sock *up = udp_sk(sk);
1556 
1557 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1558 		return;
1559 
1560 	lock_sock(sk);
1561 	if (up->pending && !udp_test_bit(CORK, sk))
1562 		udp_push_pending_frames(sk);
1563 	release_sock(sk);
1564 }
1565 EXPORT_IPV6_MOD_GPL(udp_splice_eof);
1566 
1567 #define UDP_SKB_IS_STATELESS 0x80000000
1568 
1569 /* all head states (dst, sk, nf conntrack) except skb extensions are
1570  * cleared by udp_rcv().
1571  *
1572  * We need to preserve secpath, if present, to eventually process
1573  * IP_CMSG_PASSSEC at recvmsg() time.
1574  *
1575  * Other extensions can be cleared.
1576  */
1577 static bool udp_try_make_stateless(struct sk_buff *skb)
1578 {
1579 	if (!skb_has_extensions(skb))
1580 		return true;
1581 
1582 	if (!secpath_exists(skb)) {
1583 		skb_ext_reset(skb);
1584 		return true;
1585 	}
1586 
1587 	return false;
1588 }
1589 
1590 static void udp_set_dev_scratch(struct sk_buff *skb)
1591 {
1592 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1593 
1594 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1595 	scratch->_tsize_state = skb->truesize;
1596 #if BITS_PER_LONG == 64
1597 	scratch->len = skb->len;
1598 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1599 	scratch->is_linear = !skb_is_nonlinear(skb);
1600 #endif
1601 	if (udp_try_make_stateless(skb))
1602 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1603 }
1604 
1605 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1606 {
1607 	/* We come here after udp_lib_checksum_complete() returned 0.
1608 	 * This means that __skb_checksum_complete() might have
1609 	 * set skb->csum_valid to 1.
1610 	 * On 64bit platforms, we can set csum_unnecessary
1611 	 * to true, but only if the skb is not shared.
1612 	 */
1613 #if BITS_PER_LONG == 64
1614 	if (!skb_shared(skb))
1615 		udp_skb_scratch(skb)->csum_unnecessary = true;
1616 #endif
1617 }
1618 
1619 static int udp_skb_truesize(struct sk_buff *skb)
1620 {
1621 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1622 }
1623 
1624 static bool udp_skb_has_head_state(struct sk_buff *skb)
1625 {
1626 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1627 }
1628 
1629 /* fully reclaim rmem/fwd memory allocated for skb */
1630 static void udp_rmem_release(struct sock *sk, unsigned int size,
1631 			     int partial, bool rx_queue_lock_held)
1632 {
1633 	struct udp_sock *up = udp_sk(sk);
1634 	struct sk_buff_head *sk_queue;
1635 	unsigned int amt;
1636 
1637 	if (likely(partial)) {
1638 		up->forward_deficit += size;
1639 		size = up->forward_deficit;
1640 		if (size < READ_ONCE(up->forward_threshold) &&
1641 		    !skb_queue_empty(&up->reader_queue))
1642 			return;
1643 	} else {
1644 		size += up->forward_deficit;
1645 	}
1646 	up->forward_deficit = 0;
1647 
1648 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1649 	 * if the called don't held it already
1650 	 */
1651 	sk_queue = &sk->sk_receive_queue;
1652 	if (!rx_queue_lock_held)
1653 		spin_lock(&sk_queue->lock);
1654 
1655 	amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1656 	sk_forward_alloc_add(sk, size - amt);
1657 
1658 	if (amt)
1659 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1660 
1661 	atomic_sub(size, &sk->sk_rmem_alloc);
1662 
1663 	/* this can save us from acquiring the rx queue lock on next receive */
1664 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1665 
1666 	if (!rx_queue_lock_held)
1667 		spin_unlock(&sk_queue->lock);
1668 }
1669 
1670 /* Note: called with reader_queue.lock held.
1671  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1672  * This avoids a cache line miss while receive_queue lock is held.
1673  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1674  */
1675 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1676 {
1677 	prefetch(&skb->data);
1678 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1679 }
1680 EXPORT_IPV6_MOD(udp_skb_destructor);
1681 
1682 /* as above, but the caller held the rx queue lock, too */
1683 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1684 {
1685 	prefetch(&skb->data);
1686 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1687 }
1688 
1689 /* Idea of busylocks is to let producers grab an extra spinlock
1690  * to relieve pressure on the receive_queue spinlock shared by consumer.
1691  * Under flood, this means that only one producer can be in line
1692  * trying to acquire the receive_queue spinlock.
1693  * These busylock can be allocated on a per cpu manner, instead of a
1694  * per socket one (that would consume a cache line per socket)
1695  */
1696 static int udp_busylocks_log __read_mostly;
1697 static spinlock_t *udp_busylocks __read_mostly;
1698 
1699 static spinlock_t *busylock_acquire(void *ptr)
1700 {
1701 	spinlock_t *busy;
1702 
1703 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1704 	spin_lock(busy);
1705 	return busy;
1706 }
1707 
1708 static void busylock_release(spinlock_t *busy)
1709 {
1710 	if (busy)
1711 		spin_unlock(busy);
1712 }
1713 
1714 static int udp_rmem_schedule(struct sock *sk, int size)
1715 {
1716 	int delta;
1717 
1718 	delta = size - sk->sk_forward_alloc;
1719 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1720 		return -ENOBUFS;
1721 
1722 	return 0;
1723 }
1724 
1725 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1726 {
1727 	struct sk_buff_head *list = &sk->sk_receive_queue;
1728 	unsigned int rmem, rcvbuf;
1729 	spinlock_t *busy = NULL;
1730 	int size, err = -ENOMEM;
1731 
1732 	rmem = atomic_read(&sk->sk_rmem_alloc);
1733 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1734 	size = skb->truesize;
1735 
1736 	/* Immediately drop when the receive queue is full.
1737 	 * Cast to unsigned int performs the boundary check for INT_MAX.
1738 	 */
1739 	if (rmem + size > rcvbuf) {
1740 		if (rcvbuf > INT_MAX >> 1)
1741 			goto drop;
1742 
1743 		/* Always allow at least one packet for small buffer. */
1744 		if (rmem > rcvbuf)
1745 			goto drop;
1746 	}
1747 
1748 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1749 	 * having linear skbs :
1750 	 * - Reduce memory overhead and thus increase receive queue capacity
1751 	 * - Less cache line misses at copyout() time
1752 	 * - Less work at consume_skb() (less alien page frag freeing)
1753 	 */
1754 	if (rmem > (rcvbuf >> 1)) {
1755 		skb_condense(skb);
1756 		size = skb->truesize;
1757 		busy = busylock_acquire(sk);
1758 	}
1759 
1760 	udp_set_dev_scratch(skb);
1761 
1762 	atomic_add(size, &sk->sk_rmem_alloc);
1763 
1764 	spin_lock(&list->lock);
1765 	err = udp_rmem_schedule(sk, size);
1766 	if (err) {
1767 		spin_unlock(&list->lock);
1768 		goto uncharge_drop;
1769 	}
1770 
1771 	sk_forward_alloc_add(sk, -size);
1772 
1773 	/* no need to setup a destructor, we will explicitly release the
1774 	 * forward allocated memory on dequeue
1775 	 */
1776 	sock_skb_set_dropcount(sk, skb);
1777 
1778 	__skb_queue_tail(list, skb);
1779 	spin_unlock(&list->lock);
1780 
1781 	if (!sock_flag(sk, SOCK_DEAD))
1782 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1783 
1784 	busylock_release(busy);
1785 	return 0;
1786 
1787 uncharge_drop:
1788 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1789 
1790 drop:
1791 	atomic_inc(&sk->sk_drops);
1792 	busylock_release(busy);
1793 	return err;
1794 }
1795 EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb);
1796 
1797 void udp_destruct_common(struct sock *sk)
1798 {
1799 	/* reclaim completely the forward allocated memory */
1800 	struct udp_sock *up = udp_sk(sk);
1801 	unsigned int total = 0;
1802 	struct sk_buff *skb;
1803 
1804 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1805 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1806 		total += skb->truesize;
1807 		kfree_skb(skb);
1808 	}
1809 	udp_rmem_release(sk, total, 0, true);
1810 }
1811 EXPORT_IPV6_MOD_GPL(udp_destruct_common);
1812 
1813 static void udp_destruct_sock(struct sock *sk)
1814 {
1815 	udp_destruct_common(sk);
1816 	inet_sock_destruct(sk);
1817 }
1818 
1819 int udp_init_sock(struct sock *sk)
1820 {
1821 	udp_lib_init_sock(sk);
1822 	sk->sk_destruct = udp_destruct_sock;
1823 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1824 	return 0;
1825 }
1826 
1827 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1828 {
1829 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1830 		sk_peek_offset_bwd(sk, len);
1831 
1832 	if (!skb_unref(skb))
1833 		return;
1834 
1835 	/* In the more common cases we cleared the head states previously,
1836 	 * see __udp_queue_rcv_skb().
1837 	 */
1838 	if (unlikely(udp_skb_has_head_state(skb)))
1839 		skb_release_head_state(skb);
1840 	__consume_stateless_skb(skb);
1841 }
1842 EXPORT_IPV6_MOD_GPL(skb_consume_udp);
1843 
1844 static struct sk_buff *__first_packet_length(struct sock *sk,
1845 					     struct sk_buff_head *rcvq,
1846 					     unsigned int *total)
1847 {
1848 	struct sk_buff *skb;
1849 
1850 	while ((skb = skb_peek(rcvq)) != NULL) {
1851 		if (udp_lib_checksum_complete(skb)) {
1852 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1853 					IS_UDPLITE(sk));
1854 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1855 					IS_UDPLITE(sk));
1856 			atomic_inc(&sk->sk_drops);
1857 			__skb_unlink(skb, rcvq);
1858 			*total += skb->truesize;
1859 			kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
1860 		} else {
1861 			udp_skb_csum_unnecessary_set(skb);
1862 			break;
1863 		}
1864 	}
1865 	return skb;
1866 }
1867 
1868 /**
1869  *	first_packet_length	- return length of first packet in receive queue
1870  *	@sk: socket
1871  *
1872  *	Drops all bad checksum frames, until a valid one is found.
1873  *	Returns the length of found skb, or -1 if none is found.
1874  */
1875 static int first_packet_length(struct sock *sk)
1876 {
1877 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1878 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1879 	unsigned int total = 0;
1880 	struct sk_buff *skb;
1881 	int res;
1882 
1883 	spin_lock_bh(&rcvq->lock);
1884 	skb = __first_packet_length(sk, rcvq, &total);
1885 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1886 		spin_lock(&sk_queue->lock);
1887 		skb_queue_splice_tail_init(sk_queue, rcvq);
1888 		spin_unlock(&sk_queue->lock);
1889 
1890 		skb = __first_packet_length(sk, rcvq, &total);
1891 	}
1892 	res = skb ? skb->len : -1;
1893 	if (total)
1894 		udp_rmem_release(sk, total, 1, false);
1895 	spin_unlock_bh(&rcvq->lock);
1896 	return res;
1897 }
1898 
1899 /*
1900  *	IOCTL requests applicable to the UDP protocol
1901  */
1902 
1903 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1904 {
1905 	switch (cmd) {
1906 	case SIOCOUTQ:
1907 	{
1908 		*karg = sk_wmem_alloc_get(sk);
1909 		return 0;
1910 	}
1911 
1912 	case SIOCINQ:
1913 	{
1914 		*karg = max_t(int, 0, first_packet_length(sk));
1915 		return 0;
1916 	}
1917 
1918 	default:
1919 		return -ENOIOCTLCMD;
1920 	}
1921 
1922 	return 0;
1923 }
1924 EXPORT_IPV6_MOD(udp_ioctl);
1925 
1926 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1927 			       int *off, int *err)
1928 {
1929 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1930 	struct sk_buff_head *queue;
1931 	struct sk_buff *last;
1932 	long timeo;
1933 	int error;
1934 
1935 	queue = &udp_sk(sk)->reader_queue;
1936 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1937 	do {
1938 		struct sk_buff *skb;
1939 
1940 		error = sock_error(sk);
1941 		if (error)
1942 			break;
1943 
1944 		error = -EAGAIN;
1945 		do {
1946 			spin_lock_bh(&queue->lock);
1947 			skb = __skb_try_recv_from_queue(queue, flags, off, err,
1948 							&last);
1949 			if (skb) {
1950 				if (!(flags & MSG_PEEK))
1951 					udp_skb_destructor(sk, skb);
1952 				spin_unlock_bh(&queue->lock);
1953 				return skb;
1954 			}
1955 
1956 			if (skb_queue_empty_lockless(sk_queue)) {
1957 				spin_unlock_bh(&queue->lock);
1958 				goto busy_check;
1959 			}
1960 
1961 			/* refill the reader queue and walk it again
1962 			 * keep both queues locked to avoid re-acquiring
1963 			 * the sk_receive_queue lock if fwd memory scheduling
1964 			 * is needed.
1965 			 */
1966 			spin_lock(&sk_queue->lock);
1967 			skb_queue_splice_tail_init(sk_queue, queue);
1968 
1969 			skb = __skb_try_recv_from_queue(queue, flags, off, err,
1970 							&last);
1971 			if (skb && !(flags & MSG_PEEK))
1972 				udp_skb_dtor_locked(sk, skb);
1973 			spin_unlock(&sk_queue->lock);
1974 			spin_unlock_bh(&queue->lock);
1975 			if (skb)
1976 				return skb;
1977 
1978 busy_check:
1979 			if (!sk_can_busy_loop(sk))
1980 				break;
1981 
1982 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1983 		} while (!skb_queue_empty_lockless(sk_queue));
1984 
1985 		/* sk_queue is empty, reader_queue may contain peeked packets */
1986 	} while (timeo &&
1987 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1988 					      &error, &timeo,
1989 					      (struct sk_buff *)sk_queue));
1990 
1991 	*err = error;
1992 	return NULL;
1993 }
1994 EXPORT_SYMBOL(__skb_recv_udp);
1995 
1996 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1997 {
1998 	struct sk_buff *skb;
1999 	int err;
2000 
2001 try_again:
2002 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
2003 	if (!skb)
2004 		return err;
2005 
2006 	if (udp_lib_checksum_complete(skb)) {
2007 		int is_udplite = IS_UDPLITE(sk);
2008 		struct net *net = sock_net(sk);
2009 
2010 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
2011 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
2012 		atomic_inc(&sk->sk_drops);
2013 		kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
2014 		goto try_again;
2015 	}
2016 
2017 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
2018 	return recv_actor(sk, skb);
2019 }
2020 EXPORT_IPV6_MOD(udp_read_skb);
2021 
2022 /*
2023  * 	This should be easy, if there is something there we
2024  * 	return it, otherwise we block.
2025  */
2026 
2027 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2028 		int *addr_len)
2029 {
2030 	struct inet_sock *inet = inet_sk(sk);
2031 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
2032 	struct sk_buff *skb;
2033 	unsigned int ulen, copied;
2034 	int off, err, peeking = flags & MSG_PEEK;
2035 	int is_udplite = IS_UDPLITE(sk);
2036 	bool checksum_valid = false;
2037 
2038 	if (flags & MSG_ERRQUEUE)
2039 		return ip_recv_error(sk, msg, len, addr_len);
2040 
2041 try_again:
2042 	off = sk_peek_offset(sk, flags);
2043 	skb = __skb_recv_udp(sk, flags, &off, &err);
2044 	if (!skb)
2045 		return err;
2046 
2047 	ulen = udp_skb_len(skb);
2048 	copied = len;
2049 	if (copied > ulen - off)
2050 		copied = ulen - off;
2051 	else if (copied < ulen)
2052 		msg->msg_flags |= MSG_TRUNC;
2053 
2054 	/*
2055 	 * If checksum is needed at all, try to do it while copying the
2056 	 * data.  If the data is truncated, or if we only want a partial
2057 	 * coverage checksum (UDP-Lite), do it before the copy.
2058 	 */
2059 
2060 	if (copied < ulen || peeking ||
2061 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
2062 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
2063 				!__udp_lib_checksum_complete(skb);
2064 		if (!checksum_valid)
2065 			goto csum_copy_err;
2066 	}
2067 
2068 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
2069 		if (udp_skb_is_linear(skb))
2070 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
2071 		else
2072 			err = skb_copy_datagram_msg(skb, off, msg, copied);
2073 	} else {
2074 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
2075 
2076 		if (err == -EINVAL)
2077 			goto csum_copy_err;
2078 	}
2079 
2080 	if (unlikely(err)) {
2081 		if (!peeking) {
2082 			atomic_inc(&sk->sk_drops);
2083 			UDP_INC_STATS(sock_net(sk),
2084 				      UDP_MIB_INERRORS, is_udplite);
2085 		}
2086 		kfree_skb(skb);
2087 		return err;
2088 	}
2089 
2090 	if (!peeking)
2091 		UDP_INC_STATS(sock_net(sk),
2092 			      UDP_MIB_INDATAGRAMS, is_udplite);
2093 
2094 	sock_recv_cmsgs(msg, sk, skb);
2095 
2096 	/* Copy the address. */
2097 	if (sin) {
2098 		sin->sin_family = AF_INET;
2099 		sin->sin_port = udp_hdr(skb)->source;
2100 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
2101 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2102 		*addr_len = sizeof(*sin);
2103 
2104 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
2105 						      (struct sockaddr *)sin,
2106 						      addr_len);
2107 	}
2108 
2109 	if (udp_test_bit(GRO_ENABLED, sk))
2110 		udp_cmsg_recv(msg, sk, skb);
2111 
2112 	if (inet_cmsg_flags(inet))
2113 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
2114 
2115 	err = copied;
2116 	if (flags & MSG_TRUNC)
2117 		err = ulen;
2118 
2119 	skb_consume_udp(sk, skb, peeking ? -err : err);
2120 	return err;
2121 
2122 csum_copy_err:
2123 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
2124 				 udp_skb_destructor)) {
2125 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2126 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2127 	}
2128 	kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
2129 
2130 	/* starting over for a new packet, but check if we need to yield */
2131 	cond_resched();
2132 	msg->msg_flags &= ~MSG_TRUNC;
2133 	goto try_again;
2134 }
2135 
2136 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2137 {
2138 	/* This check is replicated from __ip4_datagram_connect() and
2139 	 * intended to prevent BPF program called below from accessing bytes
2140 	 * that are out of the bound specified by user in addr_len.
2141 	 */
2142 	if (addr_len < sizeof(struct sockaddr_in))
2143 		return -EINVAL;
2144 
2145 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2146 }
2147 EXPORT_IPV6_MOD(udp_pre_connect);
2148 
2149 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2150 {
2151 	int res;
2152 
2153 	lock_sock(sk);
2154 	res = __ip4_datagram_connect(sk, uaddr, addr_len);
2155 	if (!res)
2156 		udp4_hash4(sk);
2157 	release_sock(sk);
2158 	return res;
2159 }
2160 
2161 int __udp_disconnect(struct sock *sk, int flags)
2162 {
2163 	struct inet_sock *inet = inet_sk(sk);
2164 	/*
2165 	 *	1003.1g - break association.
2166 	 */
2167 
2168 	sk->sk_state = TCP_CLOSE;
2169 	inet->inet_daddr = 0;
2170 	inet->inet_dport = 0;
2171 	sock_rps_reset_rxhash(sk);
2172 	sk->sk_bound_dev_if = 0;
2173 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2174 		inet_reset_saddr(sk);
2175 		if (sk->sk_prot->rehash &&
2176 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2177 			sk->sk_prot->rehash(sk);
2178 	}
2179 
2180 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2181 		sk->sk_prot->unhash(sk);
2182 		inet->inet_sport = 0;
2183 	}
2184 	sk_dst_reset(sk);
2185 	return 0;
2186 }
2187 EXPORT_SYMBOL(__udp_disconnect);
2188 
2189 int udp_disconnect(struct sock *sk, int flags)
2190 {
2191 	lock_sock(sk);
2192 	__udp_disconnect(sk, flags);
2193 	release_sock(sk);
2194 	return 0;
2195 }
2196 EXPORT_IPV6_MOD(udp_disconnect);
2197 
2198 void udp_lib_unhash(struct sock *sk)
2199 {
2200 	if (sk_hashed(sk)) {
2201 		struct udp_table *udptable = udp_get_table_prot(sk);
2202 		struct udp_hslot *hslot, *hslot2;
2203 
2204 		sock_rps_delete_flow(sk);
2205 		hslot  = udp_hashslot(udptable, sock_net(sk),
2206 				      udp_sk(sk)->udp_port_hash);
2207 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2208 
2209 		spin_lock_bh(&hslot->lock);
2210 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2211 			reuseport_detach_sock(sk);
2212 		if (sk_del_node_init_rcu(sk)) {
2213 			hslot->count--;
2214 			inet_sk(sk)->inet_num = 0;
2215 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2216 
2217 			spin_lock(&hslot2->lock);
2218 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2219 			hslot2->count--;
2220 			spin_unlock(&hslot2->lock);
2221 
2222 			udp_unhash4(udptable, sk);
2223 		}
2224 		spin_unlock_bh(&hslot->lock);
2225 	}
2226 }
2227 EXPORT_IPV6_MOD(udp_lib_unhash);
2228 
2229 /*
2230  * inet_rcv_saddr was changed, we must rehash secondary hash
2231  */
2232 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4)
2233 {
2234 	if (sk_hashed(sk)) {
2235 		struct udp_table *udptable = udp_get_table_prot(sk);
2236 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2237 
2238 		hslot = udp_hashslot(udptable, sock_net(sk),
2239 				     udp_sk(sk)->udp_port_hash);
2240 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2241 		nhslot2 = udp_hashslot2(udptable, newhash);
2242 		udp_sk(sk)->udp_portaddr_hash = newhash;
2243 
2244 		if (hslot2 != nhslot2 ||
2245 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2246 			/* we must lock primary chain too */
2247 			spin_lock_bh(&hslot->lock);
2248 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2249 				reuseport_detach_sock(sk);
2250 
2251 			if (hslot2 != nhslot2) {
2252 				spin_lock(&hslot2->lock);
2253 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2254 				hslot2->count--;
2255 				spin_unlock(&hslot2->lock);
2256 
2257 				spin_lock(&nhslot2->lock);
2258 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2259 							 &nhslot2->head);
2260 				nhslot2->count++;
2261 				spin_unlock(&nhslot2->lock);
2262 			}
2263 
2264 			spin_unlock_bh(&hslot->lock);
2265 		}
2266 
2267 		/* Now process hash4 if necessary:
2268 		 * (1) update hslot4;
2269 		 * (2) update hslot2->hash4_cnt.
2270 		 * Note that hslot2/hslot4 should be checked separately, as
2271 		 * either of them may change with the other unchanged.
2272 		 */
2273 		if (udp_hashed4(sk)) {
2274 			spin_lock_bh(&hslot->lock);
2275 
2276 			udp_rehash4(udptable, sk, newhash4);
2277 			if (hslot2 != nhslot2) {
2278 				spin_lock(&hslot2->lock);
2279 				udp_hash4_dec(hslot2);
2280 				spin_unlock(&hslot2->lock);
2281 
2282 				spin_lock(&nhslot2->lock);
2283 				udp_hash4_inc(nhslot2);
2284 				spin_unlock(&nhslot2->lock);
2285 			}
2286 
2287 			spin_unlock_bh(&hslot->lock);
2288 		}
2289 	}
2290 }
2291 EXPORT_IPV6_MOD(udp_lib_rehash);
2292 
2293 void udp_v4_rehash(struct sock *sk)
2294 {
2295 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2296 					  inet_sk(sk)->inet_rcv_saddr,
2297 					  inet_sk(sk)->inet_num);
2298 	u16 new_hash4 = udp_ehashfn(sock_net(sk),
2299 				    sk->sk_rcv_saddr, sk->sk_num,
2300 				    sk->sk_daddr, sk->sk_dport);
2301 
2302 	udp_lib_rehash(sk, new_hash, new_hash4);
2303 }
2304 
2305 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2306 {
2307 	int rc;
2308 
2309 	if (inet_sk(sk)->inet_daddr) {
2310 		sock_rps_save_rxhash(sk, skb);
2311 		sk_mark_napi_id(sk, skb);
2312 		sk_incoming_cpu_update(sk);
2313 	} else {
2314 		sk_mark_napi_id_once(sk, skb);
2315 	}
2316 
2317 	rc = __udp_enqueue_schedule_skb(sk, skb);
2318 	if (rc < 0) {
2319 		int is_udplite = IS_UDPLITE(sk);
2320 		int drop_reason;
2321 
2322 		/* Note that an ENOMEM error is charged twice */
2323 		if (rc == -ENOMEM) {
2324 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2325 					is_udplite);
2326 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2327 		} else {
2328 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2329 				      is_udplite);
2330 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2331 		}
2332 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2333 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2334 		sk_skb_reason_drop(sk, skb, drop_reason);
2335 		return -1;
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 /* returns:
2342  *  -1: error
2343  *   0: success
2344  *  >0: "udp encap" protocol resubmission
2345  *
2346  * Note that in the success and error cases, the skb is assumed to
2347  * have either been requeued or freed.
2348  */
2349 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2350 {
2351 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2352 	struct udp_sock *up = udp_sk(sk);
2353 	int is_udplite = IS_UDPLITE(sk);
2354 
2355 	/*
2356 	 *	Charge it to the socket, dropping if the queue is full.
2357 	 */
2358 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2359 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2360 		goto drop;
2361 	}
2362 	nf_reset_ct(skb);
2363 
2364 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2365 	    READ_ONCE(up->encap_type)) {
2366 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2367 
2368 		/*
2369 		 * This is an encapsulation socket so pass the skb to
2370 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2371 		 * fall through and pass this up the UDP socket.
2372 		 * up->encap_rcv() returns the following value:
2373 		 * =0 if skb was successfully passed to the encap
2374 		 *    handler or was discarded by it.
2375 		 * >0 if skb should be passed on to UDP.
2376 		 * <0 if skb should be resubmitted as proto -N
2377 		 */
2378 
2379 		/* if we're overly short, let UDP handle it */
2380 		encap_rcv = READ_ONCE(up->encap_rcv);
2381 		if (encap_rcv) {
2382 			int ret;
2383 
2384 			/* Verify checksum before giving to encap */
2385 			if (udp_lib_checksum_complete(skb))
2386 				goto csum_error;
2387 
2388 			ret = encap_rcv(sk, skb);
2389 			if (ret <= 0) {
2390 				__UDP_INC_STATS(sock_net(sk),
2391 						UDP_MIB_INDATAGRAMS,
2392 						is_udplite);
2393 				return -ret;
2394 			}
2395 		}
2396 
2397 		/* FALLTHROUGH -- it's a UDP Packet */
2398 	}
2399 
2400 	/*
2401 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2402 	 */
2403 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2404 		u16 pcrlen = READ_ONCE(up->pcrlen);
2405 
2406 		/*
2407 		 * MIB statistics other than incrementing the error count are
2408 		 * disabled for the following two types of errors: these depend
2409 		 * on the application settings, not on the functioning of the
2410 		 * protocol stack as such.
2411 		 *
2412 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2413 		 * way ... to ... at least let the receiving application block
2414 		 * delivery of packets with coverage values less than a value
2415 		 * provided by the application."
2416 		 */
2417 		if (pcrlen == 0) {          /* full coverage was set  */
2418 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2419 					    UDP_SKB_CB(skb)->cscov, skb->len);
2420 			goto drop;
2421 		}
2422 		/* The next case involves violating the min. coverage requested
2423 		 * by the receiver. This is subtle: if receiver wants x and x is
2424 		 * greater than the buffersize/MTU then receiver will complain
2425 		 * that it wants x while sender emits packets of smaller size y.
2426 		 * Therefore the above ...()->partial_cov statement is essential.
2427 		 */
2428 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2429 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2430 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2431 			goto drop;
2432 		}
2433 	}
2434 
2435 	prefetch(&sk->sk_rmem_alloc);
2436 	if (rcu_access_pointer(sk->sk_filter) &&
2437 	    udp_lib_checksum_complete(skb))
2438 			goto csum_error;
2439 
2440 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2441 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2442 		goto drop;
2443 	}
2444 
2445 	udp_csum_pull_header(skb);
2446 
2447 	ipv4_pktinfo_prepare(sk, skb, true);
2448 	return __udp_queue_rcv_skb(sk, skb);
2449 
2450 csum_error:
2451 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2452 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2453 drop:
2454 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2455 	atomic_inc(&sk->sk_drops);
2456 	sk_skb_reason_drop(sk, skb, drop_reason);
2457 	return -1;
2458 }
2459 
2460 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2461 {
2462 	struct sk_buff *next, *segs;
2463 	int ret;
2464 
2465 	if (likely(!udp_unexpected_gso(sk, skb)))
2466 		return udp_queue_rcv_one_skb(sk, skb);
2467 
2468 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2469 	__skb_push(skb, -skb_mac_offset(skb));
2470 	segs = udp_rcv_segment(sk, skb, true);
2471 	skb_list_walk_safe(segs, skb, next) {
2472 		__skb_pull(skb, skb_transport_offset(skb));
2473 
2474 		udp_post_segment_fix_csum(skb);
2475 		ret = udp_queue_rcv_one_skb(sk, skb);
2476 		if (ret > 0)
2477 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2478 	}
2479 	return 0;
2480 }
2481 
2482 /* For TCP sockets, sk_rx_dst is protected by socket lock
2483  * For UDP, we use xchg() to guard against concurrent changes.
2484  */
2485 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2486 {
2487 	struct dst_entry *old;
2488 
2489 	if (dst_hold_safe(dst)) {
2490 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2491 		dst_release(old);
2492 		return old != dst;
2493 	}
2494 	return false;
2495 }
2496 EXPORT_IPV6_MOD(udp_sk_rx_dst_set);
2497 
2498 /*
2499  *	Multicasts and broadcasts go to each listener.
2500  *
2501  *	Note: called only from the BH handler context.
2502  */
2503 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2504 				    struct udphdr  *uh,
2505 				    __be32 saddr, __be32 daddr,
2506 				    struct udp_table *udptable,
2507 				    int proto)
2508 {
2509 	struct sock *sk, *first = NULL;
2510 	unsigned short hnum = ntohs(uh->dest);
2511 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2512 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2513 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2514 	int dif = skb->dev->ifindex;
2515 	int sdif = inet_sdif(skb);
2516 	struct hlist_node *node;
2517 	struct sk_buff *nskb;
2518 
2519 	if (use_hash2) {
2520 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2521 			    udptable->mask;
2522 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2523 start_lookup:
2524 		hslot = &udptable->hash2[hash2].hslot;
2525 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2526 	}
2527 
2528 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2529 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2530 					 uh->source, saddr, dif, sdif, hnum))
2531 			continue;
2532 
2533 		if (!first) {
2534 			first = sk;
2535 			continue;
2536 		}
2537 		nskb = skb_clone(skb, GFP_ATOMIC);
2538 
2539 		if (unlikely(!nskb)) {
2540 			atomic_inc(&sk->sk_drops);
2541 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2542 					IS_UDPLITE(sk));
2543 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2544 					IS_UDPLITE(sk));
2545 			continue;
2546 		}
2547 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2548 			consume_skb(nskb);
2549 	}
2550 
2551 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2552 	if (use_hash2 && hash2 != hash2_any) {
2553 		hash2 = hash2_any;
2554 		goto start_lookup;
2555 	}
2556 
2557 	if (first) {
2558 		if (udp_queue_rcv_skb(first, skb) > 0)
2559 			consume_skb(skb);
2560 	} else {
2561 		kfree_skb(skb);
2562 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2563 				proto == IPPROTO_UDPLITE);
2564 	}
2565 	return 0;
2566 }
2567 
2568 /* Initialize UDP checksum. If exited with zero value (success),
2569  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2570  * Otherwise, csum completion requires checksumming packet body,
2571  * including udp header and folding it to skb->csum.
2572  */
2573 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2574 				 int proto)
2575 {
2576 	int err;
2577 
2578 	UDP_SKB_CB(skb)->partial_cov = 0;
2579 	UDP_SKB_CB(skb)->cscov = skb->len;
2580 
2581 	if (proto == IPPROTO_UDPLITE) {
2582 		err = udplite_checksum_init(skb, uh);
2583 		if (err)
2584 			return err;
2585 
2586 		if (UDP_SKB_CB(skb)->partial_cov) {
2587 			skb->csum = inet_compute_pseudo(skb, proto);
2588 			return 0;
2589 		}
2590 	}
2591 
2592 	/* Note, we are only interested in != 0 or == 0, thus the
2593 	 * force to int.
2594 	 */
2595 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2596 							inet_compute_pseudo);
2597 	if (err)
2598 		return err;
2599 
2600 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2601 		/* If SW calculated the value, we know it's bad */
2602 		if (skb->csum_complete_sw)
2603 			return 1;
2604 
2605 		/* HW says the value is bad. Let's validate that.
2606 		 * skb->csum is no longer the full packet checksum,
2607 		 * so don't treat it as such.
2608 		 */
2609 		skb_checksum_complete_unset(skb);
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2616  * return code conversion for ip layer consumption
2617  */
2618 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2619 			       struct udphdr *uh)
2620 {
2621 	int ret;
2622 
2623 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2624 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2625 
2626 	ret = udp_queue_rcv_skb(sk, skb);
2627 
2628 	/* a return value > 0 means to resubmit the input, but
2629 	 * it wants the return to be -protocol, or 0
2630 	 */
2631 	if (ret > 0)
2632 		return -ret;
2633 	return 0;
2634 }
2635 
2636 /*
2637  *	All we need to do is get the socket, and then do a checksum.
2638  */
2639 
2640 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2641 		   int proto)
2642 {
2643 	struct sock *sk = NULL;
2644 	struct udphdr *uh;
2645 	unsigned short ulen;
2646 	struct rtable *rt = skb_rtable(skb);
2647 	__be32 saddr, daddr;
2648 	struct net *net = dev_net(skb->dev);
2649 	bool refcounted;
2650 	int drop_reason;
2651 
2652 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2653 
2654 	/*
2655 	 *  Validate the packet.
2656 	 */
2657 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2658 		goto drop;		/* No space for header. */
2659 
2660 	uh   = udp_hdr(skb);
2661 	ulen = ntohs(uh->len);
2662 	saddr = ip_hdr(skb)->saddr;
2663 	daddr = ip_hdr(skb)->daddr;
2664 
2665 	if (ulen > skb->len)
2666 		goto short_packet;
2667 
2668 	if (proto == IPPROTO_UDP) {
2669 		/* UDP validates ulen. */
2670 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2671 			goto short_packet;
2672 		uh = udp_hdr(skb);
2673 	}
2674 
2675 	if (udp4_csum_init(skb, uh, proto))
2676 		goto csum_error;
2677 
2678 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2679 			     &refcounted, udp_ehashfn);
2680 	if (IS_ERR(sk))
2681 		goto no_sk;
2682 
2683 	if (sk) {
2684 		struct dst_entry *dst = skb_dst(skb);
2685 		int ret;
2686 
2687 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2688 			udp_sk_rx_dst_set(sk, dst);
2689 
2690 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2691 		if (refcounted)
2692 			sock_put(sk);
2693 		return ret;
2694 	}
2695 
2696 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2697 		return __udp4_lib_mcast_deliver(net, skb, uh,
2698 						saddr, daddr, udptable, proto);
2699 
2700 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2701 	if (sk)
2702 		return udp_unicast_rcv_skb(sk, skb, uh);
2703 no_sk:
2704 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2705 		goto drop;
2706 	nf_reset_ct(skb);
2707 
2708 	/* No socket. Drop packet silently, if checksum is wrong */
2709 	if (udp_lib_checksum_complete(skb))
2710 		goto csum_error;
2711 
2712 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2713 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2714 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2715 
2716 	/*
2717 	 * Hmm.  We got an UDP packet to a port to which we
2718 	 * don't wanna listen.  Ignore it.
2719 	 */
2720 	sk_skb_reason_drop(sk, skb, drop_reason);
2721 	return 0;
2722 
2723 short_packet:
2724 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2725 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2726 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2727 			    &saddr, ntohs(uh->source),
2728 			    ulen, skb->len,
2729 			    &daddr, ntohs(uh->dest));
2730 	goto drop;
2731 
2732 csum_error:
2733 	/*
2734 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2735 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2736 	 */
2737 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2738 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2739 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2740 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2741 			    ulen);
2742 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2743 drop:
2744 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2745 	sk_skb_reason_drop(sk, skb, drop_reason);
2746 	return 0;
2747 }
2748 
2749 /* We can only early demux multicast if there is a single matching socket.
2750  * If more than one socket found returns NULL
2751  */
2752 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2753 						  __be16 loc_port, __be32 loc_addr,
2754 						  __be16 rmt_port, __be32 rmt_addr,
2755 						  int dif, int sdif)
2756 {
2757 	struct udp_table *udptable = net->ipv4.udp_table;
2758 	unsigned short hnum = ntohs(loc_port);
2759 	struct sock *sk, *result;
2760 	struct udp_hslot *hslot;
2761 	unsigned int slot;
2762 
2763 	slot = udp_hashfn(net, hnum, udptable->mask);
2764 	hslot = &udptable->hash[slot];
2765 
2766 	/* Do not bother scanning a too big list */
2767 	if (hslot->count > 10)
2768 		return NULL;
2769 
2770 	result = NULL;
2771 	sk_for_each_rcu(sk, &hslot->head) {
2772 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2773 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2774 			if (result)
2775 				return NULL;
2776 			result = sk;
2777 		}
2778 	}
2779 
2780 	return result;
2781 }
2782 
2783 /* For unicast we should only early demux connected sockets or we can
2784  * break forwarding setups.  The chains here can be long so only check
2785  * if the first socket is an exact match and if not move on.
2786  */
2787 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2788 					    __be16 loc_port, __be32 loc_addr,
2789 					    __be16 rmt_port, __be32 rmt_addr,
2790 					    int dif, int sdif)
2791 {
2792 	struct udp_table *udptable = net->ipv4.udp_table;
2793 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2794 	unsigned short hnum = ntohs(loc_port);
2795 	struct udp_hslot *hslot2;
2796 	unsigned int hash2;
2797 	__portpair ports;
2798 	struct sock *sk;
2799 
2800 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2801 	hslot2 = udp_hashslot2(udptable, hash2);
2802 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2803 
2804 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2805 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2806 			return sk;
2807 		/* Only check first socket in chain */
2808 		break;
2809 	}
2810 	return NULL;
2811 }
2812 
2813 int udp_v4_early_demux(struct sk_buff *skb)
2814 {
2815 	struct net *net = dev_net(skb->dev);
2816 	struct in_device *in_dev = NULL;
2817 	const struct iphdr *iph;
2818 	const struct udphdr *uh;
2819 	struct sock *sk = NULL;
2820 	struct dst_entry *dst;
2821 	int dif = skb->dev->ifindex;
2822 	int sdif = inet_sdif(skb);
2823 	int ours;
2824 
2825 	/* validate the packet */
2826 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2827 		return 0;
2828 
2829 	iph = ip_hdr(skb);
2830 	uh = udp_hdr(skb);
2831 
2832 	if (skb->pkt_type == PACKET_MULTICAST) {
2833 		in_dev = __in_dev_get_rcu(skb->dev);
2834 
2835 		if (!in_dev)
2836 			return 0;
2837 
2838 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2839 				       iph->protocol);
2840 		if (!ours)
2841 			return 0;
2842 
2843 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2844 						   uh->source, iph->saddr,
2845 						   dif, sdif);
2846 	} else if (skb->pkt_type == PACKET_HOST) {
2847 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2848 					     uh->source, iph->saddr, dif, sdif);
2849 	}
2850 
2851 	if (!sk)
2852 		return 0;
2853 
2854 	skb->sk = sk;
2855 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2856 	skb->destructor = sock_pfree;
2857 	dst = rcu_dereference(sk->sk_rx_dst);
2858 
2859 	if (dst)
2860 		dst = dst_check(dst, 0);
2861 	if (dst) {
2862 		u32 itag = 0;
2863 
2864 		/* set noref for now.
2865 		 * any place which wants to hold dst has to call
2866 		 * dst_hold_safe()
2867 		 */
2868 		skb_dst_set_noref(skb, dst);
2869 
2870 		/* for unconnected multicast sockets we need to validate
2871 		 * the source on each packet
2872 		 */
2873 		if (!inet_sk(sk)->inet_daddr && in_dev)
2874 			return ip_mc_validate_source(skb, iph->daddr,
2875 						     iph->saddr,
2876 						     ip4h_dscp(iph),
2877 						     skb->dev, in_dev, &itag);
2878 	}
2879 	return 0;
2880 }
2881 
2882 int udp_rcv(struct sk_buff *skb)
2883 {
2884 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2885 }
2886 
2887 void udp_destroy_sock(struct sock *sk)
2888 {
2889 	struct udp_sock *up = udp_sk(sk);
2890 	bool slow = lock_sock_fast(sk);
2891 
2892 	/* protects from races with udp_abort() */
2893 	sock_set_flag(sk, SOCK_DEAD);
2894 	udp_flush_pending_frames(sk);
2895 	unlock_sock_fast(sk, slow);
2896 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2897 		if (up->encap_type) {
2898 			void (*encap_destroy)(struct sock *sk);
2899 			encap_destroy = READ_ONCE(up->encap_destroy);
2900 			if (encap_destroy)
2901 				encap_destroy(sk);
2902 		}
2903 		if (udp_test_bit(ENCAP_ENABLED, sk)) {
2904 			static_branch_dec(&udp_encap_needed_key);
2905 			udp_tunnel_cleanup_gro(sk);
2906 		}
2907 	}
2908 }
2909 
2910 typedef struct sk_buff *(*udp_gro_receive_t)(struct sock *sk,
2911 					     struct list_head *head,
2912 					     struct sk_buff *skb);
2913 
2914 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2915 				       struct sock *sk)
2916 {
2917 #ifdef CONFIG_XFRM
2918 	udp_gro_receive_t new_gro_receive;
2919 
2920 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2921 		if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2922 			new_gro_receive = ipv6_stub->xfrm6_gro_udp_encap_rcv;
2923 		else
2924 			new_gro_receive = xfrm4_gro_udp_encap_rcv;
2925 
2926 		if (udp_sk(sk)->gro_receive != new_gro_receive) {
2927 			/*
2928 			 * With IPV6_ADDRFORM the gro callback could change
2929 			 * after being set, unregister the old one, if valid.
2930 			 */
2931 			if (udp_sk(sk)->gro_receive)
2932 				udp_tunnel_update_gro_rcv(sk, false);
2933 
2934 			WRITE_ONCE(udp_sk(sk)->gro_receive, new_gro_receive);
2935 			udp_tunnel_update_gro_rcv(sk, true);
2936 		}
2937 	}
2938 #endif
2939 }
2940 
2941 /*
2942  *	Socket option code for UDP
2943  */
2944 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2945 		       sockptr_t optval, unsigned int optlen,
2946 		       int (*push_pending_frames)(struct sock *))
2947 {
2948 	struct udp_sock *up = udp_sk(sk);
2949 	int val, valbool;
2950 	int err = 0;
2951 	int is_udplite = IS_UDPLITE(sk);
2952 
2953 	if (level == SOL_SOCKET) {
2954 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2955 
2956 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2957 			sockopt_lock_sock(sk);
2958 			/* paired with READ_ONCE in udp_rmem_release() */
2959 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2960 			sockopt_release_sock(sk);
2961 		}
2962 		return err;
2963 	}
2964 
2965 	if (optlen < sizeof(int))
2966 		return -EINVAL;
2967 
2968 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2969 		return -EFAULT;
2970 
2971 	valbool = val ? 1 : 0;
2972 
2973 	switch (optname) {
2974 	case UDP_CORK:
2975 		if (val != 0) {
2976 			udp_set_bit(CORK, sk);
2977 		} else {
2978 			udp_clear_bit(CORK, sk);
2979 			lock_sock(sk);
2980 			push_pending_frames(sk);
2981 			release_sock(sk);
2982 		}
2983 		break;
2984 
2985 	case UDP_ENCAP:
2986 		sockopt_lock_sock(sk);
2987 		switch (val) {
2988 		case 0:
2989 #ifdef CONFIG_XFRM
2990 		case UDP_ENCAP_ESPINUDP:
2991 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2992 #if IS_ENABLED(CONFIG_IPV6)
2993 			if (sk->sk_family == AF_INET6)
2994 				WRITE_ONCE(up->encap_rcv,
2995 					   ipv6_stub->xfrm6_udp_encap_rcv);
2996 			else
2997 #endif
2998 				WRITE_ONCE(up->encap_rcv,
2999 					   xfrm4_udp_encap_rcv);
3000 #endif
3001 			fallthrough;
3002 		case UDP_ENCAP_L2TPINUDP:
3003 			WRITE_ONCE(up->encap_type, val);
3004 			udp_tunnel_encap_enable(sk);
3005 			break;
3006 		default:
3007 			err = -ENOPROTOOPT;
3008 			break;
3009 		}
3010 		sockopt_release_sock(sk);
3011 		break;
3012 
3013 	case UDP_NO_CHECK6_TX:
3014 		udp_set_no_check6_tx(sk, valbool);
3015 		break;
3016 
3017 	case UDP_NO_CHECK6_RX:
3018 		udp_set_no_check6_rx(sk, valbool);
3019 		break;
3020 
3021 	case UDP_SEGMENT:
3022 		if (val < 0 || val > USHRT_MAX)
3023 			return -EINVAL;
3024 		WRITE_ONCE(up->gso_size, val);
3025 		break;
3026 
3027 	case UDP_GRO:
3028 		sockopt_lock_sock(sk);
3029 		/* when enabling GRO, accept the related GSO packet type */
3030 		if (valbool)
3031 			udp_tunnel_encap_enable(sk);
3032 		udp_assign_bit(GRO_ENABLED, sk, valbool);
3033 		udp_assign_bit(ACCEPT_L4, sk, valbool);
3034 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
3035 		sockopt_release_sock(sk);
3036 		break;
3037 
3038 	/*
3039 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
3040 	 */
3041 	/* The sender sets actual checksum coverage length via this option.
3042 	 * The case coverage > packet length is handled by send module. */
3043 	case UDPLITE_SEND_CSCOV:
3044 		if (!is_udplite)         /* Disable the option on UDP sockets */
3045 			return -ENOPROTOOPT;
3046 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
3047 			val = 8;
3048 		else if (val > USHRT_MAX)
3049 			val = USHRT_MAX;
3050 		WRITE_ONCE(up->pcslen, val);
3051 		udp_set_bit(UDPLITE_SEND_CC, sk);
3052 		break;
3053 
3054 	/* The receiver specifies a minimum checksum coverage value. To make
3055 	 * sense, this should be set to at least 8 (as done below). If zero is
3056 	 * used, this again means full checksum coverage.                     */
3057 	case UDPLITE_RECV_CSCOV:
3058 		if (!is_udplite)         /* Disable the option on UDP sockets */
3059 			return -ENOPROTOOPT;
3060 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
3061 			val = 8;
3062 		else if (val > USHRT_MAX)
3063 			val = USHRT_MAX;
3064 		WRITE_ONCE(up->pcrlen, val);
3065 		udp_set_bit(UDPLITE_RECV_CC, sk);
3066 		break;
3067 
3068 	default:
3069 		err = -ENOPROTOOPT;
3070 		break;
3071 	}
3072 
3073 	return err;
3074 }
3075 EXPORT_IPV6_MOD(udp_lib_setsockopt);
3076 
3077 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3078 		   unsigned int optlen)
3079 {
3080 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
3081 		return udp_lib_setsockopt(sk, level, optname,
3082 					  optval, optlen,
3083 					  udp_push_pending_frames);
3084 	return ip_setsockopt(sk, level, optname, optval, optlen);
3085 }
3086 
3087 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
3088 		       char __user *optval, int __user *optlen)
3089 {
3090 	struct udp_sock *up = udp_sk(sk);
3091 	int val, len;
3092 
3093 	if (get_user(len, optlen))
3094 		return -EFAULT;
3095 
3096 	if (len < 0)
3097 		return -EINVAL;
3098 
3099 	len = min_t(unsigned int, len, sizeof(int));
3100 
3101 	switch (optname) {
3102 	case UDP_CORK:
3103 		val = udp_test_bit(CORK, sk);
3104 		break;
3105 
3106 	case UDP_ENCAP:
3107 		val = READ_ONCE(up->encap_type);
3108 		break;
3109 
3110 	case UDP_NO_CHECK6_TX:
3111 		val = udp_get_no_check6_tx(sk);
3112 		break;
3113 
3114 	case UDP_NO_CHECK6_RX:
3115 		val = udp_get_no_check6_rx(sk);
3116 		break;
3117 
3118 	case UDP_SEGMENT:
3119 		val = READ_ONCE(up->gso_size);
3120 		break;
3121 
3122 	case UDP_GRO:
3123 		val = udp_test_bit(GRO_ENABLED, sk);
3124 		break;
3125 
3126 	/* The following two cannot be changed on UDP sockets, the return is
3127 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
3128 	case UDPLITE_SEND_CSCOV:
3129 		val = READ_ONCE(up->pcslen);
3130 		break;
3131 
3132 	case UDPLITE_RECV_CSCOV:
3133 		val = READ_ONCE(up->pcrlen);
3134 		break;
3135 
3136 	default:
3137 		return -ENOPROTOOPT;
3138 	}
3139 
3140 	if (put_user(len, optlen))
3141 		return -EFAULT;
3142 	if (copy_to_user(optval, &val, len))
3143 		return -EFAULT;
3144 	return 0;
3145 }
3146 EXPORT_IPV6_MOD(udp_lib_getsockopt);
3147 
3148 int udp_getsockopt(struct sock *sk, int level, int optname,
3149 		   char __user *optval, int __user *optlen)
3150 {
3151 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
3152 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
3153 	return ip_getsockopt(sk, level, optname, optval, optlen);
3154 }
3155 
3156 /**
3157  * 	udp_poll - wait for a UDP event.
3158  *	@file: - file struct
3159  *	@sock: - socket
3160  *	@wait: - poll table
3161  *
3162  *	This is same as datagram poll, except for the special case of
3163  *	blocking sockets. If application is using a blocking fd
3164  *	and a packet with checksum error is in the queue;
3165  *	then it could get return from select indicating data available
3166  *	but then block when reading it. Add special case code
3167  *	to work around these arguably broken applications.
3168  */
3169 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
3170 {
3171 	__poll_t mask = datagram_poll(file, sock, wait);
3172 	struct sock *sk = sock->sk;
3173 
3174 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
3175 		mask |= EPOLLIN | EPOLLRDNORM;
3176 
3177 	/* Check for false positives due to checksum errors */
3178 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
3179 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
3180 		mask &= ~(EPOLLIN | EPOLLRDNORM);
3181 
3182 	/* psock ingress_msg queue should not contain any bad checksum frames */
3183 	if (sk_is_readable(sk))
3184 		mask |= EPOLLIN | EPOLLRDNORM;
3185 	return mask;
3186 
3187 }
3188 EXPORT_IPV6_MOD(udp_poll);
3189 
3190 int udp_abort(struct sock *sk, int err)
3191 {
3192 	if (!has_current_bpf_ctx())
3193 		lock_sock(sk);
3194 
3195 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
3196 	 * with close()
3197 	 */
3198 	if (sock_flag(sk, SOCK_DEAD))
3199 		goto out;
3200 
3201 	sk->sk_err = err;
3202 	sk_error_report(sk);
3203 	__udp_disconnect(sk, 0);
3204 
3205 out:
3206 	if (!has_current_bpf_ctx())
3207 		release_sock(sk);
3208 
3209 	return 0;
3210 }
3211 EXPORT_IPV6_MOD_GPL(udp_abort);
3212 
3213 struct proto udp_prot = {
3214 	.name			= "UDP",
3215 	.owner			= THIS_MODULE,
3216 	.close			= udp_lib_close,
3217 	.pre_connect		= udp_pre_connect,
3218 	.connect		= udp_connect,
3219 	.disconnect		= udp_disconnect,
3220 	.ioctl			= udp_ioctl,
3221 	.init			= udp_init_sock,
3222 	.destroy		= udp_destroy_sock,
3223 	.setsockopt		= udp_setsockopt,
3224 	.getsockopt		= udp_getsockopt,
3225 	.sendmsg		= udp_sendmsg,
3226 	.recvmsg		= udp_recvmsg,
3227 	.splice_eof		= udp_splice_eof,
3228 	.release_cb		= ip4_datagram_release_cb,
3229 	.hash			= udp_lib_hash,
3230 	.unhash			= udp_lib_unhash,
3231 	.rehash			= udp_v4_rehash,
3232 	.get_port		= udp_v4_get_port,
3233 	.put_port		= udp_lib_unhash,
3234 #ifdef CONFIG_BPF_SYSCALL
3235 	.psock_update_sk_prot	= udp_bpf_update_proto,
3236 #endif
3237 	.memory_allocated	= &udp_memory_allocated,
3238 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
3239 
3240 	.sysctl_mem		= sysctl_udp_mem,
3241 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3242 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3243 	.obj_size		= sizeof(struct udp_sock),
3244 	.h.udp_table		= NULL,
3245 	.diag_destroy		= udp_abort,
3246 };
3247 EXPORT_SYMBOL(udp_prot);
3248 
3249 /* ------------------------------------------------------------------------ */
3250 #ifdef CONFIG_PROC_FS
3251 
3252 static unsigned short seq_file_family(const struct seq_file *seq);
3253 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3254 {
3255 	unsigned short family = seq_file_family(seq);
3256 
3257 	/* AF_UNSPEC is used as a match all */
3258 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
3259 		net_eq(sock_net(sk), seq_file_net(seq)));
3260 }
3261 
3262 #ifdef CONFIG_BPF_SYSCALL
3263 static const struct seq_operations bpf_iter_udp_seq_ops;
3264 #endif
3265 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3266 					   struct net *net)
3267 {
3268 	const struct udp_seq_afinfo *afinfo;
3269 
3270 #ifdef CONFIG_BPF_SYSCALL
3271 	if (seq->op == &bpf_iter_udp_seq_ops)
3272 		return net->ipv4.udp_table;
3273 #endif
3274 
3275 	afinfo = pde_data(file_inode(seq->file));
3276 	return afinfo->udp_table ? : net->ipv4.udp_table;
3277 }
3278 
3279 static struct sock *udp_get_first(struct seq_file *seq, int start)
3280 {
3281 	struct udp_iter_state *state = seq->private;
3282 	struct net *net = seq_file_net(seq);
3283 	struct udp_table *udptable;
3284 	struct sock *sk;
3285 
3286 	udptable = udp_get_table_seq(seq, net);
3287 
3288 	for (state->bucket = start; state->bucket <= udptable->mask;
3289 	     ++state->bucket) {
3290 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3291 
3292 		if (hlist_empty(&hslot->head))
3293 			continue;
3294 
3295 		spin_lock_bh(&hslot->lock);
3296 		sk_for_each(sk, &hslot->head) {
3297 			if (seq_sk_match(seq, sk))
3298 				goto found;
3299 		}
3300 		spin_unlock_bh(&hslot->lock);
3301 	}
3302 	sk = NULL;
3303 found:
3304 	return sk;
3305 }
3306 
3307 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3308 {
3309 	struct udp_iter_state *state = seq->private;
3310 	struct net *net = seq_file_net(seq);
3311 	struct udp_table *udptable;
3312 
3313 	do {
3314 		sk = sk_next(sk);
3315 	} while (sk && !seq_sk_match(seq, sk));
3316 
3317 	if (!sk) {
3318 		udptable = udp_get_table_seq(seq, net);
3319 
3320 		if (state->bucket <= udptable->mask)
3321 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3322 
3323 		return udp_get_first(seq, state->bucket + 1);
3324 	}
3325 	return sk;
3326 }
3327 
3328 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3329 {
3330 	struct sock *sk = udp_get_first(seq, 0);
3331 
3332 	if (sk)
3333 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3334 			--pos;
3335 	return pos ? NULL : sk;
3336 }
3337 
3338 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3339 {
3340 	struct udp_iter_state *state = seq->private;
3341 	state->bucket = MAX_UDP_PORTS;
3342 
3343 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3344 }
3345 EXPORT_IPV6_MOD(udp_seq_start);
3346 
3347 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3348 {
3349 	struct sock *sk;
3350 
3351 	if (v == SEQ_START_TOKEN)
3352 		sk = udp_get_idx(seq, 0);
3353 	else
3354 		sk = udp_get_next(seq, v);
3355 
3356 	++*pos;
3357 	return sk;
3358 }
3359 EXPORT_IPV6_MOD(udp_seq_next);
3360 
3361 void udp_seq_stop(struct seq_file *seq, void *v)
3362 {
3363 	struct udp_iter_state *state = seq->private;
3364 	struct udp_table *udptable;
3365 
3366 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3367 
3368 	if (state->bucket <= udptable->mask)
3369 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3370 }
3371 EXPORT_IPV6_MOD(udp_seq_stop);
3372 
3373 /* ------------------------------------------------------------------------ */
3374 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3375 		int bucket)
3376 {
3377 	struct inet_sock *inet = inet_sk(sp);
3378 	__be32 dest = inet->inet_daddr;
3379 	__be32 src  = inet->inet_rcv_saddr;
3380 	__u16 destp	  = ntohs(inet->inet_dport);
3381 	__u16 srcp	  = ntohs(inet->inet_sport);
3382 
3383 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3384 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3385 		bucket, src, srcp, dest, destp, sp->sk_state,
3386 		sk_wmem_alloc_get(sp),
3387 		udp_rqueue_get(sp),
3388 		0, 0L, 0,
3389 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3390 		0, sock_i_ino(sp),
3391 		refcount_read(&sp->sk_refcnt), sp,
3392 		atomic_read(&sp->sk_drops));
3393 }
3394 
3395 int udp4_seq_show(struct seq_file *seq, void *v)
3396 {
3397 	seq_setwidth(seq, 127);
3398 	if (v == SEQ_START_TOKEN)
3399 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3400 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3401 			   "inode ref pointer drops");
3402 	else {
3403 		struct udp_iter_state *state = seq->private;
3404 
3405 		udp4_format_sock(v, seq, state->bucket);
3406 	}
3407 	seq_pad(seq, '\n');
3408 	return 0;
3409 }
3410 
3411 #ifdef CONFIG_BPF_SYSCALL
3412 struct bpf_iter__udp {
3413 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3414 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3415 	uid_t uid __aligned(8);
3416 	int bucket __aligned(8);
3417 };
3418 
3419 union bpf_udp_iter_batch_item {
3420 	struct sock *sk;
3421 	__u64 cookie;
3422 };
3423 
3424 struct bpf_udp_iter_state {
3425 	struct udp_iter_state state;
3426 	unsigned int cur_sk;
3427 	unsigned int end_sk;
3428 	unsigned int max_sk;
3429 	union bpf_udp_iter_batch_item *batch;
3430 };
3431 
3432 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3433 				      unsigned int new_batch_sz, gfp_t flags);
3434 static struct sock *bpf_iter_udp_resume(struct sock *first_sk,
3435 					union bpf_udp_iter_batch_item *cookies,
3436 					int n_cookies)
3437 {
3438 	struct sock *sk = NULL;
3439 	int i;
3440 
3441 	for (i = 0; i < n_cookies; i++) {
3442 		sk = first_sk;
3443 		udp_portaddr_for_each_entry_from(sk)
3444 			if (cookies[i].cookie == atomic64_read(&sk->sk_cookie))
3445 				goto done;
3446 	}
3447 done:
3448 	return sk;
3449 }
3450 
3451 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3452 {
3453 	struct bpf_udp_iter_state *iter = seq->private;
3454 	struct udp_iter_state *state = &iter->state;
3455 	unsigned int find_cookie, end_cookie;
3456 	struct net *net = seq_file_net(seq);
3457 	struct udp_table *udptable;
3458 	unsigned int batch_sks = 0;
3459 	int resume_bucket;
3460 	int resizes = 0;
3461 	struct sock *sk;
3462 	int err = 0;
3463 
3464 	resume_bucket = state->bucket;
3465 
3466 	/* The current batch is done, so advance the bucket. */
3467 	if (iter->cur_sk == iter->end_sk)
3468 		state->bucket++;
3469 
3470 	udptable = udp_get_table_seq(seq, net);
3471 
3472 again:
3473 	/* New batch for the next bucket.
3474 	 * Iterate over the hash table to find a bucket with sockets matching
3475 	 * the iterator attributes, and return the first matching socket from
3476 	 * the bucket. The remaining matched sockets from the bucket are batched
3477 	 * before releasing the bucket lock. This allows BPF programs that are
3478 	 * called in seq_show to acquire the bucket lock if needed.
3479 	 */
3480 	find_cookie = iter->cur_sk;
3481 	end_cookie = iter->end_sk;
3482 	iter->cur_sk = 0;
3483 	iter->end_sk = 0;
3484 	batch_sks = 0;
3485 
3486 	for (; state->bucket <= udptable->mask; state->bucket++) {
3487 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot;
3488 
3489 		if (hlist_empty(&hslot2->head))
3490 			goto next_bucket;
3491 
3492 		spin_lock_bh(&hslot2->lock);
3493 		sk = hlist_entry_safe(hslot2->head.first, struct sock,
3494 				      __sk_common.skc_portaddr_node);
3495 		/* Resume from the first (in iteration order) unseen socket from
3496 		 * the last batch that still exists in resume_bucket. Most of
3497 		 * the time this will just be where the last iteration left off
3498 		 * in resume_bucket unless that socket disappeared between
3499 		 * reads.
3500 		 */
3501 		if (state->bucket == resume_bucket)
3502 			sk = bpf_iter_udp_resume(sk, &iter->batch[find_cookie],
3503 						 end_cookie - find_cookie);
3504 fill_batch:
3505 		udp_portaddr_for_each_entry_from(sk) {
3506 			if (seq_sk_match(seq, sk)) {
3507 				if (iter->end_sk < iter->max_sk) {
3508 					sock_hold(sk);
3509 					iter->batch[iter->end_sk++].sk = sk;
3510 				}
3511 				batch_sks++;
3512 			}
3513 		}
3514 
3515 		/* Allocate a larger batch and try again. */
3516 		if (unlikely(resizes <= 1 && iter->end_sk &&
3517 			     iter->end_sk != batch_sks)) {
3518 			resizes++;
3519 
3520 			/* First, try with GFP_USER to maximize the chances of
3521 			 * grabbing more memory.
3522 			 */
3523 			if (resizes == 1) {
3524 				spin_unlock_bh(&hslot2->lock);
3525 				err = bpf_iter_udp_realloc_batch(iter,
3526 								 batch_sks * 3 / 2,
3527 								 GFP_USER);
3528 				if (err)
3529 					return ERR_PTR(err);
3530 				/* Start over. */
3531 				goto again;
3532 			}
3533 
3534 			/* Next, hold onto the lock, so the bucket doesn't
3535 			 * change while we get the rest of the sockets.
3536 			 */
3537 			err = bpf_iter_udp_realloc_batch(iter, batch_sks,
3538 							 GFP_NOWAIT);
3539 			if (err) {
3540 				spin_unlock_bh(&hslot2->lock);
3541 				return ERR_PTR(err);
3542 			}
3543 
3544 			/* Pick up where we left off. */
3545 			sk = iter->batch[iter->end_sk - 1].sk;
3546 			sk = hlist_entry_safe(sk->__sk_common.skc_portaddr_node.next,
3547 					      struct sock,
3548 					      __sk_common.skc_portaddr_node);
3549 			batch_sks = iter->end_sk;
3550 			goto fill_batch;
3551 		}
3552 
3553 		spin_unlock_bh(&hslot2->lock);
3554 
3555 		if (iter->end_sk)
3556 			break;
3557 next_bucket:
3558 		resizes = 0;
3559 	}
3560 
3561 	WARN_ON_ONCE(iter->end_sk != batch_sks);
3562 	return iter->end_sk ? iter->batch[0].sk : NULL;
3563 }
3564 
3565 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3566 {
3567 	struct bpf_udp_iter_state *iter = seq->private;
3568 	struct sock *sk;
3569 
3570 	/* Whenever seq_next() is called, the iter->cur_sk is
3571 	 * done with seq_show(), so unref the iter->cur_sk.
3572 	 */
3573 	if (iter->cur_sk < iter->end_sk)
3574 		sock_put(iter->batch[iter->cur_sk++].sk);
3575 
3576 	/* After updating iter->cur_sk, check if there are more sockets
3577 	 * available in the current bucket batch.
3578 	 */
3579 	if (iter->cur_sk < iter->end_sk)
3580 		sk = iter->batch[iter->cur_sk].sk;
3581 	else
3582 		/* Prepare a new batch. */
3583 		sk = bpf_iter_udp_batch(seq);
3584 
3585 	++*pos;
3586 	return sk;
3587 }
3588 
3589 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3590 {
3591 	/* bpf iter does not support lseek, so it always
3592 	 * continue from where it was stop()-ped.
3593 	 */
3594 	if (*pos)
3595 		return bpf_iter_udp_batch(seq);
3596 
3597 	return SEQ_START_TOKEN;
3598 }
3599 
3600 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3601 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3602 {
3603 	struct bpf_iter__udp ctx;
3604 
3605 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3606 	ctx.meta = meta;
3607 	ctx.udp_sk = udp_sk;
3608 	ctx.uid = uid;
3609 	ctx.bucket = bucket;
3610 	return bpf_iter_run_prog(prog, &ctx);
3611 }
3612 
3613 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3614 {
3615 	struct udp_iter_state *state = seq->private;
3616 	struct bpf_iter_meta meta;
3617 	struct bpf_prog *prog;
3618 	struct sock *sk = v;
3619 	uid_t uid;
3620 	int ret;
3621 
3622 	if (v == SEQ_START_TOKEN)
3623 		return 0;
3624 
3625 	lock_sock(sk);
3626 
3627 	if (unlikely(sk_unhashed(sk))) {
3628 		ret = SEQ_SKIP;
3629 		goto unlock;
3630 	}
3631 
3632 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3633 	meta.seq = seq;
3634 	prog = bpf_iter_get_info(&meta, false);
3635 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3636 
3637 unlock:
3638 	release_sock(sk);
3639 	return ret;
3640 }
3641 
3642 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3643 {
3644 	union bpf_udp_iter_batch_item *item;
3645 	unsigned int cur_sk = iter->cur_sk;
3646 	__u64 cookie;
3647 
3648 	/* Remember the cookies of the sockets we haven't seen yet, so we can
3649 	 * pick up where we left off next time around.
3650 	 */
3651 	while (cur_sk < iter->end_sk) {
3652 		item = &iter->batch[cur_sk++];
3653 		cookie = sock_gen_cookie(item->sk);
3654 		sock_put(item->sk);
3655 		item->cookie = cookie;
3656 	}
3657 }
3658 
3659 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3660 {
3661 	struct bpf_udp_iter_state *iter = seq->private;
3662 	struct bpf_iter_meta meta;
3663 	struct bpf_prog *prog;
3664 
3665 	if (!v) {
3666 		meta.seq = seq;
3667 		prog = bpf_iter_get_info(&meta, true);
3668 		if (prog)
3669 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3670 	}
3671 
3672 	if (iter->cur_sk < iter->end_sk)
3673 		bpf_iter_udp_put_batch(iter);
3674 }
3675 
3676 static const struct seq_operations bpf_iter_udp_seq_ops = {
3677 	.start		= bpf_iter_udp_seq_start,
3678 	.next		= bpf_iter_udp_seq_next,
3679 	.stop		= bpf_iter_udp_seq_stop,
3680 	.show		= bpf_iter_udp_seq_show,
3681 };
3682 #endif
3683 
3684 static unsigned short seq_file_family(const struct seq_file *seq)
3685 {
3686 	const struct udp_seq_afinfo *afinfo;
3687 
3688 #ifdef CONFIG_BPF_SYSCALL
3689 	/* BPF iterator: bpf programs to filter sockets. */
3690 	if (seq->op == &bpf_iter_udp_seq_ops)
3691 		return AF_UNSPEC;
3692 #endif
3693 
3694 	/* Proc fs iterator */
3695 	afinfo = pde_data(file_inode(seq->file));
3696 	return afinfo->family;
3697 }
3698 
3699 const struct seq_operations udp_seq_ops = {
3700 	.start		= udp_seq_start,
3701 	.next		= udp_seq_next,
3702 	.stop		= udp_seq_stop,
3703 	.show		= udp4_seq_show,
3704 };
3705 EXPORT_IPV6_MOD(udp_seq_ops);
3706 
3707 static struct udp_seq_afinfo udp4_seq_afinfo = {
3708 	.family		= AF_INET,
3709 	.udp_table	= NULL,
3710 };
3711 
3712 static int __net_init udp4_proc_init_net(struct net *net)
3713 {
3714 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3715 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3716 		return -ENOMEM;
3717 	return 0;
3718 }
3719 
3720 static void __net_exit udp4_proc_exit_net(struct net *net)
3721 {
3722 	remove_proc_entry("udp", net->proc_net);
3723 }
3724 
3725 static struct pernet_operations udp4_net_ops = {
3726 	.init = udp4_proc_init_net,
3727 	.exit = udp4_proc_exit_net,
3728 };
3729 
3730 int __init udp4_proc_init(void)
3731 {
3732 	return register_pernet_subsys(&udp4_net_ops);
3733 }
3734 
3735 void udp4_proc_exit(void)
3736 {
3737 	unregister_pernet_subsys(&udp4_net_ops);
3738 }
3739 #endif /* CONFIG_PROC_FS */
3740 
3741 static __initdata unsigned long uhash_entries;
3742 static int __init set_uhash_entries(char *str)
3743 {
3744 	ssize_t ret;
3745 
3746 	if (!str)
3747 		return 0;
3748 
3749 	ret = kstrtoul(str, 0, &uhash_entries);
3750 	if (ret)
3751 		return 0;
3752 
3753 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3754 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3755 	return 1;
3756 }
3757 __setup("uhash_entries=", set_uhash_entries);
3758 
3759 void __init udp_table_init(struct udp_table *table, const char *name)
3760 {
3761 	unsigned int i, slot_size;
3762 
3763 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3764 		    udp_hash4_slot_size();
3765 	table->hash = alloc_large_system_hash(name,
3766 					      slot_size,
3767 					      uhash_entries,
3768 					      21, /* one slot per 2 MB */
3769 					      0,
3770 					      &table->log,
3771 					      &table->mask,
3772 					      UDP_HTABLE_SIZE_MIN,
3773 					      UDP_HTABLE_SIZE_MAX);
3774 
3775 	table->hash2 = (void *)(table->hash + (table->mask + 1));
3776 	for (i = 0; i <= table->mask; i++) {
3777 		INIT_HLIST_HEAD(&table->hash[i].head);
3778 		table->hash[i].count = 0;
3779 		spin_lock_init(&table->hash[i].lock);
3780 	}
3781 	for (i = 0; i <= table->mask; i++) {
3782 		INIT_HLIST_HEAD(&table->hash2[i].hslot.head);
3783 		table->hash2[i].hslot.count = 0;
3784 		spin_lock_init(&table->hash2[i].hslot.lock);
3785 	}
3786 	udp_table_hash4_init(table);
3787 }
3788 
3789 u32 udp_flow_hashrnd(void)
3790 {
3791 	static u32 hashrnd __read_mostly;
3792 
3793 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3794 
3795 	return hashrnd;
3796 }
3797 EXPORT_SYMBOL(udp_flow_hashrnd);
3798 
3799 static void __net_init udp_sysctl_init(struct net *net)
3800 {
3801 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3802 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3803 
3804 #ifdef CONFIG_NET_L3_MASTER_DEV
3805 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3806 #endif
3807 }
3808 
3809 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3810 {
3811 	struct udp_table *udptable;
3812 	unsigned int slot_size;
3813 	int i;
3814 
3815 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3816 	if (!udptable)
3817 		goto out;
3818 
3819 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3820 		    udp_hash4_slot_size();
3821 	udptable->hash = vmalloc_huge(hash_entries * slot_size,
3822 				      GFP_KERNEL_ACCOUNT);
3823 	if (!udptable->hash)
3824 		goto free_table;
3825 
3826 	udptable->hash2 = (void *)(udptable->hash + hash_entries);
3827 	udptable->mask = hash_entries - 1;
3828 	udptable->log = ilog2(hash_entries);
3829 
3830 	for (i = 0; i < hash_entries; i++) {
3831 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3832 		udptable->hash[i].count = 0;
3833 		spin_lock_init(&udptable->hash[i].lock);
3834 
3835 		INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head);
3836 		udptable->hash2[i].hslot.count = 0;
3837 		spin_lock_init(&udptable->hash2[i].hslot.lock);
3838 	}
3839 	udp_table_hash4_init(udptable);
3840 
3841 	return udptable;
3842 
3843 free_table:
3844 	kfree(udptable);
3845 out:
3846 	return NULL;
3847 }
3848 
3849 static void __net_exit udp_pernet_table_free(struct net *net)
3850 {
3851 	struct udp_table *udptable = net->ipv4.udp_table;
3852 
3853 	if (udptable == &udp_table)
3854 		return;
3855 
3856 	kvfree(udptable->hash);
3857 	kfree(udptable);
3858 }
3859 
3860 static void __net_init udp_set_table(struct net *net)
3861 {
3862 	struct udp_table *udptable;
3863 	unsigned int hash_entries;
3864 	struct net *old_net;
3865 
3866 	if (net_eq(net, &init_net))
3867 		goto fallback;
3868 
3869 	old_net = current->nsproxy->net_ns;
3870 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3871 	if (!hash_entries)
3872 		goto fallback;
3873 
3874 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3875 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3876 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3877 	else
3878 		hash_entries = roundup_pow_of_two(hash_entries);
3879 
3880 	udptable = udp_pernet_table_alloc(hash_entries);
3881 	if (udptable) {
3882 		net->ipv4.udp_table = udptable;
3883 	} else {
3884 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3885 			"for a netns, fallback to the global one\n",
3886 			hash_entries);
3887 fallback:
3888 		net->ipv4.udp_table = &udp_table;
3889 	}
3890 }
3891 
3892 static int __net_init udp_pernet_init(struct net *net)
3893 {
3894 #if IS_ENABLED(CONFIG_NET_UDP_TUNNEL)
3895 	int i;
3896 
3897 	/* No tunnel is configured */
3898 	for (i = 0; i < ARRAY_SIZE(net->ipv4.udp_tunnel_gro); ++i) {
3899 		INIT_HLIST_HEAD(&net->ipv4.udp_tunnel_gro[i].list);
3900 		RCU_INIT_POINTER(net->ipv4.udp_tunnel_gro[i].sk, NULL);
3901 	}
3902 #endif
3903 	udp_sysctl_init(net);
3904 	udp_set_table(net);
3905 
3906 	return 0;
3907 }
3908 
3909 static void __net_exit udp_pernet_exit(struct net *net)
3910 {
3911 	udp_pernet_table_free(net);
3912 }
3913 
3914 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3915 	.init	= udp_pernet_init,
3916 	.exit	= udp_pernet_exit,
3917 };
3918 
3919 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3920 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3921 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3922 
3923 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3924 				      unsigned int new_batch_sz, gfp_t flags)
3925 {
3926 	union bpf_udp_iter_batch_item *new_batch;
3927 
3928 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3929 				   flags | __GFP_NOWARN);
3930 	if (!new_batch)
3931 		return -ENOMEM;
3932 
3933 	if (flags != GFP_NOWAIT)
3934 		bpf_iter_udp_put_batch(iter);
3935 
3936 	memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk);
3937 	kvfree(iter->batch);
3938 	iter->batch = new_batch;
3939 	iter->max_sk = new_batch_sz;
3940 
3941 	return 0;
3942 }
3943 
3944 #define INIT_BATCH_SZ 16
3945 
3946 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3947 {
3948 	struct bpf_udp_iter_state *iter = priv_data;
3949 	int ret;
3950 
3951 	ret = bpf_iter_init_seq_net(priv_data, aux);
3952 	if (ret)
3953 		return ret;
3954 
3955 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER);
3956 	if (ret)
3957 		bpf_iter_fini_seq_net(priv_data);
3958 
3959 	iter->state.bucket = -1;
3960 
3961 	return ret;
3962 }
3963 
3964 static void bpf_iter_fini_udp(void *priv_data)
3965 {
3966 	struct bpf_udp_iter_state *iter = priv_data;
3967 
3968 	bpf_iter_fini_seq_net(priv_data);
3969 	kvfree(iter->batch);
3970 }
3971 
3972 static const struct bpf_iter_seq_info udp_seq_info = {
3973 	.seq_ops		= &bpf_iter_udp_seq_ops,
3974 	.init_seq_private	= bpf_iter_init_udp,
3975 	.fini_seq_private	= bpf_iter_fini_udp,
3976 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3977 };
3978 
3979 static struct bpf_iter_reg udp_reg_info = {
3980 	.target			= "udp",
3981 	.ctx_arg_info_size	= 1,
3982 	.ctx_arg_info		= {
3983 		{ offsetof(struct bpf_iter__udp, udp_sk),
3984 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3985 	},
3986 	.seq_info		= &udp_seq_info,
3987 };
3988 
3989 static void __init bpf_iter_register(void)
3990 {
3991 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3992 	if (bpf_iter_reg_target(&udp_reg_info))
3993 		pr_warn("Warning: could not register bpf iterator udp\n");
3994 }
3995 #endif
3996 
3997 void __init udp_init(void)
3998 {
3999 	unsigned long limit;
4000 	unsigned int i;
4001 
4002 	udp_table_init(&udp_table, "UDP");
4003 	limit = nr_free_buffer_pages() / 8;
4004 	limit = max(limit, 128UL);
4005 	sysctl_udp_mem[0] = limit / 4 * 3;
4006 	sysctl_udp_mem[1] = limit;
4007 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
4008 
4009 	/* 16 spinlocks per cpu */
4010 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
4011 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
4012 				GFP_KERNEL);
4013 	if (!udp_busylocks)
4014 		panic("UDP: failed to alloc udp_busylocks\n");
4015 	for (i = 0; i < (1U << udp_busylocks_log); i++)
4016 		spin_lock_init(udp_busylocks + i);
4017 
4018 	if (register_pernet_subsys(&udp_sysctl_ops))
4019 		panic("UDP: failed to init sysctl parameters.\n");
4020 
4021 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
4022 	bpf_iter_register();
4023 #endif
4024 }
4025