1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 #include <net/proto_memory.h>
43 
44 #include <linux/compiler.h>
45 #include <linux/gfp.h>
46 #include <linux/module.h>
47 #include <linux/static_key.h>
48 #include <linux/skbuff_ref.h>
49 
50 #include <trace/events/tcp.h>
51 
52 /* Refresh clocks of a TCP socket,
53  * ensuring monotically increasing values.
54  */
55 void tcp_mstamp_refresh(struct tcp_sock *tp)
56 {
57 	u64 val = tcp_clock_ns();
58 
59 	tp->tcp_clock_cache = val;
60 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 }
62 
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 			   int push_one, gfp_t gfp);
65 
66 /* Account for new data that has been sent to the network. */
67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 	struct inet_connection_sock *icsk = inet_csk(sk);
70 	struct tcp_sock *tp = tcp_sk(sk);
71 	unsigned int prior_packets = tp->packets_out;
72 
73 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
74 
75 	__skb_unlink(skb, &sk->sk_write_queue);
76 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77 
78 	if (tp->highest_sack == NULL)
79 		tp->highest_sack = skb;
80 
81 	tp->packets_out += tcp_skb_pcount(skb);
82 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 		tcp_rearm_rto(sk);
84 
85 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
86 		      tcp_skb_pcount(skb));
87 	tcp_check_space(sk);
88 }
89 
90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
91  * window scaling factor due to loss of precision.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
102 	    (tp->rx_opt.wscale_ok &&
103 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104 		return tp->snd_nxt;
105 	else
106 		return tcp_wnd_end(tp);
107 }
108 
109 /* Calculate mss to advertise in SYN segment.
110  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111  *
112  * 1. It is independent of path mtu.
113  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
114  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
115  *    attached devices, because some buggy hosts are confused by
116  *    large MSS.
117  * 4. We do not make 3, we advertise MSS, calculated from first
118  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
119  *    This may be overridden via information stored in routing table.
120  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
121  *    probably even Jumbo".
122  */
123 static __u16 tcp_advertise_mss(struct sock *sk)
124 {
125 	struct tcp_sock *tp = tcp_sk(sk);
126 	const struct dst_entry *dst = __sk_dst_get(sk);
127 	int mss = tp->advmss;
128 
129 	if (dst) {
130 		unsigned int metric = dst_metric_advmss(dst);
131 
132 		if (metric < mss) {
133 			mss = metric;
134 			tp->advmss = mss;
135 		}
136 	}
137 
138 	return (__u16)mss;
139 }
140 
141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
142  * This is the first part of cwnd validation mechanism.
143  */
144 void tcp_cwnd_restart(struct sock *sk, s32 delta)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
148 	u32 cwnd = tcp_snd_cwnd(tp);
149 
150 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151 
152 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
153 	restart_cwnd = min(restart_cwnd, cwnd);
154 
155 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
156 		cwnd >>= 1;
157 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
158 	tp->snd_cwnd_stamp = tcp_jiffies32;
159 	tp->snd_cwnd_used = 0;
160 }
161 
162 /* Congestion state accounting after a packet has been sent. */
163 static void tcp_event_data_sent(struct tcp_sock *tp,
164 				struct sock *sk)
165 {
166 	struct inet_connection_sock *icsk = inet_csk(sk);
167 	const u32 now = tcp_jiffies32;
168 
169 	if (tcp_packets_in_flight(tp) == 0)
170 		tcp_ca_event(sk, CA_EVENT_TX_START);
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, increase pingpong count.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 		inet_csk_inc_pingpong_cnt(sk);
179 }
180 
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
183 {
184 	struct tcp_sock *tp = tcp_sk(sk);
185 
186 	if (unlikely(tp->compressed_ack)) {
187 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 			      tp->compressed_ack);
189 		tp->compressed_ack = 0;
190 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 			__sock_put(sk);
192 	}
193 
194 	if (unlikely(rcv_nxt != tp->rcv_nxt))
195 		return;  /* Special ACK sent by DCTCP to reflect ECN */
196 	tcp_dec_quickack_mode(sk);
197 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199 
200 /* Determine a window scaling and initial window to offer.
201  * Based on the assumption that the given amount of space
202  * will be offered. Store the results in the tp structure.
203  * NOTE: for smooth operation initial space offering should
204  * be a multiple of mss if possible. We assume here that mss >= 1.
205  * This MUST be enforced by all callers.
206  */
207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208 			       __u32 *rcv_wnd, __u32 *__window_clamp,
209 			       int wscale_ok, __u8 *rcv_wscale,
210 			       __u32 init_rcv_wnd)
211 {
212 	unsigned int space = (__space < 0 ? 0 : __space);
213 	u32 window_clamp = READ_ONCE(*__window_clamp);
214 
215 	/* If no clamp set the clamp to the max possible scaled window */
216 	if (window_clamp == 0)
217 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
218 	space = min(window_clamp, space);
219 
220 	/* Quantize space offering to a multiple of mss if possible. */
221 	if (space > mss)
222 		space = rounddown(space, mss);
223 
224 	/* NOTE: offering an initial window larger than 32767
225 	 * will break some buggy TCP stacks. If the admin tells us
226 	 * it is likely we could be speaking with such a buggy stack
227 	 * we will truncate our initial window offering to 32K-1
228 	 * unless the remote has sent us a window scaling option,
229 	 * which we interpret as a sign the remote TCP is not
230 	 * misinterpreting the window field as a signed quantity.
231 	 */
232 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
233 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 	else
235 		(*rcv_wnd) = space;
236 
237 	if (init_rcv_wnd)
238 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239 
240 	*rcv_wscale = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window */
243 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
244 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
245 		space = min_t(u32, space, window_clamp);
246 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 				      0, TCP_MAX_WSCALE);
248 	}
249 	/* Set the clamp no higher than max representable value */
250 	WRITE_ONCE(*__window_clamp,
251 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
252 }
253 EXPORT_IPV6_MOD(tcp_select_initial_window);
254 
255 /* Chose a new window to advertise, update state in tcp_sock for the
256  * socket, and return result with RFC1323 scaling applied.  The return
257  * value can be stuffed directly into th->window for an outgoing
258  * frame.
259  */
260 static u16 tcp_select_window(struct sock *sk)
261 {
262 	struct tcp_sock *tp = tcp_sk(sk);
263 	struct net *net = sock_net(sk);
264 	u32 old_win = tp->rcv_wnd;
265 	u32 cur_win, new_win;
266 
267 	/* Make the window 0 if we failed to queue the data because we
268 	 * are out of memory.
269 	 */
270 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
271 		tp->pred_flags = 0;
272 		tp->rcv_wnd = 0;
273 		tp->rcv_wup = tp->rcv_nxt;
274 		return 0;
275 	}
276 
277 	cur_win = tcp_receive_window(tp);
278 	new_win = __tcp_select_window(sk);
279 	if (new_win < cur_win) {
280 		/* Danger Will Robinson!
281 		 * Don't update rcv_wup/rcv_wnd here or else
282 		 * we will not be able to advertise a zero
283 		 * window in time.  --DaveM
284 		 *
285 		 * Relax Will Robinson.
286 		 */
287 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
288 			/* Never shrink the offered window */
289 			if (new_win == 0)
290 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
291 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 		}
293 	}
294 
295 	tp->rcv_wnd = new_win;
296 	tp->rcv_wup = tp->rcv_nxt;
297 
298 	/* Make sure we do not exceed the maximum possible
299 	 * scaled window.
300 	 */
301 	if (!tp->rx_opt.rcv_wscale &&
302 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
303 		new_win = min(new_win, MAX_TCP_WINDOW);
304 	else
305 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
306 
307 	/* RFC1323 scaling applied */
308 	new_win >>= tp->rx_opt.rcv_wscale;
309 
310 	/* If we advertise zero window, disable fast path. */
311 	if (new_win == 0) {
312 		tp->pred_flags = 0;
313 		if (old_win)
314 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
315 	} else if (old_win == 0) {
316 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
317 	}
318 
319 	return new_win;
320 }
321 
322 /* Packet ECN state for a SYN-ACK */
323 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
324 {
325 	const struct tcp_sock *tp = tcp_sk(sk);
326 
327 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
328 	if (tcp_ecn_disabled(tp))
329 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
330 	else if (tcp_ca_needs_ecn(sk) ||
331 		 tcp_bpf_ca_needs_ecn(sk))
332 		INET_ECN_xmit(sk);
333 }
334 
335 /* Packet ECN state for a SYN.  */
336 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
337 {
338 	struct tcp_sock *tp = tcp_sk(sk);
339 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
340 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
341 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
342 
343 	if (!use_ecn) {
344 		const struct dst_entry *dst = __sk_dst_get(sk);
345 
346 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
347 			use_ecn = true;
348 	}
349 
350 	tp->ecn_flags = 0;
351 
352 	if (use_ecn) {
353 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
354 		tcp_ecn_mode_set(tp, TCP_ECN_MODE_RFC3168);
355 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
356 			INET_ECN_xmit(sk);
357 	}
358 }
359 
360 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
361 {
362 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
363 		/* tp->ecn_flags are cleared at a later point in time when
364 		 * SYN ACK is ultimatively being received.
365 		 */
366 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
367 }
368 
369 static void
370 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
371 {
372 	if (inet_rsk(req)->ecn_ok)
373 		th->ece = 1;
374 }
375 
376 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
377  * be sent.
378  */
379 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
380 			 struct tcphdr *th, int tcp_header_len)
381 {
382 	struct tcp_sock *tp = tcp_sk(sk);
383 
384 	if (tcp_ecn_mode_rfc3168(tp)) {
385 		/* Not-retransmitted data segment: set ECT and inject CWR. */
386 		if (skb->len != tcp_header_len &&
387 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
388 			INET_ECN_xmit(sk);
389 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
390 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
391 				th->cwr = 1;
392 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
393 			}
394 		} else if (!tcp_ca_needs_ecn(sk)) {
395 			/* ACK or retransmitted segment: clear ECT|CE */
396 			INET_ECN_dontxmit(sk);
397 		}
398 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
399 			th->ece = 1;
400 	}
401 }
402 
403 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
404  * auto increment end seqno.
405  */
406 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u16 flags)
407 {
408 	skb->ip_summed = CHECKSUM_PARTIAL;
409 
410 	TCP_SKB_CB(skb)->tcp_flags = flags;
411 
412 	tcp_skb_pcount_set(skb, 1);
413 
414 	TCP_SKB_CB(skb)->seq = seq;
415 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
416 		seq++;
417 	TCP_SKB_CB(skb)->end_seq = seq;
418 }
419 
420 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
421 {
422 	return tp->snd_una != tp->snd_up;
423 }
424 
425 #define OPTION_SACK_ADVERTISE	BIT(0)
426 #define OPTION_TS		BIT(1)
427 #define OPTION_MD5		BIT(2)
428 #define OPTION_WSCALE		BIT(3)
429 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
430 #define OPTION_SMC		BIT(9)
431 #define OPTION_MPTCP		BIT(10)
432 #define OPTION_AO		BIT(11)
433 
434 static void smc_options_write(__be32 *ptr, u16 *options)
435 {
436 #if IS_ENABLED(CONFIG_SMC)
437 	if (static_branch_unlikely(&tcp_have_smc)) {
438 		if (unlikely(OPTION_SMC & *options)) {
439 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
440 				       (TCPOPT_NOP  << 16) |
441 				       (TCPOPT_EXP <<  8) |
442 				       (TCPOLEN_EXP_SMC_BASE));
443 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
444 		}
445 	}
446 #endif
447 }
448 
449 struct tcp_out_options {
450 	u16 options;		/* bit field of OPTION_* */
451 	u16 mss;		/* 0 to disable */
452 	u8 ws;			/* window scale, 0 to disable */
453 	u8 num_sack_blocks;	/* number of SACK blocks to include */
454 	u8 hash_size;		/* bytes in hash_location */
455 	u8 bpf_opt_len;		/* length of BPF hdr option */
456 	__u8 *hash_location;	/* temporary pointer, overloaded */
457 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
458 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
459 	struct mptcp_out_options mptcp;
460 };
461 
462 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
463 				struct tcp_sock *tp,
464 				struct tcp_out_options *opts)
465 {
466 #if IS_ENABLED(CONFIG_MPTCP)
467 	if (unlikely(OPTION_MPTCP & opts->options))
468 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
469 #endif
470 }
471 
472 #ifdef CONFIG_CGROUP_BPF
473 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
474 					enum tcp_synack_type synack_type)
475 {
476 	if (unlikely(!skb))
477 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
478 
479 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
480 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
481 
482 	return 0;
483 }
484 
485 /* req, syn_skb and synack_type are used when writing synack */
486 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
487 				  struct request_sock *req,
488 				  struct sk_buff *syn_skb,
489 				  enum tcp_synack_type synack_type,
490 				  struct tcp_out_options *opts,
491 				  unsigned int *remaining)
492 {
493 	struct bpf_sock_ops_kern sock_ops;
494 	int err;
495 
496 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
497 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
498 	    !*remaining)
499 		return;
500 
501 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
502 
503 	/* init sock_ops */
504 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
505 
506 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
507 
508 	if (req) {
509 		/* The listen "sk" cannot be passed here because
510 		 * it is not locked.  It would not make too much
511 		 * sense to do bpf_setsockopt(listen_sk) based
512 		 * on individual connection request also.
513 		 *
514 		 * Thus, "req" is passed here and the cgroup-bpf-progs
515 		 * of the listen "sk" will be run.
516 		 *
517 		 * "req" is also used here for fastopen even the "sk" here is
518 		 * a fullsock "child" sk.  It is to keep the behavior
519 		 * consistent between fastopen and non-fastopen on
520 		 * the bpf programming side.
521 		 */
522 		sock_ops.sk = (struct sock *)req;
523 		sock_ops.syn_skb = syn_skb;
524 	} else {
525 		sock_owned_by_me(sk);
526 
527 		sock_ops.is_fullsock = 1;
528 		sock_ops.is_locked_tcp_sock = 1;
529 		sock_ops.sk = sk;
530 	}
531 
532 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
533 	sock_ops.remaining_opt_len = *remaining;
534 	/* tcp_current_mss() does not pass a skb */
535 	if (skb)
536 		bpf_skops_init_skb(&sock_ops, skb, 0);
537 
538 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
539 
540 	if (err || sock_ops.remaining_opt_len == *remaining)
541 		return;
542 
543 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
544 	/* round up to 4 bytes */
545 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
546 
547 	*remaining -= opts->bpf_opt_len;
548 }
549 
550 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
551 				    struct request_sock *req,
552 				    struct sk_buff *syn_skb,
553 				    enum tcp_synack_type synack_type,
554 				    struct tcp_out_options *opts)
555 {
556 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
557 	struct bpf_sock_ops_kern sock_ops;
558 	int err;
559 
560 	if (likely(!max_opt_len))
561 		return;
562 
563 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
564 
565 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
566 
567 	if (req) {
568 		sock_ops.sk = (struct sock *)req;
569 		sock_ops.syn_skb = syn_skb;
570 	} else {
571 		sock_owned_by_me(sk);
572 
573 		sock_ops.is_fullsock = 1;
574 		sock_ops.is_locked_tcp_sock = 1;
575 		sock_ops.sk = sk;
576 	}
577 
578 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
579 	sock_ops.remaining_opt_len = max_opt_len;
580 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
581 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
582 
583 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
584 
585 	if (err)
586 		nr_written = 0;
587 	else
588 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
589 
590 	if (nr_written < max_opt_len)
591 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
592 		       max_opt_len - nr_written);
593 }
594 #else
595 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
596 				  struct request_sock *req,
597 				  struct sk_buff *syn_skb,
598 				  enum tcp_synack_type synack_type,
599 				  struct tcp_out_options *opts,
600 				  unsigned int *remaining)
601 {
602 }
603 
604 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
605 				    struct request_sock *req,
606 				    struct sk_buff *syn_skb,
607 				    enum tcp_synack_type synack_type,
608 				    struct tcp_out_options *opts)
609 {
610 }
611 #endif
612 
613 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
614 				      const struct tcp_request_sock *tcprsk,
615 				      struct tcp_out_options *opts,
616 				      struct tcp_key *key, __be32 *ptr)
617 {
618 #ifdef CONFIG_TCP_AO
619 	u8 maclen = tcp_ao_maclen(key->ao_key);
620 
621 	if (tcprsk) {
622 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
623 
624 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
625 			       (tcprsk->ao_keyid << 8) |
626 			       (tcprsk->ao_rcv_next));
627 	} else {
628 		struct tcp_ao_key *rnext_key;
629 		struct tcp_ao_info *ao_info;
630 
631 		ao_info = rcu_dereference_check(tp->ao_info,
632 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
633 		rnext_key = READ_ONCE(ao_info->rnext_key);
634 		if (WARN_ON_ONCE(!rnext_key))
635 			return ptr;
636 		*ptr++ = htonl((TCPOPT_AO << 24) |
637 			       (tcp_ao_len(key->ao_key) << 16) |
638 			       (key->ao_key->sndid << 8) |
639 			       (rnext_key->rcvid));
640 	}
641 	opts->hash_location = (__u8 *)ptr;
642 	ptr += maclen / sizeof(*ptr);
643 	if (unlikely(maclen % sizeof(*ptr))) {
644 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
645 		ptr++;
646 	}
647 #endif
648 	return ptr;
649 }
650 
651 /* Write previously computed TCP options to the packet.
652  *
653  * Beware: Something in the Internet is very sensitive to the ordering of
654  * TCP options, we learned this through the hard way, so be careful here.
655  * Luckily we can at least blame others for their non-compliance but from
656  * inter-operability perspective it seems that we're somewhat stuck with
657  * the ordering which we have been using if we want to keep working with
658  * those broken things (not that it currently hurts anybody as there isn't
659  * particular reason why the ordering would need to be changed).
660  *
661  * At least SACK_PERM as the first option is known to lead to a disaster
662  * (but it may well be that other scenarios fail similarly).
663  */
664 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
665 			      const struct tcp_request_sock *tcprsk,
666 			      struct tcp_out_options *opts,
667 			      struct tcp_key *key)
668 {
669 	__be32 *ptr = (__be32 *)(th + 1);
670 	u16 options = opts->options;	/* mungable copy */
671 
672 	if (tcp_key_is_md5(key)) {
673 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
674 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
675 		/* overload cookie hash location */
676 		opts->hash_location = (__u8 *)ptr;
677 		ptr += 4;
678 	} else if (tcp_key_is_ao(key)) {
679 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
680 	}
681 	if (unlikely(opts->mss)) {
682 		*ptr++ = htonl((TCPOPT_MSS << 24) |
683 			       (TCPOLEN_MSS << 16) |
684 			       opts->mss);
685 	}
686 
687 	if (likely(OPTION_TS & options)) {
688 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
689 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
690 				       (TCPOLEN_SACK_PERM << 16) |
691 				       (TCPOPT_TIMESTAMP << 8) |
692 				       TCPOLEN_TIMESTAMP);
693 			options &= ~OPTION_SACK_ADVERTISE;
694 		} else {
695 			*ptr++ = htonl((TCPOPT_NOP << 24) |
696 				       (TCPOPT_NOP << 16) |
697 				       (TCPOPT_TIMESTAMP << 8) |
698 				       TCPOLEN_TIMESTAMP);
699 		}
700 		*ptr++ = htonl(opts->tsval);
701 		*ptr++ = htonl(opts->tsecr);
702 	}
703 
704 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
705 		*ptr++ = htonl((TCPOPT_NOP << 24) |
706 			       (TCPOPT_NOP << 16) |
707 			       (TCPOPT_SACK_PERM << 8) |
708 			       TCPOLEN_SACK_PERM);
709 	}
710 
711 	if (unlikely(OPTION_WSCALE & options)) {
712 		*ptr++ = htonl((TCPOPT_NOP << 24) |
713 			       (TCPOPT_WINDOW << 16) |
714 			       (TCPOLEN_WINDOW << 8) |
715 			       opts->ws);
716 	}
717 
718 	if (unlikely(opts->num_sack_blocks)) {
719 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
720 			tp->duplicate_sack : tp->selective_acks;
721 		int this_sack;
722 
723 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
724 			       (TCPOPT_NOP  << 16) |
725 			       (TCPOPT_SACK <<  8) |
726 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
727 						     TCPOLEN_SACK_PERBLOCK)));
728 
729 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
730 		     ++this_sack) {
731 			*ptr++ = htonl(sp[this_sack].start_seq);
732 			*ptr++ = htonl(sp[this_sack].end_seq);
733 		}
734 
735 		tp->rx_opt.dsack = 0;
736 	}
737 
738 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
739 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
740 		u8 *p = (u8 *)ptr;
741 		u32 len; /* Fast Open option length */
742 
743 		if (foc->exp) {
744 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
745 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
746 				     TCPOPT_FASTOPEN_MAGIC);
747 			p += TCPOLEN_EXP_FASTOPEN_BASE;
748 		} else {
749 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
750 			*p++ = TCPOPT_FASTOPEN;
751 			*p++ = len;
752 		}
753 
754 		memcpy(p, foc->val, foc->len);
755 		if ((len & 3) == 2) {
756 			p[foc->len] = TCPOPT_NOP;
757 			p[foc->len + 1] = TCPOPT_NOP;
758 		}
759 		ptr += (len + 3) >> 2;
760 	}
761 
762 	smc_options_write(ptr, &options);
763 
764 	mptcp_options_write(th, ptr, tp, opts);
765 }
766 
767 static void smc_set_option(const struct tcp_sock *tp,
768 			   struct tcp_out_options *opts,
769 			   unsigned int *remaining)
770 {
771 #if IS_ENABLED(CONFIG_SMC)
772 	if (static_branch_unlikely(&tcp_have_smc)) {
773 		if (tp->syn_smc) {
774 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
775 				opts->options |= OPTION_SMC;
776 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
777 			}
778 		}
779 	}
780 #endif
781 }
782 
783 static void smc_set_option_cond(const struct tcp_sock *tp,
784 				const struct inet_request_sock *ireq,
785 				struct tcp_out_options *opts,
786 				unsigned int *remaining)
787 {
788 #if IS_ENABLED(CONFIG_SMC)
789 	if (static_branch_unlikely(&tcp_have_smc)) {
790 		if (tp->syn_smc && ireq->smc_ok) {
791 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
792 				opts->options |= OPTION_SMC;
793 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
794 			}
795 		}
796 	}
797 #endif
798 }
799 
800 static void mptcp_set_option_cond(const struct request_sock *req,
801 				  struct tcp_out_options *opts,
802 				  unsigned int *remaining)
803 {
804 	if (rsk_is_mptcp(req)) {
805 		unsigned int size;
806 
807 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
808 			if (*remaining >= size) {
809 				opts->options |= OPTION_MPTCP;
810 				*remaining -= size;
811 			}
812 		}
813 	}
814 }
815 
816 /* Compute TCP options for SYN packets. This is not the final
817  * network wire format yet.
818  */
819 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
820 				struct tcp_out_options *opts,
821 				struct tcp_key *key)
822 {
823 	struct tcp_sock *tp = tcp_sk(sk);
824 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
825 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
826 	bool timestamps;
827 
828 	/* Better than switch (key.type) as it has static branches */
829 	if (tcp_key_is_md5(key)) {
830 		timestamps = false;
831 		opts->options |= OPTION_MD5;
832 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
833 	} else {
834 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
835 		if (tcp_key_is_ao(key)) {
836 			opts->options |= OPTION_AO;
837 			remaining -= tcp_ao_len_aligned(key->ao_key);
838 		}
839 	}
840 
841 	/* We always get an MSS option.  The option bytes which will be seen in
842 	 * normal data packets should timestamps be used, must be in the MSS
843 	 * advertised.  But we subtract them from tp->mss_cache so that
844 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
845 	 * fact here if necessary.  If we don't do this correctly, as a
846 	 * receiver we won't recognize data packets as being full sized when we
847 	 * should, and thus we won't abide by the delayed ACK rules correctly.
848 	 * SACKs don't matter, we never delay an ACK when we have any of those
849 	 * going out.  */
850 	opts->mss = tcp_advertise_mss(sk);
851 	remaining -= TCPOLEN_MSS_ALIGNED;
852 
853 	if (likely(timestamps)) {
854 		opts->options |= OPTION_TS;
855 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
856 		opts->tsecr = tp->rx_opt.ts_recent;
857 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
858 	}
859 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
860 		opts->ws = tp->rx_opt.rcv_wscale;
861 		opts->options |= OPTION_WSCALE;
862 		remaining -= TCPOLEN_WSCALE_ALIGNED;
863 	}
864 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
865 		opts->options |= OPTION_SACK_ADVERTISE;
866 		if (unlikely(!(OPTION_TS & opts->options)))
867 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
868 	}
869 
870 	if (fastopen && fastopen->cookie.len >= 0) {
871 		u32 need = fastopen->cookie.len;
872 
873 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
874 					       TCPOLEN_FASTOPEN_BASE;
875 		need = (need + 3) & ~3U;  /* Align to 32 bits */
876 		if (remaining >= need) {
877 			opts->options |= OPTION_FAST_OPEN_COOKIE;
878 			opts->fastopen_cookie = &fastopen->cookie;
879 			remaining -= need;
880 			tp->syn_fastopen = 1;
881 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
882 		}
883 	}
884 
885 	smc_set_option(tp, opts, &remaining);
886 
887 	if (sk_is_mptcp(sk)) {
888 		unsigned int size;
889 
890 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
891 			if (remaining >= size) {
892 				opts->options |= OPTION_MPTCP;
893 				remaining -= size;
894 			}
895 		}
896 	}
897 
898 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
899 
900 	return MAX_TCP_OPTION_SPACE - remaining;
901 }
902 
903 /* Set up TCP options for SYN-ACKs. */
904 static unsigned int tcp_synack_options(const struct sock *sk,
905 				       struct request_sock *req,
906 				       unsigned int mss, struct sk_buff *skb,
907 				       struct tcp_out_options *opts,
908 				       const struct tcp_key *key,
909 				       struct tcp_fastopen_cookie *foc,
910 				       enum tcp_synack_type synack_type,
911 				       struct sk_buff *syn_skb)
912 {
913 	struct inet_request_sock *ireq = inet_rsk(req);
914 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
915 
916 	if (tcp_key_is_md5(key)) {
917 		opts->options |= OPTION_MD5;
918 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
919 
920 		/* We can't fit any SACK blocks in a packet with MD5 + TS
921 		 * options. There was discussion about disabling SACK
922 		 * rather than TS in order to fit in better with old,
923 		 * buggy kernels, but that was deemed to be unnecessary.
924 		 */
925 		if (synack_type != TCP_SYNACK_COOKIE)
926 			ireq->tstamp_ok &= !ireq->sack_ok;
927 	} else if (tcp_key_is_ao(key)) {
928 		opts->options |= OPTION_AO;
929 		remaining -= tcp_ao_len_aligned(key->ao_key);
930 		ireq->tstamp_ok &= !ireq->sack_ok;
931 	}
932 
933 	/* We always send an MSS option. */
934 	opts->mss = mss;
935 	remaining -= TCPOLEN_MSS_ALIGNED;
936 
937 	if (likely(ireq->wscale_ok)) {
938 		opts->ws = ireq->rcv_wscale;
939 		opts->options |= OPTION_WSCALE;
940 		remaining -= TCPOLEN_WSCALE_ALIGNED;
941 	}
942 	if (likely(ireq->tstamp_ok)) {
943 		opts->options |= OPTION_TS;
944 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
945 			      tcp_rsk(req)->ts_off;
946 		if (!tcp_rsk(req)->snt_tsval_first) {
947 			if (!opts->tsval)
948 				opts->tsval = ~0U;
949 			tcp_rsk(req)->snt_tsval_first = opts->tsval;
950 		}
951 		WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval);
952 		opts->tsecr = req->ts_recent;
953 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
954 	}
955 	if (likely(ireq->sack_ok)) {
956 		opts->options |= OPTION_SACK_ADVERTISE;
957 		if (unlikely(!ireq->tstamp_ok))
958 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
959 	}
960 	if (foc != NULL && foc->len >= 0) {
961 		u32 need = foc->len;
962 
963 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
964 				   TCPOLEN_FASTOPEN_BASE;
965 		need = (need + 3) & ~3U;  /* Align to 32 bits */
966 		if (remaining >= need) {
967 			opts->options |= OPTION_FAST_OPEN_COOKIE;
968 			opts->fastopen_cookie = foc;
969 			remaining -= need;
970 		}
971 	}
972 
973 	mptcp_set_option_cond(req, opts, &remaining);
974 
975 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
976 
977 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
978 			      synack_type, opts, &remaining);
979 
980 	return MAX_TCP_OPTION_SPACE - remaining;
981 }
982 
983 /* Compute TCP options for ESTABLISHED sockets. This is not the
984  * final wire format yet.
985  */
986 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
987 					struct tcp_out_options *opts,
988 					struct tcp_key *key)
989 {
990 	struct tcp_sock *tp = tcp_sk(sk);
991 	unsigned int size = 0;
992 	unsigned int eff_sacks;
993 
994 	opts->options = 0;
995 
996 	/* Better than switch (key.type) as it has static branches */
997 	if (tcp_key_is_md5(key)) {
998 		opts->options |= OPTION_MD5;
999 		size += TCPOLEN_MD5SIG_ALIGNED;
1000 	} else if (tcp_key_is_ao(key)) {
1001 		opts->options |= OPTION_AO;
1002 		size += tcp_ao_len_aligned(key->ao_key);
1003 	}
1004 
1005 	if (likely(tp->rx_opt.tstamp_ok)) {
1006 		opts->options |= OPTION_TS;
1007 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
1008 				tp->tsoffset : 0;
1009 		opts->tsecr = tp->rx_opt.ts_recent;
1010 		size += TCPOLEN_TSTAMP_ALIGNED;
1011 	}
1012 
1013 	/* MPTCP options have precedence over SACK for the limited TCP
1014 	 * option space because a MPTCP connection would be forced to
1015 	 * fall back to regular TCP if a required multipath option is
1016 	 * missing. SACK still gets a chance to use whatever space is
1017 	 * left.
1018 	 */
1019 	if (sk_is_mptcp(sk)) {
1020 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1021 		unsigned int opt_size = 0;
1022 
1023 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1024 					      &opts->mptcp)) {
1025 			opts->options |= OPTION_MPTCP;
1026 			size += opt_size;
1027 		}
1028 	}
1029 
1030 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1031 	if (unlikely(eff_sacks)) {
1032 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1033 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1034 					 TCPOLEN_SACK_PERBLOCK))
1035 			return size;
1036 
1037 		opts->num_sack_blocks =
1038 			min_t(unsigned int, eff_sacks,
1039 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1040 			      TCPOLEN_SACK_PERBLOCK);
1041 
1042 		size += TCPOLEN_SACK_BASE_ALIGNED +
1043 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1044 	}
1045 
1046 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1047 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1048 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1049 
1050 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1051 
1052 		size = MAX_TCP_OPTION_SPACE - remaining;
1053 	}
1054 
1055 	return size;
1056 }
1057 
1058 
1059 /* TCP SMALL QUEUES (TSQ)
1060  *
1061  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1062  * to reduce RTT and bufferbloat.
1063  * We do this using a special skb destructor (tcp_wfree).
1064  *
1065  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1066  * needs to be reallocated in a driver.
1067  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1068  *
1069  * Since transmit from skb destructor is forbidden, we use a tasklet
1070  * to process all sockets that eventually need to send more skbs.
1071  * We use one tasklet per cpu, with its own queue of sockets.
1072  */
1073 struct tsq_tasklet {
1074 	struct tasklet_struct	tasklet;
1075 	struct list_head	head; /* queue of tcp sockets */
1076 };
1077 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1078 
1079 static void tcp_tsq_write(struct sock *sk)
1080 {
1081 	if ((1 << sk->sk_state) &
1082 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1083 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1084 		struct tcp_sock *tp = tcp_sk(sk);
1085 
1086 		if (tp->lost_out > tp->retrans_out &&
1087 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1088 			tcp_mstamp_refresh(tp);
1089 			tcp_xmit_retransmit_queue(sk);
1090 		}
1091 
1092 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1093 			       0, GFP_ATOMIC);
1094 	}
1095 }
1096 
1097 static void tcp_tsq_handler(struct sock *sk)
1098 {
1099 	bh_lock_sock(sk);
1100 	if (!sock_owned_by_user(sk))
1101 		tcp_tsq_write(sk);
1102 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1103 		sock_hold(sk);
1104 	bh_unlock_sock(sk);
1105 }
1106 /*
1107  * One tasklet per cpu tries to send more skbs.
1108  * We run in tasklet context but need to disable irqs when
1109  * transferring tsq->head because tcp_wfree() might
1110  * interrupt us (non NAPI drivers)
1111  */
1112 static void tcp_tasklet_func(struct tasklet_struct *t)
1113 {
1114 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1115 	LIST_HEAD(list);
1116 	unsigned long flags;
1117 	struct list_head *q, *n;
1118 	struct tcp_sock *tp;
1119 	struct sock *sk;
1120 
1121 	local_irq_save(flags);
1122 	list_splice_init(&tsq->head, &list);
1123 	local_irq_restore(flags);
1124 
1125 	list_for_each_safe(q, n, &list) {
1126 		tp = list_entry(q, struct tcp_sock, tsq_node);
1127 		list_del(&tp->tsq_node);
1128 
1129 		sk = (struct sock *)tp;
1130 		smp_mb__before_atomic();
1131 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1132 
1133 		tcp_tsq_handler(sk);
1134 		sk_free(sk);
1135 	}
1136 }
1137 
1138 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1139 			  TCPF_WRITE_TIMER_DEFERRED |	\
1140 			  TCPF_DELACK_TIMER_DEFERRED |	\
1141 			  TCPF_MTU_REDUCED_DEFERRED |	\
1142 			  TCPF_ACK_DEFERRED)
1143 /**
1144  * tcp_release_cb - tcp release_sock() callback
1145  * @sk: socket
1146  *
1147  * called from release_sock() to perform protocol dependent
1148  * actions before socket release.
1149  */
1150 void tcp_release_cb(struct sock *sk)
1151 {
1152 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1153 	unsigned long nflags;
1154 
1155 	/* perform an atomic operation only if at least one flag is set */
1156 	do {
1157 		if (!(flags & TCP_DEFERRED_ALL))
1158 			return;
1159 		nflags = flags & ~TCP_DEFERRED_ALL;
1160 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1161 
1162 	if (flags & TCPF_TSQ_DEFERRED) {
1163 		tcp_tsq_write(sk);
1164 		__sock_put(sk);
1165 	}
1166 
1167 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1168 		tcp_write_timer_handler(sk);
1169 		__sock_put(sk);
1170 	}
1171 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1172 		tcp_delack_timer_handler(sk);
1173 		__sock_put(sk);
1174 	}
1175 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1176 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1177 		__sock_put(sk);
1178 	}
1179 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1180 		tcp_send_ack(sk);
1181 }
1182 EXPORT_IPV6_MOD(tcp_release_cb);
1183 
1184 void __init tcp_tasklet_init(void)
1185 {
1186 	int i;
1187 
1188 	for_each_possible_cpu(i) {
1189 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1190 
1191 		INIT_LIST_HEAD(&tsq->head);
1192 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1193 	}
1194 }
1195 
1196 /*
1197  * Write buffer destructor automatically called from kfree_skb.
1198  * We can't xmit new skbs from this context, as we might already
1199  * hold qdisc lock.
1200  */
1201 void tcp_wfree(struct sk_buff *skb)
1202 {
1203 	struct sock *sk = skb->sk;
1204 	struct tcp_sock *tp = tcp_sk(sk);
1205 	unsigned long flags, nval, oval;
1206 	struct tsq_tasklet *tsq;
1207 	bool empty;
1208 
1209 	/* Keep one reference on sk_wmem_alloc.
1210 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1211 	 */
1212 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1213 
1214 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1215 	 * Wait until our queues (qdisc + devices) are drained.
1216 	 * This gives :
1217 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1218 	 * - chance for incoming ACK (processed by another cpu maybe)
1219 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1220 	 */
1221 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1222 		goto out;
1223 
1224 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1225 	do {
1226 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1227 			goto out;
1228 
1229 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1230 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1231 
1232 	/* queue this socket to tasklet queue */
1233 	local_irq_save(flags);
1234 	tsq = this_cpu_ptr(&tsq_tasklet);
1235 	empty = list_empty(&tsq->head);
1236 	list_add(&tp->tsq_node, &tsq->head);
1237 	if (empty)
1238 		tasklet_schedule(&tsq->tasklet);
1239 	local_irq_restore(flags);
1240 	return;
1241 out:
1242 	sk_free(sk);
1243 }
1244 
1245 /* Note: Called under soft irq.
1246  * We can call TCP stack right away, unless socket is owned by user.
1247  */
1248 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1249 {
1250 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1251 	struct sock *sk = (struct sock *)tp;
1252 
1253 	tcp_tsq_handler(sk);
1254 	sock_put(sk);
1255 
1256 	return HRTIMER_NORESTART;
1257 }
1258 
1259 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1260 				      u64 prior_wstamp)
1261 {
1262 	struct tcp_sock *tp = tcp_sk(sk);
1263 
1264 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1265 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1266 
1267 		/* Original sch_fq does not pace first 10 MSS
1268 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1269 		 * this is a minor annoyance.
1270 		 */
1271 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1272 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1273 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1274 
1275 			/* take into account OS jitter */
1276 			len_ns -= min_t(u64, len_ns / 2, credit);
1277 			tp->tcp_wstamp_ns += len_ns;
1278 		}
1279 	}
1280 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1281 }
1282 
1283 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1284 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1285 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1286 
1287 /* This routine actually transmits TCP packets queued in by
1288  * tcp_do_sendmsg().  This is used by both the initial
1289  * transmission and possible later retransmissions.
1290  * All SKB's seen here are completely headerless.  It is our
1291  * job to build the TCP header, and pass the packet down to
1292  * IP so it can do the same plus pass the packet off to the
1293  * device.
1294  *
1295  * We are working here with either a clone of the original
1296  * SKB, or a fresh unique copy made by the retransmit engine.
1297  */
1298 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1299 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1300 {
1301 	const struct inet_connection_sock *icsk = inet_csk(sk);
1302 	struct inet_sock *inet;
1303 	struct tcp_sock *tp;
1304 	struct tcp_skb_cb *tcb;
1305 	struct tcp_out_options opts;
1306 	unsigned int tcp_options_size, tcp_header_size;
1307 	struct sk_buff *oskb = NULL;
1308 	struct tcp_key key;
1309 	struct tcphdr *th;
1310 	u64 prior_wstamp;
1311 	int err;
1312 
1313 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1314 	tp = tcp_sk(sk);
1315 	prior_wstamp = tp->tcp_wstamp_ns;
1316 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1317 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1318 	if (clone_it) {
1319 		oskb = skb;
1320 
1321 		tcp_skb_tsorted_save(oskb) {
1322 			if (unlikely(skb_cloned(oskb)))
1323 				skb = pskb_copy(oskb, gfp_mask);
1324 			else
1325 				skb = skb_clone(oskb, gfp_mask);
1326 		} tcp_skb_tsorted_restore(oskb);
1327 
1328 		if (unlikely(!skb))
1329 			return -ENOBUFS;
1330 		/* retransmit skbs might have a non zero value in skb->dev
1331 		 * because skb->dev is aliased with skb->rbnode.rb_left
1332 		 */
1333 		skb->dev = NULL;
1334 	}
1335 
1336 	inet = inet_sk(sk);
1337 	tcb = TCP_SKB_CB(skb);
1338 	memset(&opts, 0, sizeof(opts));
1339 
1340 	tcp_get_current_key(sk, &key);
1341 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1342 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1343 	} else {
1344 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1345 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1346 		 * at receiver : This slightly improve GRO performance.
1347 		 * Note that we do not force the PSH flag for non GSO packets,
1348 		 * because they might be sent under high congestion events,
1349 		 * and in this case it is better to delay the delivery of 1-MSS
1350 		 * packets and thus the corresponding ACK packet that would
1351 		 * release the following packet.
1352 		 */
1353 		if (tcp_skb_pcount(skb) > 1)
1354 			tcb->tcp_flags |= TCPHDR_PSH;
1355 	}
1356 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1357 
1358 	/* We set skb->ooo_okay to one if this packet can select
1359 	 * a different TX queue than prior packets of this flow,
1360 	 * to avoid self inflicted reorders.
1361 	 * The 'other' queue decision is based on current cpu number
1362 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1363 	 * We can switch to another (and better) queue if:
1364 	 * 1) No packet with payload is in qdisc/device queues.
1365 	 *    Delays in TX completion can defeat the test
1366 	 *    even if packets were already sent.
1367 	 * 2) Or rtx queue is empty.
1368 	 *    This mitigates above case if ACK packets for
1369 	 *    all prior packets were already processed.
1370 	 */
1371 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1372 			tcp_rtx_queue_empty(sk);
1373 
1374 	/* If we had to use memory reserve to allocate this skb,
1375 	 * this might cause drops if packet is looped back :
1376 	 * Other socket might not have SOCK_MEMALLOC.
1377 	 * Packets not looped back do not care about pfmemalloc.
1378 	 */
1379 	skb->pfmemalloc = 0;
1380 
1381 	skb_push(skb, tcp_header_size);
1382 	skb_reset_transport_header(skb);
1383 
1384 	skb_orphan(skb);
1385 	skb->sk = sk;
1386 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1387 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1388 
1389 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1390 
1391 	/* Build TCP header and checksum it. */
1392 	th = (struct tcphdr *)skb->data;
1393 	th->source		= inet->inet_sport;
1394 	th->dest		= inet->inet_dport;
1395 	th->seq			= htonl(tcb->seq);
1396 	th->ack_seq		= htonl(rcv_nxt);
1397 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1398 					(tcb->tcp_flags & TCPHDR_FLAGS_MASK));
1399 
1400 	th->check		= 0;
1401 	th->urg_ptr		= 0;
1402 
1403 	/* The urg_mode check is necessary during a below snd_una win probe */
1404 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1405 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1406 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1407 			th->urg = 1;
1408 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1409 			th->urg_ptr = htons(0xFFFF);
1410 			th->urg = 1;
1411 		}
1412 	}
1413 
1414 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1415 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1416 		th->window      = htons(tcp_select_window(sk));
1417 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1418 	} else {
1419 		/* RFC1323: The window in SYN & SYN/ACK segments
1420 		 * is never scaled.
1421 		 */
1422 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1423 	}
1424 
1425 	tcp_options_write(th, tp, NULL, &opts, &key);
1426 
1427 	if (tcp_key_is_md5(&key)) {
1428 #ifdef CONFIG_TCP_MD5SIG
1429 		/* Calculate the MD5 hash, as we have all we need now */
1430 		sk_gso_disable(sk);
1431 		tp->af_specific->calc_md5_hash(opts.hash_location,
1432 					       key.md5_key, sk, skb);
1433 #endif
1434 	} else if (tcp_key_is_ao(&key)) {
1435 		int err;
1436 
1437 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1438 					  opts.hash_location);
1439 		if (err) {
1440 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1441 			return -ENOMEM;
1442 		}
1443 	}
1444 
1445 	/* BPF prog is the last one writing header option */
1446 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1447 
1448 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1449 			   tcp_v6_send_check, tcp_v4_send_check,
1450 			   sk, skb);
1451 
1452 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1453 		tcp_event_ack_sent(sk, rcv_nxt);
1454 
1455 	if (skb->len != tcp_header_size) {
1456 		tcp_event_data_sent(tp, sk);
1457 		tp->data_segs_out += tcp_skb_pcount(skb);
1458 		tp->bytes_sent += skb->len - tcp_header_size;
1459 	}
1460 
1461 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1462 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1463 			      tcp_skb_pcount(skb));
1464 
1465 	tp->segs_out += tcp_skb_pcount(skb);
1466 	skb_set_hash_from_sk(skb, sk);
1467 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1468 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1469 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1470 
1471 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1472 
1473 	/* Cleanup our debris for IP stacks */
1474 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1475 			       sizeof(struct inet6_skb_parm)));
1476 
1477 	tcp_add_tx_delay(skb, tp);
1478 
1479 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1480 				 inet6_csk_xmit, ip_queue_xmit,
1481 				 sk, skb, &inet->cork.fl);
1482 
1483 	if (unlikely(err > 0)) {
1484 		tcp_enter_cwr(sk);
1485 		err = net_xmit_eval(err);
1486 	}
1487 	if (!err && oskb) {
1488 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1489 		tcp_rate_skb_sent(sk, oskb);
1490 	}
1491 	return err;
1492 }
1493 
1494 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1495 			    gfp_t gfp_mask)
1496 {
1497 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1498 				  tcp_sk(sk)->rcv_nxt);
1499 }
1500 
1501 /* This routine just queues the buffer for sending.
1502  *
1503  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1504  * otherwise socket can stall.
1505  */
1506 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1507 {
1508 	struct tcp_sock *tp = tcp_sk(sk);
1509 
1510 	/* Advance write_seq and place onto the write_queue. */
1511 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1512 	__skb_header_release(skb);
1513 	tcp_add_write_queue_tail(sk, skb);
1514 	sk_wmem_queued_add(sk, skb->truesize);
1515 	sk_mem_charge(sk, skb->truesize);
1516 }
1517 
1518 /* Initialize TSO segments for a packet. */
1519 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1520 {
1521 	int tso_segs;
1522 
1523 	if (skb->len <= mss_now) {
1524 		/* Avoid the costly divide in the normal
1525 		 * non-TSO case.
1526 		 */
1527 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1528 		tcp_skb_pcount_set(skb, 1);
1529 		return 1;
1530 	}
1531 	TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1532 	tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1533 	tcp_skb_pcount_set(skb, tso_segs);
1534 	return tso_segs;
1535 }
1536 
1537 /* Pcount in the middle of the write queue got changed, we need to do various
1538  * tweaks to fix counters
1539  */
1540 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1541 {
1542 	struct tcp_sock *tp = tcp_sk(sk);
1543 
1544 	tp->packets_out -= decr;
1545 
1546 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1547 		tp->sacked_out -= decr;
1548 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1549 		tp->retrans_out -= decr;
1550 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1551 		tp->lost_out -= decr;
1552 
1553 	/* Reno case is special. Sigh... */
1554 	if (tcp_is_reno(tp) && decr > 0)
1555 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1556 
1557 	if (tp->lost_skb_hint &&
1558 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1559 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1560 		tp->lost_cnt_hint -= decr;
1561 
1562 	tcp_verify_left_out(tp);
1563 }
1564 
1565 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1566 {
1567 	return TCP_SKB_CB(skb)->txstamp_ack ||
1568 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1569 }
1570 
1571 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1572 {
1573 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1574 
1575 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1576 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1577 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1578 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1579 
1580 		shinfo->tx_flags &= ~tsflags;
1581 		shinfo2->tx_flags |= tsflags;
1582 		swap(shinfo->tskey, shinfo2->tskey);
1583 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1584 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1585 	}
1586 }
1587 
1588 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1589 {
1590 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1591 	TCP_SKB_CB(skb)->eor = 0;
1592 }
1593 
1594 /* Insert buff after skb on the write or rtx queue of sk.  */
1595 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1596 					 struct sk_buff *buff,
1597 					 struct sock *sk,
1598 					 enum tcp_queue tcp_queue)
1599 {
1600 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1601 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1602 	else
1603 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1604 }
1605 
1606 /* Function to create two new TCP segments.  Shrinks the given segment
1607  * to the specified size and appends a new segment with the rest of the
1608  * packet to the list.  This won't be called frequently, I hope.
1609  * Remember, these are still headerless SKBs at this point.
1610  */
1611 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1612 		 struct sk_buff *skb, u32 len,
1613 		 unsigned int mss_now, gfp_t gfp)
1614 {
1615 	struct tcp_sock *tp = tcp_sk(sk);
1616 	struct sk_buff *buff;
1617 	int old_factor;
1618 	long limit;
1619 	u16 flags;
1620 	int nlen;
1621 
1622 	if (WARN_ON(len > skb->len))
1623 		return -EINVAL;
1624 
1625 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1626 
1627 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1628 	 * We need some allowance to not penalize applications setting small
1629 	 * SO_SNDBUF values.
1630 	 * Also allow first and last skb in retransmit queue to be split.
1631 	 */
1632 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1633 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1634 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1635 		     skb != tcp_rtx_queue_head(sk) &&
1636 		     skb != tcp_rtx_queue_tail(sk))) {
1637 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1638 		return -ENOMEM;
1639 	}
1640 
1641 	if (skb_unclone_keeptruesize(skb, gfp))
1642 		return -ENOMEM;
1643 
1644 	/* Get a new skb... force flag on. */
1645 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1646 	if (!buff)
1647 		return -ENOMEM; /* We'll just try again later. */
1648 	skb_copy_decrypted(buff, skb);
1649 	mptcp_skb_ext_copy(buff, skb);
1650 
1651 	sk_wmem_queued_add(sk, buff->truesize);
1652 	sk_mem_charge(sk, buff->truesize);
1653 	nlen = skb->len - len;
1654 	buff->truesize += nlen;
1655 	skb->truesize -= nlen;
1656 
1657 	/* Correct the sequence numbers. */
1658 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1659 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1660 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1661 
1662 	/* PSH and FIN should only be set in the second packet. */
1663 	flags = TCP_SKB_CB(skb)->tcp_flags;
1664 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1665 	TCP_SKB_CB(buff)->tcp_flags = flags;
1666 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1667 	tcp_skb_fragment_eor(skb, buff);
1668 
1669 	skb_split(skb, buff, len);
1670 
1671 	skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1672 	tcp_fragment_tstamp(skb, buff);
1673 
1674 	old_factor = tcp_skb_pcount(skb);
1675 
1676 	/* Fix up tso_factor for both original and new SKB.  */
1677 	tcp_set_skb_tso_segs(skb, mss_now);
1678 	tcp_set_skb_tso_segs(buff, mss_now);
1679 
1680 	/* Update delivered info for the new segment */
1681 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1682 
1683 	/* If this packet has been sent out already, we must
1684 	 * adjust the various packet counters.
1685 	 */
1686 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1687 		int diff = old_factor - tcp_skb_pcount(skb) -
1688 			tcp_skb_pcount(buff);
1689 
1690 		if (diff)
1691 			tcp_adjust_pcount(sk, skb, diff);
1692 	}
1693 
1694 	/* Link BUFF into the send queue. */
1695 	__skb_header_release(buff);
1696 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1697 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1698 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1699 
1700 	return 0;
1701 }
1702 
1703 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1704  * data is not copied, but immediately discarded.
1705  */
1706 static int __pskb_trim_head(struct sk_buff *skb, int len)
1707 {
1708 	struct skb_shared_info *shinfo;
1709 	int i, k, eat;
1710 
1711 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1712 	eat = len;
1713 	k = 0;
1714 	shinfo = skb_shinfo(skb);
1715 	for (i = 0; i < shinfo->nr_frags; i++) {
1716 		int size = skb_frag_size(&shinfo->frags[i]);
1717 
1718 		if (size <= eat) {
1719 			skb_frag_unref(skb, i);
1720 			eat -= size;
1721 		} else {
1722 			shinfo->frags[k] = shinfo->frags[i];
1723 			if (eat) {
1724 				skb_frag_off_add(&shinfo->frags[k], eat);
1725 				skb_frag_size_sub(&shinfo->frags[k], eat);
1726 				eat = 0;
1727 			}
1728 			k++;
1729 		}
1730 	}
1731 	shinfo->nr_frags = k;
1732 
1733 	skb->data_len -= len;
1734 	skb->len = skb->data_len;
1735 	return len;
1736 }
1737 
1738 /* Remove acked data from a packet in the transmit queue. */
1739 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1740 {
1741 	u32 delta_truesize;
1742 
1743 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1744 		return -ENOMEM;
1745 
1746 	delta_truesize = __pskb_trim_head(skb, len);
1747 
1748 	TCP_SKB_CB(skb)->seq += len;
1749 
1750 	skb->truesize	   -= delta_truesize;
1751 	sk_wmem_queued_add(sk, -delta_truesize);
1752 	if (!skb_zcopy_pure(skb))
1753 		sk_mem_uncharge(sk, delta_truesize);
1754 
1755 	/* Any change of skb->len requires recalculation of tso factor. */
1756 	if (tcp_skb_pcount(skb) > 1)
1757 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1758 
1759 	return 0;
1760 }
1761 
1762 /* Calculate MSS not accounting any TCP options.  */
1763 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1764 {
1765 	const struct tcp_sock *tp = tcp_sk(sk);
1766 	const struct inet_connection_sock *icsk = inet_csk(sk);
1767 	int mss_now;
1768 
1769 	/* Calculate base mss without TCP options:
1770 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1771 	 */
1772 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1773 
1774 	/* Clamp it (mss_clamp does not include tcp options) */
1775 	if (mss_now > tp->rx_opt.mss_clamp)
1776 		mss_now = tp->rx_opt.mss_clamp;
1777 
1778 	/* Now subtract optional transport overhead */
1779 	mss_now -= icsk->icsk_ext_hdr_len;
1780 
1781 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1782 	mss_now = max(mss_now,
1783 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1784 	return mss_now;
1785 }
1786 
1787 /* Calculate MSS. Not accounting for SACKs here.  */
1788 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1789 {
1790 	/* Subtract TCP options size, not including SACKs */
1791 	return __tcp_mtu_to_mss(sk, pmtu) -
1792 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1793 }
1794 EXPORT_IPV6_MOD(tcp_mtu_to_mss);
1795 
1796 /* Inverse of above */
1797 int tcp_mss_to_mtu(struct sock *sk, int mss)
1798 {
1799 	const struct tcp_sock *tp = tcp_sk(sk);
1800 	const struct inet_connection_sock *icsk = inet_csk(sk);
1801 
1802 	return mss +
1803 	      tp->tcp_header_len +
1804 	      icsk->icsk_ext_hdr_len +
1805 	      icsk->icsk_af_ops->net_header_len;
1806 }
1807 EXPORT_SYMBOL(tcp_mss_to_mtu);
1808 
1809 /* MTU probing init per socket */
1810 void tcp_mtup_init(struct sock *sk)
1811 {
1812 	struct tcp_sock *tp = tcp_sk(sk);
1813 	struct inet_connection_sock *icsk = inet_csk(sk);
1814 	struct net *net = sock_net(sk);
1815 
1816 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1817 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1818 			       icsk->icsk_af_ops->net_header_len;
1819 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1820 	icsk->icsk_mtup.probe_size = 0;
1821 	if (icsk->icsk_mtup.enabled)
1822 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1823 }
1824 
1825 /* This function synchronize snd mss to current pmtu/exthdr set.
1826 
1827    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1828    for TCP options, but includes only bare TCP header.
1829 
1830    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1831    It is minimum of user_mss and mss received with SYN.
1832    It also does not include TCP options.
1833 
1834    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1835 
1836    tp->mss_cache is current effective sending mss, including
1837    all tcp options except for SACKs. It is evaluated,
1838    taking into account current pmtu, but never exceeds
1839    tp->rx_opt.mss_clamp.
1840 
1841    NOTE1. rfc1122 clearly states that advertised MSS
1842    DOES NOT include either tcp or ip options.
1843 
1844    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1845    are READ ONLY outside this function.		--ANK (980731)
1846  */
1847 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1848 {
1849 	struct tcp_sock *tp = tcp_sk(sk);
1850 	struct inet_connection_sock *icsk = inet_csk(sk);
1851 	int mss_now;
1852 
1853 	if (icsk->icsk_mtup.search_high > pmtu)
1854 		icsk->icsk_mtup.search_high = pmtu;
1855 
1856 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1857 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1858 
1859 	/* And store cached results */
1860 	icsk->icsk_pmtu_cookie = pmtu;
1861 	if (icsk->icsk_mtup.enabled)
1862 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1863 	tp->mss_cache = mss_now;
1864 
1865 	return mss_now;
1866 }
1867 EXPORT_IPV6_MOD(tcp_sync_mss);
1868 
1869 /* Compute the current effective MSS, taking SACKs and IP options,
1870  * and even PMTU discovery events into account.
1871  */
1872 unsigned int tcp_current_mss(struct sock *sk)
1873 {
1874 	const struct tcp_sock *tp = tcp_sk(sk);
1875 	const struct dst_entry *dst = __sk_dst_get(sk);
1876 	u32 mss_now;
1877 	unsigned int header_len;
1878 	struct tcp_out_options opts;
1879 	struct tcp_key key;
1880 
1881 	mss_now = tp->mss_cache;
1882 
1883 	if (dst) {
1884 		u32 mtu = dst_mtu(dst);
1885 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1886 			mss_now = tcp_sync_mss(sk, mtu);
1887 	}
1888 	tcp_get_current_key(sk, &key);
1889 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1890 		     sizeof(struct tcphdr);
1891 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1892 	 * some common options. If this is an odd packet (because we have SACK
1893 	 * blocks etc) then our calculated header_len will be different, and
1894 	 * we have to adjust mss_now correspondingly */
1895 	if (header_len != tp->tcp_header_len) {
1896 		int delta = (int) header_len - tp->tcp_header_len;
1897 		mss_now -= delta;
1898 	}
1899 
1900 	return mss_now;
1901 }
1902 
1903 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1904  * As additional protections, we do not touch cwnd in retransmission phases,
1905  * and if application hit its sndbuf limit recently.
1906  */
1907 static void tcp_cwnd_application_limited(struct sock *sk)
1908 {
1909 	struct tcp_sock *tp = tcp_sk(sk);
1910 
1911 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1912 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1913 		/* Limited by application or receiver window. */
1914 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1915 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1916 		if (win_used < tcp_snd_cwnd(tp)) {
1917 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1918 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1919 		}
1920 		tp->snd_cwnd_used = 0;
1921 	}
1922 	tp->snd_cwnd_stamp = tcp_jiffies32;
1923 }
1924 
1925 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1926 {
1927 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1928 	struct tcp_sock *tp = tcp_sk(sk);
1929 
1930 	/* Track the strongest available signal of the degree to which the cwnd
1931 	 * is fully utilized. If cwnd-limited then remember that fact for the
1932 	 * current window. If not cwnd-limited then track the maximum number of
1933 	 * outstanding packets in the current window. (If cwnd-limited then we
1934 	 * chose to not update tp->max_packets_out to avoid an extra else
1935 	 * clause with no functional impact.)
1936 	 */
1937 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1938 	    is_cwnd_limited ||
1939 	    (!tp->is_cwnd_limited &&
1940 	     tp->packets_out > tp->max_packets_out)) {
1941 		tp->is_cwnd_limited = is_cwnd_limited;
1942 		tp->max_packets_out = tp->packets_out;
1943 		tp->cwnd_usage_seq = tp->snd_nxt;
1944 	}
1945 
1946 	if (tcp_is_cwnd_limited(sk)) {
1947 		/* Network is feed fully. */
1948 		tp->snd_cwnd_used = 0;
1949 		tp->snd_cwnd_stamp = tcp_jiffies32;
1950 	} else {
1951 		/* Network starves. */
1952 		if (tp->packets_out > tp->snd_cwnd_used)
1953 			tp->snd_cwnd_used = tp->packets_out;
1954 
1955 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1956 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1957 		    !ca_ops->cong_control)
1958 			tcp_cwnd_application_limited(sk);
1959 
1960 		/* The following conditions together indicate the starvation
1961 		 * is caused by insufficient sender buffer:
1962 		 * 1) just sent some data (see tcp_write_xmit)
1963 		 * 2) not cwnd limited (this else condition)
1964 		 * 3) no more data to send (tcp_write_queue_empty())
1965 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1966 		 */
1967 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1968 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1969 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1970 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1971 	}
1972 }
1973 
1974 /* Minshall's variant of the Nagle send check. */
1975 static bool tcp_minshall_check(const struct tcp_sock *tp)
1976 {
1977 	return after(tp->snd_sml, tp->snd_una) &&
1978 		!after(tp->snd_sml, tp->snd_nxt);
1979 }
1980 
1981 /* Update snd_sml if this skb is under mss
1982  * Note that a TSO packet might end with a sub-mss segment
1983  * The test is really :
1984  * if ((skb->len % mss) != 0)
1985  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1986  * But we can avoid doing the divide again given we already have
1987  *  skb_pcount = skb->len / mss_now
1988  */
1989 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1990 				const struct sk_buff *skb)
1991 {
1992 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1993 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1994 }
1995 
1996 /* Return false, if packet can be sent now without violation Nagle's rules:
1997  * 1. It is full sized. (provided by caller in %partial bool)
1998  * 2. Or it contains FIN. (already checked by caller)
1999  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
2000  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
2001  *    With Minshall's modification: all sent small packets are ACKed.
2002  */
2003 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
2004 			    int nonagle)
2005 {
2006 	return partial &&
2007 		((nonagle & TCP_NAGLE_CORK) ||
2008 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
2009 }
2010 
2011 /* Return how many segs we'd like on a TSO packet,
2012  * depending on current pacing rate, and how close the peer is.
2013  *
2014  * Rationale is:
2015  * - For close peers, we rather send bigger packets to reduce
2016  *   cpu costs, because occasional losses will be repaired fast.
2017  * - For long distance/rtt flows, we would like to get ACK clocking
2018  *   with 1 ACK per ms.
2019  *
2020  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2021  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2022  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2023  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2024  */
2025 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2026 			    int min_tso_segs)
2027 {
2028 	unsigned long bytes;
2029 	u32 r;
2030 
2031 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2032 
2033 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2034 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2035 		bytes += sk->sk_gso_max_size >> r;
2036 
2037 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2038 
2039 	return max_t(u32, bytes / mss_now, min_tso_segs);
2040 }
2041 
2042 /* Return the number of segments we want in the skb we are transmitting.
2043  * See if congestion control module wants to decide; otherwise, autosize.
2044  */
2045 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2046 {
2047 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2048 	u32 min_tso, tso_segs;
2049 
2050 	min_tso = ca_ops->min_tso_segs ?
2051 			ca_ops->min_tso_segs(sk) :
2052 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2053 
2054 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2055 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2056 }
2057 
2058 /* Returns the portion of skb which can be sent right away */
2059 static unsigned int tcp_mss_split_point(const struct sock *sk,
2060 					const struct sk_buff *skb,
2061 					unsigned int mss_now,
2062 					unsigned int max_segs,
2063 					int nonagle)
2064 {
2065 	const struct tcp_sock *tp = tcp_sk(sk);
2066 	u32 partial, needed, window, max_len;
2067 
2068 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2069 	max_len = mss_now * max_segs;
2070 
2071 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2072 		return max_len;
2073 
2074 	needed = min(skb->len, window);
2075 
2076 	if (max_len <= needed)
2077 		return max_len;
2078 
2079 	partial = needed % mss_now;
2080 	/* If last segment is not a full MSS, check if Nagle rules allow us
2081 	 * to include this last segment in this skb.
2082 	 * Otherwise, we'll split the skb at last MSS boundary
2083 	 */
2084 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2085 		return needed - partial;
2086 
2087 	return needed;
2088 }
2089 
2090 /* Can at least one segment of SKB be sent right now, according to the
2091  * congestion window rules?  If so, return how many segments are allowed.
2092  */
2093 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2094 {
2095 	u32 in_flight, cwnd, halfcwnd;
2096 
2097 	in_flight = tcp_packets_in_flight(tp);
2098 	cwnd = tcp_snd_cwnd(tp);
2099 	if (in_flight >= cwnd)
2100 		return 0;
2101 
2102 	/* For better scheduling, ensure we have at least
2103 	 * 2 GSO packets in flight.
2104 	 */
2105 	halfcwnd = max(cwnd >> 1, 1U);
2106 	return min(halfcwnd, cwnd - in_flight);
2107 }
2108 
2109 /* Initialize TSO state of a skb.
2110  * This must be invoked the first time we consider transmitting
2111  * SKB onto the wire.
2112  */
2113 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2114 {
2115 	int tso_segs = tcp_skb_pcount(skb);
2116 
2117 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2118 		return tcp_set_skb_tso_segs(skb, mss_now);
2119 
2120 	return tso_segs;
2121 }
2122 
2123 
2124 /* Return true if the Nagle test allows this packet to be
2125  * sent now.
2126  */
2127 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2128 				  unsigned int cur_mss, int nonagle)
2129 {
2130 	/* Nagle rule does not apply to frames, which sit in the middle of the
2131 	 * write_queue (they have no chances to get new data).
2132 	 *
2133 	 * This is implemented in the callers, where they modify the 'nonagle'
2134 	 * argument based upon the location of SKB in the send queue.
2135 	 */
2136 	if (nonagle & TCP_NAGLE_PUSH)
2137 		return true;
2138 
2139 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2140 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2141 		return true;
2142 
2143 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2144 		return true;
2145 
2146 	return false;
2147 }
2148 
2149 /* Does at least the first segment of SKB fit into the send window? */
2150 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2151 			     const struct sk_buff *skb,
2152 			     unsigned int cur_mss)
2153 {
2154 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2155 
2156 	if (skb->len > cur_mss)
2157 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2158 
2159 	return !after(end_seq, tcp_wnd_end(tp));
2160 }
2161 
2162 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2163  * which is put after SKB on the list.  It is very much like
2164  * tcp_fragment() except that it may make several kinds of assumptions
2165  * in order to speed up the splitting operation.  In particular, we
2166  * know that all the data is in scatter-gather pages, and that the
2167  * packet has never been sent out before (and thus is not cloned).
2168  */
2169 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2170 			unsigned int mss_now, gfp_t gfp)
2171 {
2172 	int nlen = skb->len - len;
2173 	struct sk_buff *buff;
2174 	u16 flags;
2175 
2176 	/* All of a TSO frame must be composed of paged data.  */
2177 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2178 
2179 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2180 	if (unlikely(!buff))
2181 		return -ENOMEM;
2182 	skb_copy_decrypted(buff, skb);
2183 	mptcp_skb_ext_copy(buff, skb);
2184 
2185 	sk_wmem_queued_add(sk, buff->truesize);
2186 	sk_mem_charge(sk, buff->truesize);
2187 	buff->truesize += nlen;
2188 	skb->truesize -= nlen;
2189 
2190 	/* Correct the sequence numbers. */
2191 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2192 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2193 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2194 
2195 	/* PSH and FIN should only be set in the second packet. */
2196 	flags = TCP_SKB_CB(skb)->tcp_flags;
2197 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2198 	TCP_SKB_CB(buff)->tcp_flags = flags;
2199 
2200 	tcp_skb_fragment_eor(skb, buff);
2201 
2202 	skb_split(skb, buff, len);
2203 	tcp_fragment_tstamp(skb, buff);
2204 
2205 	/* Fix up tso_factor for both original and new SKB.  */
2206 	tcp_set_skb_tso_segs(skb, mss_now);
2207 	tcp_set_skb_tso_segs(buff, mss_now);
2208 
2209 	/* Link BUFF into the send queue. */
2210 	__skb_header_release(buff);
2211 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2212 
2213 	return 0;
2214 }
2215 
2216 /* Try to defer sending, if possible, in order to minimize the amount
2217  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2218  *
2219  * This algorithm is from John Heffner.
2220  */
2221 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2222 				 bool *is_cwnd_limited,
2223 				 bool *is_rwnd_limited,
2224 				 u32 max_segs)
2225 {
2226 	const struct inet_connection_sock *icsk = inet_csk(sk);
2227 	u32 send_win, cong_win, limit, in_flight;
2228 	struct tcp_sock *tp = tcp_sk(sk);
2229 	struct sk_buff *head;
2230 	int win_divisor;
2231 	s64 delta;
2232 
2233 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2234 		goto send_now;
2235 
2236 	/* Avoid bursty behavior by allowing defer
2237 	 * only if the last write was recent (1 ms).
2238 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2239 	 * packets waiting in a qdisc or device for EDT delivery.
2240 	 */
2241 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2242 	if (delta > 0)
2243 		goto send_now;
2244 
2245 	in_flight = tcp_packets_in_flight(tp);
2246 
2247 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2248 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2249 
2250 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2251 
2252 	/* From in_flight test above, we know that cwnd > in_flight.  */
2253 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2254 
2255 	limit = min(send_win, cong_win);
2256 
2257 	/* If a full-sized TSO skb can be sent, do it. */
2258 	if (limit >= max_segs * tp->mss_cache)
2259 		goto send_now;
2260 
2261 	/* Middle in queue won't get any more data, full sendable already? */
2262 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2263 		goto send_now;
2264 
2265 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2266 	if (win_divisor) {
2267 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2268 
2269 		/* If at least some fraction of a window is available,
2270 		 * just use it.
2271 		 */
2272 		chunk /= win_divisor;
2273 		if (limit >= chunk)
2274 			goto send_now;
2275 	} else {
2276 		/* Different approach, try not to defer past a single
2277 		 * ACK.  Receiver should ACK every other full sized
2278 		 * frame, so if we have space for more than 3 frames
2279 		 * then send now.
2280 		 */
2281 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2282 			goto send_now;
2283 	}
2284 
2285 	/* TODO : use tsorted_sent_queue ? */
2286 	head = tcp_rtx_queue_head(sk);
2287 	if (!head)
2288 		goto send_now;
2289 	delta = tp->tcp_clock_cache - head->tstamp;
2290 	/* If next ACK is likely to come too late (half srtt), do not defer */
2291 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2292 		goto send_now;
2293 
2294 	/* Ok, it looks like it is advisable to defer.
2295 	 * Three cases are tracked :
2296 	 * 1) We are cwnd-limited
2297 	 * 2) We are rwnd-limited
2298 	 * 3) We are application limited.
2299 	 */
2300 	if (cong_win < send_win) {
2301 		if (cong_win <= skb->len) {
2302 			*is_cwnd_limited = true;
2303 			return true;
2304 		}
2305 	} else {
2306 		if (send_win <= skb->len) {
2307 			*is_rwnd_limited = true;
2308 			return true;
2309 		}
2310 	}
2311 
2312 	/* If this packet won't get more data, do not wait. */
2313 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2314 	    TCP_SKB_CB(skb)->eor)
2315 		goto send_now;
2316 
2317 	return true;
2318 
2319 send_now:
2320 	return false;
2321 }
2322 
2323 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2324 {
2325 	struct inet_connection_sock *icsk = inet_csk(sk);
2326 	struct tcp_sock *tp = tcp_sk(sk);
2327 	struct net *net = sock_net(sk);
2328 	u32 interval;
2329 	s32 delta;
2330 
2331 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2332 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2333 	if (unlikely(delta >= interval * HZ)) {
2334 		int mss = tcp_current_mss(sk);
2335 
2336 		/* Update current search range */
2337 		icsk->icsk_mtup.probe_size = 0;
2338 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2339 			sizeof(struct tcphdr) +
2340 			icsk->icsk_af_ops->net_header_len;
2341 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2342 
2343 		/* Update probe time stamp */
2344 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2345 	}
2346 }
2347 
2348 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2349 {
2350 	struct sk_buff *skb, *next;
2351 
2352 	skb = tcp_send_head(sk);
2353 	tcp_for_write_queue_from_safe(skb, next, sk) {
2354 		if (len <= skb->len)
2355 			break;
2356 
2357 		if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2358 			return false;
2359 
2360 		len -= skb->len;
2361 	}
2362 
2363 	return true;
2364 }
2365 
2366 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2367 			     int probe_size)
2368 {
2369 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2370 	int i, todo, len = 0, nr_frags = 0;
2371 	const struct sk_buff *skb;
2372 
2373 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2374 		return -ENOMEM;
2375 
2376 	skb_queue_walk(&sk->sk_write_queue, skb) {
2377 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2378 
2379 		if (skb_headlen(skb))
2380 			return -EINVAL;
2381 
2382 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2383 			if (len >= probe_size)
2384 				goto commit;
2385 			todo = min_t(int, skb_frag_size(fragfrom),
2386 				     probe_size - len);
2387 			len += todo;
2388 			if (lastfrag &&
2389 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2390 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2391 						      skb_frag_size(lastfrag)) {
2392 				skb_frag_size_add(lastfrag, todo);
2393 				continue;
2394 			}
2395 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2396 				return -E2BIG;
2397 			skb_frag_page_copy(fragto, fragfrom);
2398 			skb_frag_off_copy(fragto, fragfrom);
2399 			skb_frag_size_set(fragto, todo);
2400 			nr_frags++;
2401 			lastfrag = fragto++;
2402 		}
2403 	}
2404 commit:
2405 	WARN_ON_ONCE(len != probe_size);
2406 	for (i = 0; i < nr_frags; i++)
2407 		skb_frag_ref(to, i);
2408 
2409 	skb_shinfo(to)->nr_frags = nr_frags;
2410 	to->truesize += probe_size;
2411 	to->len += probe_size;
2412 	to->data_len += probe_size;
2413 	__skb_header_release(to);
2414 	return 0;
2415 }
2416 
2417 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2418  * all its payload was moved to another one (dst).
2419  * Make sure to transfer tcp_flags, eor, and tstamp.
2420  */
2421 static void tcp_eat_one_skb(struct sock *sk,
2422 			    struct sk_buff *dst,
2423 			    struct sk_buff *src)
2424 {
2425 	TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2426 	TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2427 	tcp_skb_collapse_tstamp(dst, src);
2428 	tcp_unlink_write_queue(src, sk);
2429 	tcp_wmem_free_skb(sk, src);
2430 }
2431 
2432 /* Create a new MTU probe if we are ready.
2433  * MTU probe is regularly attempting to increase the path MTU by
2434  * deliberately sending larger packets.  This discovers routing
2435  * changes resulting in larger path MTUs.
2436  *
2437  * Returns 0 if we should wait to probe (no cwnd available),
2438  *         1 if a probe was sent,
2439  *         -1 otherwise
2440  */
2441 static int tcp_mtu_probe(struct sock *sk)
2442 {
2443 	struct inet_connection_sock *icsk = inet_csk(sk);
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 	struct sk_buff *skb, *nskb, *next;
2446 	struct net *net = sock_net(sk);
2447 	int probe_size;
2448 	int size_needed;
2449 	int copy, len;
2450 	int mss_now;
2451 	int interval;
2452 
2453 	/* Not currently probing/verifying,
2454 	 * not in recovery,
2455 	 * have enough cwnd, and
2456 	 * not SACKing (the variable headers throw things off)
2457 	 */
2458 	if (likely(!icsk->icsk_mtup.enabled ||
2459 		   icsk->icsk_mtup.probe_size ||
2460 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2461 		   tcp_snd_cwnd(tp) < 11 ||
2462 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2463 		return -1;
2464 
2465 	/* Use binary search for probe_size between tcp_mss_base,
2466 	 * and current mss_clamp. if (search_high - search_low)
2467 	 * smaller than a threshold, backoff from probing.
2468 	 */
2469 	mss_now = tcp_current_mss(sk);
2470 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2471 				    icsk->icsk_mtup.search_low) >> 1);
2472 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2473 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2474 	/* When misfortune happens, we are reprobing actively,
2475 	 * and then reprobe timer has expired. We stick with current
2476 	 * probing process by not resetting search range to its orignal.
2477 	 */
2478 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2479 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2480 		/* Check whether enough time has elaplased for
2481 		 * another round of probing.
2482 		 */
2483 		tcp_mtu_check_reprobe(sk);
2484 		return -1;
2485 	}
2486 
2487 	/* Have enough data in the send queue to probe? */
2488 	if (tp->write_seq - tp->snd_nxt < size_needed)
2489 		return -1;
2490 
2491 	if (tp->snd_wnd < size_needed)
2492 		return -1;
2493 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2494 		return 0;
2495 
2496 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2497 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2498 		if (!tcp_packets_in_flight(tp))
2499 			return -1;
2500 		else
2501 			return 0;
2502 	}
2503 
2504 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2505 		return -1;
2506 
2507 	/* We're allowed to probe.  Build it now. */
2508 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2509 	if (!nskb)
2510 		return -1;
2511 
2512 	/* build the payload, and be prepared to abort if this fails. */
2513 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2514 		tcp_skb_tsorted_anchor_cleanup(nskb);
2515 		consume_skb(nskb);
2516 		return -1;
2517 	}
2518 	sk_wmem_queued_add(sk, nskb->truesize);
2519 	sk_mem_charge(sk, nskb->truesize);
2520 
2521 	skb = tcp_send_head(sk);
2522 	skb_copy_decrypted(nskb, skb);
2523 	mptcp_skb_ext_copy(nskb, skb);
2524 
2525 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2526 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2527 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2528 
2529 	tcp_insert_write_queue_before(nskb, skb, sk);
2530 	tcp_highest_sack_replace(sk, skb, nskb);
2531 
2532 	len = 0;
2533 	tcp_for_write_queue_from_safe(skb, next, sk) {
2534 		copy = min_t(int, skb->len, probe_size - len);
2535 
2536 		if (skb->len <= copy) {
2537 			tcp_eat_one_skb(sk, nskb, skb);
2538 		} else {
2539 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2540 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2541 			__pskb_trim_head(skb, copy);
2542 			tcp_set_skb_tso_segs(skb, mss_now);
2543 			TCP_SKB_CB(skb)->seq += copy;
2544 		}
2545 
2546 		len += copy;
2547 
2548 		if (len >= probe_size)
2549 			break;
2550 	}
2551 	tcp_init_tso_segs(nskb, nskb->len);
2552 
2553 	/* We're ready to send.  If this fails, the probe will
2554 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2555 	 */
2556 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2557 		/* Decrement cwnd here because we are sending
2558 		 * effectively two packets. */
2559 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2560 		tcp_event_new_data_sent(sk, nskb);
2561 
2562 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2563 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2564 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2565 
2566 		return 1;
2567 	}
2568 
2569 	return -1;
2570 }
2571 
2572 static bool tcp_pacing_check(struct sock *sk)
2573 {
2574 	struct tcp_sock *tp = tcp_sk(sk);
2575 
2576 	if (!tcp_needs_internal_pacing(sk))
2577 		return false;
2578 
2579 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2580 		return false;
2581 
2582 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2583 		hrtimer_start(&tp->pacing_timer,
2584 			      ns_to_ktime(tp->tcp_wstamp_ns),
2585 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2586 		sock_hold(sk);
2587 	}
2588 	return true;
2589 }
2590 
2591 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2592 {
2593 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2594 
2595 	/* No skb in the rtx queue. */
2596 	if (!node)
2597 		return true;
2598 
2599 	/* Only one skb in rtx queue. */
2600 	return !node->rb_left && !node->rb_right;
2601 }
2602 
2603 /* TCP Small Queues :
2604  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2605  * (These limits are doubled for retransmits)
2606  * This allows for :
2607  *  - better RTT estimation and ACK scheduling
2608  *  - faster recovery
2609  *  - high rates
2610  * Alas, some drivers / subsystems require a fair amount
2611  * of queued bytes to ensure line rate.
2612  * One example is wifi aggregation (802.11 AMPDU)
2613  */
2614 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2615 				  unsigned int factor)
2616 {
2617 	unsigned long limit;
2618 
2619 	limit = max_t(unsigned long,
2620 		      2 * skb->truesize,
2621 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2622 	limit = min_t(unsigned long, limit,
2623 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2624 	limit <<= factor;
2625 
2626 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2627 	    tcp_sk(sk)->tcp_tx_delay) {
2628 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2629 				  tcp_sk(sk)->tcp_tx_delay;
2630 
2631 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2632 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2633 		 * USEC_PER_SEC is approximated by 2^20.
2634 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2635 		 */
2636 		extra_bytes >>= (20 - 1);
2637 		limit += extra_bytes;
2638 	}
2639 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2640 		/* Always send skb if rtx queue is empty or has one skb.
2641 		 * No need to wait for TX completion to call us back,
2642 		 * after softirq/tasklet schedule.
2643 		 * This helps when TX completions are delayed too much.
2644 		 */
2645 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2646 			return false;
2647 
2648 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2649 		/* It is possible TX completion already happened
2650 		 * before we set TSQ_THROTTLED, so we must
2651 		 * test again the condition.
2652 		 */
2653 		smp_mb__after_atomic();
2654 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2655 			return true;
2656 	}
2657 	return false;
2658 }
2659 
2660 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2661 {
2662 	const u32 now = tcp_jiffies32;
2663 	enum tcp_chrono old = tp->chrono_type;
2664 
2665 	if (old > TCP_CHRONO_UNSPEC)
2666 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2667 	tp->chrono_start = now;
2668 	tp->chrono_type = new;
2669 }
2670 
2671 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2672 {
2673 	struct tcp_sock *tp = tcp_sk(sk);
2674 
2675 	/* If there are multiple conditions worthy of tracking in a
2676 	 * chronograph then the highest priority enum takes precedence
2677 	 * over the other conditions. So that if something "more interesting"
2678 	 * starts happening, stop the previous chrono and start a new one.
2679 	 */
2680 	if (type > tp->chrono_type)
2681 		tcp_chrono_set(tp, type);
2682 }
2683 
2684 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2685 {
2686 	struct tcp_sock *tp = tcp_sk(sk);
2687 
2688 
2689 	/* There are multiple conditions worthy of tracking in a
2690 	 * chronograph, so that the highest priority enum takes
2691 	 * precedence over the other conditions (see tcp_chrono_start).
2692 	 * If a condition stops, we only stop chrono tracking if
2693 	 * it's the "most interesting" or current chrono we are
2694 	 * tracking and starts busy chrono if we have pending data.
2695 	 */
2696 	if (tcp_rtx_and_write_queues_empty(sk))
2697 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2698 	else if (type == tp->chrono_type)
2699 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2700 }
2701 
2702 /* First skb in the write queue is smaller than ideal packet size.
2703  * Check if we can move payload from the second skb in the queue.
2704  */
2705 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2706 {
2707 	struct sk_buff *next_skb = skb->next;
2708 	unsigned int nlen;
2709 
2710 	if (tcp_skb_is_last(sk, skb))
2711 		return;
2712 
2713 	if (!tcp_skb_can_collapse(skb, next_skb))
2714 		return;
2715 
2716 	nlen = min_t(u32, amount, next_skb->len);
2717 	if (!nlen || !skb_shift(skb, next_skb, nlen))
2718 		return;
2719 
2720 	TCP_SKB_CB(skb)->end_seq += nlen;
2721 	TCP_SKB_CB(next_skb)->seq += nlen;
2722 
2723 	if (!next_skb->len) {
2724 		/* In case FIN is set, we need to update end_seq */
2725 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2726 
2727 		tcp_eat_one_skb(sk, skb, next_skb);
2728 	}
2729 }
2730 
2731 /* This routine writes packets to the network.  It advances the
2732  * send_head.  This happens as incoming acks open up the remote
2733  * window for us.
2734  *
2735  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2736  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2737  * account rare use of URG, this is not a big flaw.
2738  *
2739  * Send at most one packet when push_one > 0. Temporarily ignore
2740  * cwnd limit to force at most one packet out when push_one == 2.
2741 
2742  * Returns true, if no segments are in flight and we have queued segments,
2743  * but cannot send anything now because of SWS or another problem.
2744  */
2745 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2746 			   int push_one, gfp_t gfp)
2747 {
2748 	struct tcp_sock *tp = tcp_sk(sk);
2749 	struct sk_buff *skb;
2750 	unsigned int tso_segs, sent_pkts;
2751 	u32 cwnd_quota, max_segs;
2752 	int result;
2753 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2754 
2755 	sent_pkts = 0;
2756 
2757 	tcp_mstamp_refresh(tp);
2758 	if (!push_one) {
2759 		/* Do MTU probing. */
2760 		result = tcp_mtu_probe(sk);
2761 		if (!result) {
2762 			return false;
2763 		} else if (result > 0) {
2764 			sent_pkts = 1;
2765 		}
2766 	}
2767 
2768 	max_segs = tcp_tso_segs(sk, mss_now);
2769 	while ((skb = tcp_send_head(sk))) {
2770 		unsigned int limit;
2771 		int missing_bytes;
2772 
2773 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2774 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2775 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2776 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2777 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2778 			tcp_init_tso_segs(skb, mss_now);
2779 			goto repair; /* Skip network transmission */
2780 		}
2781 
2782 		if (tcp_pacing_check(sk))
2783 			break;
2784 
2785 		cwnd_quota = tcp_cwnd_test(tp);
2786 		if (!cwnd_quota) {
2787 			if (push_one == 2)
2788 				/* Force out a loss probe pkt. */
2789 				cwnd_quota = 1;
2790 			else
2791 				break;
2792 		}
2793 		cwnd_quota = min(cwnd_quota, max_segs);
2794 		missing_bytes = cwnd_quota * mss_now - skb->len;
2795 		if (missing_bytes > 0)
2796 			tcp_grow_skb(sk, skb, missing_bytes);
2797 
2798 		tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2799 
2800 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2801 			is_rwnd_limited = true;
2802 			break;
2803 		}
2804 
2805 		if (tso_segs == 1) {
2806 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2807 						     (tcp_skb_is_last(sk, skb) ?
2808 						      nonagle : TCP_NAGLE_PUSH))))
2809 				break;
2810 		} else {
2811 			if (!push_one &&
2812 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2813 						 &is_rwnd_limited, max_segs))
2814 				break;
2815 		}
2816 
2817 		limit = mss_now;
2818 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2819 			limit = tcp_mss_split_point(sk, skb, mss_now,
2820 						    cwnd_quota,
2821 						    nonagle);
2822 
2823 		if (skb->len > limit &&
2824 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2825 			break;
2826 
2827 		if (tcp_small_queue_check(sk, skb, 0))
2828 			break;
2829 
2830 		/* Argh, we hit an empty skb(), presumably a thread
2831 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2832 		 * We do not want to send a pure-ack packet and have
2833 		 * a strange looking rtx queue with empty packet(s).
2834 		 */
2835 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2836 			break;
2837 
2838 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2839 			break;
2840 
2841 repair:
2842 		/* Advance the send_head.  This one is sent out.
2843 		 * This call will increment packets_out.
2844 		 */
2845 		tcp_event_new_data_sent(sk, skb);
2846 
2847 		tcp_minshall_update(tp, mss_now, skb);
2848 		sent_pkts += tcp_skb_pcount(skb);
2849 
2850 		if (push_one)
2851 			break;
2852 	}
2853 
2854 	if (is_rwnd_limited)
2855 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2856 	else
2857 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2858 
2859 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2860 	if (likely(sent_pkts || is_cwnd_limited))
2861 		tcp_cwnd_validate(sk, is_cwnd_limited);
2862 
2863 	if (likely(sent_pkts)) {
2864 		if (tcp_in_cwnd_reduction(sk))
2865 			tp->prr_out += sent_pkts;
2866 
2867 		/* Send one loss probe per tail loss episode. */
2868 		if (push_one != 2)
2869 			tcp_schedule_loss_probe(sk, false);
2870 		return false;
2871 	}
2872 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2873 }
2874 
2875 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2876 {
2877 	struct inet_connection_sock *icsk = inet_csk(sk);
2878 	struct tcp_sock *tp = tcp_sk(sk);
2879 	u32 timeout, timeout_us, rto_delta_us;
2880 	int early_retrans;
2881 
2882 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2883 	 * finishes.
2884 	 */
2885 	if (rcu_access_pointer(tp->fastopen_rsk))
2886 		return false;
2887 
2888 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2889 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2890 	 * not in loss recovery, that are either limited by cwnd or application.
2891 	 */
2892 	if ((early_retrans != 3 && early_retrans != 4) ||
2893 	    !tp->packets_out || !tcp_is_sack(tp) ||
2894 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2895 	     icsk->icsk_ca_state != TCP_CA_CWR))
2896 		return false;
2897 
2898 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2899 	 * for delayed ack when there's one outstanding packet. If no RTT
2900 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2901 	 */
2902 	if (tp->srtt_us) {
2903 		timeout_us = tp->srtt_us >> 2;
2904 		if (tp->packets_out == 1)
2905 			timeout_us += tcp_rto_min_us(sk);
2906 		else
2907 			timeout_us += TCP_TIMEOUT_MIN_US;
2908 		timeout = usecs_to_jiffies(timeout_us);
2909 	} else {
2910 		timeout = TCP_TIMEOUT_INIT;
2911 	}
2912 
2913 	/* If the RTO formula yields an earlier time, then use that time. */
2914 	rto_delta_us = advancing_rto ?
2915 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2916 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2917 	if (rto_delta_us > 0)
2918 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2919 
2920 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true);
2921 	return true;
2922 }
2923 
2924 /* Thanks to skb fast clones, we can detect if a prior transmit of
2925  * a packet is still in a qdisc or driver queue.
2926  * In this case, there is very little point doing a retransmit !
2927  */
2928 static bool skb_still_in_host_queue(struct sock *sk,
2929 				    const struct sk_buff *skb)
2930 {
2931 	if (unlikely(skb_fclone_busy(sk, skb))) {
2932 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2933 		smp_mb__after_atomic();
2934 		if (skb_fclone_busy(sk, skb)) {
2935 			NET_INC_STATS(sock_net(sk),
2936 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2937 			return true;
2938 		}
2939 	}
2940 	return false;
2941 }
2942 
2943 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2944  * retransmit the last segment.
2945  */
2946 void tcp_send_loss_probe(struct sock *sk)
2947 {
2948 	struct tcp_sock *tp = tcp_sk(sk);
2949 	struct sk_buff *skb;
2950 	int pcount;
2951 	int mss = tcp_current_mss(sk);
2952 
2953 	/* At most one outstanding TLP */
2954 	if (tp->tlp_high_seq)
2955 		goto rearm_timer;
2956 
2957 	tp->tlp_retrans = 0;
2958 	skb = tcp_send_head(sk);
2959 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2960 		pcount = tp->packets_out;
2961 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2962 		if (tp->packets_out > pcount)
2963 			goto probe_sent;
2964 		goto rearm_timer;
2965 	}
2966 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2967 	if (unlikely(!skb)) {
2968 		tcp_warn_once(sk, tp->packets_out, "invalid inflight: ");
2969 		smp_store_release(&inet_csk(sk)->icsk_pending, 0);
2970 		return;
2971 	}
2972 
2973 	if (skb_still_in_host_queue(sk, skb))
2974 		goto rearm_timer;
2975 
2976 	pcount = tcp_skb_pcount(skb);
2977 	if (WARN_ON(!pcount))
2978 		goto rearm_timer;
2979 
2980 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2981 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2982 					  (pcount - 1) * mss, mss,
2983 					  GFP_ATOMIC)))
2984 			goto rearm_timer;
2985 		skb = skb_rb_next(skb);
2986 	}
2987 
2988 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2989 		goto rearm_timer;
2990 
2991 	if (__tcp_retransmit_skb(sk, skb, 1))
2992 		goto rearm_timer;
2993 
2994 	tp->tlp_retrans = 1;
2995 
2996 probe_sent:
2997 	/* Record snd_nxt for loss detection. */
2998 	tp->tlp_high_seq = tp->snd_nxt;
2999 
3000 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
3001 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
3002 	smp_store_release(&inet_csk(sk)->icsk_pending, 0);
3003 rearm_timer:
3004 	tcp_rearm_rto(sk);
3005 }
3006 
3007 /* Push out any pending frames which were held back due to
3008  * TCP_CORK or attempt at coalescing tiny packets.
3009  * The socket must be locked by the caller.
3010  */
3011 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3012 			       int nonagle)
3013 {
3014 	/* If we are closed, the bytes will have to remain here.
3015 	 * In time closedown will finish, we empty the write queue and
3016 	 * all will be happy.
3017 	 */
3018 	if (unlikely(sk->sk_state == TCP_CLOSE))
3019 		return;
3020 
3021 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3022 			   sk_gfp_mask(sk, GFP_ATOMIC)))
3023 		tcp_check_probe_timer(sk);
3024 }
3025 
3026 /* Send _single_ skb sitting at the send head. This function requires
3027  * true push pending frames to setup probe timer etc.
3028  */
3029 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3030 {
3031 	struct sk_buff *skb = tcp_send_head(sk);
3032 
3033 	BUG_ON(!skb || skb->len < mss_now);
3034 
3035 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3036 }
3037 
3038 /* This function returns the amount that we can raise the
3039  * usable window based on the following constraints
3040  *
3041  * 1. The window can never be shrunk once it is offered (RFC 793)
3042  * 2. We limit memory per socket
3043  *
3044  * RFC 1122:
3045  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3046  *  RECV.NEXT + RCV.WIN fixed until:
3047  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3048  *
3049  * i.e. don't raise the right edge of the window until you can raise
3050  * it at least MSS bytes.
3051  *
3052  * Unfortunately, the recommended algorithm breaks header prediction,
3053  * since header prediction assumes th->window stays fixed.
3054  *
3055  * Strictly speaking, keeping th->window fixed violates the receiver
3056  * side SWS prevention criteria. The problem is that under this rule
3057  * a stream of single byte packets will cause the right side of the
3058  * window to always advance by a single byte.
3059  *
3060  * Of course, if the sender implements sender side SWS prevention
3061  * then this will not be a problem.
3062  *
3063  * BSD seems to make the following compromise:
3064  *
3065  *	If the free space is less than the 1/4 of the maximum
3066  *	space available and the free space is less than 1/2 mss,
3067  *	then set the window to 0.
3068  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3069  *	Otherwise, just prevent the window from shrinking
3070  *	and from being larger than the largest representable value.
3071  *
3072  * This prevents incremental opening of the window in the regime
3073  * where TCP is limited by the speed of the reader side taking
3074  * data out of the TCP receive queue. It does nothing about
3075  * those cases where the window is constrained on the sender side
3076  * because the pipeline is full.
3077  *
3078  * BSD also seems to "accidentally" limit itself to windows that are a
3079  * multiple of MSS, at least until the free space gets quite small.
3080  * This would appear to be a side effect of the mbuf implementation.
3081  * Combining these two algorithms results in the observed behavior
3082  * of having a fixed window size at almost all times.
3083  *
3084  * Below we obtain similar behavior by forcing the offered window to
3085  * a multiple of the mss when it is feasible to do so.
3086  *
3087  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3088  * Regular options like TIMESTAMP are taken into account.
3089  */
3090 u32 __tcp_select_window(struct sock *sk)
3091 {
3092 	struct inet_connection_sock *icsk = inet_csk(sk);
3093 	struct tcp_sock *tp = tcp_sk(sk);
3094 	struct net *net = sock_net(sk);
3095 	/* MSS for the peer's data.  Previous versions used mss_clamp
3096 	 * here.  I don't know if the value based on our guesses
3097 	 * of peer's MSS is better for the performance.  It's more correct
3098 	 * but may be worse for the performance because of rcv_mss
3099 	 * fluctuations.  --SAW  1998/11/1
3100 	 */
3101 	int mss = icsk->icsk_ack.rcv_mss;
3102 	int free_space = tcp_space(sk);
3103 	int allowed_space = tcp_full_space(sk);
3104 	int full_space, window;
3105 
3106 	if (sk_is_mptcp(sk))
3107 		mptcp_space(sk, &free_space, &allowed_space);
3108 
3109 	full_space = min_t(int, tp->window_clamp, allowed_space);
3110 
3111 	if (unlikely(mss > full_space)) {
3112 		mss = full_space;
3113 		if (mss <= 0)
3114 			return 0;
3115 	}
3116 
3117 	/* Only allow window shrink if the sysctl is enabled and we have
3118 	 * a non-zero scaling factor in effect.
3119 	 */
3120 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3121 		goto shrink_window_allowed;
3122 
3123 	/* do not allow window to shrink */
3124 
3125 	if (free_space < (full_space >> 1)) {
3126 		icsk->icsk_ack.quick = 0;
3127 
3128 		if (tcp_under_memory_pressure(sk))
3129 			tcp_adjust_rcv_ssthresh(sk);
3130 
3131 		/* free_space might become our new window, make sure we don't
3132 		 * increase it due to wscale.
3133 		 */
3134 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3135 
3136 		/* if free space is less than mss estimate, or is below 1/16th
3137 		 * of the maximum allowed, try to move to zero-window, else
3138 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3139 		 * new incoming data is dropped due to memory limits.
3140 		 * With large window, mss test triggers way too late in order
3141 		 * to announce zero window in time before rmem limit kicks in.
3142 		 */
3143 		if (free_space < (allowed_space >> 4) || free_space < mss)
3144 			return 0;
3145 	}
3146 
3147 	if (free_space > tp->rcv_ssthresh)
3148 		free_space = tp->rcv_ssthresh;
3149 
3150 	/* Don't do rounding if we are using window scaling, since the
3151 	 * scaled window will not line up with the MSS boundary anyway.
3152 	 */
3153 	if (tp->rx_opt.rcv_wscale) {
3154 		window = free_space;
3155 
3156 		/* Advertise enough space so that it won't get scaled away.
3157 		 * Import case: prevent zero window announcement if
3158 		 * 1<<rcv_wscale > mss.
3159 		 */
3160 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3161 	} else {
3162 		window = tp->rcv_wnd;
3163 		/* Get the largest window that is a nice multiple of mss.
3164 		 * Window clamp already applied above.
3165 		 * If our current window offering is within 1 mss of the
3166 		 * free space we just keep it. This prevents the divide
3167 		 * and multiply from happening most of the time.
3168 		 * We also don't do any window rounding when the free space
3169 		 * is too small.
3170 		 */
3171 		if (window <= free_space - mss || window > free_space)
3172 			window = rounddown(free_space, mss);
3173 		else if (mss == full_space &&
3174 			 free_space > window + (full_space >> 1))
3175 			window = free_space;
3176 	}
3177 
3178 	return window;
3179 
3180 shrink_window_allowed:
3181 	/* new window should always be an exact multiple of scaling factor */
3182 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3183 
3184 	if (free_space < (full_space >> 1)) {
3185 		icsk->icsk_ack.quick = 0;
3186 
3187 		if (tcp_under_memory_pressure(sk))
3188 			tcp_adjust_rcv_ssthresh(sk);
3189 
3190 		/* if free space is too low, return a zero window */
3191 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3192 			free_space < (1 << tp->rx_opt.rcv_wscale))
3193 			return 0;
3194 	}
3195 
3196 	if (free_space > tp->rcv_ssthresh) {
3197 		free_space = tp->rcv_ssthresh;
3198 		/* new window should always be an exact multiple of scaling factor
3199 		 *
3200 		 * For this case, we ALIGN "up" (increase free_space) because
3201 		 * we know free_space is not zero here, it has been reduced from
3202 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3203 		 * (unlike sk_rcvbuf).
3204 		 */
3205 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3206 	}
3207 
3208 	return free_space;
3209 }
3210 
3211 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3212 			     const struct sk_buff *next_skb)
3213 {
3214 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3215 		const struct skb_shared_info *next_shinfo =
3216 			skb_shinfo(next_skb);
3217 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3218 
3219 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3220 		shinfo->tskey = next_shinfo->tskey;
3221 		TCP_SKB_CB(skb)->txstamp_ack |=
3222 			TCP_SKB_CB(next_skb)->txstamp_ack;
3223 	}
3224 }
3225 
3226 /* Collapses two adjacent SKB's during retransmission. */
3227 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3228 {
3229 	struct tcp_sock *tp = tcp_sk(sk);
3230 	struct sk_buff *next_skb = skb_rb_next(skb);
3231 	int next_skb_size;
3232 
3233 	next_skb_size = next_skb->len;
3234 
3235 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3236 
3237 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3238 		return false;
3239 
3240 	tcp_highest_sack_replace(sk, next_skb, skb);
3241 
3242 	/* Update sequence range on original skb. */
3243 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3244 
3245 	/* Merge over control information. This moves PSH/FIN etc. over */
3246 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3247 
3248 	/* All done, get rid of second SKB and account for it so
3249 	 * packet counting does not break.
3250 	 */
3251 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3252 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3253 
3254 	/* changed transmit queue under us so clear hints */
3255 	tcp_clear_retrans_hints_partial(tp);
3256 	if (next_skb == tp->retransmit_skb_hint)
3257 		tp->retransmit_skb_hint = skb;
3258 
3259 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3260 
3261 	tcp_skb_collapse_tstamp(skb, next_skb);
3262 
3263 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3264 	return true;
3265 }
3266 
3267 /* Check if coalescing SKBs is legal. */
3268 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3269 {
3270 	if (tcp_skb_pcount(skb) > 1)
3271 		return false;
3272 	if (skb_cloned(skb))
3273 		return false;
3274 	if (!skb_frags_readable(skb))
3275 		return false;
3276 	/* Some heuristics for collapsing over SACK'd could be invented */
3277 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3278 		return false;
3279 
3280 	return true;
3281 }
3282 
3283 /* Collapse packets in the retransmit queue to make to create
3284  * less packets on the wire. This is only done on retransmission.
3285  */
3286 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3287 				     int space)
3288 {
3289 	struct tcp_sock *tp = tcp_sk(sk);
3290 	struct sk_buff *skb = to, *tmp;
3291 	bool first = true;
3292 
3293 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3294 		return;
3295 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3296 		return;
3297 
3298 	skb_rbtree_walk_from_safe(skb, tmp) {
3299 		if (!tcp_can_collapse(sk, skb))
3300 			break;
3301 
3302 		if (!tcp_skb_can_collapse(to, skb))
3303 			break;
3304 
3305 		space -= skb->len;
3306 
3307 		if (first) {
3308 			first = false;
3309 			continue;
3310 		}
3311 
3312 		if (space < 0)
3313 			break;
3314 
3315 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3316 			break;
3317 
3318 		if (!tcp_collapse_retrans(sk, to))
3319 			break;
3320 	}
3321 }
3322 
3323 /* This retransmits one SKB.  Policy decisions and retransmit queue
3324  * state updates are done by the caller.  Returns non-zero if an
3325  * error occurred which prevented the send.
3326  */
3327 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3328 {
3329 	struct inet_connection_sock *icsk = inet_csk(sk);
3330 	struct tcp_sock *tp = tcp_sk(sk);
3331 	unsigned int cur_mss;
3332 	int diff, len, err;
3333 	int avail_wnd;
3334 
3335 	/* Inconclusive MTU probe */
3336 	if (icsk->icsk_mtup.probe_size)
3337 		icsk->icsk_mtup.probe_size = 0;
3338 
3339 	if (skb_still_in_host_queue(sk, skb))
3340 		return -EBUSY;
3341 
3342 start:
3343 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3344 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3345 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3346 			TCP_SKB_CB(skb)->seq++;
3347 			goto start;
3348 		}
3349 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3350 			WARN_ON_ONCE(1);
3351 			return -EINVAL;
3352 		}
3353 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3354 			return -ENOMEM;
3355 	}
3356 
3357 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3358 		return -EHOSTUNREACH; /* Routing failure or similar. */
3359 
3360 	cur_mss = tcp_current_mss(sk);
3361 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3362 
3363 	/* If receiver has shrunk his window, and skb is out of
3364 	 * new window, do not retransmit it. The exception is the
3365 	 * case, when window is shrunk to zero. In this case
3366 	 * our retransmit of one segment serves as a zero window probe.
3367 	 */
3368 	if (avail_wnd <= 0) {
3369 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3370 			return -EAGAIN;
3371 		avail_wnd = cur_mss;
3372 	}
3373 
3374 	len = cur_mss * segs;
3375 	if (len > avail_wnd) {
3376 		len = rounddown(avail_wnd, cur_mss);
3377 		if (!len)
3378 			len = avail_wnd;
3379 	}
3380 	if (skb->len > len) {
3381 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3382 				 cur_mss, GFP_ATOMIC))
3383 			return -ENOMEM; /* We'll try again later. */
3384 	} else {
3385 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3386 			return -ENOMEM;
3387 
3388 		diff = tcp_skb_pcount(skb);
3389 		tcp_set_skb_tso_segs(skb, cur_mss);
3390 		diff -= tcp_skb_pcount(skb);
3391 		if (diff)
3392 			tcp_adjust_pcount(sk, skb, diff);
3393 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3394 		if (skb->len < avail_wnd)
3395 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3396 	}
3397 
3398 	/* RFC3168, section 6.1.1.1. ECN fallback */
3399 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3400 		tcp_ecn_clear_syn(sk, skb);
3401 
3402 	/* Update global and local TCP statistics. */
3403 	segs = tcp_skb_pcount(skb);
3404 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3405 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3406 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3407 	tp->total_retrans += segs;
3408 	tp->bytes_retrans += skb->len;
3409 
3410 	/* make sure skb->data is aligned on arches that require it
3411 	 * and check if ack-trimming & collapsing extended the headroom
3412 	 * beyond what csum_start can cover.
3413 	 */
3414 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3415 		     skb_headroom(skb) >= 0xFFFF)) {
3416 		struct sk_buff *nskb;
3417 
3418 		tcp_skb_tsorted_save(skb) {
3419 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3420 			if (nskb) {
3421 				nskb->dev = NULL;
3422 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3423 			} else {
3424 				err = -ENOBUFS;
3425 			}
3426 		} tcp_skb_tsorted_restore(skb);
3427 
3428 		if (!err) {
3429 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3430 			tcp_rate_skb_sent(sk, skb);
3431 		}
3432 	} else {
3433 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3434 	}
3435 
3436 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3437 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3438 				  TCP_SKB_CB(skb)->seq, segs, err);
3439 
3440 	if (likely(!err)) {
3441 		trace_tcp_retransmit_skb(sk, skb);
3442 	} else if (err != -EBUSY) {
3443 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3444 	}
3445 
3446 	/* To avoid taking spuriously low RTT samples based on a timestamp
3447 	 * for a transmit that never happened, always mark EVER_RETRANS
3448 	 */
3449 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3450 
3451 	return err;
3452 }
3453 
3454 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3455 {
3456 	struct tcp_sock *tp = tcp_sk(sk);
3457 	int err = __tcp_retransmit_skb(sk, skb, segs);
3458 
3459 	if (err == 0) {
3460 #if FASTRETRANS_DEBUG > 0
3461 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3462 			net_dbg_ratelimited("retrans_out leaked\n");
3463 		}
3464 #endif
3465 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3466 		tp->retrans_out += tcp_skb_pcount(skb);
3467 	}
3468 
3469 	/* Save stamp of the first (attempted) retransmit. */
3470 	if (!tp->retrans_stamp)
3471 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3472 
3473 	if (tp->undo_retrans < 0)
3474 		tp->undo_retrans = 0;
3475 	tp->undo_retrans += tcp_skb_pcount(skb);
3476 	return err;
3477 }
3478 
3479 /* This gets called after a retransmit timeout, and the initially
3480  * retransmitted data is acknowledged.  It tries to continue
3481  * resending the rest of the retransmit queue, until either
3482  * we've sent it all or the congestion window limit is reached.
3483  */
3484 void tcp_xmit_retransmit_queue(struct sock *sk)
3485 {
3486 	const struct inet_connection_sock *icsk = inet_csk(sk);
3487 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3488 	struct tcp_sock *tp = tcp_sk(sk);
3489 	bool rearm_timer = false;
3490 	u32 max_segs;
3491 	int mib_idx;
3492 
3493 	if (!tp->packets_out)
3494 		return;
3495 
3496 	rtx_head = tcp_rtx_queue_head(sk);
3497 	skb = tp->retransmit_skb_hint ?: rtx_head;
3498 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3499 	skb_rbtree_walk_from(skb) {
3500 		__u8 sacked;
3501 		int segs;
3502 
3503 		if (tcp_pacing_check(sk))
3504 			break;
3505 
3506 		/* we could do better than to assign each time */
3507 		if (!hole)
3508 			tp->retransmit_skb_hint = skb;
3509 
3510 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3511 		if (segs <= 0)
3512 			break;
3513 		sacked = TCP_SKB_CB(skb)->sacked;
3514 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3515 		 * we need to make sure not sending too bigs TSO packets
3516 		 */
3517 		segs = min_t(int, segs, max_segs);
3518 
3519 		if (tp->retrans_out >= tp->lost_out) {
3520 			break;
3521 		} else if (!(sacked & TCPCB_LOST)) {
3522 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3523 				hole = skb;
3524 			continue;
3525 
3526 		} else {
3527 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3528 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3529 			else
3530 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3531 		}
3532 
3533 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3534 			continue;
3535 
3536 		if (tcp_small_queue_check(sk, skb, 1))
3537 			break;
3538 
3539 		if (tcp_retransmit_skb(sk, skb, segs))
3540 			break;
3541 
3542 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3543 
3544 		if (tcp_in_cwnd_reduction(sk))
3545 			tp->prr_out += tcp_skb_pcount(skb);
3546 
3547 		if (skb == rtx_head &&
3548 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3549 			rearm_timer = true;
3550 
3551 	}
3552 	if (rearm_timer)
3553 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3554 				     inet_csk(sk)->icsk_rto, true);
3555 }
3556 
3557 /* We allow to exceed memory limits for FIN packets to expedite
3558  * connection tear down and (memory) recovery.
3559  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3560  * or even be forced to close flow without any FIN.
3561  * In general, we want to allow one skb per socket to avoid hangs
3562  * with edge trigger epoll()
3563  */
3564 void sk_forced_mem_schedule(struct sock *sk, int size)
3565 {
3566 	int delta, amt;
3567 
3568 	delta = size - sk->sk_forward_alloc;
3569 	if (delta <= 0)
3570 		return;
3571 	amt = sk_mem_pages(delta);
3572 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3573 	sk_memory_allocated_add(sk, amt);
3574 
3575 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3576 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3577 					gfp_memcg_charge() | __GFP_NOFAIL);
3578 }
3579 
3580 /* Send a FIN. The caller locks the socket for us.
3581  * We should try to send a FIN packet really hard, but eventually give up.
3582  */
3583 void tcp_send_fin(struct sock *sk)
3584 {
3585 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3586 	struct tcp_sock *tp = tcp_sk(sk);
3587 
3588 	/* Optimization, tack on the FIN if we have one skb in write queue and
3589 	 * this skb was not yet sent, or we are under memory pressure.
3590 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3591 	 * as TCP stack thinks it has already been transmitted.
3592 	 */
3593 	tskb = tail;
3594 	if (!tskb && tcp_under_memory_pressure(sk))
3595 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3596 
3597 	if (tskb) {
3598 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3599 		TCP_SKB_CB(tskb)->end_seq++;
3600 		tp->write_seq++;
3601 		if (!tail) {
3602 			/* This means tskb was already sent.
3603 			 * Pretend we included the FIN on previous transmit.
3604 			 * We need to set tp->snd_nxt to the value it would have
3605 			 * if FIN had been sent. This is because retransmit path
3606 			 * does not change tp->snd_nxt.
3607 			 */
3608 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3609 			return;
3610 		}
3611 	} else {
3612 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3613 				       sk_gfp_mask(sk, GFP_ATOMIC |
3614 						       __GFP_NOWARN));
3615 		if (unlikely(!skb))
3616 			return;
3617 
3618 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3619 		skb_reserve(skb, MAX_TCP_HEADER);
3620 		sk_forced_mem_schedule(sk, skb->truesize);
3621 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3622 		tcp_init_nondata_skb(skb, tp->write_seq,
3623 				     TCPHDR_ACK | TCPHDR_FIN);
3624 		tcp_queue_skb(sk, skb);
3625 	}
3626 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3627 }
3628 
3629 /* We get here when a process closes a file descriptor (either due to
3630  * an explicit close() or as a byproduct of exit()'ing) and there
3631  * was unread data in the receive queue.  This behavior is recommended
3632  * by RFC 2525, section 2.17.  -DaveM
3633  */
3634 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3635 			   enum sk_rst_reason reason)
3636 {
3637 	struct sk_buff *skb;
3638 
3639 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3640 
3641 	/* NOTE: No TCP options attached and we never retransmit this. */
3642 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3643 	if (!skb) {
3644 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3645 		return;
3646 	}
3647 
3648 	/* Reserve space for headers and prepare control bits. */
3649 	skb_reserve(skb, MAX_TCP_HEADER);
3650 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3651 			     TCPHDR_ACK | TCPHDR_RST);
3652 	tcp_mstamp_refresh(tcp_sk(sk));
3653 	/* Send it off. */
3654 	if (tcp_transmit_skb(sk, skb, 0, priority))
3655 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3656 
3657 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3658 	 * skb here is different to the troublesome skb, so use NULL
3659 	 */
3660 	trace_tcp_send_reset(sk, NULL, reason);
3661 }
3662 
3663 /* Send a crossed SYN-ACK during socket establishment.
3664  * WARNING: This routine must only be called when we have already sent
3665  * a SYN packet that crossed the incoming SYN that caused this routine
3666  * to get called. If this assumption fails then the initial rcv_wnd
3667  * and rcv_wscale values will not be correct.
3668  */
3669 int tcp_send_synack(struct sock *sk)
3670 {
3671 	struct sk_buff *skb;
3672 
3673 	skb = tcp_rtx_queue_head(sk);
3674 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3675 		pr_err("%s: wrong queue state\n", __func__);
3676 		return -EFAULT;
3677 	}
3678 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3679 		if (skb_cloned(skb)) {
3680 			struct sk_buff *nskb;
3681 
3682 			tcp_skb_tsorted_save(skb) {
3683 				nskb = skb_copy(skb, GFP_ATOMIC);
3684 			} tcp_skb_tsorted_restore(skb);
3685 			if (!nskb)
3686 				return -ENOMEM;
3687 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3688 			tcp_highest_sack_replace(sk, skb, nskb);
3689 			tcp_rtx_queue_unlink_and_free(skb, sk);
3690 			__skb_header_release(nskb);
3691 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3692 			sk_wmem_queued_add(sk, nskb->truesize);
3693 			sk_mem_charge(sk, nskb->truesize);
3694 			skb = nskb;
3695 		}
3696 
3697 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3698 		tcp_ecn_send_synack(sk, skb);
3699 	}
3700 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3701 }
3702 
3703 /**
3704  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3705  * @sk: listener socket
3706  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3707  *       should not use it again.
3708  * @req: request_sock pointer
3709  * @foc: cookie for tcp fast open
3710  * @synack_type: Type of synack to prepare
3711  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3712  */
3713 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3714 				struct request_sock *req,
3715 				struct tcp_fastopen_cookie *foc,
3716 				enum tcp_synack_type synack_type,
3717 				struct sk_buff *syn_skb)
3718 {
3719 	struct inet_request_sock *ireq = inet_rsk(req);
3720 	const struct tcp_sock *tp = tcp_sk(sk);
3721 	struct tcp_out_options opts;
3722 	struct tcp_key key = {};
3723 	struct sk_buff *skb;
3724 	int tcp_header_size;
3725 	struct tcphdr *th;
3726 	int mss;
3727 	u64 now;
3728 
3729 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3730 	if (unlikely(!skb)) {
3731 		dst_release(dst);
3732 		return NULL;
3733 	}
3734 	/* Reserve space for headers. */
3735 	skb_reserve(skb, MAX_TCP_HEADER);
3736 
3737 	switch (synack_type) {
3738 	case TCP_SYNACK_NORMAL:
3739 		skb_set_owner_edemux(skb, req_to_sk(req));
3740 		break;
3741 	case TCP_SYNACK_COOKIE:
3742 		/* Under synflood, we do not attach skb to a socket,
3743 		 * to avoid false sharing.
3744 		 */
3745 		break;
3746 	case TCP_SYNACK_FASTOPEN:
3747 		/* sk is a const pointer, because we want to express multiple
3748 		 * cpu might call us concurrently.
3749 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3750 		 */
3751 		skb_set_owner_w(skb, (struct sock *)sk);
3752 		break;
3753 	}
3754 	skb_dst_set(skb, dst);
3755 
3756 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3757 
3758 	memset(&opts, 0, sizeof(opts));
3759 	now = tcp_clock_ns();
3760 #ifdef CONFIG_SYN_COOKIES
3761 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3762 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3763 				      SKB_CLOCK_MONOTONIC);
3764 	else
3765 #endif
3766 	{
3767 		skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3768 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3769 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3770 	}
3771 
3772 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3773 	rcu_read_lock();
3774 #endif
3775 	if (tcp_rsk_used_ao(req)) {
3776 #ifdef CONFIG_TCP_AO
3777 		struct tcp_ao_key *ao_key = NULL;
3778 		u8 keyid = tcp_rsk(req)->ao_keyid;
3779 		u8 rnext = tcp_rsk(req)->ao_rcv_next;
3780 
3781 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3782 							    keyid, -1);
3783 		/* If there is no matching key - avoid sending anything,
3784 		 * especially usigned segments. It could try harder and lookup
3785 		 * for another peer-matching key, but the peer has requested
3786 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3787 		 */
3788 		if (unlikely(!ao_key)) {
3789 			trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3790 			rcu_read_unlock();
3791 			kfree_skb(skb);
3792 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3793 					     keyid);
3794 			return NULL;
3795 		}
3796 		key.ao_key = ao_key;
3797 		key.type = TCP_KEY_AO;
3798 #endif
3799 	} else {
3800 #ifdef CONFIG_TCP_MD5SIG
3801 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3802 					req_to_sk(req));
3803 		if (key.md5_key)
3804 			key.type = TCP_KEY_MD5;
3805 #endif
3806 	}
3807 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3808 	/* bpf program will be interested in the tcp_flags */
3809 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3810 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3811 					     &key, foc, synack_type, syn_skb)
3812 					+ sizeof(*th);
3813 
3814 	skb_push(skb, tcp_header_size);
3815 	skb_reset_transport_header(skb);
3816 
3817 	th = (struct tcphdr *)skb->data;
3818 	memset(th, 0, sizeof(struct tcphdr));
3819 	th->syn = 1;
3820 	th->ack = 1;
3821 	tcp_ecn_make_synack(req, th);
3822 	th->source = htons(ireq->ir_num);
3823 	th->dest = ireq->ir_rmt_port;
3824 	skb->mark = ireq->ir_mark;
3825 	skb->ip_summed = CHECKSUM_PARTIAL;
3826 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3827 	/* XXX data is queued and acked as is. No buffer/window check */
3828 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3829 
3830 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3831 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3832 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3833 	th->doff = (tcp_header_size >> 2);
3834 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3835 
3836 	/* Okay, we have all we need - do the md5 hash if needed */
3837 	if (tcp_key_is_md5(&key)) {
3838 #ifdef CONFIG_TCP_MD5SIG
3839 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3840 					key.md5_key, req_to_sk(req), skb);
3841 #endif
3842 	} else if (tcp_key_is_ao(&key)) {
3843 #ifdef CONFIG_TCP_AO
3844 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3845 					key.ao_key, req, skb,
3846 					opts.hash_location - (u8 *)th, 0);
3847 #endif
3848 	}
3849 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3850 	rcu_read_unlock();
3851 #endif
3852 
3853 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3854 				synack_type, &opts);
3855 
3856 	skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3857 	tcp_add_tx_delay(skb, tp);
3858 
3859 	return skb;
3860 }
3861 EXPORT_IPV6_MOD(tcp_make_synack);
3862 
3863 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3864 {
3865 	struct inet_connection_sock *icsk = inet_csk(sk);
3866 	const struct tcp_congestion_ops *ca;
3867 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3868 
3869 	if (ca_key == TCP_CA_UNSPEC)
3870 		return;
3871 
3872 	rcu_read_lock();
3873 	ca = tcp_ca_find_key(ca_key);
3874 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3875 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3876 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3877 		icsk->icsk_ca_ops = ca;
3878 	}
3879 	rcu_read_unlock();
3880 }
3881 
3882 /* Do all connect socket setups that can be done AF independent. */
3883 static void tcp_connect_init(struct sock *sk)
3884 {
3885 	const struct dst_entry *dst = __sk_dst_get(sk);
3886 	struct tcp_sock *tp = tcp_sk(sk);
3887 	__u8 rcv_wscale;
3888 	u32 rcv_wnd;
3889 
3890 	/* We'll fix this up when we get a response from the other end.
3891 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3892 	 */
3893 	tp->tcp_header_len = sizeof(struct tcphdr);
3894 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3895 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3896 
3897 	tcp_ao_connect_init(sk);
3898 
3899 	/* If user gave his TCP_MAXSEG, record it to clamp */
3900 	if (tp->rx_opt.user_mss)
3901 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3902 	tp->max_window = 0;
3903 	tcp_mtup_init(sk);
3904 	tcp_sync_mss(sk, dst_mtu(dst));
3905 
3906 	tcp_ca_dst_init(sk, dst);
3907 
3908 	if (!tp->window_clamp)
3909 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3910 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3911 
3912 	tcp_initialize_rcv_mss(sk);
3913 
3914 	/* limit the window selection if the user enforce a smaller rx buffer */
3915 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3916 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3917 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3918 
3919 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3920 	if (rcv_wnd == 0)
3921 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3922 
3923 	tcp_select_initial_window(sk, tcp_full_space(sk),
3924 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3925 				  &tp->rcv_wnd,
3926 				  &tp->window_clamp,
3927 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3928 				  &rcv_wscale,
3929 				  rcv_wnd);
3930 
3931 	tp->rx_opt.rcv_wscale = rcv_wscale;
3932 	tp->rcv_ssthresh = tp->rcv_wnd;
3933 
3934 	WRITE_ONCE(sk->sk_err, 0);
3935 	sock_reset_flag(sk, SOCK_DONE);
3936 	tp->snd_wnd = 0;
3937 	tcp_init_wl(tp, 0);
3938 	tcp_write_queue_purge(sk);
3939 	tp->snd_una = tp->write_seq;
3940 	tp->snd_sml = tp->write_seq;
3941 	tp->snd_up = tp->write_seq;
3942 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3943 
3944 	if (likely(!tp->repair))
3945 		tp->rcv_nxt = 0;
3946 	else
3947 		tp->rcv_tstamp = tcp_jiffies32;
3948 	tp->rcv_wup = tp->rcv_nxt;
3949 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3950 
3951 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3952 	inet_csk(sk)->icsk_retransmits = 0;
3953 	tcp_clear_retrans(tp);
3954 }
3955 
3956 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3957 {
3958 	struct tcp_sock *tp = tcp_sk(sk);
3959 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3960 
3961 	tcb->end_seq += skb->len;
3962 	__skb_header_release(skb);
3963 	sk_wmem_queued_add(sk, skb->truesize);
3964 	sk_mem_charge(sk, skb->truesize);
3965 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3966 	tp->packets_out += tcp_skb_pcount(skb);
3967 }
3968 
3969 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3970  * queue a data-only packet after the regular SYN, such that regular SYNs
3971  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3972  * only the SYN sequence, the data are retransmitted in the first ACK.
3973  * If cookie is not cached or other error occurs, falls back to send a
3974  * regular SYN with Fast Open cookie request option.
3975  */
3976 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3977 {
3978 	struct inet_connection_sock *icsk = inet_csk(sk);
3979 	struct tcp_sock *tp = tcp_sk(sk);
3980 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3981 	struct page_frag *pfrag = sk_page_frag(sk);
3982 	struct sk_buff *syn_data;
3983 	int space, err = 0;
3984 
3985 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3986 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3987 		goto fallback;
3988 
3989 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3990 	 * user-MSS. Reserve maximum option space for middleboxes that add
3991 	 * private TCP options. The cost is reduced data space in SYN :(
3992 	 */
3993 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3994 	/* Sync mss_cache after updating the mss_clamp */
3995 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3996 
3997 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3998 		MAX_TCP_OPTION_SPACE;
3999 
4000 	space = min_t(size_t, space, fo->size);
4001 
4002 	if (space &&
4003 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
4004 				  pfrag, sk->sk_allocation))
4005 		goto fallback;
4006 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
4007 	if (!syn_data)
4008 		goto fallback;
4009 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4010 	if (space) {
4011 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
4012 		space = tcp_wmem_schedule(sk, space);
4013 	}
4014 	if (space) {
4015 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
4016 					    space, &fo->data->msg_iter);
4017 		if (unlikely(!space)) {
4018 			tcp_skb_tsorted_anchor_cleanup(syn_data);
4019 			kfree_skb(syn_data);
4020 			goto fallback;
4021 		}
4022 		skb_fill_page_desc(syn_data, 0, pfrag->page,
4023 				   pfrag->offset, space);
4024 		page_ref_inc(pfrag->page);
4025 		pfrag->offset += space;
4026 		skb_len_add(syn_data, space);
4027 		skb_zcopy_set(syn_data, fo->uarg, NULL);
4028 	}
4029 	/* No more data pending in inet_wait_for_connect() */
4030 	if (space == fo->size)
4031 		fo->data = NULL;
4032 	fo->copied = space;
4033 
4034 	tcp_connect_queue_skb(sk, syn_data);
4035 	if (syn_data->len)
4036 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4037 
4038 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4039 
4040 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4041 
4042 	/* Now full SYN+DATA was cloned and sent (or not),
4043 	 * remove the SYN from the original skb (syn_data)
4044 	 * we keep in write queue in case of a retransmit, as we
4045 	 * also have the SYN packet (with no data) in the same queue.
4046 	 */
4047 	TCP_SKB_CB(syn_data)->seq++;
4048 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4049 	if (!err) {
4050 		tp->syn_data = (fo->copied > 0);
4051 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4052 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4053 		goto done;
4054 	}
4055 
4056 	/* data was not sent, put it in write_queue */
4057 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4058 	tp->packets_out -= tcp_skb_pcount(syn_data);
4059 
4060 fallback:
4061 	/* Send a regular SYN with Fast Open cookie request option */
4062 	if (fo->cookie.len > 0)
4063 		fo->cookie.len = 0;
4064 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4065 	if (err)
4066 		tp->syn_fastopen = 0;
4067 done:
4068 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4069 	return err;
4070 }
4071 
4072 /* Build a SYN and send it off. */
4073 int tcp_connect(struct sock *sk)
4074 {
4075 	struct tcp_sock *tp = tcp_sk(sk);
4076 	struct sk_buff *buff;
4077 	int err;
4078 
4079 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4080 
4081 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4082 	/* Has to be checked late, after setting daddr/saddr/ops.
4083 	 * Return error if the peer has both a md5 and a tcp-ao key
4084 	 * configured as this is ambiguous.
4085 	 */
4086 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4087 					       lockdep_sock_is_held(sk)))) {
4088 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4089 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4090 		struct tcp_ao_info *ao_info;
4091 
4092 		ao_info = rcu_dereference_check(tp->ao_info,
4093 						lockdep_sock_is_held(sk));
4094 		if (ao_info) {
4095 			/* This is an extra check: tcp_ao_required() in
4096 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4097 			 * md5 keys on ao_required socket.
4098 			 */
4099 			needs_ao |= ao_info->ao_required;
4100 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4101 		}
4102 		if (needs_md5 && needs_ao)
4103 			return -EKEYREJECTED;
4104 
4105 		/* If we have a matching md5 key and no matching tcp-ao key
4106 		 * then free up ao_info if allocated.
4107 		 */
4108 		if (needs_md5) {
4109 			tcp_ao_destroy_sock(sk, false);
4110 		} else if (needs_ao) {
4111 			tcp_clear_md5_list(sk);
4112 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4113 						  lockdep_sock_is_held(sk)));
4114 		}
4115 	}
4116 #endif
4117 #ifdef CONFIG_TCP_AO
4118 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4119 					       lockdep_sock_is_held(sk)))) {
4120 		/* Don't allow connecting if ao is configured but no
4121 		 * matching key is found.
4122 		 */
4123 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4124 			return -EKEYREJECTED;
4125 	}
4126 #endif
4127 
4128 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4129 		return -EHOSTUNREACH; /* Routing failure or similar. */
4130 
4131 	tcp_connect_init(sk);
4132 
4133 	if (unlikely(tp->repair)) {
4134 		tcp_finish_connect(sk, NULL);
4135 		return 0;
4136 	}
4137 
4138 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4139 	if (unlikely(!buff))
4140 		return -ENOBUFS;
4141 
4142 	/* SYN eats a sequence byte, write_seq updated by
4143 	 * tcp_connect_queue_skb().
4144 	 */
4145 	tcp_init_nondata_skb(buff, tp->write_seq, TCPHDR_SYN);
4146 	tcp_mstamp_refresh(tp);
4147 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4148 	tcp_connect_queue_skb(sk, buff);
4149 	tcp_ecn_send_syn(sk, buff);
4150 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4151 
4152 	/* Send off SYN; include data in Fast Open. */
4153 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4154 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4155 	if (err == -ECONNREFUSED)
4156 		return err;
4157 
4158 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4159 	 * in order to make this packet get counted in tcpOutSegs.
4160 	 */
4161 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4162 	tp->pushed_seq = tp->write_seq;
4163 	buff = tcp_send_head(sk);
4164 	if (unlikely(buff)) {
4165 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4166 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4167 	}
4168 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4169 
4170 	/* Timer for repeating the SYN until an answer. */
4171 	tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4172 			     inet_csk(sk)->icsk_rto, false);
4173 	return 0;
4174 }
4175 EXPORT_SYMBOL(tcp_connect);
4176 
4177 u32 tcp_delack_max(const struct sock *sk)
4178 {
4179 	u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4180 
4181 	return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min);
4182 }
4183 
4184 /* Send out a delayed ack, the caller does the policy checking
4185  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4186  * for details.
4187  */
4188 void tcp_send_delayed_ack(struct sock *sk)
4189 {
4190 	struct inet_connection_sock *icsk = inet_csk(sk);
4191 	int ato = icsk->icsk_ack.ato;
4192 	unsigned long timeout;
4193 
4194 	if (ato > TCP_DELACK_MIN) {
4195 		const struct tcp_sock *tp = tcp_sk(sk);
4196 		int max_ato = HZ / 2;
4197 
4198 		if (inet_csk_in_pingpong_mode(sk) ||
4199 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4200 			max_ato = TCP_DELACK_MAX;
4201 
4202 		/* Slow path, intersegment interval is "high". */
4203 
4204 		/* If some rtt estimate is known, use it to bound delayed ack.
4205 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4206 		 * directly.
4207 		 */
4208 		if (tp->srtt_us) {
4209 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4210 					TCP_DELACK_MIN);
4211 
4212 			if (rtt < max_ato)
4213 				max_ato = rtt;
4214 		}
4215 
4216 		ato = min(ato, max_ato);
4217 	}
4218 
4219 	ato = min_t(u32, ato, tcp_delack_max(sk));
4220 
4221 	/* Stay within the limit we were given */
4222 	timeout = jiffies + ato;
4223 
4224 	/* Use new timeout only if there wasn't a older one earlier. */
4225 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4226 		/* If delack timer is about to expire, send ACK now. */
4227 		if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) {
4228 			tcp_send_ack(sk);
4229 			return;
4230 		}
4231 
4232 		if (!time_before(timeout, icsk_delack_timeout(icsk)))
4233 			timeout = icsk_delack_timeout(icsk);
4234 	}
4235 	smp_store_release(&icsk->icsk_ack.pending,
4236 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
4237 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4238 }
4239 
4240 /* This routine sends an ack and also updates the window. */
4241 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags)
4242 {
4243 	struct sk_buff *buff;
4244 
4245 	/* If we have been reset, we may not send again. */
4246 	if (sk->sk_state == TCP_CLOSE)
4247 		return;
4248 
4249 	/* We are not putting this on the write queue, so
4250 	 * tcp_transmit_skb() will set the ownership to this
4251 	 * sock.
4252 	 */
4253 	buff = alloc_skb(MAX_TCP_HEADER,
4254 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4255 	if (unlikely(!buff)) {
4256 		struct inet_connection_sock *icsk = inet_csk(sk);
4257 		unsigned long delay;
4258 
4259 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4260 		if (delay < tcp_rto_max(sk))
4261 			icsk->icsk_ack.retry++;
4262 		inet_csk_schedule_ack(sk);
4263 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4264 		tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false);
4265 		return;
4266 	}
4267 
4268 	/* Reserve space for headers and prepare control bits. */
4269 	skb_reserve(buff, MAX_TCP_HEADER);
4270 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK | flags);
4271 
4272 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4273 	 * too much.
4274 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4275 	 */
4276 	skb_set_tcp_pure_ack(buff);
4277 
4278 	/* Send it off, this clears delayed acks for us. */
4279 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4280 }
4281 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4282 
4283 void tcp_send_ack(struct sock *sk)
4284 {
4285 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0);
4286 }
4287 
4288 /* This routine sends a packet with an out of date sequence
4289  * number. It assumes the other end will try to ack it.
4290  *
4291  * Question: what should we make while urgent mode?
4292  * 4.4BSD forces sending single byte of data. We cannot send
4293  * out of window data, because we have SND.NXT==SND.MAX...
4294  *
4295  * Current solution: to send TWO zero-length segments in urgent mode:
4296  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4297  * out-of-date with SND.UNA-1 to probe window.
4298  */
4299 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4300 {
4301 	struct tcp_sock *tp = tcp_sk(sk);
4302 	struct sk_buff *skb;
4303 
4304 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4305 	skb = alloc_skb(MAX_TCP_HEADER,
4306 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4307 	if (!skb)
4308 		return -1;
4309 
4310 	/* Reserve space for headers and set control bits. */
4311 	skb_reserve(skb, MAX_TCP_HEADER);
4312 	/* Use a previous sequence.  This should cause the other
4313 	 * end to send an ack.  Don't queue or clone SKB, just
4314 	 * send it.
4315 	 */
4316 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4317 	NET_INC_STATS(sock_net(sk), mib);
4318 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4319 }
4320 
4321 /* Called from setsockopt( ... TCP_REPAIR ) */
4322 void tcp_send_window_probe(struct sock *sk)
4323 {
4324 	if (sk->sk_state == TCP_ESTABLISHED) {
4325 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4326 		tcp_mstamp_refresh(tcp_sk(sk));
4327 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4328 	}
4329 }
4330 
4331 /* Initiate keepalive or window probe from timer. */
4332 int tcp_write_wakeup(struct sock *sk, int mib)
4333 {
4334 	struct tcp_sock *tp = tcp_sk(sk);
4335 	struct sk_buff *skb;
4336 
4337 	if (sk->sk_state == TCP_CLOSE)
4338 		return -1;
4339 
4340 	skb = tcp_send_head(sk);
4341 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4342 		int err;
4343 		unsigned int mss = tcp_current_mss(sk);
4344 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4345 
4346 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4347 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4348 
4349 		/* We are probing the opening of a window
4350 		 * but the window size is != 0
4351 		 * must have been a result SWS avoidance ( sender )
4352 		 */
4353 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4354 		    skb->len > mss) {
4355 			seg_size = min(seg_size, mss);
4356 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4357 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4358 					 skb, seg_size, mss, GFP_ATOMIC))
4359 				return -1;
4360 		} else if (!tcp_skb_pcount(skb))
4361 			tcp_set_skb_tso_segs(skb, mss);
4362 
4363 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4364 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4365 		if (!err)
4366 			tcp_event_new_data_sent(sk, skb);
4367 		return err;
4368 	} else {
4369 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4370 			tcp_xmit_probe_skb(sk, 1, mib);
4371 		return tcp_xmit_probe_skb(sk, 0, mib);
4372 	}
4373 }
4374 
4375 /* A window probe timeout has occurred.  If window is not closed send
4376  * a partial packet else a zero probe.
4377  */
4378 void tcp_send_probe0(struct sock *sk)
4379 {
4380 	struct inet_connection_sock *icsk = inet_csk(sk);
4381 	struct tcp_sock *tp = tcp_sk(sk);
4382 	struct net *net = sock_net(sk);
4383 	unsigned long timeout;
4384 	int err;
4385 
4386 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4387 
4388 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4389 		/* Cancel probe timer, if it is not required. */
4390 		icsk->icsk_probes_out = 0;
4391 		icsk->icsk_backoff = 0;
4392 		icsk->icsk_probes_tstamp = 0;
4393 		return;
4394 	}
4395 
4396 	icsk->icsk_probes_out++;
4397 	if (err <= 0) {
4398 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4399 			icsk->icsk_backoff++;
4400 		timeout = tcp_probe0_when(sk, tcp_rto_max(sk));
4401 	} else {
4402 		/* If packet was not sent due to local congestion,
4403 		 * Let senders fight for local resources conservatively.
4404 		 */
4405 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4406 	}
4407 
4408 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4409 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true);
4410 }
4411 
4412 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4413 {
4414 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4415 	struct flowi fl;
4416 	int res;
4417 
4418 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4419 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4420 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4421 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4422 				  NULL);
4423 	if (!res) {
4424 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4425 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4426 		if (unlikely(tcp_passive_fastopen(sk))) {
4427 			/* sk has const attribute because listeners are lockless.
4428 			 * However in this case, we are dealing with a passive fastopen
4429 			 * socket thus we can change total_retrans value.
4430 			 */
4431 			tcp_sk_rw(sk)->total_retrans++;
4432 		}
4433 		trace_tcp_retransmit_synack(sk, req);
4434 	}
4435 	return res;
4436 }
4437 EXPORT_IPV6_MOD(tcp_rtx_synack);
4438