1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 
62 #include <net/net_namespace.h>
63 #include <net/icmp.h>
64 #include <net/inet_hashtables.h>
65 #include <net/tcp.h>
66 #include <net/transp_v6.h>
67 #include <net/ipv6.h>
68 #include <net/inet_common.h>
69 #include <net/inet_ecn.h>
70 #include <net/timewait_sock.h>
71 #include <net/xfrm.h>
72 #include <net/secure_seq.h>
73 #include <net/busy_poll.h>
74 #include <net/rstreason.h>
75 
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81 #include <linux/inetdevice.h>
82 #include <linux/btf_ids.h>
83 #include <linux/skbuff_ref.h>
84 
85 #include <crypto/hash.h>
86 #include <linux/scatterlist.h>
87 
88 #include <trace/events/tcp.h>
89 
90 #ifdef CONFIG_TCP_MD5SIG
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
92 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
93 #endif
94 
95 struct inet_hashinfo tcp_hashinfo;
96 
97 static DEFINE_PER_CPU(struct sock_bh_locked, ipv4_tcp_sk) = {
98 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
99 };
100 
101 static DEFINE_MUTEX(tcp_exit_batch_mutex);
102 
103 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
104 {
105 	return secure_tcp_seq(ip_hdr(skb)->daddr,
106 			      ip_hdr(skb)->saddr,
107 			      tcp_hdr(skb)->dest,
108 			      tcp_hdr(skb)->source);
109 }
110 
111 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
112 {
113 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
114 }
115 
116 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
117 {
118 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
119 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
120 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	int ts_recent_stamp;
123 	u32 reuse_thresh;
124 
125 	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2)
126 		reuse = 0;
127 
128 	if (reuse == 2) {
129 		/* Still does not detect *everything* that goes through
130 		 * lo, since we require a loopback src or dst address
131 		 * or direct binding to 'lo' interface.
132 		 */
133 		bool loopback = false;
134 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
135 			loopback = true;
136 #if IS_ENABLED(CONFIG_IPV6)
137 		if (tw->tw_family == AF_INET6) {
138 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
139 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
140 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
141 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
142 				loopback = true;
143 		} else
144 #endif
145 		{
146 			if (ipv4_is_loopback(tw->tw_daddr) ||
147 			    ipv4_is_loopback(tw->tw_rcv_saddr))
148 				loopback = true;
149 		}
150 		if (!loopback)
151 			reuse = 0;
152 	}
153 
154 	/* With PAWS, it is safe from the viewpoint
155 	   of data integrity. Even without PAWS it is safe provided sequence
156 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
157 
158 	   Actually, the idea is close to VJ's one, only timestamp cache is
159 	   held not per host, but per port pair and TW bucket is used as state
160 	   holder.
161 
162 	   If TW bucket has been already destroyed we fall back to VJ's scheme
163 	   and use initial timestamp retrieved from peer table.
164 	 */
165 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
166 	reuse_thresh = READ_ONCE(tw->tw_entry_stamp) +
167 		       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse_delay);
168 	if (ts_recent_stamp &&
169 	    (!twp || (reuse && time_after32(tcp_clock_ms(), reuse_thresh)))) {
170 		/* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk
171 		 * and releasing the bucket lock.
172 		 */
173 		if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
174 			return 0;
175 
176 		/* In case of repair and re-using TIME-WAIT sockets we still
177 		 * want to be sure that it is safe as above but honor the
178 		 * sequence numbers and time stamps set as part of the repair
179 		 * process.
180 		 *
181 		 * Without this check re-using a TIME-WAIT socket with TCP
182 		 * repair would accumulate a -1 on the repair assigned
183 		 * sequence number. The first time it is reused the sequence
184 		 * is -1, the second time -2, etc. This fixes that issue
185 		 * without appearing to create any others.
186 		 */
187 		if (likely(!tp->repair)) {
188 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
189 
190 			if (!seq)
191 				seq = 1;
192 			WRITE_ONCE(tp->write_seq, seq);
193 			tp->rx_opt.ts_recent	   = READ_ONCE(tcptw->tw_ts_recent);
194 			tp->rx_opt.ts_recent_stamp = ts_recent_stamp;
195 		}
196 
197 		return 1;
198 	}
199 
200 	return 0;
201 }
202 EXPORT_IPV6_MOD_GPL(tcp_twsk_unique);
203 
204 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
205 			      int addr_len)
206 {
207 	/* This check is replicated from tcp_v4_connect() and intended to
208 	 * prevent BPF program called below from accessing bytes that are out
209 	 * of the bound specified by user in addr_len.
210 	 */
211 	if (addr_len < sizeof(struct sockaddr_in))
212 		return -EINVAL;
213 
214 	sock_owned_by_me(sk);
215 
216 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
217 }
218 
219 /* This will initiate an outgoing connection. */
220 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
221 {
222 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
223 	struct inet_timewait_death_row *tcp_death_row;
224 	struct inet_sock *inet = inet_sk(sk);
225 	struct tcp_sock *tp = tcp_sk(sk);
226 	struct ip_options_rcu *inet_opt;
227 	struct net *net = sock_net(sk);
228 	__be16 orig_sport, orig_dport;
229 	__be32 daddr, nexthop;
230 	struct flowi4 *fl4;
231 	struct rtable *rt;
232 	int err;
233 
234 	if (addr_len < sizeof(struct sockaddr_in))
235 		return -EINVAL;
236 
237 	if (usin->sin_family != AF_INET)
238 		return -EAFNOSUPPORT;
239 
240 	nexthop = daddr = usin->sin_addr.s_addr;
241 	inet_opt = rcu_dereference_protected(inet->inet_opt,
242 					     lockdep_sock_is_held(sk));
243 	if (inet_opt && inet_opt->opt.srr) {
244 		if (!daddr)
245 			return -EINVAL;
246 		nexthop = inet_opt->opt.faddr;
247 	}
248 
249 	orig_sport = inet->inet_sport;
250 	orig_dport = usin->sin_port;
251 	fl4 = &inet->cork.fl.u.ip4;
252 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
253 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
254 			      orig_dport, sk);
255 	if (IS_ERR(rt)) {
256 		err = PTR_ERR(rt);
257 		if (err == -ENETUNREACH)
258 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
259 		return err;
260 	}
261 
262 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
263 		ip_rt_put(rt);
264 		return -ENETUNREACH;
265 	}
266 
267 	if (!inet_opt || !inet_opt->opt.srr)
268 		daddr = fl4->daddr;
269 
270 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
271 
272 	if (!inet->inet_saddr) {
273 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
274 		if (err) {
275 			ip_rt_put(rt);
276 			return err;
277 		}
278 	} else {
279 		sk_rcv_saddr_set(sk, inet->inet_saddr);
280 	}
281 
282 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
283 		/* Reset inherited state */
284 		tp->rx_opt.ts_recent	   = 0;
285 		tp->rx_opt.ts_recent_stamp = 0;
286 		if (likely(!tp->repair))
287 			WRITE_ONCE(tp->write_seq, 0);
288 	}
289 
290 	inet->inet_dport = usin->sin_port;
291 	sk_daddr_set(sk, daddr);
292 
293 	inet_csk(sk)->icsk_ext_hdr_len = 0;
294 	if (inet_opt)
295 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
296 
297 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
298 
299 	/* Socket identity is still unknown (sport may be zero).
300 	 * However we set state to SYN-SENT and not releasing socket
301 	 * lock select source port, enter ourselves into the hash tables and
302 	 * complete initialization after this.
303 	 */
304 	tcp_set_state(sk, TCP_SYN_SENT);
305 	err = inet_hash_connect(tcp_death_row, sk);
306 	if (err)
307 		goto failure;
308 
309 	sk_set_txhash(sk);
310 
311 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
312 			       inet->inet_sport, inet->inet_dport, sk);
313 	if (IS_ERR(rt)) {
314 		err = PTR_ERR(rt);
315 		rt = NULL;
316 		goto failure;
317 	}
318 	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
319 	/* OK, now commit destination to socket.  */
320 	sk->sk_gso_type = SKB_GSO_TCPV4;
321 	sk_setup_caps(sk, &rt->dst);
322 	rt = NULL;
323 
324 	if (likely(!tp->repair)) {
325 		if (!tp->write_seq)
326 			WRITE_ONCE(tp->write_seq,
327 				   secure_tcp_seq(inet->inet_saddr,
328 						  inet->inet_daddr,
329 						  inet->inet_sport,
330 						  usin->sin_port));
331 		WRITE_ONCE(tp->tsoffset,
332 			   secure_tcp_ts_off(net, inet->inet_saddr,
333 					     inet->inet_daddr));
334 	}
335 
336 	atomic_set(&inet->inet_id, get_random_u16());
337 
338 	if (tcp_fastopen_defer_connect(sk, &err))
339 		return err;
340 	if (err)
341 		goto failure;
342 
343 	err = tcp_connect(sk);
344 
345 	if (err)
346 		goto failure;
347 
348 	return 0;
349 
350 failure:
351 	/*
352 	 * This unhashes the socket and releases the local port,
353 	 * if necessary.
354 	 */
355 	tcp_set_state(sk, TCP_CLOSE);
356 	inet_bhash2_reset_saddr(sk);
357 	ip_rt_put(rt);
358 	sk->sk_route_caps = 0;
359 	inet->inet_dport = 0;
360 	return err;
361 }
362 EXPORT_IPV6_MOD(tcp_v4_connect);
363 
364 /*
365  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
366  * It can be called through tcp_release_cb() if socket was owned by user
367  * at the time tcp_v4_err() was called to handle ICMP message.
368  */
369 void tcp_v4_mtu_reduced(struct sock *sk)
370 {
371 	struct inet_sock *inet = inet_sk(sk);
372 	struct dst_entry *dst;
373 	u32 mtu;
374 
375 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
376 		return;
377 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
378 	dst = inet_csk_update_pmtu(sk, mtu);
379 	if (!dst)
380 		return;
381 
382 	/* Something is about to be wrong... Remember soft error
383 	 * for the case, if this connection will not able to recover.
384 	 */
385 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
386 		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
387 
388 	mtu = dst_mtu(dst);
389 
390 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
391 	    ip_sk_accept_pmtu(sk) &&
392 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
393 		tcp_sync_mss(sk, mtu);
394 
395 		/* Resend the TCP packet because it's
396 		 * clear that the old packet has been
397 		 * dropped. This is the new "fast" path mtu
398 		 * discovery.
399 		 */
400 		tcp_simple_retransmit(sk);
401 	} /* else let the usual retransmit timer handle it */
402 }
403 EXPORT_IPV6_MOD(tcp_v4_mtu_reduced);
404 
405 static void do_redirect(struct sk_buff *skb, struct sock *sk)
406 {
407 	struct dst_entry *dst = __sk_dst_check(sk, 0);
408 
409 	if (dst)
410 		dst->ops->redirect(dst, sk, skb);
411 }
412 
413 
414 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
415 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
416 {
417 	struct request_sock *req = inet_reqsk(sk);
418 	struct net *net = sock_net(sk);
419 
420 	/* ICMPs are not backlogged, hence we cannot get
421 	 * an established socket here.
422 	 */
423 	if (seq != tcp_rsk(req)->snt_isn) {
424 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
425 	} else if (abort) {
426 		/*
427 		 * Still in SYN_RECV, just remove it silently.
428 		 * There is no good way to pass the error to the newly
429 		 * created socket, and POSIX does not want network
430 		 * errors returned from accept().
431 		 */
432 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
433 		tcp_listendrop(req->rsk_listener);
434 	}
435 	reqsk_put(req);
436 }
437 EXPORT_IPV6_MOD(tcp_req_err);
438 
439 /* TCP-LD (RFC 6069) logic */
440 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
441 {
442 	struct inet_connection_sock *icsk = inet_csk(sk);
443 	struct tcp_sock *tp = tcp_sk(sk);
444 	struct sk_buff *skb;
445 	s32 remaining;
446 	u32 delta_us;
447 
448 	if (sock_owned_by_user(sk))
449 		return;
450 
451 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
452 	    !icsk->icsk_backoff)
453 		return;
454 
455 	skb = tcp_rtx_queue_head(sk);
456 	if (WARN_ON_ONCE(!skb))
457 		return;
458 
459 	icsk->icsk_backoff--;
460 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
461 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, tcp_rto_max(sk));
462 
463 	tcp_mstamp_refresh(tp);
464 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
465 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
466 
467 	if (remaining > 0) {
468 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, remaining, false);
469 	} else {
470 		/* RTO revert clocked out retransmission.
471 		 * Will retransmit now.
472 		 */
473 		tcp_retransmit_timer(sk);
474 	}
475 }
476 EXPORT_IPV6_MOD(tcp_ld_RTO_revert);
477 
478 /*
479  * This routine is called by the ICMP module when it gets some
480  * sort of error condition.  If err < 0 then the socket should
481  * be closed and the error returned to the user.  If err > 0
482  * it's just the icmp type << 8 | icmp code.  After adjustment
483  * header points to the first 8 bytes of the tcp header.  We need
484  * to find the appropriate port.
485  *
486  * The locking strategy used here is very "optimistic". When
487  * someone else accesses the socket the ICMP is just dropped
488  * and for some paths there is no check at all.
489  * A more general error queue to queue errors for later handling
490  * is probably better.
491  *
492  */
493 
494 int tcp_v4_err(struct sk_buff *skb, u32 info)
495 {
496 	const struct iphdr *iph = (const struct iphdr *)skb->data;
497 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
498 	struct net *net = dev_net_rcu(skb->dev);
499 	const int type = icmp_hdr(skb)->type;
500 	const int code = icmp_hdr(skb)->code;
501 	struct request_sock *fastopen;
502 	struct tcp_sock *tp;
503 	u32 seq, snd_una;
504 	struct sock *sk;
505 	int err;
506 
507 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
508 				       iph->daddr, th->dest, iph->saddr,
509 				       ntohs(th->source), inet_iif(skb), 0);
510 	if (!sk) {
511 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
512 		return -ENOENT;
513 	}
514 	if (sk->sk_state == TCP_TIME_WAIT) {
515 		/* To increase the counter of ignored icmps for TCP-AO */
516 		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
517 		inet_twsk_put(inet_twsk(sk));
518 		return 0;
519 	}
520 	seq = ntohl(th->seq);
521 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
522 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
523 				     type == ICMP_TIME_EXCEEDED ||
524 				     (type == ICMP_DEST_UNREACH &&
525 				      (code == ICMP_NET_UNREACH ||
526 				       code == ICMP_HOST_UNREACH)));
527 		return 0;
528 	}
529 
530 	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
531 		sock_put(sk);
532 		return 0;
533 	}
534 
535 	bh_lock_sock(sk);
536 	/* If too many ICMPs get dropped on busy
537 	 * servers this needs to be solved differently.
538 	 * We do take care of PMTU discovery (RFC1191) special case :
539 	 * we can receive locally generated ICMP messages while socket is held.
540 	 */
541 	if (sock_owned_by_user(sk)) {
542 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
543 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
544 	}
545 	if (sk->sk_state == TCP_CLOSE)
546 		goto out;
547 
548 	if (static_branch_unlikely(&ip4_min_ttl)) {
549 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
550 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
551 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
552 			goto out;
553 		}
554 	}
555 
556 	tp = tcp_sk(sk);
557 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
558 	fastopen = rcu_dereference(tp->fastopen_rsk);
559 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
560 	if (sk->sk_state != TCP_LISTEN &&
561 	    !between(seq, snd_una, tp->snd_nxt)) {
562 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
563 		goto out;
564 	}
565 
566 	switch (type) {
567 	case ICMP_REDIRECT:
568 		if (!sock_owned_by_user(sk))
569 			do_redirect(skb, sk);
570 		goto out;
571 	case ICMP_SOURCE_QUENCH:
572 		/* Just silently ignore these. */
573 		goto out;
574 	case ICMP_PARAMETERPROB:
575 		err = EPROTO;
576 		break;
577 	case ICMP_DEST_UNREACH:
578 		if (code > NR_ICMP_UNREACH)
579 			goto out;
580 
581 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
582 			/* We are not interested in TCP_LISTEN and open_requests
583 			 * (SYN-ACKs send out by Linux are always <576bytes so
584 			 * they should go through unfragmented).
585 			 */
586 			if (sk->sk_state == TCP_LISTEN)
587 				goto out;
588 
589 			WRITE_ONCE(tp->mtu_info, info);
590 			if (!sock_owned_by_user(sk)) {
591 				tcp_v4_mtu_reduced(sk);
592 			} else {
593 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
594 					sock_hold(sk);
595 			}
596 			goto out;
597 		}
598 
599 		err = icmp_err_convert[code].errno;
600 		/* check if this ICMP message allows revert of backoff.
601 		 * (see RFC 6069)
602 		 */
603 		if (!fastopen &&
604 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
605 			tcp_ld_RTO_revert(sk, seq);
606 		break;
607 	case ICMP_TIME_EXCEEDED:
608 		err = EHOSTUNREACH;
609 		break;
610 	default:
611 		goto out;
612 	}
613 
614 	switch (sk->sk_state) {
615 	case TCP_SYN_SENT:
616 	case TCP_SYN_RECV:
617 		/* Only in fast or simultaneous open. If a fast open socket is
618 		 * already accepted it is treated as a connected one below.
619 		 */
620 		if (fastopen && !fastopen->sk)
621 			break;
622 
623 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
624 
625 		if (!sock_owned_by_user(sk))
626 			tcp_done_with_error(sk, err);
627 		else
628 			WRITE_ONCE(sk->sk_err_soft, err);
629 		goto out;
630 	}
631 
632 	/* If we've already connected we will keep trying
633 	 * until we time out, or the user gives up.
634 	 *
635 	 * rfc1122 4.2.3.9 allows to consider as hard errors
636 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
637 	 * but it is obsoleted by pmtu discovery).
638 	 *
639 	 * Note, that in modern internet, where routing is unreliable
640 	 * and in each dark corner broken firewalls sit, sending random
641 	 * errors ordered by their masters even this two messages finally lose
642 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
643 	 *
644 	 * Now we are in compliance with RFCs.
645 	 *							--ANK (980905)
646 	 */
647 
648 	if (!sock_owned_by_user(sk) &&
649 	    inet_test_bit(RECVERR, sk)) {
650 		WRITE_ONCE(sk->sk_err, err);
651 		sk_error_report(sk);
652 	} else	{ /* Only an error on timeout */
653 		WRITE_ONCE(sk->sk_err_soft, err);
654 	}
655 
656 out:
657 	bh_unlock_sock(sk);
658 	sock_put(sk);
659 	return 0;
660 }
661 
662 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
663 {
664 	struct tcphdr *th = tcp_hdr(skb);
665 
666 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
667 	skb->csum_start = skb_transport_header(skb) - skb->head;
668 	skb->csum_offset = offsetof(struct tcphdr, check);
669 }
670 
671 /* This routine computes an IPv4 TCP checksum. */
672 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
673 {
674 	const struct inet_sock *inet = inet_sk(sk);
675 
676 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
677 }
678 EXPORT_IPV6_MOD(tcp_v4_send_check);
679 
680 #define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
681 
682 static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
683 				 const struct tcp_ao_hdr *aoh,
684 				 struct ip_reply_arg *arg, struct tcphdr *reply,
685 				 __be32 reply_options[REPLY_OPTIONS_LEN])
686 {
687 #ifdef CONFIG_TCP_AO
688 	int sdif = tcp_v4_sdif(skb);
689 	int dif = inet_iif(skb);
690 	int l3index = sdif ? dif : 0;
691 	bool allocated_traffic_key;
692 	struct tcp_ao_key *key;
693 	char *traffic_key;
694 	bool drop = true;
695 	u32 ao_sne = 0;
696 	u8 keyid;
697 
698 	rcu_read_lock();
699 	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
700 				 &key, &traffic_key, &allocated_traffic_key,
701 				 &keyid, &ao_sne))
702 		goto out;
703 
704 	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
705 				 (aoh->rnext_keyid << 8) | keyid);
706 	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
707 	reply->doff = arg->iov[0].iov_len / 4;
708 
709 	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
710 			    key, traffic_key,
711 			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
712 			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
713 			    reply, ao_sne))
714 		goto out;
715 	drop = false;
716 out:
717 	rcu_read_unlock();
718 	if (allocated_traffic_key)
719 		kfree(traffic_key);
720 	return drop;
721 #else
722 	return true;
723 #endif
724 }
725 
726 /*
727  *	This routine will send an RST to the other tcp.
728  *
729  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
730  *		      for reset.
731  *	Answer: if a packet caused RST, it is not for a socket
732  *		existing in our system, if it is matched to a socket,
733  *		it is just duplicate segment or bug in other side's TCP.
734  *		So that we build reply only basing on parameters
735  *		arrived with segment.
736  *	Exception: precedence violation. We do not implement it in any case.
737  */
738 
739 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb,
740 			      enum sk_rst_reason reason)
741 {
742 	const struct tcphdr *th = tcp_hdr(skb);
743 	struct {
744 		struct tcphdr th;
745 		__be32 opt[REPLY_OPTIONS_LEN];
746 	} rep;
747 	const __u8 *md5_hash_location = NULL;
748 	const struct tcp_ao_hdr *aoh;
749 	struct ip_reply_arg arg;
750 #ifdef CONFIG_TCP_MD5SIG
751 	struct tcp_md5sig_key *key = NULL;
752 	unsigned char newhash[16];
753 	struct sock *sk1 = NULL;
754 	int genhash;
755 #endif
756 	u64 transmit_time = 0;
757 	struct sock *ctl_sk;
758 	struct net *net;
759 	u32 txhash = 0;
760 
761 	/* Never send a reset in response to a reset. */
762 	if (th->rst)
763 		return;
764 
765 	/* If sk not NULL, it means we did a successful lookup and incoming
766 	 * route had to be correct. prequeue might have dropped our dst.
767 	 */
768 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
769 		return;
770 
771 	/* Swap the send and the receive. */
772 	memset(&rep, 0, sizeof(rep));
773 	rep.th.dest   = th->source;
774 	rep.th.source = th->dest;
775 	rep.th.doff   = sizeof(struct tcphdr) / 4;
776 	rep.th.rst    = 1;
777 
778 	if (th->ack) {
779 		rep.th.seq = th->ack_seq;
780 	} else {
781 		rep.th.ack = 1;
782 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
783 				       skb->len - (th->doff << 2));
784 	}
785 
786 	memset(&arg, 0, sizeof(arg));
787 	arg.iov[0].iov_base = (unsigned char *)&rep;
788 	arg.iov[0].iov_len  = sizeof(rep.th);
789 
790 	net = sk ? sock_net(sk) : dev_net_rcu(skb_dst(skb)->dev);
791 
792 	/* Invalid TCP option size or twice included auth */
793 	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
794 		return;
795 
796 	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
797 		return;
798 
799 #ifdef CONFIG_TCP_MD5SIG
800 	rcu_read_lock();
801 	if (sk && sk_fullsock(sk)) {
802 		const union tcp_md5_addr *addr;
803 		int l3index;
804 
805 		/* sdif set, means packet ingressed via a device
806 		 * in an L3 domain and inet_iif is set to it.
807 		 */
808 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
809 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
810 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
811 	} else if (md5_hash_location) {
812 		const union tcp_md5_addr *addr;
813 		int sdif = tcp_v4_sdif(skb);
814 		int dif = inet_iif(skb);
815 		int l3index;
816 
817 		/*
818 		 * active side is lost. Try to find listening socket through
819 		 * source port, and then find md5 key through listening socket.
820 		 * we are not loose security here:
821 		 * Incoming packet is checked with md5 hash with finding key,
822 		 * no RST generated if md5 hash doesn't match.
823 		 */
824 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
825 					     NULL, 0, ip_hdr(skb)->saddr,
826 					     th->source, ip_hdr(skb)->daddr,
827 					     ntohs(th->source), dif, sdif);
828 		/* don't send rst if it can't find key */
829 		if (!sk1)
830 			goto out;
831 
832 		/* sdif set, means packet ingressed via a device
833 		 * in an L3 domain and dif is set to it.
834 		 */
835 		l3index = sdif ? dif : 0;
836 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
837 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
838 		if (!key)
839 			goto out;
840 
841 
842 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
843 		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
844 			goto out;
845 
846 	}
847 
848 	if (key) {
849 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
850 				   (TCPOPT_NOP << 16) |
851 				   (TCPOPT_MD5SIG << 8) |
852 				   TCPOLEN_MD5SIG);
853 		/* Update length and the length the header thinks exists */
854 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
855 		rep.th.doff = arg.iov[0].iov_len / 4;
856 
857 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
858 				     key, ip_hdr(skb)->saddr,
859 				     ip_hdr(skb)->daddr, &rep.th);
860 	}
861 #endif
862 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
863 	if (rep.opt[0] == 0) {
864 		__be32 mrst = mptcp_reset_option(skb);
865 
866 		if (mrst) {
867 			rep.opt[0] = mrst;
868 			arg.iov[0].iov_len += sizeof(mrst);
869 			rep.th.doff = arg.iov[0].iov_len / 4;
870 		}
871 	}
872 
873 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
874 				      ip_hdr(skb)->saddr, /* XXX */
875 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
876 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
877 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
878 
879 	/* When socket is gone, all binding information is lost.
880 	 * routing might fail in this case. No choice here, if we choose to force
881 	 * input interface, we will misroute in case of asymmetric route.
882 	 */
883 	if (sk)
884 		arg.bound_dev_if = sk->sk_bound_dev_if;
885 
886 	trace_tcp_send_reset(sk, skb, reason);
887 
888 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
889 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
890 
891 	/* ECN bits of TW reset are cleared */
892 	arg.tos = ip_hdr(skb)->tos & ~INET_ECN_MASK;
893 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
894 	local_bh_disable();
895 	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
896 	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
897 
898 	sock_net_set(ctl_sk, net);
899 	if (sk) {
900 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
901 				   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
902 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
903 				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
904 		transmit_time = tcp_transmit_time(sk);
905 		xfrm_sk_clone_policy(ctl_sk, sk);
906 		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
907 			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
908 	} else {
909 		ctl_sk->sk_mark = 0;
910 		ctl_sk->sk_priority = 0;
911 	}
912 	ip_send_unicast_reply(ctl_sk, sk,
913 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
914 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
915 			      &arg, arg.iov[0].iov_len,
916 			      transmit_time, txhash);
917 
918 	xfrm_sk_free_policy(ctl_sk);
919 	sock_net_set(ctl_sk, &init_net);
920 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
921 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
922 	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
923 	local_bh_enable();
924 
925 #ifdef CONFIG_TCP_MD5SIG
926 out:
927 	rcu_read_unlock();
928 #endif
929 }
930 
931 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
932    outside socket context is ugly, certainly. What can I do?
933  */
934 
935 static void tcp_v4_send_ack(const struct sock *sk,
936 			    struct sk_buff *skb, u32 seq, u32 ack,
937 			    u32 win, u32 tsval, u32 tsecr, int oif,
938 			    struct tcp_key *key,
939 			    int reply_flags, u8 tos, u32 txhash)
940 {
941 	const struct tcphdr *th = tcp_hdr(skb);
942 	struct {
943 		struct tcphdr th;
944 		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
945 	} rep;
946 	struct net *net = sock_net(sk);
947 	struct ip_reply_arg arg;
948 	struct sock *ctl_sk;
949 	u64 transmit_time;
950 
951 	memset(&rep.th, 0, sizeof(struct tcphdr));
952 	memset(&arg, 0, sizeof(arg));
953 
954 	arg.iov[0].iov_base = (unsigned char *)&rep;
955 	arg.iov[0].iov_len  = sizeof(rep.th);
956 	if (tsecr) {
957 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
958 				   (TCPOPT_TIMESTAMP << 8) |
959 				   TCPOLEN_TIMESTAMP);
960 		rep.opt[1] = htonl(tsval);
961 		rep.opt[2] = htonl(tsecr);
962 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
963 	}
964 
965 	/* Swap the send and the receive. */
966 	rep.th.dest    = th->source;
967 	rep.th.source  = th->dest;
968 	rep.th.doff    = arg.iov[0].iov_len / 4;
969 	rep.th.seq     = htonl(seq);
970 	rep.th.ack_seq = htonl(ack);
971 	rep.th.ack     = 1;
972 	rep.th.window  = htons(win);
973 
974 #ifdef CONFIG_TCP_MD5SIG
975 	if (tcp_key_is_md5(key)) {
976 		int offset = (tsecr) ? 3 : 0;
977 
978 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
979 					  (TCPOPT_NOP << 16) |
980 					  (TCPOPT_MD5SIG << 8) |
981 					  TCPOLEN_MD5SIG);
982 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
983 		rep.th.doff = arg.iov[0].iov_len/4;
984 
985 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
986 				    key->md5_key, ip_hdr(skb)->saddr,
987 				    ip_hdr(skb)->daddr, &rep.th);
988 	}
989 #endif
990 #ifdef CONFIG_TCP_AO
991 	if (tcp_key_is_ao(key)) {
992 		int offset = (tsecr) ? 3 : 0;
993 
994 		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
995 					  (tcp_ao_len(key->ao_key) << 16) |
996 					  (key->ao_key->sndid << 8) |
997 					  key->rcv_next);
998 		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
999 		rep.th.doff = arg.iov[0].iov_len / 4;
1000 
1001 		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
1002 				key->ao_key, key->traffic_key,
1003 				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
1004 				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
1005 				&rep.th, key->sne);
1006 	}
1007 #endif
1008 	arg.flags = reply_flags;
1009 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
1010 				      ip_hdr(skb)->saddr, /* XXX */
1011 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
1012 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1013 	if (oif)
1014 		arg.bound_dev_if = oif;
1015 	arg.tos = tos;
1016 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1017 	local_bh_disable();
1018 	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
1019 	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
1020 	sock_net_set(ctl_sk, net);
1021 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1022 			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1023 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1024 			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1025 	transmit_time = tcp_transmit_time(sk);
1026 	ip_send_unicast_reply(ctl_sk, sk,
1027 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1028 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1029 			      &arg, arg.iov[0].iov_len,
1030 			      transmit_time, txhash);
1031 
1032 	sock_net_set(ctl_sk, &init_net);
1033 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1034 	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
1035 	local_bh_enable();
1036 }
1037 
1038 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb,
1039 				enum tcp_tw_status tw_status)
1040 {
1041 	struct inet_timewait_sock *tw = inet_twsk(sk);
1042 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1043 	struct tcp_key key = {};
1044 	u8 tos = tw->tw_tos;
1045 
1046 	/* Cleaning only ECN bits of TW ACKs of oow data or is paws_reject,
1047 	 * while not cleaning ECN bits of other TW ACKs to avoid these ACKs
1048 	 * being placed in a different service queues (Classic rather than L4S)
1049 	 */
1050 	if (tw_status == TCP_TW_ACK_OOW)
1051 		tos &= ~INET_ECN_MASK;
1052 
1053 #ifdef CONFIG_TCP_AO
1054 	struct tcp_ao_info *ao_info;
1055 
1056 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1057 		/* FIXME: the segment to-be-acked is not verified yet */
1058 		ao_info = rcu_dereference(tcptw->ao_info);
1059 		if (ao_info) {
1060 			const struct tcp_ao_hdr *aoh;
1061 
1062 			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1063 				inet_twsk_put(tw);
1064 				return;
1065 			}
1066 
1067 			if (aoh)
1068 				key.ao_key = tcp_ao_established_key(sk, ao_info,
1069 								    aoh->rnext_keyid, -1);
1070 		}
1071 	}
1072 	if (key.ao_key) {
1073 		struct tcp_ao_key *rnext_key;
1074 
1075 		key.traffic_key = snd_other_key(key.ao_key);
1076 		key.sne = READ_ONCE(ao_info->snd_sne);
1077 		rnext_key = READ_ONCE(ao_info->rnext_key);
1078 		key.rcv_next = rnext_key->rcvid;
1079 		key.type = TCP_KEY_AO;
1080 #else
1081 	if (0) {
1082 #endif
1083 	} else if (static_branch_tcp_md5()) {
1084 		key.md5_key = tcp_twsk_md5_key(tcptw);
1085 		if (key.md5_key)
1086 			key.type = TCP_KEY_MD5;
1087 	}
1088 
1089 	tcp_v4_send_ack(sk, skb,
1090 			tcptw->tw_snd_nxt, READ_ONCE(tcptw->tw_rcv_nxt),
1091 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1092 			tcp_tw_tsval(tcptw),
1093 			READ_ONCE(tcptw->tw_ts_recent),
1094 			tw->tw_bound_dev_if, &key,
1095 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1096 			tos,
1097 			tw->tw_txhash);
1098 
1099 	inet_twsk_put(tw);
1100 }
1101 
1102 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1103 				  struct request_sock *req)
1104 {
1105 	struct tcp_key key = {};
1106 
1107 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1108 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1109 	 */
1110 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1111 					     tcp_sk(sk)->snd_nxt;
1112 
1113 #ifdef CONFIG_TCP_AO
1114 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1115 	    tcp_rsk_used_ao(req)) {
1116 		const union tcp_md5_addr *addr;
1117 		const struct tcp_ao_hdr *aoh;
1118 		int l3index;
1119 
1120 		/* Invalid TCP option size or twice included auth */
1121 		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1122 			return;
1123 		if (!aoh)
1124 			return;
1125 
1126 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1127 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1128 		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1129 					      aoh->rnext_keyid, -1);
1130 		if (unlikely(!key.ao_key)) {
1131 			/* Send ACK with any matching MKT for the peer */
1132 			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1133 			/* Matching key disappeared (user removed the key?)
1134 			 * let the handshake timeout.
1135 			 */
1136 			if (!key.ao_key) {
1137 				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1138 						     addr,
1139 						     ntohs(tcp_hdr(skb)->source),
1140 						     &ip_hdr(skb)->daddr,
1141 						     ntohs(tcp_hdr(skb)->dest));
1142 				return;
1143 			}
1144 		}
1145 		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1146 		if (!key.traffic_key)
1147 			return;
1148 
1149 		key.type = TCP_KEY_AO;
1150 		key.rcv_next = aoh->keyid;
1151 		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1152 #else
1153 	if (0) {
1154 #endif
1155 	} else if (static_branch_tcp_md5()) {
1156 		const union tcp_md5_addr *addr;
1157 		int l3index;
1158 
1159 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1160 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1161 		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1162 		if (key.md5_key)
1163 			key.type = TCP_KEY_MD5;
1164 	}
1165 
1166 	/* Cleaning ECN bits of TW ACKs of oow data or is paws_reject */
1167 	tcp_v4_send_ack(sk, skb, seq,
1168 			tcp_rsk(req)->rcv_nxt,
1169 			tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale,
1170 			tcp_rsk_tsval(tcp_rsk(req)),
1171 			req->ts_recent,
1172 			0, &key,
1173 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1174 			ip_hdr(skb)->tos & ~INET_ECN_MASK,
1175 			READ_ONCE(tcp_rsk(req)->txhash));
1176 	if (tcp_key_is_ao(&key))
1177 		kfree(key.traffic_key);
1178 }
1179 
1180 /*
1181  *	Send a SYN-ACK after having received a SYN.
1182  *	This still operates on a request_sock only, not on a big
1183  *	socket.
1184  */
1185 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1186 			      struct flowi *fl,
1187 			      struct request_sock *req,
1188 			      struct tcp_fastopen_cookie *foc,
1189 			      enum tcp_synack_type synack_type,
1190 			      struct sk_buff *syn_skb)
1191 {
1192 	const struct inet_request_sock *ireq = inet_rsk(req);
1193 	struct flowi4 fl4;
1194 	int err = -1;
1195 	struct sk_buff *skb;
1196 	u8 tos;
1197 
1198 	/* First, grab a route. */
1199 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1200 		return -1;
1201 
1202 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1203 
1204 	if (skb) {
1205 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1206 
1207 		tos = READ_ONCE(inet_sk(sk)->tos);
1208 
1209 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1210 			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1211 			      (tos & INET_ECN_MASK);
1212 
1213 		if (!INET_ECN_is_capable(tos) &&
1214 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1215 			tos |= INET_ECN_ECT_0;
1216 
1217 		rcu_read_lock();
1218 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1219 					    ireq->ir_rmt_addr,
1220 					    rcu_dereference(ireq->ireq_opt),
1221 					    tos);
1222 		rcu_read_unlock();
1223 		err = net_xmit_eval(err);
1224 	}
1225 
1226 	return err;
1227 }
1228 
1229 /*
1230  *	IPv4 request_sock destructor.
1231  */
1232 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1233 {
1234 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1235 }
1236 
1237 #ifdef CONFIG_TCP_MD5SIG
1238 /*
1239  * RFC2385 MD5 checksumming requires a mapping of
1240  * IP address->MD5 Key.
1241  * We need to maintain these in the sk structure.
1242  */
1243 
1244 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1245 EXPORT_IPV6_MOD(tcp_md5_needed);
1246 
1247 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1248 {
1249 	if (!old)
1250 		return true;
1251 
1252 	/* l3index always overrides non-l3index */
1253 	if (old->l3index && new->l3index == 0)
1254 		return false;
1255 	if (old->l3index == 0 && new->l3index)
1256 		return true;
1257 
1258 	return old->prefixlen < new->prefixlen;
1259 }
1260 
1261 /* Find the Key structure for an address.  */
1262 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1263 					   const union tcp_md5_addr *addr,
1264 					   int family, bool any_l3index)
1265 {
1266 	const struct tcp_sock *tp = tcp_sk(sk);
1267 	struct tcp_md5sig_key *key;
1268 	const struct tcp_md5sig_info *md5sig;
1269 	__be32 mask;
1270 	struct tcp_md5sig_key *best_match = NULL;
1271 	bool match;
1272 
1273 	/* caller either holds rcu_read_lock() or socket lock */
1274 	md5sig = rcu_dereference_check(tp->md5sig_info,
1275 				       lockdep_sock_is_held(sk));
1276 	if (!md5sig)
1277 		return NULL;
1278 
1279 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1280 				 lockdep_sock_is_held(sk)) {
1281 		if (key->family != family)
1282 			continue;
1283 		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1284 		    key->l3index != l3index)
1285 			continue;
1286 		if (family == AF_INET) {
1287 			mask = inet_make_mask(key->prefixlen);
1288 			match = (key->addr.a4.s_addr & mask) ==
1289 				(addr->a4.s_addr & mask);
1290 #if IS_ENABLED(CONFIG_IPV6)
1291 		} else if (family == AF_INET6) {
1292 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1293 						  key->prefixlen);
1294 #endif
1295 		} else {
1296 			match = false;
1297 		}
1298 
1299 		if (match && better_md5_match(best_match, key))
1300 			best_match = key;
1301 	}
1302 	return best_match;
1303 }
1304 EXPORT_IPV6_MOD(__tcp_md5_do_lookup);
1305 
1306 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1307 						      const union tcp_md5_addr *addr,
1308 						      int family, u8 prefixlen,
1309 						      int l3index, u8 flags)
1310 {
1311 	const struct tcp_sock *tp = tcp_sk(sk);
1312 	struct tcp_md5sig_key *key;
1313 	unsigned int size = sizeof(struct in_addr);
1314 	const struct tcp_md5sig_info *md5sig;
1315 
1316 	/* caller either holds rcu_read_lock() or socket lock */
1317 	md5sig = rcu_dereference_check(tp->md5sig_info,
1318 				       lockdep_sock_is_held(sk));
1319 	if (!md5sig)
1320 		return NULL;
1321 #if IS_ENABLED(CONFIG_IPV6)
1322 	if (family == AF_INET6)
1323 		size = sizeof(struct in6_addr);
1324 #endif
1325 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1326 				 lockdep_sock_is_held(sk)) {
1327 		if (key->family != family)
1328 			continue;
1329 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1330 			continue;
1331 		if (key->l3index != l3index)
1332 			continue;
1333 		if (!memcmp(&key->addr, addr, size) &&
1334 		    key->prefixlen == prefixlen)
1335 			return key;
1336 	}
1337 	return NULL;
1338 }
1339 
1340 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1341 					 const struct sock *addr_sk)
1342 {
1343 	const union tcp_md5_addr *addr;
1344 	int l3index;
1345 
1346 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1347 						 addr_sk->sk_bound_dev_if);
1348 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1349 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1350 }
1351 EXPORT_IPV6_MOD(tcp_v4_md5_lookup);
1352 
1353 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1354 {
1355 	struct tcp_sock *tp = tcp_sk(sk);
1356 	struct tcp_md5sig_info *md5sig;
1357 
1358 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1359 	if (!md5sig)
1360 		return -ENOMEM;
1361 
1362 	sk_gso_disable(sk);
1363 	INIT_HLIST_HEAD(&md5sig->head);
1364 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1365 	return 0;
1366 }
1367 
1368 /* This can be called on a newly created socket, from other files */
1369 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1370 			    int family, u8 prefixlen, int l3index, u8 flags,
1371 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1372 {
1373 	/* Add Key to the list */
1374 	struct tcp_md5sig_key *key;
1375 	struct tcp_sock *tp = tcp_sk(sk);
1376 	struct tcp_md5sig_info *md5sig;
1377 
1378 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1379 	if (key) {
1380 		/* Pre-existing entry - just update that one.
1381 		 * Note that the key might be used concurrently.
1382 		 * data_race() is telling kcsan that we do not care of
1383 		 * key mismatches, since changing MD5 key on live flows
1384 		 * can lead to packet drops.
1385 		 */
1386 		data_race(memcpy(key->key, newkey, newkeylen));
1387 
1388 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1389 		 * Also note that a reader could catch new key->keylen value
1390 		 * but old key->key[], this is the reason we use __GFP_ZERO
1391 		 * at sock_kmalloc() time below these lines.
1392 		 */
1393 		WRITE_ONCE(key->keylen, newkeylen);
1394 
1395 		return 0;
1396 	}
1397 
1398 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1399 					   lockdep_sock_is_held(sk));
1400 
1401 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1402 	if (!key)
1403 		return -ENOMEM;
1404 
1405 	memcpy(key->key, newkey, newkeylen);
1406 	key->keylen = newkeylen;
1407 	key->family = family;
1408 	key->prefixlen = prefixlen;
1409 	key->l3index = l3index;
1410 	key->flags = flags;
1411 	memcpy(&key->addr, addr,
1412 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1413 								 sizeof(struct in_addr));
1414 	hlist_add_head_rcu(&key->node, &md5sig->head);
1415 	return 0;
1416 }
1417 
1418 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1419 		   int family, u8 prefixlen, int l3index, u8 flags,
1420 		   const u8 *newkey, u8 newkeylen)
1421 {
1422 	struct tcp_sock *tp = tcp_sk(sk);
1423 
1424 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1425 		if (tcp_md5_alloc_sigpool())
1426 			return -ENOMEM;
1427 
1428 		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1429 			tcp_md5_release_sigpool();
1430 			return -ENOMEM;
1431 		}
1432 
1433 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1434 			struct tcp_md5sig_info *md5sig;
1435 
1436 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1437 			rcu_assign_pointer(tp->md5sig_info, NULL);
1438 			kfree_rcu(md5sig, rcu);
1439 			tcp_md5_release_sigpool();
1440 			return -EUSERS;
1441 		}
1442 	}
1443 
1444 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1445 				newkey, newkeylen, GFP_KERNEL);
1446 }
1447 EXPORT_IPV6_MOD(tcp_md5_do_add);
1448 
1449 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1450 		     int family, u8 prefixlen, int l3index,
1451 		     struct tcp_md5sig_key *key)
1452 {
1453 	struct tcp_sock *tp = tcp_sk(sk);
1454 
1455 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1456 		tcp_md5_add_sigpool();
1457 
1458 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1459 			tcp_md5_release_sigpool();
1460 			return -ENOMEM;
1461 		}
1462 
1463 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1464 			struct tcp_md5sig_info *md5sig;
1465 
1466 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1467 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1468 			rcu_assign_pointer(tp->md5sig_info, NULL);
1469 			kfree_rcu(md5sig, rcu);
1470 			tcp_md5_release_sigpool();
1471 			return -EUSERS;
1472 		}
1473 	}
1474 
1475 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1476 				key->flags, key->key, key->keylen,
1477 				sk_gfp_mask(sk, GFP_ATOMIC));
1478 }
1479 EXPORT_IPV6_MOD(tcp_md5_key_copy);
1480 
1481 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1482 		   u8 prefixlen, int l3index, u8 flags)
1483 {
1484 	struct tcp_md5sig_key *key;
1485 
1486 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1487 	if (!key)
1488 		return -ENOENT;
1489 	hlist_del_rcu(&key->node);
1490 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1491 	kfree_rcu(key, rcu);
1492 	return 0;
1493 }
1494 EXPORT_IPV6_MOD(tcp_md5_do_del);
1495 
1496 void tcp_clear_md5_list(struct sock *sk)
1497 {
1498 	struct tcp_sock *tp = tcp_sk(sk);
1499 	struct tcp_md5sig_key *key;
1500 	struct hlist_node *n;
1501 	struct tcp_md5sig_info *md5sig;
1502 
1503 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1504 
1505 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1506 		hlist_del_rcu(&key->node);
1507 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1508 		kfree_rcu(key, rcu);
1509 	}
1510 }
1511 
1512 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1513 				 sockptr_t optval, int optlen)
1514 {
1515 	struct tcp_md5sig cmd;
1516 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1517 	const union tcp_md5_addr *addr;
1518 	u8 prefixlen = 32;
1519 	int l3index = 0;
1520 	bool l3flag;
1521 	u8 flags;
1522 
1523 	if (optlen < sizeof(cmd))
1524 		return -EINVAL;
1525 
1526 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1527 		return -EFAULT;
1528 
1529 	if (sin->sin_family != AF_INET)
1530 		return -EINVAL;
1531 
1532 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1533 	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1534 
1535 	if (optname == TCP_MD5SIG_EXT &&
1536 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1537 		prefixlen = cmd.tcpm_prefixlen;
1538 		if (prefixlen > 32)
1539 			return -EINVAL;
1540 	}
1541 
1542 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1543 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1544 		struct net_device *dev;
1545 
1546 		rcu_read_lock();
1547 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1548 		if (dev && netif_is_l3_master(dev))
1549 			l3index = dev->ifindex;
1550 
1551 		rcu_read_unlock();
1552 
1553 		/* ok to reference set/not set outside of rcu;
1554 		 * right now device MUST be an L3 master
1555 		 */
1556 		if (!dev || !l3index)
1557 			return -EINVAL;
1558 	}
1559 
1560 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1561 
1562 	if (!cmd.tcpm_keylen)
1563 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1564 
1565 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1566 		return -EINVAL;
1567 
1568 	/* Don't allow keys for peers that have a matching TCP-AO key.
1569 	 * See the comment in tcp_ao_add_cmd()
1570 	 */
1571 	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1572 		return -EKEYREJECTED;
1573 
1574 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1575 			      cmd.tcpm_key, cmd.tcpm_keylen);
1576 }
1577 
1578 static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1579 				   __be32 daddr, __be32 saddr,
1580 				   const struct tcphdr *th, int nbytes)
1581 {
1582 	struct tcp4_pseudohdr *bp;
1583 	struct scatterlist sg;
1584 	struct tcphdr *_th;
1585 
1586 	bp = hp->scratch;
1587 	bp->saddr = saddr;
1588 	bp->daddr = daddr;
1589 	bp->pad = 0;
1590 	bp->protocol = IPPROTO_TCP;
1591 	bp->len = cpu_to_be16(nbytes);
1592 
1593 	_th = (struct tcphdr *)(bp + 1);
1594 	memcpy(_th, th, sizeof(*th));
1595 	_th->check = 0;
1596 
1597 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1598 	ahash_request_set_crypt(hp->req, &sg, NULL,
1599 				sizeof(*bp) + sizeof(*th));
1600 	return crypto_ahash_update(hp->req);
1601 }
1602 
1603 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1604 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1605 {
1606 	struct tcp_sigpool hp;
1607 
1608 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1609 		goto clear_hash_nostart;
1610 
1611 	if (crypto_ahash_init(hp.req))
1612 		goto clear_hash;
1613 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1614 		goto clear_hash;
1615 	if (tcp_md5_hash_key(&hp, key))
1616 		goto clear_hash;
1617 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1618 	if (crypto_ahash_final(hp.req))
1619 		goto clear_hash;
1620 
1621 	tcp_sigpool_end(&hp);
1622 	return 0;
1623 
1624 clear_hash:
1625 	tcp_sigpool_end(&hp);
1626 clear_hash_nostart:
1627 	memset(md5_hash, 0, 16);
1628 	return 1;
1629 }
1630 
1631 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1632 			const struct sock *sk,
1633 			const struct sk_buff *skb)
1634 {
1635 	const struct tcphdr *th = tcp_hdr(skb);
1636 	struct tcp_sigpool hp;
1637 	__be32 saddr, daddr;
1638 
1639 	if (sk) { /* valid for establish/request sockets */
1640 		saddr = sk->sk_rcv_saddr;
1641 		daddr = sk->sk_daddr;
1642 	} else {
1643 		const struct iphdr *iph = ip_hdr(skb);
1644 		saddr = iph->saddr;
1645 		daddr = iph->daddr;
1646 	}
1647 
1648 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1649 		goto clear_hash_nostart;
1650 
1651 	if (crypto_ahash_init(hp.req))
1652 		goto clear_hash;
1653 
1654 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
1655 		goto clear_hash;
1656 	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1657 		goto clear_hash;
1658 	if (tcp_md5_hash_key(&hp, key))
1659 		goto clear_hash;
1660 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1661 	if (crypto_ahash_final(hp.req))
1662 		goto clear_hash;
1663 
1664 	tcp_sigpool_end(&hp);
1665 	return 0;
1666 
1667 clear_hash:
1668 	tcp_sigpool_end(&hp);
1669 clear_hash_nostart:
1670 	memset(md5_hash, 0, 16);
1671 	return 1;
1672 }
1673 EXPORT_IPV6_MOD(tcp_v4_md5_hash_skb);
1674 
1675 #endif
1676 
1677 static void tcp_v4_init_req(struct request_sock *req,
1678 			    const struct sock *sk_listener,
1679 			    struct sk_buff *skb)
1680 {
1681 	struct inet_request_sock *ireq = inet_rsk(req);
1682 	struct net *net = sock_net(sk_listener);
1683 
1684 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1685 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1686 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1687 }
1688 
1689 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1690 					  struct sk_buff *skb,
1691 					  struct flowi *fl,
1692 					  struct request_sock *req,
1693 					  u32 tw_isn)
1694 {
1695 	tcp_v4_init_req(req, sk, skb);
1696 
1697 	if (security_inet_conn_request(sk, skb, req))
1698 		return NULL;
1699 
1700 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1701 }
1702 
1703 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1704 	.family		=	PF_INET,
1705 	.obj_size	=	sizeof(struct tcp_request_sock),
1706 	.rtx_syn_ack	=	tcp_rtx_synack,
1707 	.send_ack	=	tcp_v4_reqsk_send_ack,
1708 	.destructor	=	tcp_v4_reqsk_destructor,
1709 	.send_reset	=	tcp_v4_send_reset,
1710 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1711 };
1712 
1713 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1714 	.mss_clamp	=	TCP_MSS_DEFAULT,
1715 #ifdef CONFIG_TCP_MD5SIG
1716 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1717 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1718 #endif
1719 #ifdef CONFIG_TCP_AO
1720 	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1721 	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1722 	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1723 #endif
1724 #ifdef CONFIG_SYN_COOKIES
1725 	.cookie_init_seq =	cookie_v4_init_sequence,
1726 #endif
1727 	.route_req	=	tcp_v4_route_req,
1728 	.init_seq	=	tcp_v4_init_seq,
1729 	.init_ts_off	=	tcp_v4_init_ts_off,
1730 	.send_synack	=	tcp_v4_send_synack,
1731 };
1732 
1733 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1734 {
1735 	/* Never answer to SYNs send to broadcast or multicast */
1736 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1737 		goto drop;
1738 
1739 	return tcp_conn_request(&tcp_request_sock_ops,
1740 				&tcp_request_sock_ipv4_ops, sk, skb);
1741 
1742 drop:
1743 	tcp_listendrop(sk);
1744 	return 0;
1745 }
1746 EXPORT_IPV6_MOD(tcp_v4_conn_request);
1747 
1748 
1749 /*
1750  * The three way handshake has completed - we got a valid synack -
1751  * now create the new socket.
1752  */
1753 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1754 				  struct request_sock *req,
1755 				  struct dst_entry *dst,
1756 				  struct request_sock *req_unhash,
1757 				  bool *own_req)
1758 {
1759 	struct inet_request_sock *ireq;
1760 	bool found_dup_sk = false;
1761 	struct inet_sock *newinet;
1762 	struct tcp_sock *newtp;
1763 	struct sock *newsk;
1764 #ifdef CONFIG_TCP_MD5SIG
1765 	const union tcp_md5_addr *addr;
1766 	struct tcp_md5sig_key *key;
1767 	int l3index;
1768 #endif
1769 	struct ip_options_rcu *inet_opt;
1770 
1771 	if (sk_acceptq_is_full(sk))
1772 		goto exit_overflow;
1773 
1774 	newsk = tcp_create_openreq_child(sk, req, skb);
1775 	if (!newsk)
1776 		goto exit_nonewsk;
1777 
1778 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1779 	inet_sk_rx_dst_set(newsk, skb);
1780 
1781 	newtp		      = tcp_sk(newsk);
1782 	newinet		      = inet_sk(newsk);
1783 	ireq		      = inet_rsk(req);
1784 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1785 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1786 	newinet->mc_index     = inet_iif(skb);
1787 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1788 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1789 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1790 	if (inet_opt)
1791 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1792 	atomic_set(&newinet->inet_id, get_random_u16());
1793 
1794 	/* Set ToS of the new socket based upon the value of incoming SYN.
1795 	 * ECT bits are set later in tcp_init_transfer().
1796 	 */
1797 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1798 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1799 
1800 	if (!dst) {
1801 		dst = inet_csk_route_child_sock(sk, newsk, req);
1802 		if (!dst)
1803 			goto put_and_exit;
1804 	} else {
1805 		/* syncookie case : see end of cookie_v4_check() */
1806 	}
1807 	sk_setup_caps(newsk, dst);
1808 
1809 	tcp_ca_openreq_child(newsk, dst);
1810 
1811 	tcp_sync_mss(newsk, dst_mtu(dst));
1812 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1813 
1814 	tcp_initialize_rcv_mss(newsk);
1815 
1816 #ifdef CONFIG_TCP_MD5SIG
1817 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1818 	/* Copy over the MD5 key from the original socket */
1819 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1820 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1821 	if (key && !tcp_rsk_used_ao(req)) {
1822 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1823 			goto put_and_exit;
1824 		sk_gso_disable(newsk);
1825 	}
1826 #endif
1827 #ifdef CONFIG_TCP_AO
1828 	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1829 		goto put_and_exit; /* OOM, release back memory */
1830 #endif
1831 
1832 	if (__inet_inherit_port(sk, newsk) < 0)
1833 		goto put_and_exit;
1834 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1835 				       &found_dup_sk);
1836 	if (likely(*own_req)) {
1837 		tcp_move_syn(newtp, req);
1838 		ireq->ireq_opt = NULL;
1839 	} else {
1840 		newinet->inet_opt = NULL;
1841 
1842 		if (!req_unhash && found_dup_sk) {
1843 			/* This code path should only be executed in the
1844 			 * syncookie case only
1845 			 */
1846 			bh_unlock_sock(newsk);
1847 			sock_put(newsk);
1848 			newsk = NULL;
1849 		}
1850 	}
1851 	return newsk;
1852 
1853 exit_overflow:
1854 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1855 exit_nonewsk:
1856 	dst_release(dst);
1857 exit:
1858 	tcp_listendrop(sk);
1859 	return NULL;
1860 put_and_exit:
1861 	newinet->inet_opt = NULL;
1862 	inet_csk_prepare_forced_close(newsk);
1863 	tcp_done(newsk);
1864 	goto exit;
1865 }
1866 EXPORT_IPV6_MOD(tcp_v4_syn_recv_sock);
1867 
1868 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1869 {
1870 #ifdef CONFIG_SYN_COOKIES
1871 	const struct tcphdr *th = tcp_hdr(skb);
1872 
1873 	if (!th->syn)
1874 		sk = cookie_v4_check(sk, skb);
1875 #endif
1876 	return sk;
1877 }
1878 
1879 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1880 			 struct tcphdr *th, u32 *cookie)
1881 {
1882 	u16 mss = 0;
1883 #ifdef CONFIG_SYN_COOKIES
1884 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1885 				    &tcp_request_sock_ipv4_ops, sk, th);
1886 	if (mss) {
1887 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1888 		tcp_synq_overflow(sk);
1889 	}
1890 #endif
1891 	return mss;
1892 }
1893 
1894 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1895 							   u32));
1896 /* The socket must have it's spinlock held when we get
1897  * here, unless it is a TCP_LISTEN socket.
1898  *
1899  * We have a potential double-lock case here, so even when
1900  * doing backlog processing we use the BH locking scheme.
1901  * This is because we cannot sleep with the original spinlock
1902  * held.
1903  */
1904 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1905 {
1906 	enum skb_drop_reason reason;
1907 	struct sock *rsk;
1908 
1909 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1910 		struct dst_entry *dst;
1911 
1912 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1913 						lockdep_sock_is_held(sk));
1914 
1915 		sock_rps_save_rxhash(sk, skb);
1916 		sk_mark_napi_id(sk, skb);
1917 		if (dst) {
1918 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1919 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1920 					     dst, 0)) {
1921 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1922 				dst_release(dst);
1923 			}
1924 		}
1925 		tcp_rcv_established(sk, skb);
1926 		return 0;
1927 	}
1928 
1929 	if (tcp_checksum_complete(skb))
1930 		goto csum_err;
1931 
1932 	if (sk->sk_state == TCP_LISTEN) {
1933 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1934 
1935 		if (!nsk)
1936 			return 0;
1937 		if (nsk != sk) {
1938 			reason = tcp_child_process(sk, nsk, skb);
1939 			if (reason) {
1940 				rsk = nsk;
1941 				goto reset;
1942 			}
1943 			return 0;
1944 		}
1945 	} else
1946 		sock_rps_save_rxhash(sk, skb);
1947 
1948 	reason = tcp_rcv_state_process(sk, skb);
1949 	if (reason) {
1950 		rsk = sk;
1951 		goto reset;
1952 	}
1953 	return 0;
1954 
1955 reset:
1956 	tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason));
1957 discard:
1958 	sk_skb_reason_drop(sk, skb, reason);
1959 	/* Be careful here. If this function gets more complicated and
1960 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1961 	 * might be destroyed here. This current version compiles correctly,
1962 	 * but you have been warned.
1963 	 */
1964 	return 0;
1965 
1966 csum_err:
1967 	reason = SKB_DROP_REASON_TCP_CSUM;
1968 	trace_tcp_bad_csum(skb);
1969 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1970 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1971 	goto discard;
1972 }
1973 EXPORT_SYMBOL(tcp_v4_do_rcv);
1974 
1975 int tcp_v4_early_demux(struct sk_buff *skb)
1976 {
1977 	struct net *net = dev_net_rcu(skb->dev);
1978 	const struct iphdr *iph;
1979 	const struct tcphdr *th;
1980 	struct sock *sk;
1981 
1982 	if (skb->pkt_type != PACKET_HOST)
1983 		return 0;
1984 
1985 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1986 		return 0;
1987 
1988 	iph = ip_hdr(skb);
1989 	th = tcp_hdr(skb);
1990 
1991 	if (th->doff < sizeof(struct tcphdr) / 4)
1992 		return 0;
1993 
1994 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1995 				       iph->saddr, th->source,
1996 				       iph->daddr, ntohs(th->dest),
1997 				       skb->skb_iif, inet_sdif(skb));
1998 	if (sk) {
1999 		skb->sk = sk;
2000 		skb->destructor = sock_edemux;
2001 		if (sk_fullsock(sk)) {
2002 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
2003 
2004 			if (dst)
2005 				dst = dst_check(dst, 0);
2006 			if (dst &&
2007 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
2008 				skb_dst_set_noref(skb, dst);
2009 		}
2010 	}
2011 	return 0;
2012 }
2013 
2014 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
2015 		     enum skb_drop_reason *reason)
2016 {
2017 	u32 tail_gso_size, tail_gso_segs;
2018 	struct skb_shared_info *shinfo;
2019 	const struct tcphdr *th;
2020 	struct tcphdr *thtail;
2021 	struct sk_buff *tail;
2022 	unsigned int hdrlen;
2023 	bool fragstolen;
2024 	u32 gso_segs;
2025 	u32 gso_size;
2026 	u64 limit;
2027 	int delta;
2028 
2029 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2030 	 * we can fix skb->truesize to its real value to avoid future drops.
2031 	 * This is valid because skb is not yet charged to the socket.
2032 	 * It has been noticed pure SACK packets were sometimes dropped
2033 	 * (if cooked by drivers without copybreak feature).
2034 	 */
2035 	skb_condense(skb);
2036 
2037 	tcp_cleanup_skb(skb);
2038 
2039 	if (unlikely(tcp_checksum_complete(skb))) {
2040 		bh_unlock_sock(sk);
2041 		trace_tcp_bad_csum(skb);
2042 		*reason = SKB_DROP_REASON_TCP_CSUM;
2043 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2044 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2045 		return true;
2046 	}
2047 
2048 	/* Attempt coalescing to last skb in backlog, even if we are
2049 	 * above the limits.
2050 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2051 	 */
2052 	th = (const struct tcphdr *)skb->data;
2053 	hdrlen = th->doff * 4;
2054 
2055 	tail = sk->sk_backlog.tail;
2056 	if (!tail)
2057 		goto no_coalesce;
2058 	thtail = (struct tcphdr *)tail->data;
2059 
2060 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2061 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2062 	    ((TCP_SKB_CB(tail)->tcp_flags |
2063 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2064 	    !((TCP_SKB_CB(tail)->tcp_flags &
2065 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2066 	    ((TCP_SKB_CB(tail)->tcp_flags ^
2067 	      TCP_SKB_CB(skb)->tcp_flags) &
2068 	     (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)) ||
2069 	    !tcp_skb_can_collapse_rx(tail, skb) ||
2070 	    thtail->doff != th->doff ||
2071 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2072 		goto no_coalesce;
2073 
2074 	__skb_pull(skb, hdrlen);
2075 
2076 	shinfo = skb_shinfo(skb);
2077 	gso_size = shinfo->gso_size ?: skb->len;
2078 	gso_segs = shinfo->gso_segs ?: 1;
2079 
2080 	shinfo = skb_shinfo(tail);
2081 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2082 	tail_gso_segs = shinfo->gso_segs ?: 1;
2083 
2084 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2085 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2086 
2087 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2088 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2089 			thtail->window = th->window;
2090 		}
2091 
2092 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2093 		 * thtail->fin, so that the fast path in tcp_rcv_established()
2094 		 * is not entered if we append a packet with a FIN.
2095 		 * SYN, RST, URG are not present.
2096 		 * ACK is set on both packets.
2097 		 * PSH : we do not really care in TCP stack,
2098 		 *       at least for 'GRO' packets.
2099 		 */
2100 		thtail->fin |= th->fin;
2101 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2102 
2103 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2104 			TCP_SKB_CB(tail)->has_rxtstamp = true;
2105 			tail->tstamp = skb->tstamp;
2106 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2107 		}
2108 
2109 		/* Not as strict as GRO. We only need to carry mss max value */
2110 		shinfo->gso_size = max(gso_size, tail_gso_size);
2111 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2112 
2113 		sk->sk_backlog.len += delta;
2114 		__NET_INC_STATS(sock_net(sk),
2115 				LINUX_MIB_TCPBACKLOGCOALESCE);
2116 		kfree_skb_partial(skb, fragstolen);
2117 		return false;
2118 	}
2119 	__skb_push(skb, hdrlen);
2120 
2121 no_coalesce:
2122 	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2123 	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2124 	 * sk_rcvbuf in normal conditions.
2125 	 */
2126 	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2127 
2128 	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2129 
2130 	/* Only socket owner can try to collapse/prune rx queues
2131 	 * to reduce memory overhead, so add a little headroom here.
2132 	 * Few sockets backlog are possibly concurrently non empty.
2133 	 */
2134 	limit += 64 * 1024;
2135 
2136 	limit = min_t(u64, limit, UINT_MAX);
2137 
2138 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2139 		bh_unlock_sock(sk);
2140 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2141 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2142 		return true;
2143 	}
2144 	return false;
2145 }
2146 EXPORT_IPV6_MOD(tcp_add_backlog);
2147 
2148 int tcp_filter(struct sock *sk, struct sk_buff *skb)
2149 {
2150 	struct tcphdr *th = (struct tcphdr *)skb->data;
2151 
2152 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2153 }
2154 EXPORT_IPV6_MOD(tcp_filter);
2155 
2156 static void tcp_v4_restore_cb(struct sk_buff *skb)
2157 {
2158 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2159 		sizeof(struct inet_skb_parm));
2160 }
2161 
2162 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2163 			   const struct tcphdr *th)
2164 {
2165 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2166 	 * barrier() makes sure compiler wont play fool^Waliasing games.
2167 	 */
2168 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2169 		sizeof(struct inet_skb_parm));
2170 	barrier();
2171 
2172 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2173 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2174 				    skb->len - th->doff * 4);
2175 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2176 	TCP_SKB_CB(skb)->tcp_flags = tcp_flags_ntohs(th);
2177 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2178 	TCP_SKB_CB(skb)->sacked	 = 0;
2179 	TCP_SKB_CB(skb)->has_rxtstamp =
2180 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2181 }
2182 
2183 /*
2184  *	From tcp_input.c
2185  */
2186 
2187 int tcp_v4_rcv(struct sk_buff *skb)
2188 {
2189 	struct net *net = dev_net_rcu(skb->dev);
2190 	enum skb_drop_reason drop_reason;
2191 	enum tcp_tw_status tw_status;
2192 	int sdif = inet_sdif(skb);
2193 	int dif = inet_iif(skb);
2194 	const struct iphdr *iph;
2195 	const struct tcphdr *th;
2196 	struct sock *sk = NULL;
2197 	bool refcounted;
2198 	int ret;
2199 	u32 isn;
2200 
2201 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2202 	if (skb->pkt_type != PACKET_HOST)
2203 		goto discard_it;
2204 
2205 	/* Count it even if it's bad */
2206 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2207 
2208 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2209 		goto discard_it;
2210 
2211 	th = (const struct tcphdr *)skb->data;
2212 
2213 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2214 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2215 		goto bad_packet;
2216 	}
2217 	if (!pskb_may_pull(skb, th->doff * 4))
2218 		goto discard_it;
2219 
2220 	/* An explanation is required here, I think.
2221 	 * Packet length and doff are validated by header prediction,
2222 	 * provided case of th->doff==0 is eliminated.
2223 	 * So, we defer the checks. */
2224 
2225 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2226 		goto csum_error;
2227 
2228 	th = (const struct tcphdr *)skb->data;
2229 	iph = ip_hdr(skb);
2230 lookup:
2231 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2232 			       skb, __tcp_hdrlen(th), th->source,
2233 			       th->dest, sdif, &refcounted);
2234 	if (!sk)
2235 		goto no_tcp_socket;
2236 
2237 	if (sk->sk_state == TCP_TIME_WAIT)
2238 		goto do_time_wait;
2239 
2240 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2241 		struct request_sock *req = inet_reqsk(sk);
2242 		bool req_stolen = false;
2243 		struct sock *nsk;
2244 
2245 		sk = req->rsk_listener;
2246 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2247 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2248 		else
2249 			drop_reason = tcp_inbound_hash(sk, req, skb,
2250 						       &iph->saddr, &iph->daddr,
2251 						       AF_INET, dif, sdif);
2252 		if (unlikely(drop_reason)) {
2253 			sk_drops_add(sk, skb);
2254 			reqsk_put(req);
2255 			goto discard_it;
2256 		}
2257 		if (tcp_checksum_complete(skb)) {
2258 			reqsk_put(req);
2259 			goto csum_error;
2260 		}
2261 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2262 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2263 			if (!nsk) {
2264 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2265 				goto lookup;
2266 			}
2267 			sk = nsk;
2268 			/* reuseport_migrate_sock() has already held one sk_refcnt
2269 			 * before returning.
2270 			 */
2271 		} else {
2272 			/* We own a reference on the listener, increase it again
2273 			 * as we might lose it too soon.
2274 			 */
2275 			sock_hold(sk);
2276 		}
2277 		refcounted = true;
2278 		nsk = NULL;
2279 		if (!tcp_filter(sk, skb)) {
2280 			th = (const struct tcphdr *)skb->data;
2281 			iph = ip_hdr(skb);
2282 			tcp_v4_fill_cb(skb, iph, th);
2283 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen,
2284 					    &drop_reason);
2285 		} else {
2286 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2287 		}
2288 		if (!nsk) {
2289 			reqsk_put(req);
2290 			if (req_stolen) {
2291 				/* Another cpu got exclusive access to req
2292 				 * and created a full blown socket.
2293 				 * Try to feed this packet to this socket
2294 				 * instead of discarding it.
2295 				 */
2296 				tcp_v4_restore_cb(skb);
2297 				sock_put(sk);
2298 				goto lookup;
2299 			}
2300 			goto discard_and_relse;
2301 		}
2302 		nf_reset_ct(skb);
2303 		if (nsk == sk) {
2304 			reqsk_put(req);
2305 			tcp_v4_restore_cb(skb);
2306 		} else {
2307 			drop_reason = tcp_child_process(sk, nsk, skb);
2308 			if (drop_reason) {
2309 				enum sk_rst_reason rst_reason;
2310 
2311 				rst_reason = sk_rst_convert_drop_reason(drop_reason);
2312 				tcp_v4_send_reset(nsk, skb, rst_reason);
2313 				goto discard_and_relse;
2314 			}
2315 			sock_put(sk);
2316 			return 0;
2317 		}
2318 	}
2319 
2320 process:
2321 	if (static_branch_unlikely(&ip4_min_ttl)) {
2322 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2323 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2324 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2325 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2326 			goto discard_and_relse;
2327 		}
2328 	}
2329 
2330 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2331 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2332 		goto discard_and_relse;
2333 	}
2334 
2335 	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2336 				       AF_INET, dif, sdif);
2337 	if (drop_reason)
2338 		goto discard_and_relse;
2339 
2340 	nf_reset_ct(skb);
2341 
2342 	if (tcp_filter(sk, skb)) {
2343 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2344 		goto discard_and_relse;
2345 	}
2346 	th = (const struct tcphdr *)skb->data;
2347 	iph = ip_hdr(skb);
2348 	tcp_v4_fill_cb(skb, iph, th);
2349 
2350 	skb->dev = NULL;
2351 
2352 	if (sk->sk_state == TCP_LISTEN) {
2353 		ret = tcp_v4_do_rcv(sk, skb);
2354 		goto put_and_return;
2355 	}
2356 
2357 	sk_incoming_cpu_update(sk);
2358 
2359 	bh_lock_sock_nested(sk);
2360 	tcp_segs_in(tcp_sk(sk), skb);
2361 	ret = 0;
2362 	if (!sock_owned_by_user(sk)) {
2363 		ret = tcp_v4_do_rcv(sk, skb);
2364 	} else {
2365 		if (tcp_add_backlog(sk, skb, &drop_reason))
2366 			goto discard_and_relse;
2367 	}
2368 	bh_unlock_sock(sk);
2369 
2370 put_and_return:
2371 	if (refcounted)
2372 		sock_put(sk);
2373 
2374 	return ret;
2375 
2376 no_tcp_socket:
2377 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2378 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2379 		goto discard_it;
2380 
2381 	tcp_v4_fill_cb(skb, iph, th);
2382 
2383 	if (tcp_checksum_complete(skb)) {
2384 csum_error:
2385 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2386 		trace_tcp_bad_csum(skb);
2387 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2388 bad_packet:
2389 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2390 	} else {
2391 		tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason));
2392 	}
2393 
2394 discard_it:
2395 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2396 	/* Discard frame. */
2397 	sk_skb_reason_drop(sk, skb, drop_reason);
2398 	return 0;
2399 
2400 discard_and_relse:
2401 	sk_drops_add(sk, skb);
2402 	if (refcounted)
2403 		sock_put(sk);
2404 	goto discard_it;
2405 
2406 do_time_wait:
2407 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2408 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2409 		inet_twsk_put(inet_twsk(sk));
2410 		goto discard_it;
2411 	}
2412 
2413 	tcp_v4_fill_cb(skb, iph, th);
2414 
2415 	if (tcp_checksum_complete(skb)) {
2416 		inet_twsk_put(inet_twsk(sk));
2417 		goto csum_error;
2418 	}
2419 
2420 	tw_status = tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn,
2421 					       &drop_reason);
2422 	switch (tw_status) {
2423 	case TCP_TW_SYN: {
2424 		struct sock *sk2 = inet_lookup_listener(net,
2425 							net->ipv4.tcp_death_row.hashinfo,
2426 							skb, __tcp_hdrlen(th),
2427 							iph->saddr, th->source,
2428 							iph->daddr, th->dest,
2429 							inet_iif(skb),
2430 							sdif);
2431 		if (sk2) {
2432 			inet_twsk_deschedule_put(inet_twsk(sk));
2433 			sk = sk2;
2434 			tcp_v4_restore_cb(skb);
2435 			refcounted = false;
2436 			__this_cpu_write(tcp_tw_isn, isn);
2437 			goto process;
2438 		}
2439 	}
2440 		/* to ACK */
2441 		fallthrough;
2442 	case TCP_TW_ACK:
2443 	case TCP_TW_ACK_OOW:
2444 		tcp_v4_timewait_ack(sk, skb, tw_status);
2445 		break;
2446 	case TCP_TW_RST:
2447 		tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET);
2448 		inet_twsk_deschedule_put(inet_twsk(sk));
2449 		goto discard_it;
2450 	case TCP_TW_SUCCESS:;
2451 	}
2452 	goto discard_it;
2453 }
2454 
2455 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2456 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2457 	.twsk_destructor= tcp_twsk_destructor,
2458 };
2459 
2460 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2461 {
2462 	struct dst_entry *dst = skb_dst(skb);
2463 
2464 	if (dst && dst_hold_safe(dst)) {
2465 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2466 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2467 	}
2468 }
2469 EXPORT_IPV6_MOD(inet_sk_rx_dst_set);
2470 
2471 const struct inet_connection_sock_af_ops ipv4_specific = {
2472 	.queue_xmit	   = ip_queue_xmit,
2473 	.send_check	   = tcp_v4_send_check,
2474 	.rebuild_header	   = inet_sk_rebuild_header,
2475 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2476 	.conn_request	   = tcp_v4_conn_request,
2477 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2478 	.net_header_len	   = sizeof(struct iphdr),
2479 	.setsockopt	   = ip_setsockopt,
2480 	.getsockopt	   = ip_getsockopt,
2481 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2482 };
2483 EXPORT_IPV6_MOD(ipv4_specific);
2484 
2485 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2486 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2487 #ifdef CONFIG_TCP_MD5SIG
2488 	.md5_lookup		= tcp_v4_md5_lookup,
2489 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2490 	.md5_parse		= tcp_v4_parse_md5_keys,
2491 #endif
2492 #ifdef CONFIG_TCP_AO
2493 	.ao_lookup		= tcp_v4_ao_lookup,
2494 	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2495 	.ao_parse		= tcp_v4_parse_ao,
2496 	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2497 #endif
2498 };
2499 #endif
2500 
2501 /* NOTE: A lot of things set to zero explicitly by call to
2502  *       sk_alloc() so need not be done here.
2503  */
2504 static int tcp_v4_init_sock(struct sock *sk)
2505 {
2506 	struct inet_connection_sock *icsk = inet_csk(sk);
2507 
2508 	tcp_init_sock(sk);
2509 
2510 	icsk->icsk_af_ops = &ipv4_specific;
2511 
2512 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2513 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2514 #endif
2515 
2516 	return 0;
2517 }
2518 
2519 #ifdef CONFIG_TCP_MD5SIG
2520 static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2521 {
2522 	struct tcp_md5sig_info *md5sig;
2523 
2524 	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2525 	kfree(md5sig);
2526 	static_branch_slow_dec_deferred(&tcp_md5_needed);
2527 	tcp_md5_release_sigpool();
2528 }
2529 #endif
2530 
2531 static void tcp_release_user_frags(struct sock *sk)
2532 {
2533 #ifdef CONFIG_PAGE_POOL
2534 	unsigned long index;
2535 	void *netmem;
2536 
2537 	xa_for_each(&sk->sk_user_frags, index, netmem)
2538 		WARN_ON_ONCE(!napi_pp_put_page((__force netmem_ref)netmem));
2539 #endif
2540 }
2541 
2542 void tcp_v4_destroy_sock(struct sock *sk)
2543 {
2544 	struct tcp_sock *tp = tcp_sk(sk);
2545 
2546 	tcp_release_user_frags(sk);
2547 
2548 	xa_destroy(&sk->sk_user_frags);
2549 
2550 	trace_tcp_destroy_sock(sk);
2551 
2552 	tcp_clear_xmit_timers(sk);
2553 
2554 	tcp_cleanup_congestion_control(sk);
2555 
2556 	tcp_cleanup_ulp(sk);
2557 
2558 	/* Cleanup up the write buffer. */
2559 	tcp_write_queue_purge(sk);
2560 
2561 	/* Check if we want to disable active TFO */
2562 	tcp_fastopen_active_disable_ofo_check(sk);
2563 
2564 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2565 	skb_rbtree_purge(&tp->out_of_order_queue);
2566 
2567 #ifdef CONFIG_TCP_MD5SIG
2568 	/* Clean up the MD5 key list, if any */
2569 	if (tp->md5sig_info) {
2570 		struct tcp_md5sig_info *md5sig;
2571 
2572 		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2573 		tcp_clear_md5_list(sk);
2574 		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2575 		rcu_assign_pointer(tp->md5sig_info, NULL);
2576 	}
2577 #endif
2578 	tcp_ao_destroy_sock(sk, false);
2579 
2580 	/* Clean up a referenced TCP bind bucket. */
2581 	if (inet_csk(sk)->icsk_bind_hash)
2582 		inet_put_port(sk);
2583 
2584 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2585 
2586 	/* If socket is aborted during connect operation */
2587 	tcp_free_fastopen_req(tp);
2588 	tcp_fastopen_destroy_cipher(sk);
2589 	tcp_saved_syn_free(tp);
2590 
2591 	sk_sockets_allocated_dec(sk);
2592 }
2593 EXPORT_IPV6_MOD(tcp_v4_destroy_sock);
2594 
2595 #ifdef CONFIG_PROC_FS
2596 /* Proc filesystem TCP sock list dumping. */
2597 
2598 static unsigned short seq_file_family(const struct seq_file *seq);
2599 
2600 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2601 {
2602 	unsigned short family = seq_file_family(seq);
2603 
2604 	/* AF_UNSPEC is used as a match all */
2605 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2606 		net_eq(sock_net(sk), seq_file_net(seq)));
2607 }
2608 
2609 /* Find a non empty bucket (starting from st->bucket)
2610  * and return the first sk from it.
2611  */
2612 static void *listening_get_first(struct seq_file *seq)
2613 {
2614 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2615 	struct tcp_iter_state *st = seq->private;
2616 
2617 	st->offset = 0;
2618 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2619 		struct inet_listen_hashbucket *ilb2;
2620 		struct hlist_nulls_node *node;
2621 		struct sock *sk;
2622 
2623 		ilb2 = &hinfo->lhash2[st->bucket];
2624 		if (hlist_nulls_empty(&ilb2->nulls_head))
2625 			continue;
2626 
2627 		spin_lock(&ilb2->lock);
2628 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2629 			if (seq_sk_match(seq, sk))
2630 				return sk;
2631 		}
2632 		spin_unlock(&ilb2->lock);
2633 	}
2634 
2635 	return NULL;
2636 }
2637 
2638 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2639  * If "cur" is the last one in the st->bucket,
2640  * call listening_get_first() to return the first sk of the next
2641  * non empty bucket.
2642  */
2643 static void *listening_get_next(struct seq_file *seq, void *cur)
2644 {
2645 	struct tcp_iter_state *st = seq->private;
2646 	struct inet_listen_hashbucket *ilb2;
2647 	struct hlist_nulls_node *node;
2648 	struct inet_hashinfo *hinfo;
2649 	struct sock *sk = cur;
2650 
2651 	++st->num;
2652 	++st->offset;
2653 
2654 	sk = sk_nulls_next(sk);
2655 	sk_nulls_for_each_from(sk, node) {
2656 		if (seq_sk_match(seq, sk))
2657 			return sk;
2658 	}
2659 
2660 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2661 	ilb2 = &hinfo->lhash2[st->bucket];
2662 	spin_unlock(&ilb2->lock);
2663 	++st->bucket;
2664 	return listening_get_first(seq);
2665 }
2666 
2667 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2668 {
2669 	struct tcp_iter_state *st = seq->private;
2670 	void *rc;
2671 
2672 	st->bucket = 0;
2673 	st->offset = 0;
2674 	rc = listening_get_first(seq);
2675 
2676 	while (rc && *pos) {
2677 		rc = listening_get_next(seq, rc);
2678 		--*pos;
2679 	}
2680 	return rc;
2681 }
2682 
2683 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2684 				const struct tcp_iter_state *st)
2685 {
2686 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2687 }
2688 
2689 /*
2690  * Get first established socket starting from bucket given in st->bucket.
2691  * If st->bucket is zero, the very first socket in the hash is returned.
2692  */
2693 static void *established_get_first(struct seq_file *seq)
2694 {
2695 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2696 	struct tcp_iter_state *st = seq->private;
2697 
2698 	st->offset = 0;
2699 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2700 		struct sock *sk;
2701 		struct hlist_nulls_node *node;
2702 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2703 
2704 		cond_resched();
2705 
2706 		/* Lockless fast path for the common case of empty buckets */
2707 		if (empty_bucket(hinfo, st))
2708 			continue;
2709 
2710 		spin_lock_bh(lock);
2711 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2712 			if (seq_sk_match(seq, sk))
2713 				return sk;
2714 		}
2715 		spin_unlock_bh(lock);
2716 	}
2717 
2718 	return NULL;
2719 }
2720 
2721 static void *established_get_next(struct seq_file *seq, void *cur)
2722 {
2723 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2724 	struct tcp_iter_state *st = seq->private;
2725 	struct hlist_nulls_node *node;
2726 	struct sock *sk = cur;
2727 
2728 	++st->num;
2729 	++st->offset;
2730 
2731 	sk = sk_nulls_next(sk);
2732 
2733 	sk_nulls_for_each_from(sk, node) {
2734 		if (seq_sk_match(seq, sk))
2735 			return sk;
2736 	}
2737 
2738 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2739 	++st->bucket;
2740 	return established_get_first(seq);
2741 }
2742 
2743 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2744 {
2745 	struct tcp_iter_state *st = seq->private;
2746 	void *rc;
2747 
2748 	st->bucket = 0;
2749 	rc = established_get_first(seq);
2750 
2751 	while (rc && pos) {
2752 		rc = established_get_next(seq, rc);
2753 		--pos;
2754 	}
2755 	return rc;
2756 }
2757 
2758 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2759 {
2760 	void *rc;
2761 	struct tcp_iter_state *st = seq->private;
2762 
2763 	st->state = TCP_SEQ_STATE_LISTENING;
2764 	rc	  = listening_get_idx(seq, &pos);
2765 
2766 	if (!rc) {
2767 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2768 		rc	  = established_get_idx(seq, pos);
2769 	}
2770 
2771 	return rc;
2772 }
2773 
2774 static void *tcp_seek_last_pos(struct seq_file *seq)
2775 {
2776 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2777 	struct tcp_iter_state *st = seq->private;
2778 	int bucket = st->bucket;
2779 	int offset = st->offset;
2780 	int orig_num = st->num;
2781 	void *rc = NULL;
2782 
2783 	switch (st->state) {
2784 	case TCP_SEQ_STATE_LISTENING:
2785 		if (st->bucket > hinfo->lhash2_mask)
2786 			break;
2787 		rc = listening_get_first(seq);
2788 		while (offset-- && rc && bucket == st->bucket)
2789 			rc = listening_get_next(seq, rc);
2790 		if (rc)
2791 			break;
2792 		st->bucket = 0;
2793 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2794 		fallthrough;
2795 	case TCP_SEQ_STATE_ESTABLISHED:
2796 		if (st->bucket > hinfo->ehash_mask)
2797 			break;
2798 		rc = established_get_first(seq);
2799 		while (offset-- && rc && bucket == st->bucket)
2800 			rc = established_get_next(seq, rc);
2801 	}
2802 
2803 	st->num = orig_num;
2804 
2805 	return rc;
2806 }
2807 
2808 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2809 {
2810 	struct tcp_iter_state *st = seq->private;
2811 	void *rc;
2812 
2813 	if (*pos && *pos == st->last_pos) {
2814 		rc = tcp_seek_last_pos(seq);
2815 		if (rc)
2816 			goto out;
2817 	}
2818 
2819 	st->state = TCP_SEQ_STATE_LISTENING;
2820 	st->num = 0;
2821 	st->bucket = 0;
2822 	st->offset = 0;
2823 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2824 
2825 out:
2826 	st->last_pos = *pos;
2827 	return rc;
2828 }
2829 EXPORT_IPV6_MOD(tcp_seq_start);
2830 
2831 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2832 {
2833 	struct tcp_iter_state *st = seq->private;
2834 	void *rc = NULL;
2835 
2836 	if (v == SEQ_START_TOKEN) {
2837 		rc = tcp_get_idx(seq, 0);
2838 		goto out;
2839 	}
2840 
2841 	switch (st->state) {
2842 	case TCP_SEQ_STATE_LISTENING:
2843 		rc = listening_get_next(seq, v);
2844 		if (!rc) {
2845 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2846 			st->bucket = 0;
2847 			st->offset = 0;
2848 			rc	  = established_get_first(seq);
2849 		}
2850 		break;
2851 	case TCP_SEQ_STATE_ESTABLISHED:
2852 		rc = established_get_next(seq, v);
2853 		break;
2854 	}
2855 out:
2856 	++*pos;
2857 	st->last_pos = *pos;
2858 	return rc;
2859 }
2860 EXPORT_IPV6_MOD(tcp_seq_next);
2861 
2862 void tcp_seq_stop(struct seq_file *seq, void *v)
2863 {
2864 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2865 	struct tcp_iter_state *st = seq->private;
2866 
2867 	switch (st->state) {
2868 	case TCP_SEQ_STATE_LISTENING:
2869 		if (v != SEQ_START_TOKEN)
2870 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2871 		break;
2872 	case TCP_SEQ_STATE_ESTABLISHED:
2873 		if (v)
2874 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2875 		break;
2876 	}
2877 }
2878 EXPORT_IPV6_MOD(tcp_seq_stop);
2879 
2880 static void get_openreq4(const struct request_sock *req,
2881 			 struct seq_file *f, int i)
2882 {
2883 	const struct inet_request_sock *ireq = inet_rsk(req);
2884 	long delta = req->rsk_timer.expires - jiffies;
2885 
2886 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2887 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2888 		i,
2889 		ireq->ir_loc_addr,
2890 		ireq->ir_num,
2891 		ireq->ir_rmt_addr,
2892 		ntohs(ireq->ir_rmt_port),
2893 		TCP_SYN_RECV,
2894 		0, 0, /* could print option size, but that is af dependent. */
2895 		1,    /* timers active (only the expire timer) */
2896 		jiffies_delta_to_clock_t(delta),
2897 		req->num_timeout,
2898 		from_kuid_munged(seq_user_ns(f),
2899 				 sock_i_uid(req->rsk_listener)),
2900 		0,  /* non standard timer */
2901 		0, /* open_requests have no inode */
2902 		0,
2903 		req);
2904 }
2905 
2906 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2907 {
2908 	int timer_active;
2909 	unsigned long timer_expires;
2910 	const struct tcp_sock *tp = tcp_sk(sk);
2911 	const struct inet_connection_sock *icsk = inet_csk(sk);
2912 	const struct inet_sock *inet = inet_sk(sk);
2913 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2914 	__be32 dest = inet->inet_daddr;
2915 	__be32 src = inet->inet_rcv_saddr;
2916 	__u16 destp = ntohs(inet->inet_dport);
2917 	__u16 srcp = ntohs(inet->inet_sport);
2918 	u8 icsk_pending;
2919 	int rx_queue;
2920 	int state;
2921 
2922 	icsk_pending = smp_load_acquire(&icsk->icsk_pending);
2923 	if (icsk_pending == ICSK_TIME_RETRANS ||
2924 	    icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2925 	    icsk_pending == ICSK_TIME_LOSS_PROBE) {
2926 		timer_active	= 1;
2927 		timer_expires	= icsk_timeout(icsk);
2928 	} else if (icsk_pending == ICSK_TIME_PROBE0) {
2929 		timer_active	= 4;
2930 		timer_expires	= icsk_timeout(icsk);
2931 	} else if (timer_pending(&sk->sk_timer)) {
2932 		timer_active	= 2;
2933 		timer_expires	= sk->sk_timer.expires;
2934 	} else {
2935 		timer_active	= 0;
2936 		timer_expires = jiffies;
2937 	}
2938 
2939 	state = inet_sk_state_load(sk);
2940 	if (state == TCP_LISTEN)
2941 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2942 	else
2943 		/* Because we don't lock the socket,
2944 		 * we might find a transient negative value.
2945 		 */
2946 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2947 				      READ_ONCE(tp->copied_seq), 0);
2948 
2949 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2950 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2951 		i, src, srcp, dest, destp, state,
2952 		READ_ONCE(tp->write_seq) - tp->snd_una,
2953 		rx_queue,
2954 		timer_active,
2955 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2956 		icsk->icsk_retransmits,
2957 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2958 		icsk->icsk_probes_out,
2959 		sock_i_ino(sk),
2960 		refcount_read(&sk->sk_refcnt), sk,
2961 		jiffies_to_clock_t(icsk->icsk_rto),
2962 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2963 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2964 		tcp_snd_cwnd(tp),
2965 		state == TCP_LISTEN ?
2966 		    fastopenq->max_qlen :
2967 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2968 }
2969 
2970 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2971 			       struct seq_file *f, int i)
2972 {
2973 	long delta = tw->tw_timer.expires - jiffies;
2974 	__be32 dest, src;
2975 	__u16 destp, srcp;
2976 
2977 	dest  = tw->tw_daddr;
2978 	src   = tw->tw_rcv_saddr;
2979 	destp = ntohs(tw->tw_dport);
2980 	srcp  = ntohs(tw->tw_sport);
2981 
2982 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2983 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2984 		i, src, srcp, dest, destp, READ_ONCE(tw->tw_substate), 0, 0,
2985 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2986 		refcount_read(&tw->tw_refcnt), tw);
2987 }
2988 
2989 #define TMPSZ 150
2990 
2991 static int tcp4_seq_show(struct seq_file *seq, void *v)
2992 {
2993 	struct tcp_iter_state *st;
2994 	struct sock *sk = v;
2995 
2996 	seq_setwidth(seq, TMPSZ - 1);
2997 	if (v == SEQ_START_TOKEN) {
2998 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2999 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3000 			   "inode");
3001 		goto out;
3002 	}
3003 	st = seq->private;
3004 
3005 	if (sk->sk_state == TCP_TIME_WAIT)
3006 		get_timewait4_sock(v, seq, st->num);
3007 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
3008 		get_openreq4(v, seq, st->num);
3009 	else
3010 		get_tcp4_sock(v, seq, st->num);
3011 out:
3012 	seq_pad(seq, '\n');
3013 	return 0;
3014 }
3015 
3016 #ifdef CONFIG_BPF_SYSCALL
3017 struct bpf_tcp_iter_state {
3018 	struct tcp_iter_state state;
3019 	unsigned int cur_sk;
3020 	unsigned int end_sk;
3021 	unsigned int max_sk;
3022 	struct sock **batch;
3023 	bool st_bucket_done;
3024 };
3025 
3026 struct bpf_iter__tcp {
3027 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3028 	__bpf_md_ptr(struct sock_common *, sk_common);
3029 	uid_t uid __aligned(8);
3030 };
3031 
3032 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3033 			     struct sock_common *sk_common, uid_t uid)
3034 {
3035 	struct bpf_iter__tcp ctx;
3036 
3037 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3038 	ctx.meta = meta;
3039 	ctx.sk_common = sk_common;
3040 	ctx.uid = uid;
3041 	return bpf_iter_run_prog(prog, &ctx);
3042 }
3043 
3044 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
3045 {
3046 	while (iter->cur_sk < iter->end_sk)
3047 		sock_gen_put(iter->batch[iter->cur_sk++]);
3048 }
3049 
3050 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3051 				      unsigned int new_batch_sz)
3052 {
3053 	struct sock **new_batch;
3054 
3055 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3056 			     GFP_USER | __GFP_NOWARN);
3057 	if (!new_batch)
3058 		return -ENOMEM;
3059 
3060 	bpf_iter_tcp_put_batch(iter);
3061 	kvfree(iter->batch);
3062 	iter->batch = new_batch;
3063 	iter->max_sk = new_batch_sz;
3064 
3065 	return 0;
3066 }
3067 
3068 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3069 						 struct sock *start_sk)
3070 {
3071 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3072 	struct bpf_tcp_iter_state *iter = seq->private;
3073 	struct tcp_iter_state *st = &iter->state;
3074 	struct hlist_nulls_node *node;
3075 	unsigned int expected = 1;
3076 	struct sock *sk;
3077 
3078 	sock_hold(start_sk);
3079 	iter->batch[iter->end_sk++] = start_sk;
3080 
3081 	sk = sk_nulls_next(start_sk);
3082 	sk_nulls_for_each_from(sk, node) {
3083 		if (seq_sk_match(seq, sk)) {
3084 			if (iter->end_sk < iter->max_sk) {
3085 				sock_hold(sk);
3086 				iter->batch[iter->end_sk++] = sk;
3087 			}
3088 			expected++;
3089 		}
3090 	}
3091 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3092 
3093 	return expected;
3094 }
3095 
3096 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3097 						   struct sock *start_sk)
3098 {
3099 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3100 	struct bpf_tcp_iter_state *iter = seq->private;
3101 	struct tcp_iter_state *st = &iter->state;
3102 	struct hlist_nulls_node *node;
3103 	unsigned int expected = 1;
3104 	struct sock *sk;
3105 
3106 	sock_hold(start_sk);
3107 	iter->batch[iter->end_sk++] = start_sk;
3108 
3109 	sk = sk_nulls_next(start_sk);
3110 	sk_nulls_for_each_from(sk, node) {
3111 		if (seq_sk_match(seq, sk)) {
3112 			if (iter->end_sk < iter->max_sk) {
3113 				sock_hold(sk);
3114 				iter->batch[iter->end_sk++] = sk;
3115 			}
3116 			expected++;
3117 		}
3118 	}
3119 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3120 
3121 	return expected;
3122 }
3123 
3124 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3125 {
3126 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3127 	struct bpf_tcp_iter_state *iter = seq->private;
3128 	struct tcp_iter_state *st = &iter->state;
3129 	unsigned int expected;
3130 	bool resized = false;
3131 	struct sock *sk;
3132 
3133 	/* The st->bucket is done.  Directly advance to the next
3134 	 * bucket instead of having the tcp_seek_last_pos() to skip
3135 	 * one by one in the current bucket and eventually find out
3136 	 * it has to advance to the next bucket.
3137 	 */
3138 	if (iter->st_bucket_done) {
3139 		st->offset = 0;
3140 		st->bucket++;
3141 		if (st->state == TCP_SEQ_STATE_LISTENING &&
3142 		    st->bucket > hinfo->lhash2_mask) {
3143 			st->state = TCP_SEQ_STATE_ESTABLISHED;
3144 			st->bucket = 0;
3145 		}
3146 	}
3147 
3148 again:
3149 	/* Get a new batch */
3150 	iter->cur_sk = 0;
3151 	iter->end_sk = 0;
3152 	iter->st_bucket_done = false;
3153 
3154 	sk = tcp_seek_last_pos(seq);
3155 	if (!sk)
3156 		return NULL; /* Done */
3157 
3158 	if (st->state == TCP_SEQ_STATE_LISTENING)
3159 		expected = bpf_iter_tcp_listening_batch(seq, sk);
3160 	else
3161 		expected = bpf_iter_tcp_established_batch(seq, sk);
3162 
3163 	if (iter->end_sk == expected) {
3164 		iter->st_bucket_done = true;
3165 		return sk;
3166 	}
3167 
3168 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3169 		resized = true;
3170 		goto again;
3171 	}
3172 
3173 	return sk;
3174 }
3175 
3176 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3177 {
3178 	/* bpf iter does not support lseek, so it always
3179 	 * continue from where it was stop()-ped.
3180 	 */
3181 	if (*pos)
3182 		return bpf_iter_tcp_batch(seq);
3183 
3184 	return SEQ_START_TOKEN;
3185 }
3186 
3187 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3188 {
3189 	struct bpf_tcp_iter_state *iter = seq->private;
3190 	struct tcp_iter_state *st = &iter->state;
3191 	struct sock *sk;
3192 
3193 	/* Whenever seq_next() is called, the iter->cur_sk is
3194 	 * done with seq_show(), so advance to the next sk in
3195 	 * the batch.
3196 	 */
3197 	if (iter->cur_sk < iter->end_sk) {
3198 		/* Keeping st->num consistent in tcp_iter_state.
3199 		 * bpf_iter_tcp does not use st->num.
3200 		 * meta.seq_num is used instead.
3201 		 */
3202 		st->num++;
3203 		/* Move st->offset to the next sk in the bucket such that
3204 		 * the future start() will resume at st->offset in
3205 		 * st->bucket.  See tcp_seek_last_pos().
3206 		 */
3207 		st->offset++;
3208 		sock_gen_put(iter->batch[iter->cur_sk++]);
3209 	}
3210 
3211 	if (iter->cur_sk < iter->end_sk)
3212 		sk = iter->batch[iter->cur_sk];
3213 	else
3214 		sk = bpf_iter_tcp_batch(seq);
3215 
3216 	++*pos;
3217 	/* Keeping st->last_pos consistent in tcp_iter_state.
3218 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3219 	 */
3220 	st->last_pos = *pos;
3221 	return sk;
3222 }
3223 
3224 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3225 {
3226 	struct bpf_iter_meta meta;
3227 	struct bpf_prog *prog;
3228 	struct sock *sk = v;
3229 	uid_t uid;
3230 	int ret;
3231 
3232 	if (v == SEQ_START_TOKEN)
3233 		return 0;
3234 
3235 	if (sk_fullsock(sk))
3236 		lock_sock(sk);
3237 
3238 	if (unlikely(sk_unhashed(sk))) {
3239 		ret = SEQ_SKIP;
3240 		goto unlock;
3241 	}
3242 
3243 	if (sk->sk_state == TCP_TIME_WAIT) {
3244 		uid = 0;
3245 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3246 		const struct request_sock *req = v;
3247 
3248 		uid = from_kuid_munged(seq_user_ns(seq),
3249 				       sock_i_uid(req->rsk_listener));
3250 	} else {
3251 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3252 	}
3253 
3254 	meta.seq = seq;
3255 	prog = bpf_iter_get_info(&meta, false);
3256 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3257 
3258 unlock:
3259 	if (sk_fullsock(sk))
3260 		release_sock(sk);
3261 	return ret;
3262 
3263 }
3264 
3265 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3266 {
3267 	struct bpf_tcp_iter_state *iter = seq->private;
3268 	struct bpf_iter_meta meta;
3269 	struct bpf_prog *prog;
3270 
3271 	if (!v) {
3272 		meta.seq = seq;
3273 		prog = bpf_iter_get_info(&meta, true);
3274 		if (prog)
3275 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3276 	}
3277 
3278 	if (iter->cur_sk < iter->end_sk) {
3279 		bpf_iter_tcp_put_batch(iter);
3280 		iter->st_bucket_done = false;
3281 	}
3282 }
3283 
3284 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3285 	.show		= bpf_iter_tcp_seq_show,
3286 	.start		= bpf_iter_tcp_seq_start,
3287 	.next		= bpf_iter_tcp_seq_next,
3288 	.stop		= bpf_iter_tcp_seq_stop,
3289 };
3290 #endif
3291 static unsigned short seq_file_family(const struct seq_file *seq)
3292 {
3293 	const struct tcp_seq_afinfo *afinfo;
3294 
3295 #ifdef CONFIG_BPF_SYSCALL
3296 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3297 	if (seq->op == &bpf_iter_tcp_seq_ops)
3298 		return AF_UNSPEC;
3299 #endif
3300 
3301 	/* Iterated from proc fs */
3302 	afinfo = pde_data(file_inode(seq->file));
3303 	return afinfo->family;
3304 }
3305 
3306 static const struct seq_operations tcp4_seq_ops = {
3307 	.show		= tcp4_seq_show,
3308 	.start		= tcp_seq_start,
3309 	.next		= tcp_seq_next,
3310 	.stop		= tcp_seq_stop,
3311 };
3312 
3313 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3314 	.family		= AF_INET,
3315 };
3316 
3317 static int __net_init tcp4_proc_init_net(struct net *net)
3318 {
3319 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3320 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3321 		return -ENOMEM;
3322 	return 0;
3323 }
3324 
3325 static void __net_exit tcp4_proc_exit_net(struct net *net)
3326 {
3327 	remove_proc_entry("tcp", net->proc_net);
3328 }
3329 
3330 static struct pernet_operations tcp4_net_ops = {
3331 	.init = tcp4_proc_init_net,
3332 	.exit = tcp4_proc_exit_net,
3333 };
3334 
3335 int __init tcp4_proc_init(void)
3336 {
3337 	return register_pernet_subsys(&tcp4_net_ops);
3338 }
3339 
3340 void tcp4_proc_exit(void)
3341 {
3342 	unregister_pernet_subsys(&tcp4_net_ops);
3343 }
3344 #endif /* CONFIG_PROC_FS */
3345 
3346 /* @wake is one when sk_stream_write_space() calls us.
3347  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3348  * This mimics the strategy used in sock_def_write_space().
3349  */
3350 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3351 {
3352 	const struct tcp_sock *tp = tcp_sk(sk);
3353 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3354 			    READ_ONCE(tp->snd_nxt);
3355 
3356 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3357 }
3358 EXPORT_SYMBOL(tcp_stream_memory_free);
3359 
3360 struct proto tcp_prot = {
3361 	.name			= "TCP",
3362 	.owner			= THIS_MODULE,
3363 	.close			= tcp_close,
3364 	.pre_connect		= tcp_v4_pre_connect,
3365 	.connect		= tcp_v4_connect,
3366 	.disconnect		= tcp_disconnect,
3367 	.accept			= inet_csk_accept,
3368 	.ioctl			= tcp_ioctl,
3369 	.init			= tcp_v4_init_sock,
3370 	.destroy		= tcp_v4_destroy_sock,
3371 	.shutdown		= tcp_shutdown,
3372 	.setsockopt		= tcp_setsockopt,
3373 	.getsockopt		= tcp_getsockopt,
3374 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3375 	.keepalive		= tcp_set_keepalive,
3376 	.recvmsg		= tcp_recvmsg,
3377 	.sendmsg		= tcp_sendmsg,
3378 	.splice_eof		= tcp_splice_eof,
3379 	.backlog_rcv		= tcp_v4_do_rcv,
3380 	.release_cb		= tcp_release_cb,
3381 	.hash			= inet_hash,
3382 	.unhash			= inet_unhash,
3383 	.get_port		= inet_csk_get_port,
3384 	.put_port		= inet_put_port,
3385 #ifdef CONFIG_BPF_SYSCALL
3386 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3387 #endif
3388 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3389 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3390 	.stream_memory_free	= tcp_stream_memory_free,
3391 	.sockets_allocated	= &tcp_sockets_allocated,
3392 	.orphan_count		= &tcp_orphan_count,
3393 
3394 	.memory_allocated	= &tcp_memory_allocated,
3395 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3396 
3397 	.memory_pressure	= &tcp_memory_pressure,
3398 	.sysctl_mem		= sysctl_tcp_mem,
3399 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3400 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3401 	.max_header		= MAX_TCP_HEADER,
3402 	.obj_size		= sizeof(struct tcp_sock),
3403 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3404 	.twsk_prot		= &tcp_timewait_sock_ops,
3405 	.rsk_prot		= &tcp_request_sock_ops,
3406 	.h.hashinfo		= NULL,
3407 	.no_autobind		= true,
3408 	.diag_destroy		= tcp_abort,
3409 };
3410 EXPORT_SYMBOL(tcp_prot);
3411 
3412 static void __net_exit tcp_sk_exit(struct net *net)
3413 {
3414 	if (net->ipv4.tcp_congestion_control)
3415 		bpf_module_put(net->ipv4.tcp_congestion_control,
3416 			       net->ipv4.tcp_congestion_control->owner);
3417 }
3418 
3419 static void __net_init tcp_set_hashinfo(struct net *net)
3420 {
3421 	struct inet_hashinfo *hinfo;
3422 	unsigned int ehash_entries;
3423 	struct net *old_net;
3424 
3425 	if (net_eq(net, &init_net))
3426 		goto fallback;
3427 
3428 	old_net = current->nsproxy->net_ns;
3429 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3430 	if (!ehash_entries)
3431 		goto fallback;
3432 
3433 	ehash_entries = roundup_pow_of_two(ehash_entries);
3434 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3435 	if (!hinfo) {
3436 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3437 			"for a netns, fallback to the global one\n",
3438 			ehash_entries);
3439 fallback:
3440 		hinfo = &tcp_hashinfo;
3441 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3442 	}
3443 
3444 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3445 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3446 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3447 }
3448 
3449 static int __net_init tcp_sk_init(struct net *net)
3450 {
3451 	net->ipv4.sysctl_tcp_ecn = 2;
3452 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3453 
3454 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3455 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3456 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3457 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3458 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3459 
3460 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3461 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3462 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3463 
3464 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3465 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3466 	net->ipv4.sysctl_tcp_syncookies = 1;
3467 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3468 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3469 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3470 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3471 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3472 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3473 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3474 	net->ipv4.sysctl_tcp_tw_reuse_delay = 1 * MSEC_PER_SEC;
3475 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3476 
3477 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3478 	tcp_set_hashinfo(net);
3479 
3480 	net->ipv4.sysctl_tcp_sack = 1;
3481 	net->ipv4.sysctl_tcp_window_scaling = 1;
3482 	net->ipv4.sysctl_tcp_timestamps = 1;
3483 	net->ipv4.sysctl_tcp_early_retrans = 3;
3484 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3485 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3486 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3487 	net->ipv4.sysctl_tcp_max_reordering = 300;
3488 	net->ipv4.sysctl_tcp_dsack = 1;
3489 	net->ipv4.sysctl_tcp_app_win = 31;
3490 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3491 	net->ipv4.sysctl_tcp_frto = 2;
3492 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3493 	/* This limits the percentage of the congestion window which we
3494 	 * will allow a single TSO frame to consume.  Building TSO frames
3495 	 * which are too large can cause TCP streams to be bursty.
3496 	 */
3497 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3498 	/* Default TSQ limit of 4 MB */
3499 	net->ipv4.sysctl_tcp_limit_output_bytes = 4 << 20;
3500 
3501 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3502 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3503 
3504 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3505 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3506 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3507 	net->ipv4.sysctl_tcp_autocorking = 1;
3508 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3509 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3510 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3511 	if (net != &init_net) {
3512 		memcpy(net->ipv4.sysctl_tcp_rmem,
3513 		       init_net.ipv4.sysctl_tcp_rmem,
3514 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3515 		memcpy(net->ipv4.sysctl_tcp_wmem,
3516 		       init_net.ipv4.sysctl_tcp_wmem,
3517 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3518 	}
3519 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3520 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3521 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3522 	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3523 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3524 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3525 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3526 
3527 	/* Set default values for PLB */
3528 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3529 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3530 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3531 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3532 	/* Default congestion threshold for PLB to mark a round is 50% */
3533 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3534 
3535 	/* Reno is always built in */
3536 	if (!net_eq(net, &init_net) &&
3537 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3538 			       init_net.ipv4.tcp_congestion_control->owner))
3539 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3540 	else
3541 		net->ipv4.tcp_congestion_control = &tcp_reno;
3542 
3543 	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3544 	net->ipv4.sysctl_tcp_shrink_window = 0;
3545 
3546 	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3547 	net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN);
3548 	net->ipv4.sysctl_tcp_rto_max_ms = TCP_RTO_MAX_SEC * MSEC_PER_SEC;
3549 
3550 	return 0;
3551 }
3552 
3553 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3554 {
3555 	struct net *net;
3556 
3557 	/* make sure concurrent calls to tcp_sk_exit_batch from net_cleanup_work
3558 	 * and failed setup_net error unwinding path are serialized.
3559 	 *
3560 	 * tcp_twsk_purge() handles twsk in any dead netns, not just those in
3561 	 * net_exit_list, the thread that dismantles a particular twsk must
3562 	 * do so without other thread progressing to refcount_dec_and_test() of
3563 	 * tcp_death_row.tw_refcount.
3564 	 */
3565 	mutex_lock(&tcp_exit_batch_mutex);
3566 
3567 	tcp_twsk_purge(net_exit_list);
3568 
3569 	list_for_each_entry(net, net_exit_list, exit_list) {
3570 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3571 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3572 		tcp_fastopen_ctx_destroy(net);
3573 	}
3574 
3575 	mutex_unlock(&tcp_exit_batch_mutex);
3576 }
3577 
3578 static struct pernet_operations __net_initdata tcp_sk_ops = {
3579        .init	   = tcp_sk_init,
3580        .exit	   = tcp_sk_exit,
3581        .exit_batch = tcp_sk_exit_batch,
3582 };
3583 
3584 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3585 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3586 		     struct sock_common *sk_common, uid_t uid)
3587 
3588 #define INIT_BATCH_SZ 16
3589 
3590 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3591 {
3592 	struct bpf_tcp_iter_state *iter = priv_data;
3593 	int err;
3594 
3595 	err = bpf_iter_init_seq_net(priv_data, aux);
3596 	if (err)
3597 		return err;
3598 
3599 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3600 	if (err) {
3601 		bpf_iter_fini_seq_net(priv_data);
3602 		return err;
3603 	}
3604 
3605 	return 0;
3606 }
3607 
3608 static void bpf_iter_fini_tcp(void *priv_data)
3609 {
3610 	struct bpf_tcp_iter_state *iter = priv_data;
3611 
3612 	bpf_iter_fini_seq_net(priv_data);
3613 	kvfree(iter->batch);
3614 }
3615 
3616 static const struct bpf_iter_seq_info tcp_seq_info = {
3617 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3618 	.init_seq_private	= bpf_iter_init_tcp,
3619 	.fini_seq_private	= bpf_iter_fini_tcp,
3620 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3621 };
3622 
3623 static const struct bpf_func_proto *
3624 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3625 			    const struct bpf_prog *prog)
3626 {
3627 	switch (func_id) {
3628 	case BPF_FUNC_setsockopt:
3629 		return &bpf_sk_setsockopt_proto;
3630 	case BPF_FUNC_getsockopt:
3631 		return &bpf_sk_getsockopt_proto;
3632 	default:
3633 		return NULL;
3634 	}
3635 }
3636 
3637 static struct bpf_iter_reg tcp_reg_info = {
3638 	.target			= "tcp",
3639 	.ctx_arg_info_size	= 1,
3640 	.ctx_arg_info		= {
3641 		{ offsetof(struct bpf_iter__tcp, sk_common),
3642 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3643 	},
3644 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3645 	.seq_info		= &tcp_seq_info,
3646 };
3647 
3648 static void __init bpf_iter_register(void)
3649 {
3650 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3651 	if (bpf_iter_reg_target(&tcp_reg_info))
3652 		pr_warn("Warning: could not register bpf iterator tcp\n");
3653 }
3654 
3655 #endif
3656 
3657 void __init tcp_v4_init(void)
3658 {
3659 	int cpu, res;
3660 
3661 	for_each_possible_cpu(cpu) {
3662 		struct sock *sk;
3663 
3664 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3665 					   IPPROTO_TCP, &init_net);
3666 		if (res)
3667 			panic("Failed to create the TCP control socket.\n");
3668 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3669 
3670 		/* Please enforce IP_DF and IPID==0 for RST and
3671 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3672 		 */
3673 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3674 
3675 		sk->sk_clockid = CLOCK_MONOTONIC;
3676 
3677 		per_cpu(ipv4_tcp_sk.sock, cpu) = sk;
3678 	}
3679 	if (register_pernet_subsys(&tcp_sk_ops))
3680 		panic("Failed to create the TCP control socket.\n");
3681 
3682 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3683 	bpf_iter_register();
3684 #endif
3685 }
3686