1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <trace/events/tcp.h> 286 #include <net/rps.h> 287 288 #include "../core/devmem.h" 289 290 /* Track pending CMSGs. */ 291 enum { 292 TCP_CMSG_INQ = 1, 293 TCP_CMSG_TS = 2 294 }; 295 296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 298 299 DEFINE_PER_CPU(u32, tcp_tw_isn); 300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 301 302 long sysctl_tcp_mem[3] __read_mostly; 303 EXPORT_IPV6_MOD(sysctl_tcp_mem); 304 305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 306 EXPORT_IPV6_MOD(tcp_memory_allocated); 307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 309 310 #if IS_ENABLED(CONFIG_SMC) 311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 312 EXPORT_SYMBOL(tcp_have_smc); 313 #endif 314 315 /* 316 * Current number of TCP sockets. 317 */ 318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 319 EXPORT_IPV6_MOD(tcp_sockets_allocated); 320 321 /* 322 * TCP splice context 323 */ 324 struct tcp_splice_state { 325 struct pipe_inode_info *pipe; 326 size_t len; 327 unsigned int flags; 328 }; 329 330 /* 331 * Pressure flag: try to collapse. 332 * Technical note: it is used by multiple contexts non atomically. 333 * All the __sk_mem_schedule() is of this nature: accounting 334 * is strict, actions are advisory and have some latency. 335 */ 336 unsigned long tcp_memory_pressure __read_mostly; 337 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 338 339 void tcp_enter_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (READ_ONCE(tcp_memory_pressure)) 344 return; 345 val = jiffies; 346 347 if (!val) 348 val--; 349 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 351 } 352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure); 353 354 void tcp_leave_memory_pressure(struct sock *sk) 355 { 356 unsigned long val; 357 358 if (!READ_ONCE(tcp_memory_pressure)) 359 return; 360 val = xchg(&tcp_memory_pressure, 0); 361 if (val) 362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 363 jiffies_to_msecs(jiffies - val)); 364 } 365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure); 366 367 /* Convert seconds to retransmits based on initial and max timeout */ 368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 369 { 370 u8 res = 0; 371 372 if (seconds > 0) { 373 int period = timeout; 374 375 res = 1; 376 while (seconds > period && res < 255) { 377 res++; 378 timeout <<= 1; 379 if (timeout > rto_max) 380 timeout = rto_max; 381 period += timeout; 382 } 383 } 384 return res; 385 } 386 387 /* Convert retransmits to seconds based on initial and max timeout */ 388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 389 { 390 int period = 0; 391 392 if (retrans > 0) { 393 period = timeout; 394 while (--retrans) { 395 timeout <<= 1; 396 if (timeout > rto_max) 397 timeout = rto_max; 398 period += timeout; 399 } 400 } 401 return period; 402 } 403 404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 405 { 406 u32 rate = READ_ONCE(tp->rate_delivered); 407 u32 intv = READ_ONCE(tp->rate_interval_us); 408 u64 rate64 = 0; 409 410 if (rate && intv) { 411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 412 do_div(rate64, intv); 413 } 414 return rate64; 415 } 416 417 /* Address-family independent initialization for a tcp_sock. 418 * 419 * NOTE: A lot of things set to zero explicitly by call to 420 * sk_alloc() so need not be done here. 421 */ 422 void tcp_init_sock(struct sock *sk) 423 { 424 struct inet_connection_sock *icsk = inet_csk(sk); 425 struct tcp_sock *tp = tcp_sk(sk); 426 int rto_min_us, rto_max_ms; 427 428 tp->out_of_order_queue = RB_ROOT; 429 sk->tcp_rtx_queue = RB_ROOT; 430 tcp_init_xmit_timers(sk); 431 INIT_LIST_HEAD(&tp->tsq_node); 432 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 433 434 icsk->icsk_rto = TCP_TIMEOUT_INIT; 435 436 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms); 437 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms); 438 439 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 440 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 441 icsk->icsk_delack_max = TCP_DELACK_MAX; 442 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 443 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 444 445 /* So many TCP implementations out there (incorrectly) count the 446 * initial SYN frame in their delayed-ACK and congestion control 447 * algorithms that we must have the following bandaid to talk 448 * efficiently to them. -DaveM 449 */ 450 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 451 452 /* There's a bubble in the pipe until at least the first ACK. */ 453 tp->app_limited = ~0U; 454 tp->rate_app_limited = 1; 455 456 /* See draft-stevens-tcpca-spec-01 for discussion of the 457 * initialization of these values. 458 */ 459 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 460 tp->snd_cwnd_clamp = ~0; 461 tp->mss_cache = TCP_MSS_DEFAULT; 462 463 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 464 tcp_assign_congestion_control(sk); 465 466 tp->tsoffset = 0; 467 tp->rack.reo_wnd_steps = 1; 468 469 sk->sk_write_space = sk_stream_write_space; 470 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 471 472 icsk->icsk_sync_mss = tcp_sync_mss; 473 474 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 475 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 476 tcp_scaling_ratio_init(sk); 477 478 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 479 sk_sockets_allocated_inc(sk); 480 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1); 481 } 482 EXPORT_IPV6_MOD(tcp_init_sock); 483 484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc) 485 { 486 struct sk_buff *skb = tcp_write_queue_tail(sk); 487 u32 tsflags = sockc->tsflags; 488 489 if (tsflags && skb) { 490 struct skb_shared_info *shinfo = skb_shinfo(skb); 491 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 492 493 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags); 494 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 495 tcb->txstamp_ack |= TSTAMP_ACK_SK; 496 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 497 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 498 } 499 500 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) && 501 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb) 502 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB); 503 } 504 505 static bool tcp_stream_is_readable(struct sock *sk, int target) 506 { 507 if (tcp_epollin_ready(sk, target)) 508 return true; 509 return sk_is_readable(sk); 510 } 511 512 /* 513 * Wait for a TCP event. 514 * 515 * Note that we don't need to lock the socket, as the upper poll layers 516 * take care of normal races (between the test and the event) and we don't 517 * go look at any of the socket buffers directly. 518 */ 519 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 520 { 521 __poll_t mask; 522 struct sock *sk = sock->sk; 523 const struct tcp_sock *tp = tcp_sk(sk); 524 u8 shutdown; 525 int state; 526 527 sock_poll_wait(file, sock, wait); 528 529 state = inet_sk_state_load(sk); 530 if (state == TCP_LISTEN) 531 return inet_csk_listen_poll(sk); 532 533 /* Socket is not locked. We are protected from async events 534 * by poll logic and correct handling of state changes 535 * made by other threads is impossible in any case. 536 */ 537 538 mask = 0; 539 540 /* 541 * EPOLLHUP is certainly not done right. But poll() doesn't 542 * have a notion of HUP in just one direction, and for a 543 * socket the read side is more interesting. 544 * 545 * Some poll() documentation says that EPOLLHUP is incompatible 546 * with the EPOLLOUT/POLLWR flags, so somebody should check this 547 * all. But careful, it tends to be safer to return too many 548 * bits than too few, and you can easily break real applications 549 * if you don't tell them that something has hung up! 550 * 551 * Check-me. 552 * 553 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 554 * our fs/select.c). It means that after we received EOF, 555 * poll always returns immediately, making impossible poll() on write() 556 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 557 * if and only if shutdown has been made in both directions. 558 * Actually, it is interesting to look how Solaris and DUX 559 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 560 * then we could set it on SND_SHUTDOWN. BTW examples given 561 * in Stevens' books assume exactly this behaviour, it explains 562 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 563 * 564 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 565 * blocking on fresh not-connected or disconnected socket. --ANK 566 */ 567 shutdown = READ_ONCE(sk->sk_shutdown); 568 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 569 mask |= EPOLLHUP; 570 if (shutdown & RCV_SHUTDOWN) 571 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 572 573 /* Connected or passive Fast Open socket? */ 574 if (state != TCP_SYN_SENT && 575 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 576 int target = sock_rcvlowat(sk, 0, INT_MAX); 577 u16 urg_data = READ_ONCE(tp->urg_data); 578 579 if (unlikely(urg_data) && 580 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 581 !sock_flag(sk, SOCK_URGINLINE)) 582 target++; 583 584 if (tcp_stream_is_readable(sk, target)) 585 mask |= EPOLLIN | EPOLLRDNORM; 586 587 if (!(shutdown & SEND_SHUTDOWN)) { 588 if (__sk_stream_is_writeable(sk, 1)) { 589 mask |= EPOLLOUT | EPOLLWRNORM; 590 } else { /* send SIGIO later */ 591 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 592 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 593 594 /* Race breaker. If space is freed after 595 * wspace test but before the flags are set, 596 * IO signal will be lost. Memory barrier 597 * pairs with the input side. 598 */ 599 smp_mb__after_atomic(); 600 if (__sk_stream_is_writeable(sk, 1)) 601 mask |= EPOLLOUT | EPOLLWRNORM; 602 } 603 } else 604 mask |= EPOLLOUT | EPOLLWRNORM; 605 606 if (urg_data & TCP_URG_VALID) 607 mask |= EPOLLPRI; 608 } else if (state == TCP_SYN_SENT && 609 inet_test_bit(DEFER_CONNECT, sk)) { 610 /* Active TCP fastopen socket with defer_connect 611 * Return EPOLLOUT so application can call write() 612 * in order for kernel to generate SYN+data 613 */ 614 mask |= EPOLLOUT | EPOLLWRNORM; 615 } 616 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 617 smp_rmb(); 618 if (READ_ONCE(sk->sk_err) || 619 !skb_queue_empty_lockless(&sk->sk_error_queue)) 620 mask |= EPOLLERR; 621 622 return mask; 623 } 624 EXPORT_SYMBOL(tcp_poll); 625 626 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 627 { 628 struct tcp_sock *tp = tcp_sk(sk); 629 int answ; 630 bool slow; 631 632 switch (cmd) { 633 case SIOCINQ: 634 if (sk->sk_state == TCP_LISTEN) 635 return -EINVAL; 636 637 slow = lock_sock_fast(sk); 638 answ = tcp_inq(sk); 639 unlock_sock_fast(sk, slow); 640 break; 641 case SIOCATMARK: 642 answ = READ_ONCE(tp->urg_data) && 643 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 644 break; 645 case SIOCOUTQ: 646 if (sk->sk_state == TCP_LISTEN) 647 return -EINVAL; 648 649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 650 answ = 0; 651 else 652 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 653 break; 654 case SIOCOUTQNSD: 655 if (sk->sk_state == TCP_LISTEN) 656 return -EINVAL; 657 658 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 659 answ = 0; 660 else 661 answ = READ_ONCE(tp->write_seq) - 662 READ_ONCE(tp->snd_nxt); 663 break; 664 default: 665 return -ENOIOCTLCMD; 666 } 667 668 *karg = answ; 669 return 0; 670 } 671 EXPORT_IPV6_MOD(tcp_ioctl); 672 673 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 674 { 675 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 676 tp->pushed_seq = tp->write_seq; 677 } 678 679 static inline bool forced_push(const struct tcp_sock *tp) 680 { 681 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 682 } 683 684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 685 { 686 struct tcp_sock *tp = tcp_sk(sk); 687 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 688 689 tcb->seq = tcb->end_seq = tp->write_seq; 690 tcb->tcp_flags = TCPHDR_ACK; 691 __skb_header_release(skb); 692 tcp_add_write_queue_tail(sk, skb); 693 sk_wmem_queued_add(sk, skb->truesize); 694 sk_mem_charge(sk, skb->truesize); 695 if (tp->nonagle & TCP_NAGLE_PUSH) 696 tp->nonagle &= ~TCP_NAGLE_PUSH; 697 698 tcp_slow_start_after_idle_check(sk); 699 } 700 701 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 702 { 703 if (flags & MSG_OOB) 704 tp->snd_up = tp->write_seq; 705 } 706 707 /* If a not yet filled skb is pushed, do not send it if 708 * we have data packets in Qdisc or NIC queues : 709 * Because TX completion will happen shortly, it gives a chance 710 * to coalesce future sendmsg() payload into this skb, without 711 * need for a timer, and with no latency trade off. 712 * As packets containing data payload have a bigger truesize 713 * than pure acks (dataless) packets, the last checks prevent 714 * autocorking if we only have an ACK in Qdisc/NIC queues, 715 * or if TX completion was delayed after we processed ACK packet. 716 */ 717 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 718 int size_goal) 719 { 720 return skb->len < size_goal && 721 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 722 !tcp_rtx_queue_empty(sk) && 723 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 724 tcp_skb_can_collapse_to(skb); 725 } 726 727 void tcp_push(struct sock *sk, int flags, int mss_now, 728 int nonagle, int size_goal) 729 { 730 struct tcp_sock *tp = tcp_sk(sk); 731 struct sk_buff *skb; 732 733 skb = tcp_write_queue_tail(sk); 734 if (!skb) 735 return; 736 if (!(flags & MSG_MORE) || forced_push(tp)) 737 tcp_mark_push(tp, skb); 738 739 tcp_mark_urg(tp, flags); 740 741 if (tcp_should_autocork(sk, skb, size_goal)) { 742 743 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 744 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 746 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 747 smp_mb__after_atomic(); 748 } 749 /* It is possible TX completion already happened 750 * before we set TSQ_THROTTLED. 751 */ 752 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 753 return; 754 } 755 756 if (flags & MSG_MORE) 757 nonagle = TCP_NAGLE_CORK; 758 759 __tcp_push_pending_frames(sk, mss_now, nonagle); 760 } 761 762 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 763 unsigned int offset, size_t len) 764 { 765 struct tcp_splice_state *tss = rd_desc->arg.data; 766 int ret; 767 768 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 769 min(rd_desc->count, len), tss->flags); 770 if (ret > 0) 771 rd_desc->count -= ret; 772 return ret; 773 } 774 775 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 776 { 777 /* Store TCP splice context information in read_descriptor_t. */ 778 read_descriptor_t rd_desc = { 779 .arg.data = tss, 780 .count = tss->len, 781 }; 782 783 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 784 } 785 786 /** 787 * tcp_splice_read - splice data from TCP socket to a pipe 788 * @sock: socket to splice from 789 * @ppos: position (not valid) 790 * @pipe: pipe to splice to 791 * @len: number of bytes to splice 792 * @flags: splice modifier flags 793 * 794 * Description: 795 * Will read pages from given socket and fill them into a pipe. 796 * 797 **/ 798 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 799 struct pipe_inode_info *pipe, size_t len, 800 unsigned int flags) 801 { 802 struct sock *sk = sock->sk; 803 struct tcp_splice_state tss = { 804 .pipe = pipe, 805 .len = len, 806 .flags = flags, 807 }; 808 long timeo; 809 ssize_t spliced; 810 int ret; 811 812 sock_rps_record_flow(sk); 813 /* 814 * We can't seek on a socket input 815 */ 816 if (unlikely(*ppos)) 817 return -ESPIPE; 818 819 ret = spliced = 0; 820 821 lock_sock(sk); 822 823 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 824 while (tss.len) { 825 ret = __tcp_splice_read(sk, &tss); 826 if (ret < 0) 827 break; 828 else if (!ret) { 829 if (spliced) 830 break; 831 if (sock_flag(sk, SOCK_DONE)) 832 break; 833 if (sk->sk_err) { 834 ret = sock_error(sk); 835 break; 836 } 837 if (sk->sk_shutdown & RCV_SHUTDOWN) 838 break; 839 if (sk->sk_state == TCP_CLOSE) { 840 /* 841 * This occurs when user tries to read 842 * from never connected socket. 843 */ 844 ret = -ENOTCONN; 845 break; 846 } 847 if (!timeo) { 848 ret = -EAGAIN; 849 break; 850 } 851 /* if __tcp_splice_read() got nothing while we have 852 * an skb in receive queue, we do not want to loop. 853 * This might happen with URG data. 854 */ 855 if (!skb_queue_empty(&sk->sk_receive_queue)) 856 break; 857 ret = sk_wait_data(sk, &timeo, NULL); 858 if (ret < 0) 859 break; 860 if (signal_pending(current)) { 861 ret = sock_intr_errno(timeo); 862 break; 863 } 864 continue; 865 } 866 tss.len -= ret; 867 spliced += ret; 868 869 if (!tss.len || !timeo) 870 break; 871 release_sock(sk); 872 lock_sock(sk); 873 874 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 875 (sk->sk_shutdown & RCV_SHUTDOWN) || 876 signal_pending(current)) 877 break; 878 } 879 880 release_sock(sk); 881 882 if (spliced) 883 return spliced; 884 885 return ret; 886 } 887 EXPORT_IPV6_MOD(tcp_splice_read); 888 889 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 890 bool force_schedule) 891 { 892 struct sk_buff *skb; 893 894 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 895 if (likely(skb)) { 896 bool mem_scheduled; 897 898 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 899 if (force_schedule) { 900 mem_scheduled = true; 901 sk_forced_mem_schedule(sk, skb->truesize); 902 } else { 903 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 904 } 905 if (likely(mem_scheduled)) { 906 skb_reserve(skb, MAX_TCP_HEADER); 907 skb->ip_summed = CHECKSUM_PARTIAL; 908 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 909 return skb; 910 } 911 __kfree_skb(skb); 912 } else { 913 sk->sk_prot->enter_memory_pressure(sk); 914 sk_stream_moderate_sndbuf(sk); 915 } 916 return NULL; 917 } 918 919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 920 int large_allowed) 921 { 922 struct tcp_sock *tp = tcp_sk(sk); 923 u32 new_size_goal, size_goal; 924 925 if (!large_allowed) 926 return mss_now; 927 928 /* Note : tcp_tso_autosize() will eventually split this later */ 929 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 930 931 /* We try hard to avoid divides here */ 932 size_goal = tp->gso_segs * mss_now; 933 if (unlikely(new_size_goal < size_goal || 934 new_size_goal >= size_goal + mss_now)) { 935 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 936 sk->sk_gso_max_segs); 937 size_goal = tp->gso_segs * mss_now; 938 } 939 940 return max(size_goal, mss_now); 941 } 942 943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 944 { 945 int mss_now; 946 947 mss_now = tcp_current_mss(sk); 948 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 949 950 return mss_now; 951 } 952 953 /* In some cases, sendmsg() could have added an skb to the write queue, 954 * but failed adding payload on it. We need to remove it to consume less 955 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 956 * epoll() users. Another reason is that tcp_write_xmit() does not like 957 * finding an empty skb in the write queue. 958 */ 959 void tcp_remove_empty_skb(struct sock *sk) 960 { 961 struct sk_buff *skb = tcp_write_queue_tail(sk); 962 963 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 964 tcp_unlink_write_queue(skb, sk); 965 if (tcp_write_queue_empty(sk)) 966 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 967 tcp_wmem_free_skb(sk, skb); 968 } 969 } 970 971 /* skb changing from pure zc to mixed, must charge zc */ 972 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 973 { 974 if (unlikely(skb_zcopy_pure(skb))) { 975 u32 extra = skb->truesize - 976 SKB_TRUESIZE(skb_end_offset(skb)); 977 978 if (!sk_wmem_schedule(sk, extra)) 979 return -ENOMEM; 980 981 sk_mem_charge(sk, extra); 982 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 983 } 984 return 0; 985 } 986 987 988 int tcp_wmem_schedule(struct sock *sk, int copy) 989 { 990 int left; 991 992 if (likely(sk_wmem_schedule(sk, copy))) 993 return copy; 994 995 /* We could be in trouble if we have nothing queued. 996 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 997 * to guarantee some progress. 998 */ 999 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 1000 if (left > 0) 1001 sk_forced_mem_schedule(sk, min(left, copy)); 1002 return min(copy, sk->sk_forward_alloc); 1003 } 1004 1005 void tcp_free_fastopen_req(struct tcp_sock *tp) 1006 { 1007 if (tp->fastopen_req) { 1008 kfree(tp->fastopen_req); 1009 tp->fastopen_req = NULL; 1010 } 1011 } 1012 1013 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1014 size_t size, struct ubuf_info *uarg) 1015 { 1016 struct tcp_sock *tp = tcp_sk(sk); 1017 struct inet_sock *inet = inet_sk(sk); 1018 struct sockaddr *uaddr = msg->msg_name; 1019 int err, flags; 1020 1021 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1022 TFO_CLIENT_ENABLE) || 1023 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1024 uaddr->sa_family == AF_UNSPEC)) 1025 return -EOPNOTSUPP; 1026 if (tp->fastopen_req) 1027 return -EALREADY; /* Another Fast Open is in progress */ 1028 1029 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1030 sk->sk_allocation); 1031 if (unlikely(!tp->fastopen_req)) 1032 return -ENOBUFS; 1033 tp->fastopen_req->data = msg; 1034 tp->fastopen_req->size = size; 1035 tp->fastopen_req->uarg = uarg; 1036 1037 if (inet_test_bit(DEFER_CONNECT, sk)) { 1038 err = tcp_connect(sk); 1039 /* Same failure procedure as in tcp_v4/6_connect */ 1040 if (err) { 1041 tcp_set_state(sk, TCP_CLOSE); 1042 inet->inet_dport = 0; 1043 sk->sk_route_caps = 0; 1044 } 1045 } 1046 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1047 err = __inet_stream_connect(sk->sk_socket, uaddr, 1048 msg->msg_namelen, flags, 1); 1049 /* fastopen_req could already be freed in __inet_stream_connect 1050 * if the connection times out or gets rst 1051 */ 1052 if (tp->fastopen_req) { 1053 *copied = tp->fastopen_req->copied; 1054 tcp_free_fastopen_req(tp); 1055 inet_clear_bit(DEFER_CONNECT, sk); 1056 } 1057 return err; 1058 } 1059 1060 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1061 { 1062 struct net_devmem_dmabuf_binding *binding = NULL; 1063 struct tcp_sock *tp = tcp_sk(sk); 1064 struct ubuf_info *uarg = NULL; 1065 struct sk_buff *skb; 1066 struct sockcm_cookie sockc; 1067 int flags, err, copied = 0; 1068 int mss_now = 0, size_goal, copied_syn = 0; 1069 int process_backlog = 0; 1070 int sockc_err = 0; 1071 int zc = 0; 1072 long timeo; 1073 1074 flags = msg->msg_flags; 1075 1076 sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) }; 1077 if (msg->msg_controllen) { 1078 sockc_err = sock_cmsg_send(sk, msg, &sockc); 1079 /* Don't return error until MSG_FASTOPEN has been processed; 1080 * that may succeed even if the cmsg is invalid. 1081 */ 1082 } 1083 1084 if ((flags & MSG_ZEROCOPY) && size) { 1085 if (msg->msg_ubuf) { 1086 uarg = msg->msg_ubuf; 1087 if (sk->sk_route_caps & NETIF_F_SG) 1088 zc = MSG_ZEROCOPY; 1089 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1090 skb = tcp_write_queue_tail(sk); 1091 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb), 1092 !sockc_err && sockc.dmabuf_id); 1093 if (!uarg) { 1094 err = -ENOBUFS; 1095 goto out_err; 1096 } 1097 if (sk->sk_route_caps & NETIF_F_SG) 1098 zc = MSG_ZEROCOPY; 1099 else 1100 uarg_to_msgzc(uarg)->zerocopy = 0; 1101 1102 if (!sockc_err && sockc.dmabuf_id) { 1103 binding = net_devmem_get_binding(sk, sockc.dmabuf_id); 1104 if (IS_ERR(binding)) { 1105 err = PTR_ERR(binding); 1106 binding = NULL; 1107 goto out_err; 1108 } 1109 } 1110 } 1111 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1112 if (sk->sk_route_caps & NETIF_F_SG) 1113 zc = MSG_SPLICE_PAGES; 1114 } 1115 1116 if (!sockc_err && sockc.dmabuf_id && 1117 (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) { 1118 err = -EINVAL; 1119 goto out_err; 1120 } 1121 1122 if (unlikely(flags & MSG_FASTOPEN || 1123 inet_test_bit(DEFER_CONNECT, sk)) && 1124 !tp->repair) { 1125 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1126 if (err == -EINPROGRESS && copied_syn > 0) 1127 goto out; 1128 else if (err) 1129 goto out_err; 1130 } 1131 1132 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1133 1134 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1135 1136 /* Wait for a connection to finish. One exception is TCP Fast Open 1137 * (passive side) where data is allowed to be sent before a connection 1138 * is fully established. 1139 */ 1140 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1141 !tcp_passive_fastopen(sk)) { 1142 err = sk_stream_wait_connect(sk, &timeo); 1143 if (err != 0) 1144 goto do_error; 1145 } 1146 1147 if (unlikely(tp->repair)) { 1148 if (tp->repair_queue == TCP_RECV_QUEUE) { 1149 copied = tcp_send_rcvq(sk, msg, size); 1150 goto out_nopush; 1151 } 1152 1153 err = -EINVAL; 1154 if (tp->repair_queue == TCP_NO_QUEUE) 1155 goto out_err; 1156 1157 /* 'common' sending to sendq */ 1158 } 1159 1160 if (sockc_err) { 1161 err = sockc_err; 1162 goto out_err; 1163 } 1164 1165 /* This should be in poll */ 1166 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1167 1168 /* Ok commence sending. */ 1169 copied = 0; 1170 1171 restart: 1172 mss_now = tcp_send_mss(sk, &size_goal, flags); 1173 1174 err = -EPIPE; 1175 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1176 goto do_error; 1177 1178 while (msg_data_left(msg)) { 1179 ssize_t copy = 0; 1180 1181 skb = tcp_write_queue_tail(sk); 1182 if (skb) 1183 copy = size_goal - skb->len; 1184 1185 trace_tcp_sendmsg_locked(sk, msg, skb, size_goal); 1186 1187 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1188 bool first_skb; 1189 1190 new_segment: 1191 if (!sk_stream_memory_free(sk)) 1192 goto wait_for_space; 1193 1194 if (unlikely(process_backlog >= 16)) { 1195 process_backlog = 0; 1196 if (sk_flush_backlog(sk)) 1197 goto restart; 1198 } 1199 first_skb = tcp_rtx_and_write_queues_empty(sk); 1200 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1201 first_skb); 1202 if (!skb) 1203 goto wait_for_space; 1204 1205 process_backlog++; 1206 1207 #ifdef CONFIG_SKB_DECRYPTED 1208 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1209 #endif 1210 tcp_skb_entail(sk, skb); 1211 copy = size_goal; 1212 1213 /* All packets are restored as if they have 1214 * already been sent. skb_mstamp_ns isn't set to 1215 * avoid wrong rtt estimation. 1216 */ 1217 if (tp->repair) 1218 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1219 } 1220 1221 /* Try to append data to the end of skb. */ 1222 if (copy > msg_data_left(msg)) 1223 copy = msg_data_left(msg); 1224 1225 if (zc == 0) { 1226 bool merge = true; 1227 int i = skb_shinfo(skb)->nr_frags; 1228 struct page_frag *pfrag = sk_page_frag(sk); 1229 1230 if (!sk_page_frag_refill(sk, pfrag)) 1231 goto wait_for_space; 1232 1233 if (!skb_can_coalesce(skb, i, pfrag->page, 1234 pfrag->offset)) { 1235 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1236 tcp_mark_push(tp, skb); 1237 goto new_segment; 1238 } 1239 merge = false; 1240 } 1241 1242 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1243 1244 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1245 if (tcp_downgrade_zcopy_pure(sk, skb)) 1246 goto wait_for_space; 1247 skb_zcopy_downgrade_managed(skb); 1248 } 1249 1250 copy = tcp_wmem_schedule(sk, copy); 1251 if (!copy) 1252 goto wait_for_space; 1253 1254 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1255 pfrag->page, 1256 pfrag->offset, 1257 copy); 1258 if (err) 1259 goto do_error; 1260 1261 /* Update the skb. */ 1262 if (merge) { 1263 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1264 } else { 1265 skb_fill_page_desc(skb, i, pfrag->page, 1266 pfrag->offset, copy); 1267 page_ref_inc(pfrag->page); 1268 } 1269 pfrag->offset += copy; 1270 } else if (zc == MSG_ZEROCOPY) { 1271 /* First append to a fragless skb builds initial 1272 * pure zerocopy skb 1273 */ 1274 if (!skb->len) 1275 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1276 1277 if (!skb_zcopy_pure(skb)) { 1278 copy = tcp_wmem_schedule(sk, copy); 1279 if (!copy) 1280 goto wait_for_space; 1281 } 1282 1283 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg, 1284 binding); 1285 if (err == -EMSGSIZE || err == -EEXIST) { 1286 tcp_mark_push(tp, skb); 1287 goto new_segment; 1288 } 1289 if (err < 0) 1290 goto do_error; 1291 copy = err; 1292 } else if (zc == MSG_SPLICE_PAGES) { 1293 /* Splice in data if we can; copy if we can't. */ 1294 if (tcp_downgrade_zcopy_pure(sk, skb)) 1295 goto wait_for_space; 1296 copy = tcp_wmem_schedule(sk, copy); 1297 if (!copy) 1298 goto wait_for_space; 1299 1300 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1301 sk->sk_allocation); 1302 if (err < 0) { 1303 if (err == -EMSGSIZE) { 1304 tcp_mark_push(tp, skb); 1305 goto new_segment; 1306 } 1307 goto do_error; 1308 } 1309 copy = err; 1310 1311 if (!(flags & MSG_NO_SHARED_FRAGS)) 1312 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1313 1314 sk_wmem_queued_add(sk, copy); 1315 sk_mem_charge(sk, copy); 1316 } 1317 1318 if (!copied) 1319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1320 1321 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1322 TCP_SKB_CB(skb)->end_seq += copy; 1323 tcp_skb_pcount_set(skb, 0); 1324 1325 copied += copy; 1326 if (!msg_data_left(msg)) { 1327 if (unlikely(flags & MSG_EOR)) 1328 TCP_SKB_CB(skb)->eor = 1; 1329 goto out; 1330 } 1331 1332 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1333 continue; 1334 1335 if (forced_push(tp)) { 1336 tcp_mark_push(tp, skb); 1337 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1338 } else if (skb == tcp_send_head(sk)) 1339 tcp_push_one(sk, mss_now); 1340 continue; 1341 1342 wait_for_space: 1343 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1344 tcp_remove_empty_skb(sk); 1345 if (copied) 1346 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1347 TCP_NAGLE_PUSH, size_goal); 1348 1349 err = sk_stream_wait_memory(sk, &timeo); 1350 if (err != 0) 1351 goto do_error; 1352 1353 mss_now = tcp_send_mss(sk, &size_goal, flags); 1354 } 1355 1356 out: 1357 if (copied) { 1358 tcp_tx_timestamp(sk, &sockc); 1359 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1360 } 1361 out_nopush: 1362 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1363 if (uarg && !msg->msg_ubuf) 1364 net_zcopy_put(uarg); 1365 if (binding) 1366 net_devmem_dmabuf_binding_put(binding); 1367 return copied + copied_syn; 1368 1369 do_error: 1370 tcp_remove_empty_skb(sk); 1371 1372 if (copied + copied_syn) 1373 goto out; 1374 out_err: 1375 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1376 if (uarg && !msg->msg_ubuf) 1377 net_zcopy_put_abort(uarg, true); 1378 err = sk_stream_error(sk, flags, err); 1379 /* make sure we wake any epoll edge trigger waiter */ 1380 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1381 sk->sk_write_space(sk); 1382 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1383 } 1384 if (binding) 1385 net_devmem_dmabuf_binding_put(binding); 1386 1387 return err; 1388 } 1389 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1390 1391 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1392 { 1393 int ret; 1394 1395 lock_sock(sk); 1396 ret = tcp_sendmsg_locked(sk, msg, size); 1397 release_sock(sk); 1398 1399 return ret; 1400 } 1401 EXPORT_SYMBOL(tcp_sendmsg); 1402 1403 void tcp_splice_eof(struct socket *sock) 1404 { 1405 struct sock *sk = sock->sk; 1406 struct tcp_sock *tp = tcp_sk(sk); 1407 int mss_now, size_goal; 1408 1409 if (!tcp_write_queue_tail(sk)) 1410 return; 1411 1412 lock_sock(sk); 1413 mss_now = tcp_send_mss(sk, &size_goal, 0); 1414 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1415 release_sock(sk); 1416 } 1417 EXPORT_IPV6_MOD_GPL(tcp_splice_eof); 1418 1419 /* 1420 * Handle reading urgent data. BSD has very simple semantics for 1421 * this, no blocking and very strange errors 8) 1422 */ 1423 1424 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1425 { 1426 struct tcp_sock *tp = tcp_sk(sk); 1427 1428 /* No URG data to read. */ 1429 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1430 tp->urg_data == TCP_URG_READ) 1431 return -EINVAL; /* Yes this is right ! */ 1432 1433 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1434 return -ENOTCONN; 1435 1436 if (tp->urg_data & TCP_URG_VALID) { 1437 int err = 0; 1438 char c = tp->urg_data; 1439 1440 if (!(flags & MSG_PEEK)) 1441 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1442 1443 /* Read urgent data. */ 1444 msg->msg_flags |= MSG_OOB; 1445 1446 if (len > 0) { 1447 if (!(flags & MSG_TRUNC)) 1448 err = memcpy_to_msg(msg, &c, 1); 1449 len = 1; 1450 } else 1451 msg->msg_flags |= MSG_TRUNC; 1452 1453 return err ? -EFAULT : len; 1454 } 1455 1456 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1457 return 0; 1458 1459 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1460 * the available implementations agree in this case: 1461 * this call should never block, independent of the 1462 * blocking state of the socket. 1463 * Mike <pall@rz.uni-karlsruhe.de> 1464 */ 1465 return -EAGAIN; 1466 } 1467 1468 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1469 { 1470 struct sk_buff *skb; 1471 int copied = 0, err = 0; 1472 1473 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1474 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1475 if (err) 1476 return err; 1477 copied += skb->len; 1478 } 1479 1480 skb_queue_walk(&sk->sk_write_queue, skb) { 1481 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1482 if (err) 1483 break; 1484 1485 copied += skb->len; 1486 } 1487 1488 return err ?: copied; 1489 } 1490 1491 /* Clean up the receive buffer for full frames taken by the user, 1492 * then send an ACK if necessary. COPIED is the number of bytes 1493 * tcp_recvmsg has given to the user so far, it speeds up the 1494 * calculation of whether or not we must ACK for the sake of 1495 * a window update. 1496 */ 1497 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1498 { 1499 struct tcp_sock *tp = tcp_sk(sk); 1500 bool time_to_ack = false; 1501 1502 if (inet_csk_ack_scheduled(sk)) { 1503 const struct inet_connection_sock *icsk = inet_csk(sk); 1504 1505 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1506 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1507 /* 1508 * If this read emptied read buffer, we send ACK, if 1509 * connection is not bidirectional, user drained 1510 * receive buffer and there was a small segment 1511 * in queue. 1512 */ 1513 (copied > 0 && 1514 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1515 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1516 !inet_csk_in_pingpong_mode(sk))) && 1517 !atomic_read(&sk->sk_rmem_alloc))) 1518 time_to_ack = true; 1519 } 1520 1521 /* We send an ACK if we can now advertise a non-zero window 1522 * which has been raised "significantly". 1523 * 1524 * Even if window raised up to infinity, do not send window open ACK 1525 * in states, where we will not receive more. It is useless. 1526 */ 1527 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1528 __u32 rcv_window_now = tcp_receive_window(tp); 1529 1530 /* Optimize, __tcp_select_window() is not cheap. */ 1531 if (2*rcv_window_now <= tp->window_clamp) { 1532 __u32 new_window = __tcp_select_window(sk); 1533 1534 /* Send ACK now, if this read freed lots of space 1535 * in our buffer. Certainly, new_window is new window. 1536 * We can advertise it now, if it is not less than current one. 1537 * "Lots" means "at least twice" here. 1538 */ 1539 if (new_window && new_window >= 2 * rcv_window_now) 1540 time_to_ack = true; 1541 } 1542 } 1543 if (time_to_ack) 1544 tcp_send_ack(sk); 1545 } 1546 1547 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1548 { 1549 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1550 struct tcp_sock *tp = tcp_sk(sk); 1551 1552 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1553 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1554 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1555 __tcp_cleanup_rbuf(sk, copied); 1556 } 1557 1558 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1559 { 1560 __skb_unlink(skb, &sk->sk_receive_queue); 1561 if (likely(skb->destructor == sock_rfree)) { 1562 sock_rfree(skb); 1563 skb->destructor = NULL; 1564 skb->sk = NULL; 1565 return skb_attempt_defer_free(skb); 1566 } 1567 __kfree_skb(skb); 1568 } 1569 1570 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1571 { 1572 struct sk_buff *skb; 1573 u32 offset; 1574 1575 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1576 offset = seq - TCP_SKB_CB(skb)->seq; 1577 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1578 pr_err_once("%s: found a SYN, please report !\n", __func__); 1579 offset--; 1580 } 1581 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1582 *off = offset; 1583 return skb; 1584 } 1585 /* This looks weird, but this can happen if TCP collapsing 1586 * splitted a fat GRO packet, while we released socket lock 1587 * in skb_splice_bits() 1588 */ 1589 tcp_eat_recv_skb(sk, skb); 1590 } 1591 return NULL; 1592 } 1593 EXPORT_SYMBOL(tcp_recv_skb); 1594 1595 /* 1596 * This routine provides an alternative to tcp_recvmsg() for routines 1597 * that would like to handle copying from skbuffs directly in 'sendfile' 1598 * fashion. 1599 * Note: 1600 * - It is assumed that the socket was locked by the caller. 1601 * - The routine does not block. 1602 * - At present, there is no support for reading OOB data 1603 * or for 'peeking' the socket using this routine 1604 * (although both would be easy to implement). 1605 */ 1606 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1607 sk_read_actor_t recv_actor, bool noack, 1608 u32 *copied_seq) 1609 { 1610 struct sk_buff *skb; 1611 struct tcp_sock *tp = tcp_sk(sk); 1612 u32 seq = *copied_seq; 1613 u32 offset; 1614 int copied = 0; 1615 1616 if (sk->sk_state == TCP_LISTEN) 1617 return -ENOTCONN; 1618 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1619 if (offset < skb->len) { 1620 int used; 1621 size_t len; 1622 1623 len = skb->len - offset; 1624 /* Stop reading if we hit a patch of urgent data */ 1625 if (unlikely(tp->urg_data)) { 1626 u32 urg_offset = tp->urg_seq - seq; 1627 if (urg_offset < len) 1628 len = urg_offset; 1629 if (!len) 1630 break; 1631 } 1632 used = recv_actor(desc, skb, offset, len); 1633 if (used <= 0) { 1634 if (!copied) 1635 copied = used; 1636 break; 1637 } 1638 if (WARN_ON_ONCE(used > len)) 1639 used = len; 1640 seq += used; 1641 copied += used; 1642 offset += used; 1643 1644 /* If recv_actor drops the lock (e.g. TCP splice 1645 * receive) the skb pointer might be invalid when 1646 * getting here: tcp_collapse might have deleted it 1647 * while aggregating skbs from the socket queue. 1648 */ 1649 skb = tcp_recv_skb(sk, seq - 1, &offset); 1650 if (!skb) 1651 break; 1652 /* TCP coalescing might have appended data to the skb. 1653 * Try to splice more frags 1654 */ 1655 if (offset + 1 != skb->len) 1656 continue; 1657 } 1658 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1659 tcp_eat_recv_skb(sk, skb); 1660 ++seq; 1661 break; 1662 } 1663 tcp_eat_recv_skb(sk, skb); 1664 if (!desc->count) 1665 break; 1666 WRITE_ONCE(*copied_seq, seq); 1667 } 1668 WRITE_ONCE(*copied_seq, seq); 1669 1670 if (noack) 1671 goto out; 1672 1673 tcp_rcv_space_adjust(sk); 1674 1675 /* Clean up data we have read: This will do ACK frames. */ 1676 if (copied > 0) { 1677 tcp_recv_skb(sk, seq, &offset); 1678 tcp_cleanup_rbuf(sk, copied); 1679 } 1680 out: 1681 return copied; 1682 } 1683 1684 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1685 sk_read_actor_t recv_actor) 1686 { 1687 return __tcp_read_sock(sk, desc, recv_actor, false, 1688 &tcp_sk(sk)->copied_seq); 1689 } 1690 EXPORT_SYMBOL(tcp_read_sock); 1691 1692 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 1693 sk_read_actor_t recv_actor, bool noack, 1694 u32 *copied_seq) 1695 { 1696 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq); 1697 } 1698 1699 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1700 { 1701 struct sk_buff *skb; 1702 int copied = 0; 1703 1704 if (sk->sk_state == TCP_LISTEN) 1705 return -ENOTCONN; 1706 1707 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1708 u8 tcp_flags; 1709 int used; 1710 1711 __skb_unlink(skb, &sk->sk_receive_queue); 1712 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1713 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1714 used = recv_actor(sk, skb); 1715 if (used < 0) { 1716 if (!copied) 1717 copied = used; 1718 break; 1719 } 1720 copied += used; 1721 1722 if (tcp_flags & TCPHDR_FIN) 1723 break; 1724 } 1725 return copied; 1726 } 1727 EXPORT_IPV6_MOD(tcp_read_skb); 1728 1729 void tcp_read_done(struct sock *sk, size_t len) 1730 { 1731 struct tcp_sock *tp = tcp_sk(sk); 1732 u32 seq = tp->copied_seq; 1733 struct sk_buff *skb; 1734 size_t left; 1735 u32 offset; 1736 1737 if (sk->sk_state == TCP_LISTEN) 1738 return; 1739 1740 left = len; 1741 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1742 int used; 1743 1744 used = min_t(size_t, skb->len - offset, left); 1745 seq += used; 1746 left -= used; 1747 1748 if (skb->len > offset + used) 1749 break; 1750 1751 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1752 tcp_eat_recv_skb(sk, skb); 1753 ++seq; 1754 break; 1755 } 1756 tcp_eat_recv_skb(sk, skb); 1757 } 1758 WRITE_ONCE(tp->copied_seq, seq); 1759 1760 tcp_rcv_space_adjust(sk); 1761 1762 /* Clean up data we have read: This will do ACK frames. */ 1763 if (left != len) 1764 tcp_cleanup_rbuf(sk, len - left); 1765 } 1766 EXPORT_SYMBOL(tcp_read_done); 1767 1768 int tcp_peek_len(struct socket *sock) 1769 { 1770 return tcp_inq(sock->sk); 1771 } 1772 EXPORT_IPV6_MOD(tcp_peek_len); 1773 1774 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1775 int tcp_set_rcvlowat(struct sock *sk, int val) 1776 { 1777 int space, cap; 1778 1779 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1780 cap = sk->sk_rcvbuf >> 1; 1781 else 1782 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1783 val = min(val, cap); 1784 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1785 1786 /* Check if we need to signal EPOLLIN right now */ 1787 tcp_data_ready(sk); 1788 1789 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1790 return 0; 1791 1792 space = tcp_space_from_win(sk, val); 1793 if (space > sk->sk_rcvbuf) { 1794 WRITE_ONCE(sk->sk_rcvbuf, space); 1795 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1796 } 1797 return 0; 1798 } 1799 EXPORT_IPV6_MOD(tcp_set_rcvlowat); 1800 1801 void tcp_update_recv_tstamps(struct sk_buff *skb, 1802 struct scm_timestamping_internal *tss) 1803 { 1804 if (skb->tstamp) 1805 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1806 else 1807 tss->ts[0] = (struct timespec64) {0}; 1808 1809 if (skb_hwtstamps(skb)->hwtstamp) 1810 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1811 else 1812 tss->ts[2] = (struct timespec64) {0}; 1813 } 1814 1815 #ifdef CONFIG_MMU 1816 static const struct vm_operations_struct tcp_vm_ops = { 1817 }; 1818 1819 int tcp_mmap(struct file *file, struct socket *sock, 1820 struct vm_area_struct *vma) 1821 { 1822 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1823 return -EPERM; 1824 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1825 1826 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1827 vm_flags_set(vma, VM_MIXEDMAP); 1828 1829 vma->vm_ops = &tcp_vm_ops; 1830 return 0; 1831 } 1832 EXPORT_IPV6_MOD(tcp_mmap); 1833 1834 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1835 u32 *offset_frag) 1836 { 1837 skb_frag_t *frag; 1838 1839 if (unlikely(offset_skb >= skb->len)) 1840 return NULL; 1841 1842 offset_skb -= skb_headlen(skb); 1843 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1844 return NULL; 1845 1846 frag = skb_shinfo(skb)->frags; 1847 while (offset_skb) { 1848 if (skb_frag_size(frag) > offset_skb) { 1849 *offset_frag = offset_skb; 1850 return frag; 1851 } 1852 offset_skb -= skb_frag_size(frag); 1853 ++frag; 1854 } 1855 *offset_frag = 0; 1856 return frag; 1857 } 1858 1859 static bool can_map_frag(const skb_frag_t *frag) 1860 { 1861 struct page *page; 1862 1863 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1864 return false; 1865 1866 page = skb_frag_page(frag); 1867 1868 if (PageCompound(page) || page->mapping) 1869 return false; 1870 1871 return true; 1872 } 1873 1874 static int find_next_mappable_frag(const skb_frag_t *frag, 1875 int remaining_in_skb) 1876 { 1877 int offset = 0; 1878 1879 if (likely(can_map_frag(frag))) 1880 return 0; 1881 1882 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1883 offset += skb_frag_size(frag); 1884 ++frag; 1885 } 1886 return offset; 1887 } 1888 1889 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1890 struct tcp_zerocopy_receive *zc, 1891 struct sk_buff *skb, u32 offset) 1892 { 1893 u32 frag_offset, partial_frag_remainder = 0; 1894 int mappable_offset; 1895 skb_frag_t *frag; 1896 1897 /* worst case: skip to next skb. try to improve on this case below */ 1898 zc->recv_skip_hint = skb->len - offset; 1899 1900 /* Find the frag containing this offset (and how far into that frag) */ 1901 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1902 if (!frag) 1903 return; 1904 1905 if (frag_offset) { 1906 struct skb_shared_info *info = skb_shinfo(skb); 1907 1908 /* We read part of the last frag, must recvmsg() rest of skb. */ 1909 if (frag == &info->frags[info->nr_frags - 1]) 1910 return; 1911 1912 /* Else, we must at least read the remainder in this frag. */ 1913 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1914 zc->recv_skip_hint -= partial_frag_remainder; 1915 ++frag; 1916 } 1917 1918 /* partial_frag_remainder: If part way through a frag, must read rest. 1919 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1920 * in partial_frag_remainder. 1921 */ 1922 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1923 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1924 } 1925 1926 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1927 int flags, struct scm_timestamping_internal *tss, 1928 int *cmsg_flags); 1929 static int receive_fallback_to_copy(struct sock *sk, 1930 struct tcp_zerocopy_receive *zc, int inq, 1931 struct scm_timestamping_internal *tss) 1932 { 1933 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1934 struct msghdr msg = {}; 1935 int err; 1936 1937 zc->length = 0; 1938 zc->recv_skip_hint = 0; 1939 1940 if (copy_address != zc->copybuf_address) 1941 return -EINVAL; 1942 1943 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1944 &msg.msg_iter); 1945 if (err) 1946 return err; 1947 1948 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1949 tss, &zc->msg_flags); 1950 if (err < 0) 1951 return err; 1952 1953 zc->copybuf_len = err; 1954 if (likely(zc->copybuf_len)) { 1955 struct sk_buff *skb; 1956 u32 offset; 1957 1958 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1959 if (skb) 1960 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1961 } 1962 return 0; 1963 } 1964 1965 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1966 struct sk_buff *skb, u32 copylen, 1967 u32 *offset, u32 *seq) 1968 { 1969 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1970 struct msghdr msg = {}; 1971 int err; 1972 1973 if (copy_address != zc->copybuf_address) 1974 return -EINVAL; 1975 1976 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1977 &msg.msg_iter); 1978 if (err) 1979 return err; 1980 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1981 if (err) 1982 return err; 1983 zc->recv_skip_hint -= copylen; 1984 *offset += copylen; 1985 *seq += copylen; 1986 return (__s32)copylen; 1987 } 1988 1989 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1990 struct sock *sk, 1991 struct sk_buff *skb, 1992 u32 *seq, 1993 s32 copybuf_len, 1994 struct scm_timestamping_internal *tss) 1995 { 1996 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1997 1998 if (!copylen) 1999 return 0; 2000 /* skb is null if inq < PAGE_SIZE. */ 2001 if (skb) { 2002 offset = *seq - TCP_SKB_CB(skb)->seq; 2003 } else { 2004 skb = tcp_recv_skb(sk, *seq, &offset); 2005 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2006 tcp_update_recv_tstamps(skb, tss); 2007 zc->msg_flags |= TCP_CMSG_TS; 2008 } 2009 } 2010 2011 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2012 seq); 2013 return zc->copybuf_len < 0 ? 0 : copylen; 2014 } 2015 2016 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2017 struct page **pending_pages, 2018 unsigned long pages_remaining, 2019 unsigned long *address, 2020 u32 *length, 2021 u32 *seq, 2022 struct tcp_zerocopy_receive *zc, 2023 u32 total_bytes_to_map, 2024 int err) 2025 { 2026 /* At least one page did not map. Try zapping if we skipped earlier. */ 2027 if (err == -EBUSY && 2028 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2029 u32 maybe_zap_len; 2030 2031 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2032 *length + /* Mapped or pending */ 2033 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2034 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 2035 err = 0; 2036 } 2037 2038 if (!err) { 2039 unsigned long leftover_pages = pages_remaining; 2040 int bytes_mapped; 2041 2042 /* We called zap_page_range_single, try to reinsert. */ 2043 err = vm_insert_pages(vma, *address, 2044 pending_pages, 2045 &pages_remaining); 2046 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2047 *seq += bytes_mapped; 2048 *address += bytes_mapped; 2049 } 2050 if (err) { 2051 /* Either we were unable to zap, OR we zapped, retried an 2052 * insert, and still had an issue. Either ways, pages_remaining 2053 * is the number of pages we were unable to map, and we unroll 2054 * some state we speculatively touched before. 2055 */ 2056 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2057 2058 *length -= bytes_not_mapped; 2059 zc->recv_skip_hint += bytes_not_mapped; 2060 } 2061 return err; 2062 } 2063 2064 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2065 struct page **pages, 2066 unsigned int pages_to_map, 2067 unsigned long *address, 2068 u32 *length, 2069 u32 *seq, 2070 struct tcp_zerocopy_receive *zc, 2071 u32 total_bytes_to_map) 2072 { 2073 unsigned long pages_remaining = pages_to_map; 2074 unsigned int pages_mapped; 2075 unsigned int bytes_mapped; 2076 int err; 2077 2078 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2079 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2080 bytes_mapped = PAGE_SIZE * pages_mapped; 2081 /* Even if vm_insert_pages fails, it may have partially succeeded in 2082 * mapping (some but not all of the pages). 2083 */ 2084 *seq += bytes_mapped; 2085 *address += bytes_mapped; 2086 2087 if (likely(!err)) 2088 return 0; 2089 2090 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2091 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2092 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2093 err); 2094 } 2095 2096 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2097 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2098 struct tcp_zerocopy_receive *zc, 2099 struct scm_timestamping_internal *tss) 2100 { 2101 unsigned long msg_control_addr; 2102 struct msghdr cmsg_dummy; 2103 2104 msg_control_addr = (unsigned long)zc->msg_control; 2105 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2106 cmsg_dummy.msg_controllen = 2107 (__kernel_size_t)zc->msg_controllen; 2108 cmsg_dummy.msg_flags = in_compat_syscall() 2109 ? MSG_CMSG_COMPAT : 0; 2110 cmsg_dummy.msg_control_is_user = true; 2111 zc->msg_flags = 0; 2112 if (zc->msg_control == msg_control_addr && 2113 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2114 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2115 zc->msg_control = (__u64) 2116 ((uintptr_t)cmsg_dummy.msg_control_user); 2117 zc->msg_controllen = 2118 (__u64)cmsg_dummy.msg_controllen; 2119 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2120 } 2121 } 2122 2123 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2124 unsigned long address, 2125 bool *mmap_locked) 2126 { 2127 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2128 2129 if (vma) { 2130 if (vma->vm_ops != &tcp_vm_ops) { 2131 vma_end_read(vma); 2132 return NULL; 2133 } 2134 *mmap_locked = false; 2135 return vma; 2136 } 2137 2138 mmap_read_lock(mm); 2139 vma = vma_lookup(mm, address); 2140 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2141 mmap_read_unlock(mm); 2142 return NULL; 2143 } 2144 *mmap_locked = true; 2145 return vma; 2146 } 2147 2148 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2149 static int tcp_zerocopy_receive(struct sock *sk, 2150 struct tcp_zerocopy_receive *zc, 2151 struct scm_timestamping_internal *tss) 2152 { 2153 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2154 unsigned long address = (unsigned long)zc->address; 2155 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2156 s32 copybuf_len = zc->copybuf_len; 2157 struct tcp_sock *tp = tcp_sk(sk); 2158 const skb_frag_t *frags = NULL; 2159 unsigned int pages_to_map = 0; 2160 struct vm_area_struct *vma; 2161 struct sk_buff *skb = NULL; 2162 u32 seq = tp->copied_seq; 2163 u32 total_bytes_to_map; 2164 int inq = tcp_inq(sk); 2165 bool mmap_locked; 2166 int ret; 2167 2168 zc->copybuf_len = 0; 2169 zc->msg_flags = 0; 2170 2171 if (address & (PAGE_SIZE - 1) || address != zc->address) 2172 return -EINVAL; 2173 2174 if (sk->sk_state == TCP_LISTEN) 2175 return -ENOTCONN; 2176 2177 sock_rps_record_flow(sk); 2178 2179 if (inq && inq <= copybuf_len) 2180 return receive_fallback_to_copy(sk, zc, inq, tss); 2181 2182 if (inq < PAGE_SIZE) { 2183 zc->length = 0; 2184 zc->recv_skip_hint = inq; 2185 if (!inq && sock_flag(sk, SOCK_DONE)) 2186 return -EIO; 2187 return 0; 2188 } 2189 2190 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2191 if (!vma) 2192 return -EINVAL; 2193 2194 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2195 avail_len = min_t(u32, vma_len, inq); 2196 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2197 if (total_bytes_to_map) { 2198 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2199 zap_page_range_single(vma, address, total_bytes_to_map, 2200 NULL); 2201 zc->length = total_bytes_to_map; 2202 zc->recv_skip_hint = 0; 2203 } else { 2204 zc->length = avail_len; 2205 zc->recv_skip_hint = avail_len; 2206 } 2207 ret = 0; 2208 while (length + PAGE_SIZE <= zc->length) { 2209 int mappable_offset; 2210 struct page *page; 2211 2212 if (zc->recv_skip_hint < PAGE_SIZE) { 2213 u32 offset_frag; 2214 2215 if (skb) { 2216 if (zc->recv_skip_hint > 0) 2217 break; 2218 skb = skb->next; 2219 offset = seq - TCP_SKB_CB(skb)->seq; 2220 } else { 2221 skb = tcp_recv_skb(sk, seq, &offset); 2222 } 2223 2224 if (!skb_frags_readable(skb)) 2225 break; 2226 2227 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2228 tcp_update_recv_tstamps(skb, tss); 2229 zc->msg_flags |= TCP_CMSG_TS; 2230 } 2231 zc->recv_skip_hint = skb->len - offset; 2232 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2233 if (!frags || offset_frag) 2234 break; 2235 } 2236 2237 mappable_offset = find_next_mappable_frag(frags, 2238 zc->recv_skip_hint); 2239 if (mappable_offset) { 2240 zc->recv_skip_hint = mappable_offset; 2241 break; 2242 } 2243 page = skb_frag_page(frags); 2244 if (WARN_ON_ONCE(!page)) 2245 break; 2246 2247 prefetchw(page); 2248 pages[pages_to_map++] = page; 2249 length += PAGE_SIZE; 2250 zc->recv_skip_hint -= PAGE_SIZE; 2251 frags++; 2252 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2253 zc->recv_skip_hint < PAGE_SIZE) { 2254 /* Either full batch, or we're about to go to next skb 2255 * (and we cannot unroll failed ops across skbs). 2256 */ 2257 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2258 pages_to_map, 2259 &address, &length, 2260 &seq, zc, 2261 total_bytes_to_map); 2262 if (ret) 2263 goto out; 2264 pages_to_map = 0; 2265 } 2266 } 2267 if (pages_to_map) { 2268 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2269 &address, &length, &seq, 2270 zc, total_bytes_to_map); 2271 } 2272 out: 2273 if (mmap_locked) 2274 mmap_read_unlock(current->mm); 2275 else 2276 vma_end_read(vma); 2277 /* Try to copy straggler data. */ 2278 if (!ret) 2279 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2280 2281 if (length + copylen) { 2282 WRITE_ONCE(tp->copied_seq, seq); 2283 tcp_rcv_space_adjust(sk); 2284 2285 /* Clean up data we have read: This will do ACK frames. */ 2286 tcp_recv_skb(sk, seq, &offset); 2287 tcp_cleanup_rbuf(sk, length + copylen); 2288 ret = 0; 2289 if (length == zc->length) 2290 zc->recv_skip_hint = 0; 2291 } else { 2292 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2293 ret = -EIO; 2294 } 2295 zc->length = length; 2296 return ret; 2297 } 2298 #endif 2299 2300 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2301 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2302 struct scm_timestamping_internal *tss) 2303 { 2304 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2305 u32 tsflags = READ_ONCE(sk->sk_tsflags); 2306 bool has_timestamping = false; 2307 2308 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2309 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2310 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2311 if (new_tstamp) { 2312 struct __kernel_timespec kts = { 2313 .tv_sec = tss->ts[0].tv_sec, 2314 .tv_nsec = tss->ts[0].tv_nsec, 2315 }; 2316 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2317 sizeof(kts), &kts); 2318 } else { 2319 struct __kernel_old_timespec ts_old = { 2320 .tv_sec = tss->ts[0].tv_sec, 2321 .tv_nsec = tss->ts[0].tv_nsec, 2322 }; 2323 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2324 sizeof(ts_old), &ts_old); 2325 } 2326 } else { 2327 if (new_tstamp) { 2328 struct __kernel_sock_timeval stv = { 2329 .tv_sec = tss->ts[0].tv_sec, 2330 .tv_usec = tss->ts[0].tv_nsec / 1000, 2331 }; 2332 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2333 sizeof(stv), &stv); 2334 } else { 2335 struct __kernel_old_timeval tv = { 2336 .tv_sec = tss->ts[0].tv_sec, 2337 .tv_usec = tss->ts[0].tv_nsec / 1000, 2338 }; 2339 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2340 sizeof(tv), &tv); 2341 } 2342 } 2343 } 2344 2345 if (tsflags & SOF_TIMESTAMPING_SOFTWARE && 2346 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 2347 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2348 has_timestamping = true; 2349 else 2350 tss->ts[0] = (struct timespec64) {0}; 2351 } 2352 2353 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2354 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 2355 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 2356 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) 2357 has_timestamping = true; 2358 else 2359 tss->ts[2] = (struct timespec64) {0}; 2360 } 2361 2362 if (has_timestamping) { 2363 tss->ts[1] = (struct timespec64) {0}; 2364 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2365 put_cmsg_scm_timestamping64(msg, tss); 2366 else 2367 put_cmsg_scm_timestamping(msg, tss); 2368 } 2369 } 2370 2371 static int tcp_inq_hint(struct sock *sk) 2372 { 2373 const struct tcp_sock *tp = tcp_sk(sk); 2374 u32 copied_seq = READ_ONCE(tp->copied_seq); 2375 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2376 int inq; 2377 2378 inq = rcv_nxt - copied_seq; 2379 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2380 lock_sock(sk); 2381 inq = tp->rcv_nxt - tp->copied_seq; 2382 release_sock(sk); 2383 } 2384 /* After receiving a FIN, tell the user-space to continue reading 2385 * by returning a non-zero inq. 2386 */ 2387 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2388 inq = 1; 2389 return inq; 2390 } 2391 2392 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */ 2393 struct tcp_xa_pool { 2394 u8 max; /* max <= MAX_SKB_FRAGS */ 2395 u8 idx; /* idx <= max */ 2396 __u32 tokens[MAX_SKB_FRAGS]; 2397 netmem_ref netmems[MAX_SKB_FRAGS]; 2398 }; 2399 2400 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p) 2401 { 2402 int i; 2403 2404 /* Commit part that has been copied to user space. */ 2405 for (i = 0; i < p->idx; i++) 2406 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY, 2407 (__force void *)p->netmems[i], GFP_KERNEL); 2408 /* Rollback what has been pre-allocated and is no longer needed. */ 2409 for (; i < p->max; i++) 2410 __xa_erase(&sk->sk_user_frags, p->tokens[i]); 2411 2412 p->max = 0; 2413 p->idx = 0; 2414 } 2415 2416 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p) 2417 { 2418 if (!p->max) 2419 return; 2420 2421 xa_lock_bh(&sk->sk_user_frags); 2422 2423 tcp_xa_pool_commit_locked(sk, p); 2424 2425 xa_unlock_bh(&sk->sk_user_frags); 2426 } 2427 2428 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p, 2429 unsigned int max_frags) 2430 { 2431 int err, k; 2432 2433 if (p->idx < p->max) 2434 return 0; 2435 2436 xa_lock_bh(&sk->sk_user_frags); 2437 2438 tcp_xa_pool_commit_locked(sk, p); 2439 2440 for (k = 0; k < max_frags; k++) { 2441 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k], 2442 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL); 2443 if (err) 2444 break; 2445 } 2446 2447 xa_unlock_bh(&sk->sk_user_frags); 2448 2449 p->max = k; 2450 p->idx = 0; 2451 return k ? 0 : err; 2452 } 2453 2454 /* On error, returns the -errno. On success, returns number of bytes sent to the 2455 * user. May not consume all of @remaining_len. 2456 */ 2457 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb, 2458 unsigned int offset, struct msghdr *msg, 2459 int remaining_len) 2460 { 2461 struct dmabuf_cmsg dmabuf_cmsg = { 0 }; 2462 struct tcp_xa_pool tcp_xa_pool; 2463 unsigned int start; 2464 int i, copy, n; 2465 int sent = 0; 2466 int err = 0; 2467 2468 tcp_xa_pool.max = 0; 2469 tcp_xa_pool.idx = 0; 2470 do { 2471 start = skb_headlen(skb); 2472 2473 if (skb_frags_readable(skb)) { 2474 err = -ENODEV; 2475 goto out; 2476 } 2477 2478 /* Copy header. */ 2479 copy = start - offset; 2480 if (copy > 0) { 2481 copy = min(copy, remaining_len); 2482 2483 n = copy_to_iter(skb->data + offset, copy, 2484 &msg->msg_iter); 2485 if (n != copy) { 2486 err = -EFAULT; 2487 goto out; 2488 } 2489 2490 offset += copy; 2491 remaining_len -= copy; 2492 2493 /* First a dmabuf_cmsg for # bytes copied to user 2494 * buffer. 2495 */ 2496 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg)); 2497 dmabuf_cmsg.frag_size = copy; 2498 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2499 SO_DEVMEM_LINEAR, 2500 sizeof(dmabuf_cmsg), 2501 &dmabuf_cmsg); 2502 if (err) 2503 goto out; 2504 2505 sent += copy; 2506 2507 if (remaining_len == 0) 2508 goto out; 2509 } 2510 2511 /* after that, send information of dmabuf pages through a 2512 * sequence of cmsg 2513 */ 2514 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2516 struct net_iov *niov; 2517 u64 frag_offset; 2518 int end; 2519 2520 /* !skb_frags_readable() should indicate that ALL the 2521 * frags in this skb are dmabuf net_iovs. We're checking 2522 * for that flag above, but also check individual frags 2523 * here. If the tcp stack is not setting 2524 * skb_frags_readable() correctly, we still don't want 2525 * to crash here. 2526 */ 2527 if (!skb_frag_net_iov(frag)) { 2528 net_err_ratelimited("Found non-dmabuf skb with net_iov"); 2529 err = -ENODEV; 2530 goto out; 2531 } 2532 2533 niov = skb_frag_net_iov(frag); 2534 if (!net_is_devmem_iov(niov)) { 2535 err = -ENODEV; 2536 goto out; 2537 } 2538 2539 end = start + skb_frag_size(frag); 2540 copy = end - offset; 2541 2542 if (copy > 0) { 2543 copy = min(copy, remaining_len); 2544 2545 frag_offset = net_iov_virtual_addr(niov) + 2546 skb_frag_off(frag) + offset - 2547 start; 2548 dmabuf_cmsg.frag_offset = frag_offset; 2549 dmabuf_cmsg.frag_size = copy; 2550 err = tcp_xa_pool_refill(sk, &tcp_xa_pool, 2551 skb_shinfo(skb)->nr_frags - i); 2552 if (err) 2553 goto out; 2554 2555 /* Will perform the exchange later */ 2556 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx]; 2557 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov); 2558 2559 offset += copy; 2560 remaining_len -= copy; 2561 2562 err = put_cmsg_notrunc(msg, SOL_SOCKET, 2563 SO_DEVMEM_DMABUF, 2564 sizeof(dmabuf_cmsg), 2565 &dmabuf_cmsg); 2566 if (err) 2567 goto out; 2568 2569 atomic_long_inc(&niov->pp_ref_count); 2570 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag); 2571 2572 sent += copy; 2573 2574 if (remaining_len == 0) 2575 goto out; 2576 } 2577 start = end; 2578 } 2579 2580 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2581 if (!remaining_len) 2582 goto out; 2583 2584 /* if remaining_len is not satisfied yet, we need to go to the 2585 * next frag in the frag_list to satisfy remaining_len. 2586 */ 2587 skb = skb_shinfo(skb)->frag_list ?: skb->next; 2588 2589 offset = offset - start; 2590 } while (skb); 2591 2592 if (remaining_len) { 2593 err = -EFAULT; 2594 goto out; 2595 } 2596 2597 out: 2598 tcp_xa_pool_commit(sk, &tcp_xa_pool); 2599 if (!sent) 2600 sent = err; 2601 2602 return sent; 2603 } 2604 2605 /* 2606 * This routine copies from a sock struct into the user buffer. 2607 * 2608 * Technical note: in 2.3 we work on _locked_ socket, so that 2609 * tricks with *seq access order and skb->users are not required. 2610 * Probably, code can be easily improved even more. 2611 */ 2612 2613 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2614 int flags, struct scm_timestamping_internal *tss, 2615 int *cmsg_flags) 2616 { 2617 struct tcp_sock *tp = tcp_sk(sk); 2618 int last_copied_dmabuf = -1; /* uninitialized */ 2619 int copied = 0; 2620 u32 peek_seq; 2621 u32 *seq; 2622 unsigned long used; 2623 int err; 2624 int target; /* Read at least this many bytes */ 2625 long timeo; 2626 struct sk_buff *skb, *last; 2627 u32 peek_offset = 0; 2628 u32 urg_hole = 0; 2629 2630 err = -ENOTCONN; 2631 if (sk->sk_state == TCP_LISTEN) 2632 goto out; 2633 2634 if (tp->recvmsg_inq) { 2635 *cmsg_flags = TCP_CMSG_INQ; 2636 msg->msg_get_inq = 1; 2637 } 2638 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2639 2640 /* Urgent data needs to be handled specially. */ 2641 if (flags & MSG_OOB) 2642 goto recv_urg; 2643 2644 if (unlikely(tp->repair)) { 2645 err = -EPERM; 2646 if (!(flags & MSG_PEEK)) 2647 goto out; 2648 2649 if (tp->repair_queue == TCP_SEND_QUEUE) 2650 goto recv_sndq; 2651 2652 err = -EINVAL; 2653 if (tp->repair_queue == TCP_NO_QUEUE) 2654 goto out; 2655 2656 /* 'common' recv queue MSG_PEEK-ing */ 2657 } 2658 2659 seq = &tp->copied_seq; 2660 if (flags & MSG_PEEK) { 2661 peek_offset = max(sk_peek_offset(sk, flags), 0); 2662 peek_seq = tp->copied_seq + peek_offset; 2663 seq = &peek_seq; 2664 } 2665 2666 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2667 2668 do { 2669 u32 offset; 2670 2671 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2672 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2673 if (copied) 2674 break; 2675 if (signal_pending(current)) { 2676 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2677 break; 2678 } 2679 } 2680 2681 /* Next get a buffer. */ 2682 2683 last = skb_peek_tail(&sk->sk_receive_queue); 2684 skb_queue_walk(&sk->sk_receive_queue, skb) { 2685 last = skb; 2686 /* Now that we have two receive queues this 2687 * shouldn't happen. 2688 */ 2689 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2690 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2691 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2692 flags)) 2693 break; 2694 2695 offset = *seq - TCP_SKB_CB(skb)->seq; 2696 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2697 pr_err_once("%s: found a SYN, please report !\n", __func__); 2698 offset--; 2699 } 2700 if (offset < skb->len) 2701 goto found_ok_skb; 2702 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2703 goto found_fin_ok; 2704 WARN(!(flags & MSG_PEEK), 2705 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2706 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2707 } 2708 2709 /* Well, if we have backlog, try to process it now yet. */ 2710 2711 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2712 break; 2713 2714 if (copied) { 2715 if (!timeo || 2716 sk->sk_err || 2717 sk->sk_state == TCP_CLOSE || 2718 (sk->sk_shutdown & RCV_SHUTDOWN) || 2719 signal_pending(current)) 2720 break; 2721 } else { 2722 if (sock_flag(sk, SOCK_DONE)) 2723 break; 2724 2725 if (sk->sk_err) { 2726 copied = sock_error(sk); 2727 break; 2728 } 2729 2730 if (sk->sk_shutdown & RCV_SHUTDOWN) 2731 break; 2732 2733 if (sk->sk_state == TCP_CLOSE) { 2734 /* This occurs when user tries to read 2735 * from never connected socket. 2736 */ 2737 copied = -ENOTCONN; 2738 break; 2739 } 2740 2741 if (!timeo) { 2742 copied = -EAGAIN; 2743 break; 2744 } 2745 2746 if (signal_pending(current)) { 2747 copied = sock_intr_errno(timeo); 2748 break; 2749 } 2750 } 2751 2752 if (copied >= target) { 2753 /* Do not sleep, just process backlog. */ 2754 __sk_flush_backlog(sk); 2755 } else { 2756 tcp_cleanup_rbuf(sk, copied); 2757 err = sk_wait_data(sk, &timeo, last); 2758 if (err < 0) { 2759 err = copied ? : err; 2760 goto out; 2761 } 2762 } 2763 2764 if ((flags & MSG_PEEK) && 2765 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2766 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2767 current->comm, 2768 task_pid_nr(current)); 2769 peek_seq = tp->copied_seq + peek_offset; 2770 } 2771 continue; 2772 2773 found_ok_skb: 2774 /* Ok so how much can we use? */ 2775 used = skb->len - offset; 2776 if (len < used) 2777 used = len; 2778 2779 /* Do we have urgent data here? */ 2780 if (unlikely(tp->urg_data)) { 2781 u32 urg_offset = tp->urg_seq - *seq; 2782 if (urg_offset < used) { 2783 if (!urg_offset) { 2784 if (!sock_flag(sk, SOCK_URGINLINE)) { 2785 WRITE_ONCE(*seq, *seq + 1); 2786 urg_hole++; 2787 offset++; 2788 used--; 2789 if (!used) 2790 goto skip_copy; 2791 } 2792 } else 2793 used = urg_offset; 2794 } 2795 } 2796 2797 if (!(flags & MSG_TRUNC)) { 2798 if (last_copied_dmabuf != -1 && 2799 last_copied_dmabuf != !skb_frags_readable(skb)) 2800 break; 2801 2802 if (skb_frags_readable(skb)) { 2803 err = skb_copy_datagram_msg(skb, offset, msg, 2804 used); 2805 if (err) { 2806 /* Exception. Bailout! */ 2807 if (!copied) 2808 copied = -EFAULT; 2809 break; 2810 } 2811 } else { 2812 if (!(flags & MSG_SOCK_DEVMEM)) { 2813 /* dmabuf skbs can only be received 2814 * with the MSG_SOCK_DEVMEM flag. 2815 */ 2816 if (!copied) 2817 copied = -EFAULT; 2818 2819 break; 2820 } 2821 2822 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg, 2823 used); 2824 if (err <= 0) { 2825 if (!copied) 2826 copied = -EFAULT; 2827 2828 break; 2829 } 2830 used = err; 2831 } 2832 } 2833 2834 last_copied_dmabuf = !skb_frags_readable(skb); 2835 2836 WRITE_ONCE(*seq, *seq + used); 2837 copied += used; 2838 len -= used; 2839 if (flags & MSG_PEEK) 2840 sk_peek_offset_fwd(sk, used); 2841 else 2842 sk_peek_offset_bwd(sk, used); 2843 tcp_rcv_space_adjust(sk); 2844 2845 skip_copy: 2846 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2847 WRITE_ONCE(tp->urg_data, 0); 2848 tcp_fast_path_check(sk); 2849 } 2850 2851 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2852 tcp_update_recv_tstamps(skb, tss); 2853 *cmsg_flags |= TCP_CMSG_TS; 2854 } 2855 2856 if (used + offset < skb->len) 2857 continue; 2858 2859 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2860 goto found_fin_ok; 2861 if (!(flags & MSG_PEEK)) 2862 tcp_eat_recv_skb(sk, skb); 2863 continue; 2864 2865 found_fin_ok: 2866 /* Process the FIN. */ 2867 WRITE_ONCE(*seq, *seq + 1); 2868 if (!(flags & MSG_PEEK)) 2869 tcp_eat_recv_skb(sk, skb); 2870 break; 2871 } while (len > 0); 2872 2873 /* According to UNIX98, msg_name/msg_namelen are ignored 2874 * on connected socket. I was just happy when found this 8) --ANK 2875 */ 2876 2877 /* Clean up data we have read: This will do ACK frames. */ 2878 tcp_cleanup_rbuf(sk, copied); 2879 return copied; 2880 2881 out: 2882 return err; 2883 2884 recv_urg: 2885 err = tcp_recv_urg(sk, msg, len, flags); 2886 goto out; 2887 2888 recv_sndq: 2889 err = tcp_peek_sndq(sk, msg, len); 2890 goto out; 2891 } 2892 2893 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2894 int *addr_len) 2895 { 2896 int cmsg_flags = 0, ret; 2897 struct scm_timestamping_internal tss; 2898 2899 if (unlikely(flags & MSG_ERRQUEUE)) 2900 return inet_recv_error(sk, msg, len, addr_len); 2901 2902 if (sk_can_busy_loop(sk) && 2903 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2904 sk->sk_state == TCP_ESTABLISHED) 2905 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2906 2907 lock_sock(sk); 2908 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2909 release_sock(sk); 2910 2911 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2912 if (cmsg_flags & TCP_CMSG_TS) 2913 tcp_recv_timestamp(msg, sk, &tss); 2914 if (msg->msg_get_inq) { 2915 msg->msg_inq = tcp_inq_hint(sk); 2916 if (cmsg_flags & TCP_CMSG_INQ) 2917 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2918 sizeof(msg->msg_inq), &msg->msg_inq); 2919 } 2920 } 2921 return ret; 2922 } 2923 EXPORT_IPV6_MOD(tcp_recvmsg); 2924 2925 void tcp_set_state(struct sock *sk, int state) 2926 { 2927 int oldstate = sk->sk_state; 2928 2929 /* We defined a new enum for TCP states that are exported in BPF 2930 * so as not force the internal TCP states to be frozen. The 2931 * following checks will detect if an internal state value ever 2932 * differs from the BPF value. If this ever happens, then we will 2933 * need to remap the internal value to the BPF value before calling 2934 * tcp_call_bpf_2arg. 2935 */ 2936 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2937 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2938 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2939 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2940 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2941 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2942 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2943 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2944 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2945 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2946 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2947 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2948 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2949 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2950 2951 /* bpf uapi header bpf.h defines an anonymous enum with values 2952 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2953 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2954 * But clang built vmlinux does not have this enum in DWARF 2955 * since clang removes the above code before generating IR/debuginfo. 2956 * Let us explicitly emit the type debuginfo to ensure the 2957 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2958 * regardless of which compiler is used. 2959 */ 2960 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2961 2962 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2963 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2964 2965 switch (state) { 2966 case TCP_ESTABLISHED: 2967 if (oldstate != TCP_ESTABLISHED) 2968 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2969 break; 2970 case TCP_CLOSE_WAIT: 2971 if (oldstate == TCP_SYN_RECV) 2972 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2973 break; 2974 2975 case TCP_CLOSE: 2976 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2977 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2978 2979 sk->sk_prot->unhash(sk); 2980 if (inet_csk(sk)->icsk_bind_hash && 2981 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2982 inet_put_port(sk); 2983 fallthrough; 2984 default: 2985 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2986 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2987 } 2988 2989 /* Change state AFTER socket is unhashed to avoid closed 2990 * socket sitting in hash tables. 2991 */ 2992 inet_sk_state_store(sk, state); 2993 } 2994 EXPORT_SYMBOL_GPL(tcp_set_state); 2995 2996 /* 2997 * State processing on a close. This implements the state shift for 2998 * sending our FIN frame. Note that we only send a FIN for some 2999 * states. A shutdown() may have already sent the FIN, or we may be 3000 * closed. 3001 */ 3002 3003 static const unsigned char new_state[16] = { 3004 /* current state: new state: action: */ 3005 [0 /* (Invalid) */] = TCP_CLOSE, 3006 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3007 [TCP_SYN_SENT] = TCP_CLOSE, 3008 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3009 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 3010 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 3011 [TCP_TIME_WAIT] = TCP_CLOSE, 3012 [TCP_CLOSE] = TCP_CLOSE, 3013 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 3014 [TCP_LAST_ACK] = TCP_LAST_ACK, 3015 [TCP_LISTEN] = TCP_CLOSE, 3016 [TCP_CLOSING] = TCP_CLOSING, 3017 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 3018 }; 3019 3020 static int tcp_close_state(struct sock *sk) 3021 { 3022 int next = (int)new_state[sk->sk_state]; 3023 int ns = next & TCP_STATE_MASK; 3024 3025 tcp_set_state(sk, ns); 3026 3027 return next & TCP_ACTION_FIN; 3028 } 3029 3030 /* 3031 * Shutdown the sending side of a connection. Much like close except 3032 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 3033 */ 3034 3035 void tcp_shutdown(struct sock *sk, int how) 3036 { 3037 /* We need to grab some memory, and put together a FIN, 3038 * and then put it into the queue to be sent. 3039 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 3040 */ 3041 if (!(how & SEND_SHUTDOWN)) 3042 return; 3043 3044 /* If we've already sent a FIN, or it's a closed state, skip this. */ 3045 if ((1 << sk->sk_state) & 3046 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 3047 TCPF_CLOSE_WAIT)) { 3048 /* Clear out any half completed packets. FIN if needed. */ 3049 if (tcp_close_state(sk)) 3050 tcp_send_fin(sk); 3051 } 3052 } 3053 EXPORT_IPV6_MOD(tcp_shutdown); 3054 3055 int tcp_orphan_count_sum(void) 3056 { 3057 int i, total = 0; 3058 3059 for_each_possible_cpu(i) 3060 total += per_cpu(tcp_orphan_count, i); 3061 3062 return max(total, 0); 3063 } 3064 3065 static int tcp_orphan_cache; 3066 static struct timer_list tcp_orphan_timer; 3067 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 3068 3069 static void tcp_orphan_update(struct timer_list *unused) 3070 { 3071 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 3072 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 3073 } 3074 3075 static bool tcp_too_many_orphans(int shift) 3076 { 3077 return READ_ONCE(tcp_orphan_cache) << shift > 3078 READ_ONCE(sysctl_tcp_max_orphans); 3079 } 3080 3081 static bool tcp_out_of_memory(const struct sock *sk) 3082 { 3083 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 3084 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 3085 return true; 3086 return false; 3087 } 3088 3089 bool tcp_check_oom(const struct sock *sk, int shift) 3090 { 3091 bool too_many_orphans, out_of_socket_memory; 3092 3093 too_many_orphans = tcp_too_many_orphans(shift); 3094 out_of_socket_memory = tcp_out_of_memory(sk); 3095 3096 if (too_many_orphans) 3097 net_info_ratelimited("too many orphaned sockets\n"); 3098 if (out_of_socket_memory) 3099 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 3100 return too_many_orphans || out_of_socket_memory; 3101 } 3102 3103 void __tcp_close(struct sock *sk, long timeout) 3104 { 3105 struct sk_buff *skb; 3106 int data_was_unread = 0; 3107 int state; 3108 3109 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3110 3111 if (sk->sk_state == TCP_LISTEN) { 3112 tcp_set_state(sk, TCP_CLOSE); 3113 3114 /* Special case. */ 3115 inet_csk_listen_stop(sk); 3116 3117 goto adjudge_to_death; 3118 } 3119 3120 /* We need to flush the recv. buffs. We do this only on the 3121 * descriptor close, not protocol-sourced closes, because the 3122 * reader process may not have drained the data yet! 3123 */ 3124 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 3125 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 3126 3127 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 3128 len--; 3129 data_was_unread += len; 3130 __kfree_skb(skb); 3131 } 3132 3133 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 3134 if (sk->sk_state == TCP_CLOSE) 3135 goto adjudge_to_death; 3136 3137 /* As outlined in RFC 2525, section 2.17, we send a RST here because 3138 * data was lost. To witness the awful effects of the old behavior of 3139 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 3140 * GET in an FTP client, suspend the process, wait for the client to 3141 * advertise a zero window, then kill -9 the FTP client, wheee... 3142 * Note: timeout is always zero in such a case. 3143 */ 3144 if (unlikely(tcp_sk(sk)->repair)) { 3145 sk->sk_prot->disconnect(sk, 0); 3146 } else if (data_was_unread) { 3147 /* Unread data was tossed, zap the connection. */ 3148 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 3149 tcp_set_state(sk, TCP_CLOSE); 3150 tcp_send_active_reset(sk, sk->sk_allocation, 3151 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 3152 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 3153 /* Check zero linger _after_ checking for unread data. */ 3154 sk->sk_prot->disconnect(sk, 0); 3155 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 3156 } else if (tcp_close_state(sk)) { 3157 /* We FIN if the application ate all the data before 3158 * zapping the connection. 3159 */ 3160 3161 /* RED-PEN. Formally speaking, we have broken TCP state 3162 * machine. State transitions: 3163 * 3164 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 3165 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 3166 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 3167 * 3168 * are legal only when FIN has been sent (i.e. in window), 3169 * rather than queued out of window. Purists blame. 3170 * 3171 * F.e. "RFC state" is ESTABLISHED, 3172 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 3173 * 3174 * The visible declinations are that sometimes 3175 * we enter time-wait state, when it is not required really 3176 * (harmless), do not send active resets, when they are 3177 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 3178 * they look as CLOSING or LAST_ACK for Linux) 3179 * Probably, I missed some more holelets. 3180 * --ANK 3181 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 3182 * in a single packet! (May consider it later but will 3183 * probably need API support or TCP_CORK SYN-ACK until 3184 * data is written and socket is closed.) 3185 */ 3186 tcp_send_fin(sk); 3187 } 3188 3189 sk_stream_wait_close(sk, timeout); 3190 3191 adjudge_to_death: 3192 state = sk->sk_state; 3193 sock_hold(sk); 3194 sock_orphan(sk); 3195 3196 local_bh_disable(); 3197 bh_lock_sock(sk); 3198 /* remove backlog if any, without releasing ownership. */ 3199 __release_sock(sk); 3200 3201 this_cpu_inc(tcp_orphan_count); 3202 3203 /* Have we already been destroyed by a softirq or backlog? */ 3204 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 3205 goto out; 3206 3207 /* This is a (useful) BSD violating of the RFC. There is a 3208 * problem with TCP as specified in that the other end could 3209 * keep a socket open forever with no application left this end. 3210 * We use a 1 minute timeout (about the same as BSD) then kill 3211 * our end. If they send after that then tough - BUT: long enough 3212 * that we won't make the old 4*rto = almost no time - whoops 3213 * reset mistake. 3214 * 3215 * Nope, it was not mistake. It is really desired behaviour 3216 * f.e. on http servers, when such sockets are useless, but 3217 * consume significant resources. Let's do it with special 3218 * linger2 option. --ANK 3219 */ 3220 3221 if (sk->sk_state == TCP_FIN_WAIT2) { 3222 struct tcp_sock *tp = tcp_sk(sk); 3223 if (READ_ONCE(tp->linger2) < 0) { 3224 tcp_set_state(sk, TCP_CLOSE); 3225 tcp_send_active_reset(sk, GFP_ATOMIC, 3226 SK_RST_REASON_TCP_ABORT_ON_LINGER); 3227 __NET_INC_STATS(sock_net(sk), 3228 LINUX_MIB_TCPABORTONLINGER); 3229 } else { 3230 const int tmo = tcp_fin_time(sk); 3231 3232 if (tmo > TCP_TIMEWAIT_LEN) { 3233 tcp_reset_keepalive_timer(sk, 3234 tmo - TCP_TIMEWAIT_LEN); 3235 } else { 3236 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 3237 goto out; 3238 } 3239 } 3240 } 3241 if (sk->sk_state != TCP_CLOSE) { 3242 if (tcp_check_oom(sk, 0)) { 3243 tcp_set_state(sk, TCP_CLOSE); 3244 tcp_send_active_reset(sk, GFP_ATOMIC, 3245 SK_RST_REASON_TCP_ABORT_ON_MEMORY); 3246 __NET_INC_STATS(sock_net(sk), 3247 LINUX_MIB_TCPABORTONMEMORY); 3248 } else if (!check_net(sock_net(sk))) { 3249 /* Not possible to send reset; just close */ 3250 tcp_set_state(sk, TCP_CLOSE); 3251 } 3252 } 3253 3254 if (sk->sk_state == TCP_CLOSE) { 3255 struct request_sock *req; 3256 3257 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3258 lockdep_sock_is_held(sk)); 3259 /* We could get here with a non-NULL req if the socket is 3260 * aborted (e.g., closed with unread data) before 3WHS 3261 * finishes. 3262 */ 3263 if (req) 3264 reqsk_fastopen_remove(sk, req, false); 3265 inet_csk_destroy_sock(sk); 3266 } 3267 /* Otherwise, socket is reprieved until protocol close. */ 3268 3269 out: 3270 bh_unlock_sock(sk); 3271 local_bh_enable(); 3272 } 3273 3274 void tcp_close(struct sock *sk, long timeout) 3275 { 3276 lock_sock(sk); 3277 __tcp_close(sk, timeout); 3278 release_sock(sk); 3279 if (!sk->sk_net_refcnt) 3280 inet_csk_clear_xmit_timers_sync(sk); 3281 sock_put(sk); 3282 } 3283 EXPORT_SYMBOL(tcp_close); 3284 3285 /* These states need RST on ABORT according to RFC793 */ 3286 3287 static inline bool tcp_need_reset(int state) 3288 { 3289 return (1 << state) & 3290 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3291 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3292 } 3293 3294 static void tcp_rtx_queue_purge(struct sock *sk) 3295 { 3296 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3297 3298 tcp_sk(sk)->highest_sack = NULL; 3299 while (p) { 3300 struct sk_buff *skb = rb_to_skb(p); 3301 3302 p = rb_next(p); 3303 /* Since we are deleting whole queue, no need to 3304 * list_del(&skb->tcp_tsorted_anchor) 3305 */ 3306 tcp_rtx_queue_unlink(skb, sk); 3307 tcp_wmem_free_skb(sk, skb); 3308 } 3309 } 3310 3311 void tcp_write_queue_purge(struct sock *sk) 3312 { 3313 struct sk_buff *skb; 3314 3315 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3316 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3317 tcp_skb_tsorted_anchor_cleanup(skb); 3318 tcp_wmem_free_skb(sk, skb); 3319 } 3320 tcp_rtx_queue_purge(sk); 3321 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3322 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3323 tcp_sk(sk)->packets_out = 0; 3324 inet_csk(sk)->icsk_backoff = 0; 3325 } 3326 3327 int tcp_disconnect(struct sock *sk, int flags) 3328 { 3329 struct inet_sock *inet = inet_sk(sk); 3330 struct inet_connection_sock *icsk = inet_csk(sk); 3331 struct tcp_sock *tp = tcp_sk(sk); 3332 int old_state = sk->sk_state; 3333 u32 seq; 3334 3335 if (old_state != TCP_CLOSE) 3336 tcp_set_state(sk, TCP_CLOSE); 3337 3338 /* ABORT function of RFC793 */ 3339 if (old_state == TCP_LISTEN) { 3340 inet_csk_listen_stop(sk); 3341 } else if (unlikely(tp->repair)) { 3342 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3343 } else if (tcp_need_reset(old_state)) { 3344 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE); 3345 WRITE_ONCE(sk->sk_err, ECONNRESET); 3346 } else if (tp->snd_nxt != tp->write_seq && 3347 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 3348 /* The last check adjusts for discrepancy of Linux wrt. RFC 3349 * states 3350 */ 3351 tcp_send_active_reset(sk, gfp_any(), 3352 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA); 3353 WRITE_ONCE(sk->sk_err, ECONNRESET); 3354 } else if (old_state == TCP_SYN_SENT) 3355 WRITE_ONCE(sk->sk_err, ECONNRESET); 3356 3357 tcp_clear_xmit_timers(sk); 3358 __skb_queue_purge(&sk->sk_receive_queue); 3359 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3360 WRITE_ONCE(tp->urg_data, 0); 3361 sk_set_peek_off(sk, -1); 3362 tcp_write_queue_purge(sk); 3363 tcp_fastopen_active_disable_ofo_check(sk); 3364 skb_rbtree_purge(&tp->out_of_order_queue); 3365 3366 inet->inet_dport = 0; 3367 3368 inet_bhash2_reset_saddr(sk); 3369 3370 WRITE_ONCE(sk->sk_shutdown, 0); 3371 sock_reset_flag(sk, SOCK_DONE); 3372 tp->srtt_us = 0; 3373 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3374 tp->rcv_rtt_last_tsecr = 0; 3375 3376 seq = tp->write_seq + tp->max_window + 2; 3377 if (!seq) 3378 seq = 1; 3379 WRITE_ONCE(tp->write_seq, seq); 3380 3381 icsk->icsk_backoff = 0; 3382 icsk->icsk_probes_out = 0; 3383 icsk->icsk_probes_tstamp = 0; 3384 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3385 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN); 3386 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX); 3387 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3388 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3389 tp->snd_cwnd_cnt = 0; 3390 tp->is_cwnd_limited = 0; 3391 tp->max_packets_out = 0; 3392 tp->window_clamp = 0; 3393 tp->delivered = 0; 3394 tp->delivered_ce = 0; 3395 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release) 3396 icsk->icsk_ca_ops->release(sk); 3397 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3398 icsk->icsk_ca_initialized = 0; 3399 tcp_set_ca_state(sk, TCP_CA_Open); 3400 tp->is_sack_reneg = 0; 3401 tcp_clear_retrans(tp); 3402 tp->total_retrans = 0; 3403 inet_csk_delack_init(sk); 3404 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3405 * issue in __tcp_select_window() 3406 */ 3407 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3408 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3409 __sk_dst_reset(sk); 3410 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3411 tcp_saved_syn_free(tp); 3412 tp->compressed_ack = 0; 3413 tp->segs_in = 0; 3414 tp->segs_out = 0; 3415 tp->bytes_sent = 0; 3416 tp->bytes_acked = 0; 3417 tp->bytes_received = 0; 3418 tp->bytes_retrans = 0; 3419 tp->data_segs_in = 0; 3420 tp->data_segs_out = 0; 3421 tp->duplicate_sack[0].start_seq = 0; 3422 tp->duplicate_sack[0].end_seq = 0; 3423 tp->dsack_dups = 0; 3424 tp->reord_seen = 0; 3425 tp->retrans_out = 0; 3426 tp->sacked_out = 0; 3427 tp->tlp_high_seq = 0; 3428 tp->last_oow_ack_time = 0; 3429 tp->plb_rehash = 0; 3430 /* There's a bubble in the pipe until at least the first ACK. */ 3431 tp->app_limited = ~0U; 3432 tp->rate_app_limited = 1; 3433 tp->rack.mstamp = 0; 3434 tp->rack.advanced = 0; 3435 tp->rack.reo_wnd_steps = 1; 3436 tp->rack.last_delivered = 0; 3437 tp->rack.reo_wnd_persist = 0; 3438 tp->rack.dsack_seen = 0; 3439 tp->syn_data_acked = 0; 3440 tp->syn_fastopen_child = 0; 3441 tp->rx_opt.saw_tstamp = 0; 3442 tp->rx_opt.dsack = 0; 3443 tp->rx_opt.num_sacks = 0; 3444 tp->rcv_ooopack = 0; 3445 3446 3447 /* Clean up fastopen related fields */ 3448 tcp_free_fastopen_req(tp); 3449 inet_clear_bit(DEFER_CONNECT, sk); 3450 tp->fastopen_client_fail = 0; 3451 3452 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3453 3454 if (sk->sk_frag.page) { 3455 put_page(sk->sk_frag.page); 3456 sk->sk_frag.page = NULL; 3457 sk->sk_frag.offset = 0; 3458 } 3459 sk_error_report(sk); 3460 return 0; 3461 } 3462 EXPORT_SYMBOL(tcp_disconnect); 3463 3464 static inline bool tcp_can_repair_sock(const struct sock *sk) 3465 { 3466 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3467 (sk->sk_state != TCP_LISTEN); 3468 } 3469 3470 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3471 { 3472 struct tcp_repair_window opt; 3473 3474 if (!tp->repair) 3475 return -EPERM; 3476 3477 if (len != sizeof(opt)) 3478 return -EINVAL; 3479 3480 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3481 return -EFAULT; 3482 3483 if (opt.max_window < opt.snd_wnd) 3484 return -EINVAL; 3485 3486 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3487 return -EINVAL; 3488 3489 if (after(opt.rcv_wup, tp->rcv_nxt)) 3490 return -EINVAL; 3491 3492 tp->snd_wl1 = opt.snd_wl1; 3493 tp->snd_wnd = opt.snd_wnd; 3494 tp->max_window = opt.max_window; 3495 3496 tp->rcv_wnd = opt.rcv_wnd; 3497 tp->rcv_wup = opt.rcv_wup; 3498 3499 return 0; 3500 } 3501 3502 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3503 unsigned int len) 3504 { 3505 struct tcp_sock *tp = tcp_sk(sk); 3506 struct tcp_repair_opt opt; 3507 size_t offset = 0; 3508 3509 while (len >= sizeof(opt)) { 3510 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3511 return -EFAULT; 3512 3513 offset += sizeof(opt); 3514 len -= sizeof(opt); 3515 3516 switch (opt.opt_code) { 3517 case TCPOPT_MSS: 3518 tp->rx_opt.mss_clamp = opt.opt_val; 3519 tcp_mtup_init(sk); 3520 break; 3521 case TCPOPT_WINDOW: 3522 { 3523 u16 snd_wscale = opt.opt_val & 0xFFFF; 3524 u16 rcv_wscale = opt.opt_val >> 16; 3525 3526 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3527 return -EFBIG; 3528 3529 tp->rx_opt.snd_wscale = snd_wscale; 3530 tp->rx_opt.rcv_wscale = rcv_wscale; 3531 tp->rx_opt.wscale_ok = 1; 3532 } 3533 break; 3534 case TCPOPT_SACK_PERM: 3535 if (opt.opt_val != 0) 3536 return -EINVAL; 3537 3538 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3539 break; 3540 case TCPOPT_TIMESTAMP: 3541 if (opt.opt_val != 0) 3542 return -EINVAL; 3543 3544 tp->rx_opt.tstamp_ok = 1; 3545 break; 3546 } 3547 } 3548 3549 return 0; 3550 } 3551 3552 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3553 EXPORT_IPV6_MOD(tcp_tx_delay_enabled); 3554 3555 static void tcp_enable_tx_delay(void) 3556 { 3557 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3558 static int __tcp_tx_delay_enabled = 0; 3559 3560 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3561 static_branch_enable(&tcp_tx_delay_enabled); 3562 pr_info("TCP_TX_DELAY enabled\n"); 3563 } 3564 } 3565 } 3566 3567 /* When set indicates to always queue non-full frames. Later the user clears 3568 * this option and we transmit any pending partial frames in the queue. This is 3569 * meant to be used alongside sendfile() to get properly filled frames when the 3570 * user (for example) must write out headers with a write() call first and then 3571 * use sendfile to send out the data parts. 3572 * 3573 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3574 * TCP_NODELAY. 3575 */ 3576 void __tcp_sock_set_cork(struct sock *sk, bool on) 3577 { 3578 struct tcp_sock *tp = tcp_sk(sk); 3579 3580 if (on) { 3581 tp->nonagle |= TCP_NAGLE_CORK; 3582 } else { 3583 tp->nonagle &= ~TCP_NAGLE_CORK; 3584 if (tp->nonagle & TCP_NAGLE_OFF) 3585 tp->nonagle |= TCP_NAGLE_PUSH; 3586 tcp_push_pending_frames(sk); 3587 } 3588 } 3589 3590 void tcp_sock_set_cork(struct sock *sk, bool on) 3591 { 3592 lock_sock(sk); 3593 __tcp_sock_set_cork(sk, on); 3594 release_sock(sk); 3595 } 3596 EXPORT_SYMBOL(tcp_sock_set_cork); 3597 3598 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3599 * remembered, but it is not activated until cork is cleared. 3600 * 3601 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3602 * even TCP_CORK for currently queued segments. 3603 */ 3604 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3605 { 3606 if (on) { 3607 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3608 tcp_push_pending_frames(sk); 3609 } else { 3610 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3611 } 3612 } 3613 3614 void tcp_sock_set_nodelay(struct sock *sk) 3615 { 3616 lock_sock(sk); 3617 __tcp_sock_set_nodelay(sk, true); 3618 release_sock(sk); 3619 } 3620 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3621 3622 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3623 { 3624 if (!val) { 3625 inet_csk_enter_pingpong_mode(sk); 3626 return; 3627 } 3628 3629 inet_csk_exit_pingpong_mode(sk); 3630 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3631 inet_csk_ack_scheduled(sk)) { 3632 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3633 tcp_cleanup_rbuf(sk, 1); 3634 if (!(val & 1)) 3635 inet_csk_enter_pingpong_mode(sk); 3636 } 3637 } 3638 3639 void tcp_sock_set_quickack(struct sock *sk, int val) 3640 { 3641 lock_sock(sk); 3642 __tcp_sock_set_quickack(sk, val); 3643 release_sock(sk); 3644 } 3645 EXPORT_SYMBOL(tcp_sock_set_quickack); 3646 3647 int tcp_sock_set_syncnt(struct sock *sk, int val) 3648 { 3649 if (val < 1 || val > MAX_TCP_SYNCNT) 3650 return -EINVAL; 3651 3652 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3653 return 0; 3654 } 3655 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3656 3657 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3658 { 3659 /* Cap the max time in ms TCP will retry or probe the window 3660 * before giving up and aborting (ETIMEDOUT) a connection. 3661 */ 3662 if (val < 0) 3663 return -EINVAL; 3664 3665 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3666 return 0; 3667 } 3668 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3669 3670 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3671 { 3672 struct tcp_sock *tp = tcp_sk(sk); 3673 3674 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3675 return -EINVAL; 3676 3677 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3678 WRITE_ONCE(tp->keepalive_time, val * HZ); 3679 if (sock_flag(sk, SOCK_KEEPOPEN) && 3680 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3681 u32 elapsed = keepalive_time_elapsed(tp); 3682 3683 if (tp->keepalive_time > elapsed) 3684 elapsed = tp->keepalive_time - elapsed; 3685 else 3686 elapsed = 0; 3687 tcp_reset_keepalive_timer(sk, elapsed); 3688 } 3689 3690 return 0; 3691 } 3692 3693 int tcp_sock_set_keepidle(struct sock *sk, int val) 3694 { 3695 int err; 3696 3697 lock_sock(sk); 3698 err = tcp_sock_set_keepidle_locked(sk, val); 3699 release_sock(sk); 3700 return err; 3701 } 3702 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3703 3704 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3705 { 3706 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3707 return -EINVAL; 3708 3709 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3710 return 0; 3711 } 3712 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3713 3714 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3715 { 3716 if (val < 1 || val > MAX_TCP_KEEPCNT) 3717 return -EINVAL; 3718 3719 /* Paired with READ_ONCE() in keepalive_probes() */ 3720 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3721 return 0; 3722 } 3723 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3724 3725 int tcp_set_window_clamp(struct sock *sk, int val) 3726 { 3727 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh; 3728 struct tcp_sock *tp = tcp_sk(sk); 3729 3730 if (!val) { 3731 if (sk->sk_state != TCP_CLOSE) 3732 return -EINVAL; 3733 WRITE_ONCE(tp->window_clamp, 0); 3734 return 0; 3735 } 3736 3737 old_window_clamp = tp->window_clamp; 3738 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val); 3739 3740 if (new_window_clamp == old_window_clamp) 3741 return 0; 3742 3743 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3744 3745 /* Need to apply the reserved mem provisioning only 3746 * when shrinking the window clamp. 3747 */ 3748 if (new_window_clamp < old_window_clamp) { 3749 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp); 3750 } else { 3751 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp); 3752 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh); 3753 } 3754 return 0; 3755 } 3756 3757 /* 3758 * Socket option code for TCP. 3759 */ 3760 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3761 sockptr_t optval, unsigned int optlen) 3762 { 3763 struct tcp_sock *tp = tcp_sk(sk); 3764 struct inet_connection_sock *icsk = inet_csk(sk); 3765 struct net *net = sock_net(sk); 3766 int val; 3767 int err = 0; 3768 3769 /* These are data/string values, all the others are ints */ 3770 switch (optname) { 3771 case TCP_CONGESTION: { 3772 char name[TCP_CA_NAME_MAX]; 3773 3774 if (optlen < 1) 3775 return -EINVAL; 3776 3777 val = strncpy_from_sockptr(name, optval, 3778 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3779 if (val < 0) 3780 return -EFAULT; 3781 name[val] = 0; 3782 3783 sockopt_lock_sock(sk); 3784 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3785 sockopt_ns_capable(sock_net(sk)->user_ns, 3786 CAP_NET_ADMIN)); 3787 sockopt_release_sock(sk); 3788 return err; 3789 } 3790 case TCP_ULP: { 3791 char name[TCP_ULP_NAME_MAX]; 3792 3793 if (optlen < 1) 3794 return -EINVAL; 3795 3796 val = strncpy_from_sockptr(name, optval, 3797 min_t(long, TCP_ULP_NAME_MAX - 1, 3798 optlen)); 3799 if (val < 0) 3800 return -EFAULT; 3801 name[val] = 0; 3802 3803 sockopt_lock_sock(sk); 3804 err = tcp_set_ulp(sk, name); 3805 sockopt_release_sock(sk); 3806 return err; 3807 } 3808 case TCP_FASTOPEN_KEY: { 3809 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3810 __u8 *backup_key = NULL; 3811 3812 /* Allow a backup key as well to facilitate key rotation 3813 * First key is the active one. 3814 */ 3815 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3816 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3817 return -EINVAL; 3818 3819 if (copy_from_sockptr(key, optval, optlen)) 3820 return -EFAULT; 3821 3822 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3823 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3824 3825 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3826 } 3827 default: 3828 /* fallthru */ 3829 break; 3830 } 3831 3832 if (optlen < sizeof(int)) 3833 return -EINVAL; 3834 3835 if (copy_from_sockptr(&val, optval, sizeof(val))) 3836 return -EFAULT; 3837 3838 /* Handle options that can be set without locking the socket. */ 3839 switch (optname) { 3840 case TCP_SYNCNT: 3841 return tcp_sock_set_syncnt(sk, val); 3842 case TCP_USER_TIMEOUT: 3843 return tcp_sock_set_user_timeout(sk, val); 3844 case TCP_KEEPINTVL: 3845 return tcp_sock_set_keepintvl(sk, val); 3846 case TCP_KEEPCNT: 3847 return tcp_sock_set_keepcnt(sk, val); 3848 case TCP_LINGER2: 3849 if (val < 0) 3850 WRITE_ONCE(tp->linger2, -1); 3851 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3852 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3853 else 3854 WRITE_ONCE(tp->linger2, val * HZ); 3855 return 0; 3856 case TCP_DEFER_ACCEPT: 3857 /* Translate value in seconds to number of retransmits */ 3858 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3859 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3860 TCP_RTO_MAX / HZ)); 3861 return 0; 3862 case TCP_RTO_MAX_MS: 3863 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC) 3864 return -EINVAL; 3865 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val)); 3866 return 0; 3867 case TCP_RTO_MIN_US: { 3868 int rto_min = usecs_to_jiffies(val); 3869 3870 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN) 3871 return -EINVAL; 3872 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min); 3873 return 0; 3874 } 3875 case TCP_DELACK_MAX_US: { 3876 int delack_max = usecs_to_jiffies(val); 3877 3878 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN) 3879 return -EINVAL; 3880 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max); 3881 return 0; 3882 } 3883 } 3884 3885 sockopt_lock_sock(sk); 3886 3887 switch (optname) { 3888 case TCP_MAXSEG: 3889 /* Values greater than interface MTU won't take effect. However 3890 * at the point when this call is done we typically don't yet 3891 * know which interface is going to be used 3892 */ 3893 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3894 err = -EINVAL; 3895 break; 3896 } 3897 tp->rx_opt.user_mss = val; 3898 break; 3899 3900 case TCP_NODELAY: 3901 __tcp_sock_set_nodelay(sk, val); 3902 break; 3903 3904 case TCP_THIN_LINEAR_TIMEOUTS: 3905 if (val < 0 || val > 1) 3906 err = -EINVAL; 3907 else 3908 tp->thin_lto = val; 3909 break; 3910 3911 case TCP_THIN_DUPACK: 3912 if (val < 0 || val > 1) 3913 err = -EINVAL; 3914 break; 3915 3916 case TCP_REPAIR: 3917 if (!tcp_can_repair_sock(sk)) 3918 err = -EPERM; 3919 else if (val == TCP_REPAIR_ON) { 3920 tp->repair = 1; 3921 sk->sk_reuse = SK_FORCE_REUSE; 3922 tp->repair_queue = TCP_NO_QUEUE; 3923 } else if (val == TCP_REPAIR_OFF) { 3924 tp->repair = 0; 3925 sk->sk_reuse = SK_NO_REUSE; 3926 tcp_send_window_probe(sk); 3927 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3928 tp->repair = 0; 3929 sk->sk_reuse = SK_NO_REUSE; 3930 } else 3931 err = -EINVAL; 3932 3933 break; 3934 3935 case TCP_REPAIR_QUEUE: 3936 if (!tp->repair) 3937 err = -EPERM; 3938 else if ((unsigned int)val < TCP_QUEUES_NR) 3939 tp->repair_queue = val; 3940 else 3941 err = -EINVAL; 3942 break; 3943 3944 case TCP_QUEUE_SEQ: 3945 if (sk->sk_state != TCP_CLOSE) { 3946 err = -EPERM; 3947 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3948 if (!tcp_rtx_queue_empty(sk)) 3949 err = -EPERM; 3950 else 3951 WRITE_ONCE(tp->write_seq, val); 3952 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3953 if (tp->rcv_nxt != tp->copied_seq) { 3954 err = -EPERM; 3955 } else { 3956 WRITE_ONCE(tp->rcv_nxt, val); 3957 WRITE_ONCE(tp->copied_seq, val); 3958 } 3959 } else { 3960 err = -EINVAL; 3961 } 3962 break; 3963 3964 case TCP_REPAIR_OPTIONS: 3965 if (!tp->repair) 3966 err = -EINVAL; 3967 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3968 err = tcp_repair_options_est(sk, optval, optlen); 3969 else 3970 err = -EPERM; 3971 break; 3972 3973 case TCP_CORK: 3974 __tcp_sock_set_cork(sk, val); 3975 break; 3976 3977 case TCP_KEEPIDLE: 3978 err = tcp_sock_set_keepidle_locked(sk, val); 3979 break; 3980 case TCP_SAVE_SYN: 3981 /* 0: disable, 1: enable, 2: start from ether_header */ 3982 if (val < 0 || val > 2) 3983 err = -EINVAL; 3984 else 3985 tp->save_syn = val; 3986 break; 3987 3988 case TCP_WINDOW_CLAMP: 3989 err = tcp_set_window_clamp(sk, val); 3990 break; 3991 3992 case TCP_QUICKACK: 3993 __tcp_sock_set_quickack(sk, val); 3994 break; 3995 3996 case TCP_AO_REPAIR: 3997 if (!tcp_can_repair_sock(sk)) { 3998 err = -EPERM; 3999 break; 4000 } 4001 err = tcp_ao_set_repair(sk, optval, optlen); 4002 break; 4003 #ifdef CONFIG_TCP_AO 4004 case TCP_AO_ADD_KEY: 4005 case TCP_AO_DEL_KEY: 4006 case TCP_AO_INFO: { 4007 /* If this is the first TCP-AO setsockopt() on the socket, 4008 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 4009 * in any state. 4010 */ 4011 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 4012 goto ao_parse; 4013 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 4014 lockdep_sock_is_held(sk))) 4015 goto ao_parse; 4016 if (tp->repair) 4017 goto ao_parse; 4018 err = -EISCONN; 4019 break; 4020 ao_parse: 4021 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 4022 break; 4023 } 4024 #endif 4025 #ifdef CONFIG_TCP_MD5SIG 4026 case TCP_MD5SIG: 4027 case TCP_MD5SIG_EXT: 4028 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 4029 break; 4030 #endif 4031 case TCP_FASTOPEN: 4032 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 4033 TCPF_LISTEN))) { 4034 tcp_fastopen_init_key_once(net); 4035 4036 fastopen_queue_tune(sk, val); 4037 } else { 4038 err = -EINVAL; 4039 } 4040 break; 4041 case TCP_FASTOPEN_CONNECT: 4042 if (val > 1 || val < 0) { 4043 err = -EINVAL; 4044 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 4045 TFO_CLIENT_ENABLE) { 4046 if (sk->sk_state == TCP_CLOSE) 4047 tp->fastopen_connect = val; 4048 else 4049 err = -EINVAL; 4050 } else { 4051 err = -EOPNOTSUPP; 4052 } 4053 break; 4054 case TCP_FASTOPEN_NO_COOKIE: 4055 if (val > 1 || val < 0) 4056 err = -EINVAL; 4057 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4058 err = -EINVAL; 4059 else 4060 tp->fastopen_no_cookie = val; 4061 break; 4062 case TCP_TIMESTAMP: 4063 if (!tp->repair) { 4064 err = -EPERM; 4065 break; 4066 } 4067 /* val is an opaque field, 4068 * and low order bit contains usec_ts enable bit. 4069 * Its a best effort, and we do not care if user makes an error. 4070 */ 4071 tp->tcp_usec_ts = val & 1; 4072 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 4073 break; 4074 case TCP_REPAIR_WINDOW: 4075 err = tcp_repair_set_window(tp, optval, optlen); 4076 break; 4077 case TCP_NOTSENT_LOWAT: 4078 WRITE_ONCE(tp->notsent_lowat, val); 4079 sk->sk_write_space(sk); 4080 break; 4081 case TCP_INQ: 4082 if (val > 1 || val < 0) 4083 err = -EINVAL; 4084 else 4085 tp->recvmsg_inq = val; 4086 break; 4087 case TCP_TX_DELAY: 4088 if (val) 4089 tcp_enable_tx_delay(); 4090 WRITE_ONCE(tp->tcp_tx_delay, val); 4091 break; 4092 default: 4093 err = -ENOPROTOOPT; 4094 break; 4095 } 4096 4097 sockopt_release_sock(sk); 4098 return err; 4099 } 4100 4101 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 4102 unsigned int optlen) 4103 { 4104 const struct inet_connection_sock *icsk = inet_csk(sk); 4105 4106 if (level != SOL_TCP) 4107 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4108 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 4109 optval, optlen); 4110 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 4111 } 4112 EXPORT_IPV6_MOD(tcp_setsockopt); 4113 4114 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 4115 struct tcp_info *info) 4116 { 4117 u64 stats[__TCP_CHRONO_MAX], total = 0; 4118 enum tcp_chrono i; 4119 4120 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 4121 stats[i] = tp->chrono_stat[i - 1]; 4122 if (i == tp->chrono_type) 4123 stats[i] += tcp_jiffies32 - tp->chrono_start; 4124 stats[i] *= USEC_PER_SEC / HZ; 4125 total += stats[i]; 4126 } 4127 4128 info->tcpi_busy_time = total; 4129 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 4130 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 4131 } 4132 4133 /* Return information about state of tcp endpoint in API format. */ 4134 void tcp_get_info(struct sock *sk, struct tcp_info *info) 4135 { 4136 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 4137 const struct inet_connection_sock *icsk = inet_csk(sk); 4138 unsigned long rate; 4139 u32 now; 4140 u64 rate64; 4141 bool slow; 4142 4143 memset(info, 0, sizeof(*info)); 4144 if (sk->sk_type != SOCK_STREAM) 4145 return; 4146 4147 info->tcpi_state = inet_sk_state_load(sk); 4148 4149 /* Report meaningful fields for all TCP states, including listeners */ 4150 rate = READ_ONCE(sk->sk_pacing_rate); 4151 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4152 info->tcpi_pacing_rate = rate64; 4153 4154 rate = READ_ONCE(sk->sk_max_pacing_rate); 4155 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4156 info->tcpi_max_pacing_rate = rate64; 4157 4158 info->tcpi_reordering = tp->reordering; 4159 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 4160 4161 if (info->tcpi_state == TCP_LISTEN) { 4162 /* listeners aliased fields : 4163 * tcpi_unacked -> Number of children ready for accept() 4164 * tcpi_sacked -> max backlog 4165 */ 4166 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 4167 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 4168 return; 4169 } 4170 4171 slow = lock_sock_fast(sk); 4172 4173 info->tcpi_ca_state = icsk->icsk_ca_state; 4174 info->tcpi_retransmits = icsk->icsk_retransmits; 4175 info->tcpi_probes = icsk->icsk_probes_out; 4176 info->tcpi_backoff = icsk->icsk_backoff; 4177 4178 if (tp->rx_opt.tstamp_ok) 4179 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 4180 if (tcp_is_sack(tp)) 4181 info->tcpi_options |= TCPI_OPT_SACK; 4182 if (tp->rx_opt.wscale_ok) { 4183 info->tcpi_options |= TCPI_OPT_WSCALE; 4184 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 4185 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 4186 } 4187 4188 if (tcp_ecn_mode_any(tp)) 4189 info->tcpi_options |= TCPI_OPT_ECN; 4190 if (tp->ecn_flags & TCP_ECN_SEEN) 4191 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 4192 if (tp->syn_data_acked) 4193 info->tcpi_options |= TCPI_OPT_SYN_DATA; 4194 if (tp->tcp_usec_ts) 4195 info->tcpi_options |= TCPI_OPT_USEC_TS; 4196 if (tp->syn_fastopen_child) 4197 info->tcpi_options |= TCPI_OPT_TFO_CHILD; 4198 4199 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 4200 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 4201 tcp_delack_max(sk))); 4202 info->tcpi_snd_mss = tp->mss_cache; 4203 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 4204 4205 info->tcpi_unacked = tp->packets_out; 4206 info->tcpi_sacked = tp->sacked_out; 4207 4208 info->tcpi_lost = tp->lost_out; 4209 info->tcpi_retrans = tp->retrans_out; 4210 4211 now = tcp_jiffies32; 4212 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 4213 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 4214 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 4215 4216 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 4217 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 4218 info->tcpi_rtt = tp->srtt_us >> 3; 4219 info->tcpi_rttvar = tp->mdev_us >> 2; 4220 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 4221 info->tcpi_advmss = tp->advmss; 4222 4223 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 4224 info->tcpi_rcv_space = tp->rcvq_space.space; 4225 4226 info->tcpi_total_retrans = tp->total_retrans; 4227 4228 info->tcpi_bytes_acked = tp->bytes_acked; 4229 info->tcpi_bytes_received = tp->bytes_received; 4230 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 4231 tcp_get_info_chrono_stats(tp, info); 4232 4233 info->tcpi_segs_out = tp->segs_out; 4234 4235 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 4236 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 4237 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 4238 4239 info->tcpi_min_rtt = tcp_min_rtt(tp); 4240 info->tcpi_data_segs_out = tp->data_segs_out; 4241 4242 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 4243 rate64 = tcp_compute_delivery_rate(tp); 4244 if (rate64) 4245 info->tcpi_delivery_rate = rate64; 4246 info->tcpi_delivered = tp->delivered; 4247 info->tcpi_delivered_ce = tp->delivered_ce; 4248 info->tcpi_bytes_sent = tp->bytes_sent; 4249 info->tcpi_bytes_retrans = tp->bytes_retrans; 4250 info->tcpi_dsack_dups = tp->dsack_dups; 4251 info->tcpi_reord_seen = tp->reord_seen; 4252 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 4253 info->tcpi_snd_wnd = tp->snd_wnd; 4254 info->tcpi_rcv_wnd = tp->rcv_wnd; 4255 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 4256 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 4257 4258 info->tcpi_total_rto = tp->total_rto; 4259 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 4260 info->tcpi_total_rto_time = tp->total_rto_time; 4261 if (tp->rto_stamp) 4262 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 4263 4264 unlock_sock_fast(sk, slow); 4265 } 4266 EXPORT_SYMBOL_GPL(tcp_get_info); 4267 4268 static size_t tcp_opt_stats_get_size(void) 4269 { 4270 return 4271 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 4272 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 4273 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 4274 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 4275 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 4276 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 4277 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 4278 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 4279 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 4280 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 4281 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 4282 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 4283 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 4284 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 4285 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 4286 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 4287 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 4288 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 4289 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 4290 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 4291 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 4292 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 4293 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 4294 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 4295 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 4296 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 4297 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 4298 0; 4299 } 4300 4301 /* Returns TTL or hop limit of an incoming packet from skb. */ 4302 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 4303 { 4304 if (skb->protocol == htons(ETH_P_IP)) 4305 return ip_hdr(skb)->ttl; 4306 else if (skb->protocol == htons(ETH_P_IPV6)) 4307 return ipv6_hdr(skb)->hop_limit; 4308 else 4309 return 0; 4310 } 4311 4312 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 4313 const struct sk_buff *orig_skb, 4314 const struct sk_buff *ack_skb) 4315 { 4316 const struct tcp_sock *tp = tcp_sk(sk); 4317 struct sk_buff *stats; 4318 struct tcp_info info; 4319 unsigned long rate; 4320 u64 rate64; 4321 4322 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4323 if (!stats) 4324 return NULL; 4325 4326 tcp_get_info_chrono_stats(tp, &info); 4327 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4328 info.tcpi_busy_time, TCP_NLA_PAD); 4329 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4330 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4331 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4332 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4333 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4334 tp->data_segs_out, TCP_NLA_PAD); 4335 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4336 tp->total_retrans, TCP_NLA_PAD); 4337 4338 rate = READ_ONCE(sk->sk_pacing_rate); 4339 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4340 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4341 4342 rate64 = tcp_compute_delivery_rate(tp); 4343 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4344 4345 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4346 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4347 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4348 4349 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4350 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4351 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4352 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4353 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4354 4355 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4356 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4357 4358 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4359 TCP_NLA_PAD); 4360 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4361 TCP_NLA_PAD); 4362 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4363 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4364 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4365 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4366 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4367 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4368 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4369 TCP_NLA_PAD); 4370 if (ack_skb) 4371 nla_put_u8(stats, TCP_NLA_TTL, 4372 tcp_skb_ttl_or_hop_limit(ack_skb)); 4373 4374 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4375 return stats; 4376 } 4377 4378 int do_tcp_getsockopt(struct sock *sk, int level, 4379 int optname, sockptr_t optval, sockptr_t optlen) 4380 { 4381 struct inet_connection_sock *icsk = inet_csk(sk); 4382 struct tcp_sock *tp = tcp_sk(sk); 4383 struct net *net = sock_net(sk); 4384 int val, len; 4385 4386 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4387 return -EFAULT; 4388 4389 if (len < 0) 4390 return -EINVAL; 4391 4392 len = min_t(unsigned int, len, sizeof(int)); 4393 4394 switch (optname) { 4395 case TCP_MAXSEG: 4396 val = tp->mss_cache; 4397 if (tp->rx_opt.user_mss && 4398 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4399 val = tp->rx_opt.user_mss; 4400 if (tp->repair) 4401 val = tp->rx_opt.mss_clamp; 4402 break; 4403 case TCP_NODELAY: 4404 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4405 break; 4406 case TCP_CORK: 4407 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4408 break; 4409 case TCP_KEEPIDLE: 4410 val = keepalive_time_when(tp) / HZ; 4411 break; 4412 case TCP_KEEPINTVL: 4413 val = keepalive_intvl_when(tp) / HZ; 4414 break; 4415 case TCP_KEEPCNT: 4416 val = keepalive_probes(tp); 4417 break; 4418 case TCP_SYNCNT: 4419 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4420 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4421 break; 4422 case TCP_LINGER2: 4423 val = READ_ONCE(tp->linger2); 4424 if (val >= 0) 4425 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4426 break; 4427 case TCP_DEFER_ACCEPT: 4428 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4429 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4430 TCP_RTO_MAX / HZ); 4431 break; 4432 case TCP_WINDOW_CLAMP: 4433 val = READ_ONCE(tp->window_clamp); 4434 break; 4435 case TCP_INFO: { 4436 struct tcp_info info; 4437 4438 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4439 return -EFAULT; 4440 4441 tcp_get_info(sk, &info); 4442 4443 len = min_t(unsigned int, len, sizeof(info)); 4444 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4445 return -EFAULT; 4446 if (copy_to_sockptr(optval, &info, len)) 4447 return -EFAULT; 4448 return 0; 4449 } 4450 case TCP_CC_INFO: { 4451 const struct tcp_congestion_ops *ca_ops; 4452 union tcp_cc_info info; 4453 size_t sz = 0; 4454 int attr; 4455 4456 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4457 return -EFAULT; 4458 4459 ca_ops = icsk->icsk_ca_ops; 4460 if (ca_ops && ca_ops->get_info) 4461 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4462 4463 len = min_t(unsigned int, len, sz); 4464 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4465 return -EFAULT; 4466 if (copy_to_sockptr(optval, &info, len)) 4467 return -EFAULT; 4468 return 0; 4469 } 4470 case TCP_QUICKACK: 4471 val = !inet_csk_in_pingpong_mode(sk); 4472 break; 4473 4474 case TCP_CONGESTION: 4475 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4476 return -EFAULT; 4477 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4478 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4479 return -EFAULT; 4480 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4481 return -EFAULT; 4482 return 0; 4483 4484 case TCP_ULP: 4485 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4486 return -EFAULT; 4487 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4488 if (!icsk->icsk_ulp_ops) { 4489 len = 0; 4490 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4491 return -EFAULT; 4492 return 0; 4493 } 4494 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4495 return -EFAULT; 4496 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4497 return -EFAULT; 4498 return 0; 4499 4500 case TCP_FASTOPEN_KEY: { 4501 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4502 unsigned int key_len; 4503 4504 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4505 return -EFAULT; 4506 4507 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4508 TCP_FASTOPEN_KEY_LENGTH; 4509 len = min_t(unsigned int, len, key_len); 4510 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4511 return -EFAULT; 4512 if (copy_to_sockptr(optval, key, len)) 4513 return -EFAULT; 4514 return 0; 4515 } 4516 case TCP_THIN_LINEAR_TIMEOUTS: 4517 val = tp->thin_lto; 4518 break; 4519 4520 case TCP_THIN_DUPACK: 4521 val = 0; 4522 break; 4523 4524 case TCP_REPAIR: 4525 val = tp->repair; 4526 break; 4527 4528 case TCP_REPAIR_QUEUE: 4529 if (tp->repair) 4530 val = tp->repair_queue; 4531 else 4532 return -EINVAL; 4533 break; 4534 4535 case TCP_REPAIR_WINDOW: { 4536 struct tcp_repair_window opt; 4537 4538 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4539 return -EFAULT; 4540 4541 if (len != sizeof(opt)) 4542 return -EINVAL; 4543 4544 if (!tp->repair) 4545 return -EPERM; 4546 4547 opt.snd_wl1 = tp->snd_wl1; 4548 opt.snd_wnd = tp->snd_wnd; 4549 opt.max_window = tp->max_window; 4550 opt.rcv_wnd = tp->rcv_wnd; 4551 opt.rcv_wup = tp->rcv_wup; 4552 4553 if (copy_to_sockptr(optval, &opt, len)) 4554 return -EFAULT; 4555 return 0; 4556 } 4557 case TCP_QUEUE_SEQ: 4558 if (tp->repair_queue == TCP_SEND_QUEUE) 4559 val = tp->write_seq; 4560 else if (tp->repair_queue == TCP_RECV_QUEUE) 4561 val = tp->rcv_nxt; 4562 else 4563 return -EINVAL; 4564 break; 4565 4566 case TCP_USER_TIMEOUT: 4567 val = READ_ONCE(icsk->icsk_user_timeout); 4568 break; 4569 4570 case TCP_FASTOPEN: 4571 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4572 break; 4573 4574 case TCP_FASTOPEN_CONNECT: 4575 val = tp->fastopen_connect; 4576 break; 4577 4578 case TCP_FASTOPEN_NO_COOKIE: 4579 val = tp->fastopen_no_cookie; 4580 break; 4581 4582 case TCP_TX_DELAY: 4583 val = READ_ONCE(tp->tcp_tx_delay); 4584 break; 4585 4586 case TCP_TIMESTAMP: 4587 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4588 if (tp->tcp_usec_ts) 4589 val |= 1; 4590 else 4591 val &= ~1; 4592 break; 4593 case TCP_NOTSENT_LOWAT: 4594 val = READ_ONCE(tp->notsent_lowat); 4595 break; 4596 case TCP_INQ: 4597 val = tp->recvmsg_inq; 4598 break; 4599 case TCP_SAVE_SYN: 4600 val = tp->save_syn; 4601 break; 4602 case TCP_SAVED_SYN: { 4603 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4604 return -EFAULT; 4605 4606 sockopt_lock_sock(sk); 4607 if (tp->saved_syn) { 4608 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4609 len = tcp_saved_syn_len(tp->saved_syn); 4610 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4611 sockopt_release_sock(sk); 4612 return -EFAULT; 4613 } 4614 sockopt_release_sock(sk); 4615 return -EINVAL; 4616 } 4617 len = tcp_saved_syn_len(tp->saved_syn); 4618 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4619 sockopt_release_sock(sk); 4620 return -EFAULT; 4621 } 4622 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4623 sockopt_release_sock(sk); 4624 return -EFAULT; 4625 } 4626 tcp_saved_syn_free(tp); 4627 sockopt_release_sock(sk); 4628 } else { 4629 sockopt_release_sock(sk); 4630 len = 0; 4631 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4632 return -EFAULT; 4633 } 4634 return 0; 4635 } 4636 #ifdef CONFIG_MMU 4637 case TCP_ZEROCOPY_RECEIVE: { 4638 struct scm_timestamping_internal tss; 4639 struct tcp_zerocopy_receive zc = {}; 4640 int err; 4641 4642 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4643 return -EFAULT; 4644 if (len < 0 || 4645 len < offsetofend(struct tcp_zerocopy_receive, length)) 4646 return -EINVAL; 4647 if (unlikely(len > sizeof(zc))) { 4648 err = check_zeroed_sockptr(optval, sizeof(zc), 4649 len - sizeof(zc)); 4650 if (err < 1) 4651 return err == 0 ? -EINVAL : err; 4652 len = sizeof(zc); 4653 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4654 return -EFAULT; 4655 } 4656 if (copy_from_sockptr(&zc, optval, len)) 4657 return -EFAULT; 4658 if (zc.reserved) 4659 return -EINVAL; 4660 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4661 return -EINVAL; 4662 sockopt_lock_sock(sk); 4663 err = tcp_zerocopy_receive(sk, &zc, &tss); 4664 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4665 &zc, &len, err); 4666 sockopt_release_sock(sk); 4667 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4668 goto zerocopy_rcv_cmsg; 4669 switch (len) { 4670 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4671 goto zerocopy_rcv_cmsg; 4672 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4673 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4674 case offsetofend(struct tcp_zerocopy_receive, flags): 4675 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4676 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4677 case offsetofend(struct tcp_zerocopy_receive, err): 4678 goto zerocopy_rcv_sk_err; 4679 case offsetofend(struct tcp_zerocopy_receive, inq): 4680 goto zerocopy_rcv_inq; 4681 case offsetofend(struct tcp_zerocopy_receive, length): 4682 default: 4683 goto zerocopy_rcv_out; 4684 } 4685 zerocopy_rcv_cmsg: 4686 if (zc.msg_flags & TCP_CMSG_TS) 4687 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4688 else 4689 zc.msg_flags = 0; 4690 zerocopy_rcv_sk_err: 4691 if (!err) 4692 zc.err = sock_error(sk); 4693 zerocopy_rcv_inq: 4694 zc.inq = tcp_inq_hint(sk); 4695 zerocopy_rcv_out: 4696 if (!err && copy_to_sockptr(optval, &zc, len)) 4697 err = -EFAULT; 4698 return err; 4699 } 4700 #endif 4701 case TCP_AO_REPAIR: 4702 if (!tcp_can_repair_sock(sk)) 4703 return -EPERM; 4704 return tcp_ao_get_repair(sk, optval, optlen); 4705 case TCP_AO_GET_KEYS: 4706 case TCP_AO_INFO: { 4707 int err; 4708 4709 sockopt_lock_sock(sk); 4710 if (optname == TCP_AO_GET_KEYS) 4711 err = tcp_ao_get_mkts(sk, optval, optlen); 4712 else 4713 err = tcp_ao_get_sock_info(sk, optval, optlen); 4714 sockopt_release_sock(sk); 4715 4716 return err; 4717 } 4718 case TCP_IS_MPTCP: 4719 val = 0; 4720 break; 4721 case TCP_RTO_MAX_MS: 4722 val = jiffies_to_msecs(tcp_rto_max(sk)); 4723 break; 4724 case TCP_RTO_MIN_US: 4725 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min)); 4726 break; 4727 case TCP_DELACK_MAX_US: 4728 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max)); 4729 break; 4730 default: 4731 return -ENOPROTOOPT; 4732 } 4733 4734 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4735 return -EFAULT; 4736 if (copy_to_sockptr(optval, &val, len)) 4737 return -EFAULT; 4738 return 0; 4739 } 4740 4741 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4742 { 4743 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4744 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4745 */ 4746 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4747 return true; 4748 4749 return false; 4750 } 4751 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt); 4752 4753 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4754 int __user *optlen) 4755 { 4756 struct inet_connection_sock *icsk = inet_csk(sk); 4757 4758 if (level != SOL_TCP) 4759 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4760 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4761 optval, optlen); 4762 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4763 USER_SOCKPTR(optlen)); 4764 } 4765 EXPORT_IPV6_MOD(tcp_getsockopt); 4766 4767 #ifdef CONFIG_TCP_MD5SIG 4768 int tcp_md5_sigpool_id = -1; 4769 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id); 4770 4771 int tcp_md5_alloc_sigpool(void) 4772 { 4773 size_t scratch_size; 4774 int ret; 4775 4776 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4777 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4778 if (ret >= 0) { 4779 /* As long as any md5 sigpool was allocated, the return 4780 * id would stay the same. Re-write the id only for the case 4781 * when previously all MD5 keys were deleted and this call 4782 * allocates the first MD5 key, which may return a different 4783 * sigpool id than was used previously. 4784 */ 4785 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4786 return 0; 4787 } 4788 return ret; 4789 } 4790 4791 void tcp_md5_release_sigpool(void) 4792 { 4793 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4794 } 4795 4796 void tcp_md5_add_sigpool(void) 4797 { 4798 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4799 } 4800 4801 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4802 const struct tcp_md5sig_key *key) 4803 { 4804 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4805 struct scatterlist sg; 4806 4807 sg_init_one(&sg, key->key, keylen); 4808 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4809 4810 /* We use data_race() because tcp_md5_do_add() might change 4811 * key->key under us 4812 */ 4813 return data_race(crypto_ahash_update(hp->req)); 4814 } 4815 EXPORT_IPV6_MOD(tcp_md5_hash_key); 4816 4817 /* Called with rcu_read_lock() */ 4818 static enum skb_drop_reason 4819 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4820 const void *saddr, const void *daddr, 4821 int family, int l3index, const __u8 *hash_location) 4822 { 4823 /* This gets called for each TCP segment that has TCP-MD5 option. 4824 * We have 3 drop cases: 4825 * o No MD5 hash and one expected. 4826 * o MD5 hash and we're not expecting one. 4827 * o MD5 hash and its wrong. 4828 */ 4829 const struct tcp_sock *tp = tcp_sk(sk); 4830 struct tcp_md5sig_key *key; 4831 u8 newhash[16]; 4832 int genhash; 4833 4834 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4835 4836 if (!key && hash_location) { 4837 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4838 trace_tcp_hash_md5_unexpected(sk, skb); 4839 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4840 } 4841 4842 /* Check the signature. 4843 * To support dual stack listeners, we need to handle 4844 * IPv4-mapped case. 4845 */ 4846 if (family == AF_INET) 4847 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4848 else 4849 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4850 NULL, skb); 4851 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4852 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4853 trace_tcp_hash_md5_mismatch(sk, skb); 4854 return SKB_DROP_REASON_TCP_MD5FAILURE; 4855 } 4856 return SKB_NOT_DROPPED_YET; 4857 } 4858 #else 4859 static inline enum skb_drop_reason 4860 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4861 const void *saddr, const void *daddr, 4862 int family, int l3index, const __u8 *hash_location) 4863 { 4864 return SKB_NOT_DROPPED_YET; 4865 } 4866 4867 #endif 4868 4869 /* Called with rcu_read_lock() */ 4870 enum skb_drop_reason 4871 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4872 const struct sk_buff *skb, 4873 const void *saddr, const void *daddr, 4874 int family, int dif, int sdif) 4875 { 4876 const struct tcphdr *th = tcp_hdr(skb); 4877 const struct tcp_ao_hdr *aoh; 4878 const __u8 *md5_location; 4879 int l3index; 4880 4881 /* Invalid option or two times meet any of auth options */ 4882 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 4883 trace_tcp_hash_bad_header(sk, skb); 4884 return SKB_DROP_REASON_TCP_AUTH_HDR; 4885 } 4886 4887 if (req) { 4888 if (tcp_rsk_used_ao(req) != !!aoh) { 4889 u8 keyid, rnext, maclen; 4890 4891 if (aoh) { 4892 keyid = aoh->keyid; 4893 rnext = aoh->rnext_keyid; 4894 maclen = tcp_ao_hdr_maclen(aoh); 4895 } else { 4896 keyid = rnext = maclen = 0; 4897 } 4898 4899 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 4900 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 4901 return SKB_DROP_REASON_TCP_AOFAILURE; 4902 } 4903 } 4904 4905 /* sdif set, means packet ingressed via a device 4906 * in an L3 domain and dif is set to the l3mdev 4907 */ 4908 l3index = sdif ? dif : 0; 4909 4910 /* Fast path: unsigned segments */ 4911 if (likely(!md5_location && !aoh)) { 4912 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 4913 * for the remote peer. On TCP-AO established connection 4914 * the last key is impossible to remove, so there's 4915 * always at least one current_key. 4916 */ 4917 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 4918 trace_tcp_hash_ao_required(sk, skb); 4919 return SKB_DROP_REASON_TCP_AONOTFOUND; 4920 } 4921 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 4922 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4923 trace_tcp_hash_md5_required(sk, skb); 4924 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4925 } 4926 return SKB_NOT_DROPPED_YET; 4927 } 4928 4929 if (aoh) 4930 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 4931 4932 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 4933 l3index, md5_location); 4934 } 4935 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash); 4936 4937 void tcp_done(struct sock *sk) 4938 { 4939 struct request_sock *req; 4940 4941 /* We might be called with a new socket, after 4942 * inet_csk_prepare_forced_close() has been called 4943 * so we can not use lockdep_sock_is_held(sk) 4944 */ 4945 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4946 4947 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4948 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4949 4950 tcp_set_state(sk, TCP_CLOSE); 4951 tcp_clear_xmit_timers(sk); 4952 if (req) 4953 reqsk_fastopen_remove(sk, req, false); 4954 4955 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4956 4957 if (!sock_flag(sk, SOCK_DEAD)) 4958 sk->sk_state_change(sk); 4959 else 4960 inet_csk_destroy_sock(sk); 4961 } 4962 EXPORT_SYMBOL_GPL(tcp_done); 4963 4964 int tcp_abort(struct sock *sk, int err) 4965 { 4966 int state = inet_sk_state_load(sk); 4967 4968 if (state == TCP_NEW_SYN_RECV) { 4969 struct request_sock *req = inet_reqsk(sk); 4970 4971 local_bh_disable(); 4972 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4973 local_bh_enable(); 4974 return 0; 4975 } 4976 if (state == TCP_TIME_WAIT) { 4977 struct inet_timewait_sock *tw = inet_twsk(sk); 4978 4979 refcount_inc(&tw->tw_refcnt); 4980 local_bh_disable(); 4981 inet_twsk_deschedule_put(tw); 4982 local_bh_enable(); 4983 return 0; 4984 } 4985 4986 /* BPF context ensures sock locking. */ 4987 if (!has_current_bpf_ctx()) 4988 /* Don't race with userspace socket closes such as tcp_close. */ 4989 lock_sock(sk); 4990 4991 /* Avoid closing the same socket twice. */ 4992 if (sk->sk_state == TCP_CLOSE) { 4993 if (!has_current_bpf_ctx()) 4994 release_sock(sk); 4995 return -ENOENT; 4996 } 4997 4998 if (sk->sk_state == TCP_LISTEN) { 4999 tcp_set_state(sk, TCP_CLOSE); 5000 inet_csk_listen_stop(sk); 5001 } 5002 5003 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 5004 local_bh_disable(); 5005 bh_lock_sock(sk); 5006 5007 if (tcp_need_reset(sk->sk_state)) 5008 tcp_send_active_reset(sk, GFP_ATOMIC, 5009 SK_RST_REASON_TCP_STATE); 5010 tcp_done_with_error(sk, err); 5011 5012 bh_unlock_sock(sk); 5013 local_bh_enable(); 5014 if (!has_current_bpf_ctx()) 5015 release_sock(sk); 5016 return 0; 5017 } 5018 EXPORT_SYMBOL_GPL(tcp_abort); 5019 5020 extern struct tcp_congestion_ops tcp_reno; 5021 5022 static __initdata unsigned long thash_entries; 5023 static int __init set_thash_entries(char *str) 5024 { 5025 ssize_t ret; 5026 5027 if (!str) 5028 return 0; 5029 5030 ret = kstrtoul(str, 0, &thash_entries); 5031 if (ret) 5032 return 0; 5033 5034 return 1; 5035 } 5036 __setup("thash_entries=", set_thash_entries); 5037 5038 static void __init tcp_init_mem(void) 5039 { 5040 unsigned long limit = nr_free_buffer_pages() / 16; 5041 5042 limit = max(limit, 128UL); 5043 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 5044 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 5045 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 5046 } 5047 5048 static void __init tcp_struct_check(void) 5049 { 5050 /* TX read-mostly hotpath cache lines */ 5051 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 5052 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 5053 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 5054 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 5055 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 5056 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 5057 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 5058 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 5059 5060 /* TXRX read-mostly hotpath cache lines */ 5061 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 5062 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 5063 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 5065 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 5067 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 5068 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 5069 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 5070 5071 /* RX read-mostly hotpath cache lines */ 5072 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 5073 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 5074 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 5075 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 5076 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 5077 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 5078 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 5079 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 5080 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 5081 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 5082 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 5083 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 5084 #if IS_ENABLED(CONFIG_TLS_DEVICE) 5085 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked); 5086 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77); 5087 #else 5088 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 5089 #endif 5090 5091 /* TX read-write hotpath cache lines */ 5092 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 5093 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 5094 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 5095 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 5096 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 5097 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 5098 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 5099 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 5100 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 5101 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 5102 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 5103 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 5104 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 5105 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 5106 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 5107 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 5108 5109 /* TXRX read-write hotpath cache lines */ 5110 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 5111 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 5112 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 5113 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 5114 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 5115 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 5116 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 5117 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 5118 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 5119 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 5120 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 5121 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 5122 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 5123 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 5124 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 5125 5126 /* 32bit arches with 8byte alignment on u64 fields might need padding 5127 * before tcp_clock_cache. 5128 */ 5129 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 5130 5131 /* RX read-write hotpath cache lines */ 5132 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 5133 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 5134 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 5135 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 5136 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 5137 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 5138 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 5139 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 5140 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 5141 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 5142 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 5143 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 5144 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 5145 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 5146 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 5147 } 5148 5149 void __init tcp_init(void) 5150 { 5151 int max_rshare, max_wshare, cnt; 5152 unsigned long limit; 5153 unsigned int i; 5154 5155 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 5156 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 5157 sizeof_field(struct sk_buff, cb)); 5158 5159 tcp_struct_check(); 5160 5161 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 5162 5163 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 5164 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 5165 5166 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 5167 thash_entries, 21, /* one slot per 2 MB*/ 5168 0, 64 * 1024); 5169 tcp_hashinfo.bind_bucket_cachep = 5170 kmem_cache_create("tcp_bind_bucket", 5171 sizeof(struct inet_bind_bucket), 0, 5172 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5173 SLAB_ACCOUNT, 5174 NULL); 5175 tcp_hashinfo.bind2_bucket_cachep = 5176 kmem_cache_create("tcp_bind2_bucket", 5177 sizeof(struct inet_bind2_bucket), 0, 5178 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 5179 SLAB_ACCOUNT, 5180 NULL); 5181 5182 /* Size and allocate the main established and bind bucket 5183 * hash tables. 5184 * 5185 * The methodology is similar to that of the buffer cache. 5186 */ 5187 tcp_hashinfo.ehash = 5188 alloc_large_system_hash("TCP established", 5189 sizeof(struct inet_ehash_bucket), 5190 thash_entries, 5191 17, /* one slot per 128 KB of memory */ 5192 0, 5193 NULL, 5194 &tcp_hashinfo.ehash_mask, 5195 0, 5196 thash_entries ? 0 : 512 * 1024); 5197 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 5198 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 5199 5200 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 5201 panic("TCP: failed to alloc ehash_locks"); 5202 tcp_hashinfo.bhash = 5203 alloc_large_system_hash("TCP bind", 5204 2 * sizeof(struct inet_bind_hashbucket), 5205 tcp_hashinfo.ehash_mask + 1, 5206 17, /* one slot per 128 KB of memory */ 5207 0, 5208 &tcp_hashinfo.bhash_size, 5209 NULL, 5210 0, 5211 64 * 1024); 5212 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 5213 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 5214 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 5215 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 5216 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 5217 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 5218 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 5219 } 5220 5221 tcp_hashinfo.pernet = false; 5222 5223 cnt = tcp_hashinfo.ehash_mask + 1; 5224 sysctl_tcp_max_orphans = cnt / 2; 5225 5226 tcp_init_mem(); 5227 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 5228 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 5229 max_wshare = min(4UL*1024*1024, limit); 5230 max_rshare = min(32UL*1024*1024, limit); 5231 5232 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 5233 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 5234 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 5235 5236 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 5237 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 5238 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 5239 5240 pr_info("Hash tables configured (established %u bind %u)\n", 5241 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 5242 5243 tcp_v4_init(); 5244 tcp_metrics_init(); 5245 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 5246 tcp_tasklet_init(); 5247 mptcp_init(); 5248 } 5249