1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 
288 #include "../core/devmem.h"
289 
290 /* Track pending CMSGs. */
291 enum {
292 	TCP_CMSG_INQ = 1,
293 	TCP_CMSG_TS = 2
294 };
295 
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298 
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301 
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_IPV6_MOD(sysctl_tcp_mem);
304 
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
306 EXPORT_IPV6_MOD(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309 
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314 
315 /*
316  * Current number of TCP sockets.
317  */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_IPV6_MOD(tcp_sockets_allocated);
320 
321 /*
322  * TCP splice context
323  */
324 struct tcp_splice_state {
325 	struct pipe_inode_info *pipe;
326 	size_t len;
327 	unsigned int flags;
328 };
329 
330 /*
331  * Pressure flag: try to collapse.
332  * Technical note: it is used by multiple contexts non atomically.
333  * All the __sk_mem_schedule() is of this nature: accounting
334  * is strict, actions are advisory and have some latency.
335  */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338 
339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (READ_ONCE(tcp_memory_pressure))
344 		return;
345 	val = jiffies;
346 
347 	if (!val)
348 		val--;
349 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
353 
354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 	unsigned long val;
357 
358 	if (!READ_ONCE(tcp_memory_pressure))
359 		return;
360 	val = xchg(&tcp_memory_pressure, 0);
361 	if (val)
362 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 			      jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
366 
367 /* Convert seconds to retransmits based on initial and max timeout */
368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 	u8 res = 0;
371 
372 	if (seconds > 0) {
373 		int period = timeout;
374 
375 		res = 1;
376 		while (seconds > period && res < 255) {
377 			res++;
378 			timeout <<= 1;
379 			if (timeout > rto_max)
380 				timeout = rto_max;
381 			period += timeout;
382 		}
383 	}
384 	return res;
385 }
386 
387 /* Convert retransmits to seconds based on initial and max timeout */
388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 	int period = 0;
391 
392 	if (retrans > 0) {
393 		period = timeout;
394 		while (--retrans) {
395 			timeout <<= 1;
396 			if (timeout > rto_max)
397 				timeout = rto_max;
398 			period += timeout;
399 		}
400 	}
401 	return period;
402 }
403 
404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 	u32 rate = READ_ONCE(tp->rate_delivered);
407 	u32 intv = READ_ONCE(tp->rate_interval_us);
408 	u64 rate64 = 0;
409 
410 	if (rate && intv) {
411 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 		do_div(rate64, intv);
413 	}
414 	return rate64;
415 }
416 
417 /* Address-family independent initialization for a tcp_sock.
418  *
419  * NOTE: A lot of things set to zero explicitly by call to
420  *       sk_alloc() so need not be done here.
421  */
422 void tcp_init_sock(struct sock *sk)
423 {
424 	struct inet_connection_sock *icsk = inet_csk(sk);
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	int rto_min_us, rto_max_ms;
427 
428 	tp->out_of_order_queue = RB_ROOT;
429 	sk->tcp_rtx_queue = RB_ROOT;
430 	tcp_init_xmit_timers(sk);
431 	INIT_LIST_HEAD(&tp->tsq_node);
432 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433 
434 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
435 
436 	rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
437 	icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
438 
439 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
440 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
441 	icsk->icsk_delack_max = TCP_DELACK_MAX;
442 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
443 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
444 
445 	/* So many TCP implementations out there (incorrectly) count the
446 	 * initial SYN frame in their delayed-ACK and congestion control
447 	 * algorithms that we must have the following bandaid to talk
448 	 * efficiently to them.  -DaveM
449 	 */
450 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
451 
452 	/* There's a bubble in the pipe until at least the first ACK. */
453 	tp->app_limited = ~0U;
454 	tp->rate_app_limited = 1;
455 
456 	/* See draft-stevens-tcpca-spec-01 for discussion of the
457 	 * initialization of these values.
458 	 */
459 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
460 	tp->snd_cwnd_clamp = ~0;
461 	tp->mss_cache = TCP_MSS_DEFAULT;
462 
463 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
464 	tcp_assign_congestion_control(sk);
465 
466 	tp->tsoffset = 0;
467 	tp->rack.reo_wnd_steps = 1;
468 
469 	sk->sk_write_space = sk_stream_write_space;
470 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
471 
472 	icsk->icsk_sync_mss = tcp_sync_mss;
473 
474 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
475 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
476 	tcp_scaling_ratio_init(sk);
477 
478 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
479 	sk_sockets_allocated_inc(sk);
480 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
481 }
482 EXPORT_IPV6_MOD(tcp_init_sock);
483 
484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
485 {
486 	struct sk_buff *skb = tcp_write_queue_tail(sk);
487 	u32 tsflags = sockc->tsflags;
488 
489 	if (tsflags && skb) {
490 		struct skb_shared_info *shinfo = skb_shinfo(skb);
491 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
492 
493 		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
494 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
495 			tcb->txstamp_ack |= TSTAMP_ACK_SK;
496 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
497 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
498 	}
499 
500 	if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
501 	    SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
502 		bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
503 }
504 
505 static bool tcp_stream_is_readable(struct sock *sk, int target)
506 {
507 	if (tcp_epollin_ready(sk, target))
508 		return true;
509 	return sk_is_readable(sk);
510 }
511 
512 /*
513  *	Wait for a TCP event.
514  *
515  *	Note that we don't need to lock the socket, as the upper poll layers
516  *	take care of normal races (between the test and the event) and we don't
517  *	go look at any of the socket buffers directly.
518  */
519 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
520 {
521 	__poll_t mask;
522 	struct sock *sk = sock->sk;
523 	const struct tcp_sock *tp = tcp_sk(sk);
524 	u8 shutdown;
525 	int state;
526 
527 	sock_poll_wait(file, sock, wait);
528 
529 	state = inet_sk_state_load(sk);
530 	if (state == TCP_LISTEN)
531 		return inet_csk_listen_poll(sk);
532 
533 	/* Socket is not locked. We are protected from async events
534 	 * by poll logic and correct handling of state changes
535 	 * made by other threads is impossible in any case.
536 	 */
537 
538 	mask = 0;
539 
540 	/*
541 	 * EPOLLHUP is certainly not done right. But poll() doesn't
542 	 * have a notion of HUP in just one direction, and for a
543 	 * socket the read side is more interesting.
544 	 *
545 	 * Some poll() documentation says that EPOLLHUP is incompatible
546 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
547 	 * all. But careful, it tends to be safer to return too many
548 	 * bits than too few, and you can easily break real applications
549 	 * if you don't tell them that something has hung up!
550 	 *
551 	 * Check-me.
552 	 *
553 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
554 	 * our fs/select.c). It means that after we received EOF,
555 	 * poll always returns immediately, making impossible poll() on write()
556 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
557 	 * if and only if shutdown has been made in both directions.
558 	 * Actually, it is interesting to look how Solaris and DUX
559 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
560 	 * then we could set it on SND_SHUTDOWN. BTW examples given
561 	 * in Stevens' books assume exactly this behaviour, it explains
562 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
563 	 *
564 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
565 	 * blocking on fresh not-connected or disconnected socket. --ANK
566 	 */
567 	shutdown = READ_ONCE(sk->sk_shutdown);
568 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
569 		mask |= EPOLLHUP;
570 	if (shutdown & RCV_SHUTDOWN)
571 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
572 
573 	/* Connected or passive Fast Open socket? */
574 	if (state != TCP_SYN_SENT &&
575 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
576 		int target = sock_rcvlowat(sk, 0, INT_MAX);
577 		u16 urg_data = READ_ONCE(tp->urg_data);
578 
579 		if (unlikely(urg_data) &&
580 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
581 		    !sock_flag(sk, SOCK_URGINLINE))
582 			target++;
583 
584 		if (tcp_stream_is_readable(sk, target))
585 			mask |= EPOLLIN | EPOLLRDNORM;
586 
587 		if (!(shutdown & SEND_SHUTDOWN)) {
588 			if (__sk_stream_is_writeable(sk, 1)) {
589 				mask |= EPOLLOUT | EPOLLWRNORM;
590 			} else {  /* send SIGIO later */
591 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
592 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
593 
594 				/* Race breaker. If space is freed after
595 				 * wspace test but before the flags are set,
596 				 * IO signal will be lost. Memory barrier
597 				 * pairs with the input side.
598 				 */
599 				smp_mb__after_atomic();
600 				if (__sk_stream_is_writeable(sk, 1))
601 					mask |= EPOLLOUT | EPOLLWRNORM;
602 			}
603 		} else
604 			mask |= EPOLLOUT | EPOLLWRNORM;
605 
606 		if (urg_data & TCP_URG_VALID)
607 			mask |= EPOLLPRI;
608 	} else if (state == TCP_SYN_SENT &&
609 		   inet_test_bit(DEFER_CONNECT, sk)) {
610 		/* Active TCP fastopen socket with defer_connect
611 		 * Return EPOLLOUT so application can call write()
612 		 * in order for kernel to generate SYN+data
613 		 */
614 		mask |= EPOLLOUT | EPOLLWRNORM;
615 	}
616 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
617 	smp_rmb();
618 	if (READ_ONCE(sk->sk_err) ||
619 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
620 		mask |= EPOLLERR;
621 
622 	return mask;
623 }
624 EXPORT_SYMBOL(tcp_poll);
625 
626 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
627 {
628 	struct tcp_sock *tp = tcp_sk(sk);
629 	int answ;
630 	bool slow;
631 
632 	switch (cmd) {
633 	case SIOCINQ:
634 		if (sk->sk_state == TCP_LISTEN)
635 			return -EINVAL;
636 
637 		slow = lock_sock_fast(sk);
638 		answ = tcp_inq(sk);
639 		unlock_sock_fast(sk, slow);
640 		break;
641 	case SIOCATMARK:
642 		answ = READ_ONCE(tp->urg_data) &&
643 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
644 		break;
645 	case SIOCOUTQ:
646 		if (sk->sk_state == TCP_LISTEN)
647 			return -EINVAL;
648 
649 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
650 			answ = 0;
651 		else
652 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
653 		break;
654 	case SIOCOUTQNSD:
655 		if (sk->sk_state == TCP_LISTEN)
656 			return -EINVAL;
657 
658 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
659 			answ = 0;
660 		else
661 			answ = READ_ONCE(tp->write_seq) -
662 			       READ_ONCE(tp->snd_nxt);
663 		break;
664 	default:
665 		return -ENOIOCTLCMD;
666 	}
667 
668 	*karg = answ;
669 	return 0;
670 }
671 EXPORT_IPV6_MOD(tcp_ioctl);
672 
673 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
674 {
675 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
676 	tp->pushed_seq = tp->write_seq;
677 }
678 
679 static inline bool forced_push(const struct tcp_sock *tp)
680 {
681 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
682 }
683 
684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
685 {
686 	struct tcp_sock *tp = tcp_sk(sk);
687 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
688 
689 	tcb->seq     = tcb->end_seq = tp->write_seq;
690 	tcb->tcp_flags = TCPHDR_ACK;
691 	__skb_header_release(skb);
692 	tcp_add_write_queue_tail(sk, skb);
693 	sk_wmem_queued_add(sk, skb->truesize);
694 	sk_mem_charge(sk, skb->truesize);
695 	if (tp->nonagle & TCP_NAGLE_PUSH)
696 		tp->nonagle &= ~TCP_NAGLE_PUSH;
697 
698 	tcp_slow_start_after_idle_check(sk);
699 }
700 
701 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
702 {
703 	if (flags & MSG_OOB)
704 		tp->snd_up = tp->write_seq;
705 }
706 
707 /* If a not yet filled skb is pushed, do not send it if
708  * we have data packets in Qdisc or NIC queues :
709  * Because TX completion will happen shortly, it gives a chance
710  * to coalesce future sendmsg() payload into this skb, without
711  * need for a timer, and with no latency trade off.
712  * As packets containing data payload have a bigger truesize
713  * than pure acks (dataless) packets, the last checks prevent
714  * autocorking if we only have an ACK in Qdisc/NIC queues,
715  * or if TX completion was delayed after we processed ACK packet.
716  */
717 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
718 				int size_goal)
719 {
720 	return skb->len < size_goal &&
721 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
722 	       !tcp_rtx_queue_empty(sk) &&
723 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
724 	       tcp_skb_can_collapse_to(skb);
725 }
726 
727 void tcp_push(struct sock *sk, int flags, int mss_now,
728 	      int nonagle, int size_goal)
729 {
730 	struct tcp_sock *tp = tcp_sk(sk);
731 	struct sk_buff *skb;
732 
733 	skb = tcp_write_queue_tail(sk);
734 	if (!skb)
735 		return;
736 	if (!(flags & MSG_MORE) || forced_push(tp))
737 		tcp_mark_push(tp, skb);
738 
739 	tcp_mark_urg(tp, flags);
740 
741 	if (tcp_should_autocork(sk, skb, size_goal)) {
742 
743 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
744 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
745 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
746 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
747 			smp_mb__after_atomic();
748 		}
749 		/* It is possible TX completion already happened
750 		 * before we set TSQ_THROTTLED.
751 		 */
752 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
753 			return;
754 	}
755 
756 	if (flags & MSG_MORE)
757 		nonagle = TCP_NAGLE_CORK;
758 
759 	__tcp_push_pending_frames(sk, mss_now, nonagle);
760 }
761 
762 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
763 				unsigned int offset, size_t len)
764 {
765 	struct tcp_splice_state *tss = rd_desc->arg.data;
766 	int ret;
767 
768 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
769 			      min(rd_desc->count, len), tss->flags);
770 	if (ret > 0)
771 		rd_desc->count -= ret;
772 	return ret;
773 }
774 
775 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
776 {
777 	/* Store TCP splice context information in read_descriptor_t. */
778 	read_descriptor_t rd_desc = {
779 		.arg.data = tss,
780 		.count	  = tss->len,
781 	};
782 
783 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
784 }
785 
786 /**
787  *  tcp_splice_read - splice data from TCP socket to a pipe
788  * @sock:	socket to splice from
789  * @ppos:	position (not valid)
790  * @pipe:	pipe to splice to
791  * @len:	number of bytes to splice
792  * @flags:	splice modifier flags
793  *
794  * Description:
795  *    Will read pages from given socket and fill them into a pipe.
796  *
797  **/
798 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
799 			struct pipe_inode_info *pipe, size_t len,
800 			unsigned int flags)
801 {
802 	struct sock *sk = sock->sk;
803 	struct tcp_splice_state tss = {
804 		.pipe = pipe,
805 		.len = len,
806 		.flags = flags,
807 	};
808 	long timeo;
809 	ssize_t spliced;
810 	int ret;
811 
812 	sock_rps_record_flow(sk);
813 	/*
814 	 * We can't seek on a socket input
815 	 */
816 	if (unlikely(*ppos))
817 		return -ESPIPE;
818 
819 	ret = spliced = 0;
820 
821 	lock_sock(sk);
822 
823 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
824 	while (tss.len) {
825 		ret = __tcp_splice_read(sk, &tss);
826 		if (ret < 0)
827 			break;
828 		else if (!ret) {
829 			if (spliced)
830 				break;
831 			if (sock_flag(sk, SOCK_DONE))
832 				break;
833 			if (sk->sk_err) {
834 				ret = sock_error(sk);
835 				break;
836 			}
837 			if (sk->sk_shutdown & RCV_SHUTDOWN)
838 				break;
839 			if (sk->sk_state == TCP_CLOSE) {
840 				/*
841 				 * This occurs when user tries to read
842 				 * from never connected socket.
843 				 */
844 				ret = -ENOTCONN;
845 				break;
846 			}
847 			if (!timeo) {
848 				ret = -EAGAIN;
849 				break;
850 			}
851 			/* if __tcp_splice_read() got nothing while we have
852 			 * an skb in receive queue, we do not want to loop.
853 			 * This might happen with URG data.
854 			 */
855 			if (!skb_queue_empty(&sk->sk_receive_queue))
856 				break;
857 			ret = sk_wait_data(sk, &timeo, NULL);
858 			if (ret < 0)
859 				break;
860 			if (signal_pending(current)) {
861 				ret = sock_intr_errno(timeo);
862 				break;
863 			}
864 			continue;
865 		}
866 		tss.len -= ret;
867 		spliced += ret;
868 
869 		if (!tss.len || !timeo)
870 			break;
871 		release_sock(sk);
872 		lock_sock(sk);
873 
874 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
875 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
876 		    signal_pending(current))
877 			break;
878 	}
879 
880 	release_sock(sk);
881 
882 	if (spliced)
883 		return spliced;
884 
885 	return ret;
886 }
887 EXPORT_IPV6_MOD(tcp_splice_read);
888 
889 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
890 				     bool force_schedule)
891 {
892 	struct sk_buff *skb;
893 
894 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
895 	if (likely(skb)) {
896 		bool mem_scheduled;
897 
898 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
899 		if (force_schedule) {
900 			mem_scheduled = true;
901 			sk_forced_mem_schedule(sk, skb->truesize);
902 		} else {
903 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
904 		}
905 		if (likely(mem_scheduled)) {
906 			skb_reserve(skb, MAX_TCP_HEADER);
907 			skb->ip_summed = CHECKSUM_PARTIAL;
908 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
909 			return skb;
910 		}
911 		__kfree_skb(skb);
912 	} else {
913 		sk->sk_prot->enter_memory_pressure(sk);
914 		sk_stream_moderate_sndbuf(sk);
915 	}
916 	return NULL;
917 }
918 
919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
920 				       int large_allowed)
921 {
922 	struct tcp_sock *tp = tcp_sk(sk);
923 	u32 new_size_goal, size_goal;
924 
925 	if (!large_allowed)
926 		return mss_now;
927 
928 	/* Note : tcp_tso_autosize() will eventually split this later */
929 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
930 
931 	/* We try hard to avoid divides here */
932 	size_goal = tp->gso_segs * mss_now;
933 	if (unlikely(new_size_goal < size_goal ||
934 		     new_size_goal >= size_goal + mss_now)) {
935 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
936 				     sk->sk_gso_max_segs);
937 		size_goal = tp->gso_segs * mss_now;
938 	}
939 
940 	return max(size_goal, mss_now);
941 }
942 
943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
944 {
945 	int mss_now;
946 
947 	mss_now = tcp_current_mss(sk);
948 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
949 
950 	return mss_now;
951 }
952 
953 /* In some cases, sendmsg() could have added an skb to the write queue,
954  * but failed adding payload on it. We need to remove it to consume less
955  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
956  * epoll() users. Another reason is that tcp_write_xmit() does not like
957  * finding an empty skb in the write queue.
958  */
959 void tcp_remove_empty_skb(struct sock *sk)
960 {
961 	struct sk_buff *skb = tcp_write_queue_tail(sk);
962 
963 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
964 		tcp_unlink_write_queue(skb, sk);
965 		if (tcp_write_queue_empty(sk))
966 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
967 		tcp_wmem_free_skb(sk, skb);
968 	}
969 }
970 
971 /* skb changing from pure zc to mixed, must charge zc */
972 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
973 {
974 	if (unlikely(skb_zcopy_pure(skb))) {
975 		u32 extra = skb->truesize -
976 			    SKB_TRUESIZE(skb_end_offset(skb));
977 
978 		if (!sk_wmem_schedule(sk, extra))
979 			return -ENOMEM;
980 
981 		sk_mem_charge(sk, extra);
982 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
983 	}
984 	return 0;
985 }
986 
987 
988 int tcp_wmem_schedule(struct sock *sk, int copy)
989 {
990 	int left;
991 
992 	if (likely(sk_wmem_schedule(sk, copy)))
993 		return copy;
994 
995 	/* We could be in trouble if we have nothing queued.
996 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
997 	 * to guarantee some progress.
998 	 */
999 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
1000 	if (left > 0)
1001 		sk_forced_mem_schedule(sk, min(left, copy));
1002 	return min(copy, sk->sk_forward_alloc);
1003 }
1004 
1005 void tcp_free_fastopen_req(struct tcp_sock *tp)
1006 {
1007 	if (tp->fastopen_req) {
1008 		kfree(tp->fastopen_req);
1009 		tp->fastopen_req = NULL;
1010 	}
1011 }
1012 
1013 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1014 			 size_t size, struct ubuf_info *uarg)
1015 {
1016 	struct tcp_sock *tp = tcp_sk(sk);
1017 	struct inet_sock *inet = inet_sk(sk);
1018 	struct sockaddr *uaddr = msg->msg_name;
1019 	int err, flags;
1020 
1021 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1022 	      TFO_CLIENT_ENABLE) ||
1023 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1024 	     uaddr->sa_family == AF_UNSPEC))
1025 		return -EOPNOTSUPP;
1026 	if (tp->fastopen_req)
1027 		return -EALREADY; /* Another Fast Open is in progress */
1028 
1029 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1030 				   sk->sk_allocation);
1031 	if (unlikely(!tp->fastopen_req))
1032 		return -ENOBUFS;
1033 	tp->fastopen_req->data = msg;
1034 	tp->fastopen_req->size = size;
1035 	tp->fastopen_req->uarg = uarg;
1036 
1037 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1038 		err = tcp_connect(sk);
1039 		/* Same failure procedure as in tcp_v4/6_connect */
1040 		if (err) {
1041 			tcp_set_state(sk, TCP_CLOSE);
1042 			inet->inet_dport = 0;
1043 			sk->sk_route_caps = 0;
1044 		}
1045 	}
1046 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1047 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1048 				    msg->msg_namelen, flags, 1);
1049 	/* fastopen_req could already be freed in __inet_stream_connect
1050 	 * if the connection times out or gets rst
1051 	 */
1052 	if (tp->fastopen_req) {
1053 		*copied = tp->fastopen_req->copied;
1054 		tcp_free_fastopen_req(tp);
1055 		inet_clear_bit(DEFER_CONNECT, sk);
1056 	}
1057 	return err;
1058 }
1059 
1060 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1061 {
1062 	struct net_devmem_dmabuf_binding *binding = NULL;
1063 	struct tcp_sock *tp = tcp_sk(sk);
1064 	struct ubuf_info *uarg = NULL;
1065 	struct sk_buff *skb;
1066 	struct sockcm_cookie sockc;
1067 	int flags, err, copied = 0;
1068 	int mss_now = 0, size_goal, copied_syn = 0;
1069 	int process_backlog = 0;
1070 	int sockc_err = 0;
1071 	int zc = 0;
1072 	long timeo;
1073 
1074 	flags = msg->msg_flags;
1075 
1076 	sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) };
1077 	if (msg->msg_controllen) {
1078 		sockc_err = sock_cmsg_send(sk, msg, &sockc);
1079 		/* Don't return error until MSG_FASTOPEN has been processed;
1080 		 * that may succeed even if the cmsg is invalid.
1081 		 */
1082 	}
1083 
1084 	if ((flags & MSG_ZEROCOPY) && size) {
1085 		if (msg->msg_ubuf) {
1086 			uarg = msg->msg_ubuf;
1087 			if (sk->sk_route_caps & NETIF_F_SG)
1088 				zc = MSG_ZEROCOPY;
1089 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1090 			skb = tcp_write_queue_tail(sk);
1091 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb),
1092 						    !sockc_err && sockc.dmabuf_id);
1093 			if (!uarg) {
1094 				err = -ENOBUFS;
1095 				goto out_err;
1096 			}
1097 			if (sk->sk_route_caps & NETIF_F_SG)
1098 				zc = MSG_ZEROCOPY;
1099 			else
1100 				uarg_to_msgzc(uarg)->zerocopy = 0;
1101 
1102 			if (!sockc_err && sockc.dmabuf_id) {
1103 				binding = net_devmem_get_binding(sk, sockc.dmabuf_id);
1104 				if (IS_ERR(binding)) {
1105 					err = PTR_ERR(binding);
1106 					binding = NULL;
1107 					goto out_err;
1108 				}
1109 			}
1110 		}
1111 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1112 		if (sk->sk_route_caps & NETIF_F_SG)
1113 			zc = MSG_SPLICE_PAGES;
1114 	}
1115 
1116 	if (!sockc_err && sockc.dmabuf_id &&
1117 	    (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) {
1118 		err = -EINVAL;
1119 		goto out_err;
1120 	}
1121 
1122 	if (unlikely(flags & MSG_FASTOPEN ||
1123 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1124 	    !tp->repair) {
1125 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1126 		if (err == -EINPROGRESS && copied_syn > 0)
1127 			goto out;
1128 		else if (err)
1129 			goto out_err;
1130 	}
1131 
1132 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1133 
1134 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1135 
1136 	/* Wait for a connection to finish. One exception is TCP Fast Open
1137 	 * (passive side) where data is allowed to be sent before a connection
1138 	 * is fully established.
1139 	 */
1140 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1141 	    !tcp_passive_fastopen(sk)) {
1142 		err = sk_stream_wait_connect(sk, &timeo);
1143 		if (err != 0)
1144 			goto do_error;
1145 	}
1146 
1147 	if (unlikely(tp->repair)) {
1148 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1149 			copied = tcp_send_rcvq(sk, msg, size);
1150 			goto out_nopush;
1151 		}
1152 
1153 		err = -EINVAL;
1154 		if (tp->repair_queue == TCP_NO_QUEUE)
1155 			goto out_err;
1156 
1157 		/* 'common' sending to sendq */
1158 	}
1159 
1160 	if (sockc_err) {
1161 		err = sockc_err;
1162 		goto out_err;
1163 	}
1164 
1165 	/* This should be in poll */
1166 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1167 
1168 	/* Ok commence sending. */
1169 	copied = 0;
1170 
1171 restart:
1172 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1173 
1174 	err = -EPIPE;
1175 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1176 		goto do_error;
1177 
1178 	while (msg_data_left(msg)) {
1179 		ssize_t copy = 0;
1180 
1181 		skb = tcp_write_queue_tail(sk);
1182 		if (skb)
1183 			copy = size_goal - skb->len;
1184 
1185 		trace_tcp_sendmsg_locked(sk, msg, skb, size_goal);
1186 
1187 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1188 			bool first_skb;
1189 
1190 new_segment:
1191 			if (!sk_stream_memory_free(sk))
1192 				goto wait_for_space;
1193 
1194 			if (unlikely(process_backlog >= 16)) {
1195 				process_backlog = 0;
1196 				if (sk_flush_backlog(sk))
1197 					goto restart;
1198 			}
1199 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1200 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1201 						   first_skb);
1202 			if (!skb)
1203 				goto wait_for_space;
1204 
1205 			process_backlog++;
1206 
1207 #ifdef CONFIG_SKB_DECRYPTED
1208 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1209 #endif
1210 			tcp_skb_entail(sk, skb);
1211 			copy = size_goal;
1212 
1213 			/* All packets are restored as if they have
1214 			 * already been sent. skb_mstamp_ns isn't set to
1215 			 * avoid wrong rtt estimation.
1216 			 */
1217 			if (tp->repair)
1218 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1219 		}
1220 
1221 		/* Try to append data to the end of skb. */
1222 		if (copy > msg_data_left(msg))
1223 			copy = msg_data_left(msg);
1224 
1225 		if (zc == 0) {
1226 			bool merge = true;
1227 			int i = skb_shinfo(skb)->nr_frags;
1228 			struct page_frag *pfrag = sk_page_frag(sk);
1229 
1230 			if (!sk_page_frag_refill(sk, pfrag))
1231 				goto wait_for_space;
1232 
1233 			if (!skb_can_coalesce(skb, i, pfrag->page,
1234 					      pfrag->offset)) {
1235 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1236 					tcp_mark_push(tp, skb);
1237 					goto new_segment;
1238 				}
1239 				merge = false;
1240 			}
1241 
1242 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1243 
1244 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1245 				if (tcp_downgrade_zcopy_pure(sk, skb))
1246 					goto wait_for_space;
1247 				skb_zcopy_downgrade_managed(skb);
1248 			}
1249 
1250 			copy = tcp_wmem_schedule(sk, copy);
1251 			if (!copy)
1252 				goto wait_for_space;
1253 
1254 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1255 						       pfrag->page,
1256 						       pfrag->offset,
1257 						       copy);
1258 			if (err)
1259 				goto do_error;
1260 
1261 			/* Update the skb. */
1262 			if (merge) {
1263 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1264 			} else {
1265 				skb_fill_page_desc(skb, i, pfrag->page,
1266 						   pfrag->offset, copy);
1267 				page_ref_inc(pfrag->page);
1268 			}
1269 			pfrag->offset += copy;
1270 		} else if (zc == MSG_ZEROCOPY)  {
1271 			/* First append to a fragless skb builds initial
1272 			 * pure zerocopy skb
1273 			 */
1274 			if (!skb->len)
1275 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1276 
1277 			if (!skb_zcopy_pure(skb)) {
1278 				copy = tcp_wmem_schedule(sk, copy);
1279 				if (!copy)
1280 					goto wait_for_space;
1281 			}
1282 
1283 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg,
1284 						       binding);
1285 			if (err == -EMSGSIZE || err == -EEXIST) {
1286 				tcp_mark_push(tp, skb);
1287 				goto new_segment;
1288 			}
1289 			if (err < 0)
1290 				goto do_error;
1291 			copy = err;
1292 		} else if (zc == MSG_SPLICE_PAGES) {
1293 			/* Splice in data if we can; copy if we can't. */
1294 			if (tcp_downgrade_zcopy_pure(sk, skb))
1295 				goto wait_for_space;
1296 			copy = tcp_wmem_schedule(sk, copy);
1297 			if (!copy)
1298 				goto wait_for_space;
1299 
1300 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1301 						   sk->sk_allocation);
1302 			if (err < 0) {
1303 				if (err == -EMSGSIZE) {
1304 					tcp_mark_push(tp, skb);
1305 					goto new_segment;
1306 				}
1307 				goto do_error;
1308 			}
1309 			copy = err;
1310 
1311 			if (!(flags & MSG_NO_SHARED_FRAGS))
1312 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1313 
1314 			sk_wmem_queued_add(sk, copy);
1315 			sk_mem_charge(sk, copy);
1316 		}
1317 
1318 		if (!copied)
1319 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1320 
1321 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1322 		TCP_SKB_CB(skb)->end_seq += copy;
1323 		tcp_skb_pcount_set(skb, 0);
1324 
1325 		copied += copy;
1326 		if (!msg_data_left(msg)) {
1327 			if (unlikely(flags & MSG_EOR))
1328 				TCP_SKB_CB(skb)->eor = 1;
1329 			goto out;
1330 		}
1331 
1332 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1333 			continue;
1334 
1335 		if (forced_push(tp)) {
1336 			tcp_mark_push(tp, skb);
1337 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1338 		} else if (skb == tcp_send_head(sk))
1339 			tcp_push_one(sk, mss_now);
1340 		continue;
1341 
1342 wait_for_space:
1343 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1344 		tcp_remove_empty_skb(sk);
1345 		if (copied)
1346 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1347 				 TCP_NAGLE_PUSH, size_goal);
1348 
1349 		err = sk_stream_wait_memory(sk, &timeo);
1350 		if (err != 0)
1351 			goto do_error;
1352 
1353 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1354 	}
1355 
1356 out:
1357 	if (copied) {
1358 		tcp_tx_timestamp(sk, &sockc);
1359 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1360 	}
1361 out_nopush:
1362 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1363 	if (uarg && !msg->msg_ubuf)
1364 		net_zcopy_put(uarg);
1365 	if (binding)
1366 		net_devmem_dmabuf_binding_put(binding);
1367 	return copied + copied_syn;
1368 
1369 do_error:
1370 	tcp_remove_empty_skb(sk);
1371 
1372 	if (copied + copied_syn)
1373 		goto out;
1374 out_err:
1375 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1376 	if (uarg && !msg->msg_ubuf)
1377 		net_zcopy_put_abort(uarg, true);
1378 	err = sk_stream_error(sk, flags, err);
1379 	/* make sure we wake any epoll edge trigger waiter */
1380 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1381 		sk->sk_write_space(sk);
1382 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1383 	}
1384 	if (binding)
1385 		net_devmem_dmabuf_binding_put(binding);
1386 
1387 	return err;
1388 }
1389 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1390 
1391 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1392 {
1393 	int ret;
1394 
1395 	lock_sock(sk);
1396 	ret = tcp_sendmsg_locked(sk, msg, size);
1397 	release_sock(sk);
1398 
1399 	return ret;
1400 }
1401 EXPORT_SYMBOL(tcp_sendmsg);
1402 
1403 void tcp_splice_eof(struct socket *sock)
1404 {
1405 	struct sock *sk = sock->sk;
1406 	struct tcp_sock *tp = tcp_sk(sk);
1407 	int mss_now, size_goal;
1408 
1409 	if (!tcp_write_queue_tail(sk))
1410 		return;
1411 
1412 	lock_sock(sk);
1413 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1414 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1415 	release_sock(sk);
1416 }
1417 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1418 
1419 /*
1420  *	Handle reading urgent data. BSD has very simple semantics for
1421  *	this, no blocking and very strange errors 8)
1422  */
1423 
1424 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1425 {
1426 	struct tcp_sock *tp = tcp_sk(sk);
1427 
1428 	/* No URG data to read. */
1429 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1430 	    tp->urg_data == TCP_URG_READ)
1431 		return -EINVAL;	/* Yes this is right ! */
1432 
1433 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1434 		return -ENOTCONN;
1435 
1436 	if (tp->urg_data & TCP_URG_VALID) {
1437 		int err = 0;
1438 		char c = tp->urg_data;
1439 
1440 		if (!(flags & MSG_PEEK))
1441 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1442 
1443 		/* Read urgent data. */
1444 		msg->msg_flags |= MSG_OOB;
1445 
1446 		if (len > 0) {
1447 			if (!(flags & MSG_TRUNC))
1448 				err = memcpy_to_msg(msg, &c, 1);
1449 			len = 1;
1450 		} else
1451 			msg->msg_flags |= MSG_TRUNC;
1452 
1453 		return err ? -EFAULT : len;
1454 	}
1455 
1456 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1457 		return 0;
1458 
1459 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1460 	 * the available implementations agree in this case:
1461 	 * this call should never block, independent of the
1462 	 * blocking state of the socket.
1463 	 * Mike <pall@rz.uni-karlsruhe.de>
1464 	 */
1465 	return -EAGAIN;
1466 }
1467 
1468 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1469 {
1470 	struct sk_buff *skb;
1471 	int copied = 0, err = 0;
1472 
1473 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1474 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1475 		if (err)
1476 			return err;
1477 		copied += skb->len;
1478 	}
1479 
1480 	skb_queue_walk(&sk->sk_write_queue, skb) {
1481 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1482 		if (err)
1483 			break;
1484 
1485 		copied += skb->len;
1486 	}
1487 
1488 	return err ?: copied;
1489 }
1490 
1491 /* Clean up the receive buffer for full frames taken by the user,
1492  * then send an ACK if necessary.  COPIED is the number of bytes
1493  * tcp_recvmsg has given to the user so far, it speeds up the
1494  * calculation of whether or not we must ACK for the sake of
1495  * a window update.
1496  */
1497 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1498 {
1499 	struct tcp_sock *tp = tcp_sk(sk);
1500 	bool time_to_ack = false;
1501 
1502 	if (inet_csk_ack_scheduled(sk)) {
1503 		const struct inet_connection_sock *icsk = inet_csk(sk);
1504 
1505 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1506 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1507 		    /*
1508 		     * If this read emptied read buffer, we send ACK, if
1509 		     * connection is not bidirectional, user drained
1510 		     * receive buffer and there was a small segment
1511 		     * in queue.
1512 		     */
1513 		    (copied > 0 &&
1514 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1515 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1516 		       !inet_csk_in_pingpong_mode(sk))) &&
1517 		      !atomic_read(&sk->sk_rmem_alloc)))
1518 			time_to_ack = true;
1519 	}
1520 
1521 	/* We send an ACK if we can now advertise a non-zero window
1522 	 * which has been raised "significantly".
1523 	 *
1524 	 * Even if window raised up to infinity, do not send window open ACK
1525 	 * in states, where we will not receive more. It is useless.
1526 	 */
1527 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1528 		__u32 rcv_window_now = tcp_receive_window(tp);
1529 
1530 		/* Optimize, __tcp_select_window() is not cheap. */
1531 		if (2*rcv_window_now <= tp->window_clamp) {
1532 			__u32 new_window = __tcp_select_window(sk);
1533 
1534 			/* Send ACK now, if this read freed lots of space
1535 			 * in our buffer. Certainly, new_window is new window.
1536 			 * We can advertise it now, if it is not less than current one.
1537 			 * "Lots" means "at least twice" here.
1538 			 */
1539 			if (new_window && new_window >= 2 * rcv_window_now)
1540 				time_to_ack = true;
1541 		}
1542 	}
1543 	if (time_to_ack)
1544 		tcp_send_ack(sk);
1545 }
1546 
1547 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1548 {
1549 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1550 	struct tcp_sock *tp = tcp_sk(sk);
1551 
1552 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1553 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1554 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1555 	__tcp_cleanup_rbuf(sk, copied);
1556 }
1557 
1558 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1559 {
1560 	__skb_unlink(skb, &sk->sk_receive_queue);
1561 	if (likely(skb->destructor == sock_rfree)) {
1562 		sock_rfree(skb);
1563 		skb->destructor = NULL;
1564 		skb->sk = NULL;
1565 		return skb_attempt_defer_free(skb);
1566 	}
1567 	__kfree_skb(skb);
1568 }
1569 
1570 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1571 {
1572 	struct sk_buff *skb;
1573 	u32 offset;
1574 
1575 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1576 		offset = seq - TCP_SKB_CB(skb)->seq;
1577 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1578 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1579 			offset--;
1580 		}
1581 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1582 			*off = offset;
1583 			return skb;
1584 		}
1585 		/* This looks weird, but this can happen if TCP collapsing
1586 		 * splitted a fat GRO packet, while we released socket lock
1587 		 * in skb_splice_bits()
1588 		 */
1589 		tcp_eat_recv_skb(sk, skb);
1590 	}
1591 	return NULL;
1592 }
1593 EXPORT_SYMBOL(tcp_recv_skb);
1594 
1595 /*
1596  * This routine provides an alternative to tcp_recvmsg() for routines
1597  * that would like to handle copying from skbuffs directly in 'sendfile'
1598  * fashion.
1599  * Note:
1600  *	- It is assumed that the socket was locked by the caller.
1601  *	- The routine does not block.
1602  *	- At present, there is no support for reading OOB data
1603  *	  or for 'peeking' the socket using this routine
1604  *	  (although both would be easy to implement).
1605  */
1606 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1607 			   sk_read_actor_t recv_actor, bool noack,
1608 			   u32 *copied_seq)
1609 {
1610 	struct sk_buff *skb;
1611 	struct tcp_sock *tp = tcp_sk(sk);
1612 	u32 seq = *copied_seq;
1613 	u32 offset;
1614 	int copied = 0;
1615 
1616 	if (sk->sk_state == TCP_LISTEN)
1617 		return -ENOTCONN;
1618 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1619 		if (offset < skb->len) {
1620 			int used;
1621 			size_t len;
1622 
1623 			len = skb->len - offset;
1624 			/* Stop reading if we hit a patch of urgent data */
1625 			if (unlikely(tp->urg_data)) {
1626 				u32 urg_offset = tp->urg_seq - seq;
1627 				if (urg_offset < len)
1628 					len = urg_offset;
1629 				if (!len)
1630 					break;
1631 			}
1632 			used = recv_actor(desc, skb, offset, len);
1633 			if (used <= 0) {
1634 				if (!copied)
1635 					copied = used;
1636 				break;
1637 			}
1638 			if (WARN_ON_ONCE(used > len))
1639 				used = len;
1640 			seq += used;
1641 			copied += used;
1642 			offset += used;
1643 
1644 			/* If recv_actor drops the lock (e.g. TCP splice
1645 			 * receive) the skb pointer might be invalid when
1646 			 * getting here: tcp_collapse might have deleted it
1647 			 * while aggregating skbs from the socket queue.
1648 			 */
1649 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1650 			if (!skb)
1651 				break;
1652 			/* TCP coalescing might have appended data to the skb.
1653 			 * Try to splice more frags
1654 			 */
1655 			if (offset + 1 != skb->len)
1656 				continue;
1657 		}
1658 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1659 			tcp_eat_recv_skb(sk, skb);
1660 			++seq;
1661 			break;
1662 		}
1663 		tcp_eat_recv_skb(sk, skb);
1664 		if (!desc->count)
1665 			break;
1666 		WRITE_ONCE(*copied_seq, seq);
1667 	}
1668 	WRITE_ONCE(*copied_seq, seq);
1669 
1670 	if (noack)
1671 		goto out;
1672 
1673 	tcp_rcv_space_adjust(sk);
1674 
1675 	/* Clean up data we have read: This will do ACK frames. */
1676 	if (copied > 0) {
1677 		tcp_recv_skb(sk, seq, &offset);
1678 		tcp_cleanup_rbuf(sk, copied);
1679 	}
1680 out:
1681 	return copied;
1682 }
1683 
1684 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1685 		  sk_read_actor_t recv_actor)
1686 {
1687 	return __tcp_read_sock(sk, desc, recv_actor, false,
1688 			       &tcp_sk(sk)->copied_seq);
1689 }
1690 EXPORT_SYMBOL(tcp_read_sock);
1691 
1692 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1693 			sk_read_actor_t recv_actor, bool noack,
1694 			u32 *copied_seq)
1695 {
1696 	return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1697 }
1698 
1699 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1700 {
1701 	struct sk_buff *skb;
1702 	int copied = 0;
1703 
1704 	if (sk->sk_state == TCP_LISTEN)
1705 		return -ENOTCONN;
1706 
1707 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1708 		u8 tcp_flags;
1709 		int used;
1710 
1711 		__skb_unlink(skb, &sk->sk_receive_queue);
1712 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1713 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1714 		used = recv_actor(sk, skb);
1715 		if (used < 0) {
1716 			if (!copied)
1717 				copied = used;
1718 			break;
1719 		}
1720 		copied += used;
1721 
1722 		if (tcp_flags & TCPHDR_FIN)
1723 			break;
1724 	}
1725 	return copied;
1726 }
1727 EXPORT_IPV6_MOD(tcp_read_skb);
1728 
1729 void tcp_read_done(struct sock *sk, size_t len)
1730 {
1731 	struct tcp_sock *tp = tcp_sk(sk);
1732 	u32 seq = tp->copied_seq;
1733 	struct sk_buff *skb;
1734 	size_t left;
1735 	u32 offset;
1736 
1737 	if (sk->sk_state == TCP_LISTEN)
1738 		return;
1739 
1740 	left = len;
1741 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1742 		int used;
1743 
1744 		used = min_t(size_t, skb->len - offset, left);
1745 		seq += used;
1746 		left -= used;
1747 
1748 		if (skb->len > offset + used)
1749 			break;
1750 
1751 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1752 			tcp_eat_recv_skb(sk, skb);
1753 			++seq;
1754 			break;
1755 		}
1756 		tcp_eat_recv_skb(sk, skb);
1757 	}
1758 	WRITE_ONCE(tp->copied_seq, seq);
1759 
1760 	tcp_rcv_space_adjust(sk);
1761 
1762 	/* Clean up data we have read: This will do ACK frames. */
1763 	if (left != len)
1764 		tcp_cleanup_rbuf(sk, len - left);
1765 }
1766 EXPORT_SYMBOL(tcp_read_done);
1767 
1768 int tcp_peek_len(struct socket *sock)
1769 {
1770 	return tcp_inq(sock->sk);
1771 }
1772 EXPORT_IPV6_MOD(tcp_peek_len);
1773 
1774 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1775 int tcp_set_rcvlowat(struct sock *sk, int val)
1776 {
1777 	int space, cap;
1778 
1779 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1780 		cap = sk->sk_rcvbuf >> 1;
1781 	else
1782 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1783 	val = min(val, cap);
1784 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1785 
1786 	/* Check if we need to signal EPOLLIN right now */
1787 	tcp_data_ready(sk);
1788 
1789 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1790 		return 0;
1791 
1792 	space = tcp_space_from_win(sk, val);
1793 	if (space > sk->sk_rcvbuf) {
1794 		WRITE_ONCE(sk->sk_rcvbuf, space);
1795 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1796 	}
1797 	return 0;
1798 }
1799 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1800 
1801 void tcp_update_recv_tstamps(struct sk_buff *skb,
1802 			     struct scm_timestamping_internal *tss)
1803 {
1804 	if (skb->tstamp)
1805 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1806 	else
1807 		tss->ts[0] = (struct timespec64) {0};
1808 
1809 	if (skb_hwtstamps(skb)->hwtstamp)
1810 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1811 	else
1812 		tss->ts[2] = (struct timespec64) {0};
1813 }
1814 
1815 #ifdef CONFIG_MMU
1816 static const struct vm_operations_struct tcp_vm_ops = {
1817 };
1818 
1819 int tcp_mmap(struct file *file, struct socket *sock,
1820 	     struct vm_area_struct *vma)
1821 {
1822 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1823 		return -EPERM;
1824 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1825 
1826 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1827 	vm_flags_set(vma, VM_MIXEDMAP);
1828 
1829 	vma->vm_ops = &tcp_vm_ops;
1830 	return 0;
1831 }
1832 EXPORT_IPV6_MOD(tcp_mmap);
1833 
1834 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1835 				       u32 *offset_frag)
1836 {
1837 	skb_frag_t *frag;
1838 
1839 	if (unlikely(offset_skb >= skb->len))
1840 		return NULL;
1841 
1842 	offset_skb -= skb_headlen(skb);
1843 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1844 		return NULL;
1845 
1846 	frag = skb_shinfo(skb)->frags;
1847 	while (offset_skb) {
1848 		if (skb_frag_size(frag) > offset_skb) {
1849 			*offset_frag = offset_skb;
1850 			return frag;
1851 		}
1852 		offset_skb -= skb_frag_size(frag);
1853 		++frag;
1854 	}
1855 	*offset_frag = 0;
1856 	return frag;
1857 }
1858 
1859 static bool can_map_frag(const skb_frag_t *frag)
1860 {
1861 	struct page *page;
1862 
1863 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1864 		return false;
1865 
1866 	page = skb_frag_page(frag);
1867 
1868 	if (PageCompound(page) || page->mapping)
1869 		return false;
1870 
1871 	return true;
1872 }
1873 
1874 static int find_next_mappable_frag(const skb_frag_t *frag,
1875 				   int remaining_in_skb)
1876 {
1877 	int offset = 0;
1878 
1879 	if (likely(can_map_frag(frag)))
1880 		return 0;
1881 
1882 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1883 		offset += skb_frag_size(frag);
1884 		++frag;
1885 	}
1886 	return offset;
1887 }
1888 
1889 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1890 					  struct tcp_zerocopy_receive *zc,
1891 					  struct sk_buff *skb, u32 offset)
1892 {
1893 	u32 frag_offset, partial_frag_remainder = 0;
1894 	int mappable_offset;
1895 	skb_frag_t *frag;
1896 
1897 	/* worst case: skip to next skb. try to improve on this case below */
1898 	zc->recv_skip_hint = skb->len - offset;
1899 
1900 	/* Find the frag containing this offset (and how far into that frag) */
1901 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1902 	if (!frag)
1903 		return;
1904 
1905 	if (frag_offset) {
1906 		struct skb_shared_info *info = skb_shinfo(skb);
1907 
1908 		/* We read part of the last frag, must recvmsg() rest of skb. */
1909 		if (frag == &info->frags[info->nr_frags - 1])
1910 			return;
1911 
1912 		/* Else, we must at least read the remainder in this frag. */
1913 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1914 		zc->recv_skip_hint -= partial_frag_remainder;
1915 		++frag;
1916 	}
1917 
1918 	/* partial_frag_remainder: If part way through a frag, must read rest.
1919 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1920 	 * in partial_frag_remainder.
1921 	 */
1922 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1923 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1924 }
1925 
1926 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1927 			      int flags, struct scm_timestamping_internal *tss,
1928 			      int *cmsg_flags);
1929 static int receive_fallback_to_copy(struct sock *sk,
1930 				    struct tcp_zerocopy_receive *zc, int inq,
1931 				    struct scm_timestamping_internal *tss)
1932 {
1933 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1934 	struct msghdr msg = {};
1935 	int err;
1936 
1937 	zc->length = 0;
1938 	zc->recv_skip_hint = 0;
1939 
1940 	if (copy_address != zc->copybuf_address)
1941 		return -EINVAL;
1942 
1943 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1944 			  &msg.msg_iter);
1945 	if (err)
1946 		return err;
1947 
1948 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1949 				 tss, &zc->msg_flags);
1950 	if (err < 0)
1951 		return err;
1952 
1953 	zc->copybuf_len = err;
1954 	if (likely(zc->copybuf_len)) {
1955 		struct sk_buff *skb;
1956 		u32 offset;
1957 
1958 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1959 		if (skb)
1960 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1961 	}
1962 	return 0;
1963 }
1964 
1965 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1966 				   struct sk_buff *skb, u32 copylen,
1967 				   u32 *offset, u32 *seq)
1968 {
1969 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1970 	struct msghdr msg = {};
1971 	int err;
1972 
1973 	if (copy_address != zc->copybuf_address)
1974 		return -EINVAL;
1975 
1976 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1977 			  &msg.msg_iter);
1978 	if (err)
1979 		return err;
1980 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1981 	if (err)
1982 		return err;
1983 	zc->recv_skip_hint -= copylen;
1984 	*offset += copylen;
1985 	*seq += copylen;
1986 	return (__s32)copylen;
1987 }
1988 
1989 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1990 				  struct sock *sk,
1991 				  struct sk_buff *skb,
1992 				  u32 *seq,
1993 				  s32 copybuf_len,
1994 				  struct scm_timestamping_internal *tss)
1995 {
1996 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1997 
1998 	if (!copylen)
1999 		return 0;
2000 	/* skb is null if inq < PAGE_SIZE. */
2001 	if (skb) {
2002 		offset = *seq - TCP_SKB_CB(skb)->seq;
2003 	} else {
2004 		skb = tcp_recv_skb(sk, *seq, &offset);
2005 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2006 			tcp_update_recv_tstamps(skb, tss);
2007 			zc->msg_flags |= TCP_CMSG_TS;
2008 		}
2009 	}
2010 
2011 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2012 						  seq);
2013 	return zc->copybuf_len < 0 ? 0 : copylen;
2014 }
2015 
2016 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2017 					      struct page **pending_pages,
2018 					      unsigned long pages_remaining,
2019 					      unsigned long *address,
2020 					      u32 *length,
2021 					      u32 *seq,
2022 					      struct tcp_zerocopy_receive *zc,
2023 					      u32 total_bytes_to_map,
2024 					      int err)
2025 {
2026 	/* At least one page did not map. Try zapping if we skipped earlier. */
2027 	if (err == -EBUSY &&
2028 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2029 		u32 maybe_zap_len;
2030 
2031 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2032 				*length + /* Mapped or pending */
2033 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2034 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2035 		err = 0;
2036 	}
2037 
2038 	if (!err) {
2039 		unsigned long leftover_pages = pages_remaining;
2040 		int bytes_mapped;
2041 
2042 		/* We called zap_page_range_single, try to reinsert. */
2043 		err = vm_insert_pages(vma, *address,
2044 				      pending_pages,
2045 				      &pages_remaining);
2046 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2047 		*seq += bytes_mapped;
2048 		*address += bytes_mapped;
2049 	}
2050 	if (err) {
2051 		/* Either we were unable to zap, OR we zapped, retried an
2052 		 * insert, and still had an issue. Either ways, pages_remaining
2053 		 * is the number of pages we were unable to map, and we unroll
2054 		 * some state we speculatively touched before.
2055 		 */
2056 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2057 
2058 		*length -= bytes_not_mapped;
2059 		zc->recv_skip_hint += bytes_not_mapped;
2060 	}
2061 	return err;
2062 }
2063 
2064 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2065 					struct page **pages,
2066 					unsigned int pages_to_map,
2067 					unsigned long *address,
2068 					u32 *length,
2069 					u32 *seq,
2070 					struct tcp_zerocopy_receive *zc,
2071 					u32 total_bytes_to_map)
2072 {
2073 	unsigned long pages_remaining = pages_to_map;
2074 	unsigned int pages_mapped;
2075 	unsigned int bytes_mapped;
2076 	int err;
2077 
2078 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2079 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2080 	bytes_mapped = PAGE_SIZE * pages_mapped;
2081 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2082 	 * mapping (some but not all of the pages).
2083 	 */
2084 	*seq += bytes_mapped;
2085 	*address += bytes_mapped;
2086 
2087 	if (likely(!err))
2088 		return 0;
2089 
2090 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2091 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2092 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2093 		err);
2094 }
2095 
2096 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2097 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2098 				      struct tcp_zerocopy_receive *zc,
2099 				      struct scm_timestamping_internal *tss)
2100 {
2101 	unsigned long msg_control_addr;
2102 	struct msghdr cmsg_dummy;
2103 
2104 	msg_control_addr = (unsigned long)zc->msg_control;
2105 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2106 	cmsg_dummy.msg_controllen =
2107 		(__kernel_size_t)zc->msg_controllen;
2108 	cmsg_dummy.msg_flags = in_compat_syscall()
2109 		? MSG_CMSG_COMPAT : 0;
2110 	cmsg_dummy.msg_control_is_user = true;
2111 	zc->msg_flags = 0;
2112 	if (zc->msg_control == msg_control_addr &&
2113 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2114 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2115 		zc->msg_control = (__u64)
2116 			((uintptr_t)cmsg_dummy.msg_control_user);
2117 		zc->msg_controllen =
2118 			(__u64)cmsg_dummy.msg_controllen;
2119 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2120 	}
2121 }
2122 
2123 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2124 					   unsigned long address,
2125 					   bool *mmap_locked)
2126 {
2127 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2128 
2129 	if (vma) {
2130 		if (vma->vm_ops != &tcp_vm_ops) {
2131 			vma_end_read(vma);
2132 			return NULL;
2133 		}
2134 		*mmap_locked = false;
2135 		return vma;
2136 	}
2137 
2138 	mmap_read_lock(mm);
2139 	vma = vma_lookup(mm, address);
2140 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2141 		mmap_read_unlock(mm);
2142 		return NULL;
2143 	}
2144 	*mmap_locked = true;
2145 	return vma;
2146 }
2147 
2148 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2149 static int tcp_zerocopy_receive(struct sock *sk,
2150 				struct tcp_zerocopy_receive *zc,
2151 				struct scm_timestamping_internal *tss)
2152 {
2153 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2154 	unsigned long address = (unsigned long)zc->address;
2155 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2156 	s32 copybuf_len = zc->copybuf_len;
2157 	struct tcp_sock *tp = tcp_sk(sk);
2158 	const skb_frag_t *frags = NULL;
2159 	unsigned int pages_to_map = 0;
2160 	struct vm_area_struct *vma;
2161 	struct sk_buff *skb = NULL;
2162 	u32 seq = tp->copied_seq;
2163 	u32 total_bytes_to_map;
2164 	int inq = tcp_inq(sk);
2165 	bool mmap_locked;
2166 	int ret;
2167 
2168 	zc->copybuf_len = 0;
2169 	zc->msg_flags = 0;
2170 
2171 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2172 		return -EINVAL;
2173 
2174 	if (sk->sk_state == TCP_LISTEN)
2175 		return -ENOTCONN;
2176 
2177 	sock_rps_record_flow(sk);
2178 
2179 	if (inq && inq <= copybuf_len)
2180 		return receive_fallback_to_copy(sk, zc, inq, tss);
2181 
2182 	if (inq < PAGE_SIZE) {
2183 		zc->length = 0;
2184 		zc->recv_skip_hint = inq;
2185 		if (!inq && sock_flag(sk, SOCK_DONE))
2186 			return -EIO;
2187 		return 0;
2188 	}
2189 
2190 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2191 	if (!vma)
2192 		return -EINVAL;
2193 
2194 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2195 	avail_len = min_t(u32, vma_len, inq);
2196 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2197 	if (total_bytes_to_map) {
2198 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2199 			zap_page_range_single(vma, address, total_bytes_to_map,
2200 					      NULL);
2201 		zc->length = total_bytes_to_map;
2202 		zc->recv_skip_hint = 0;
2203 	} else {
2204 		zc->length = avail_len;
2205 		zc->recv_skip_hint = avail_len;
2206 	}
2207 	ret = 0;
2208 	while (length + PAGE_SIZE <= zc->length) {
2209 		int mappable_offset;
2210 		struct page *page;
2211 
2212 		if (zc->recv_skip_hint < PAGE_SIZE) {
2213 			u32 offset_frag;
2214 
2215 			if (skb) {
2216 				if (zc->recv_skip_hint > 0)
2217 					break;
2218 				skb = skb->next;
2219 				offset = seq - TCP_SKB_CB(skb)->seq;
2220 			} else {
2221 				skb = tcp_recv_skb(sk, seq, &offset);
2222 			}
2223 
2224 			if (!skb_frags_readable(skb))
2225 				break;
2226 
2227 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2228 				tcp_update_recv_tstamps(skb, tss);
2229 				zc->msg_flags |= TCP_CMSG_TS;
2230 			}
2231 			zc->recv_skip_hint = skb->len - offset;
2232 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2233 			if (!frags || offset_frag)
2234 				break;
2235 		}
2236 
2237 		mappable_offset = find_next_mappable_frag(frags,
2238 							  zc->recv_skip_hint);
2239 		if (mappable_offset) {
2240 			zc->recv_skip_hint = mappable_offset;
2241 			break;
2242 		}
2243 		page = skb_frag_page(frags);
2244 		if (WARN_ON_ONCE(!page))
2245 			break;
2246 
2247 		prefetchw(page);
2248 		pages[pages_to_map++] = page;
2249 		length += PAGE_SIZE;
2250 		zc->recv_skip_hint -= PAGE_SIZE;
2251 		frags++;
2252 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2253 		    zc->recv_skip_hint < PAGE_SIZE) {
2254 			/* Either full batch, or we're about to go to next skb
2255 			 * (and we cannot unroll failed ops across skbs).
2256 			 */
2257 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2258 							   pages_to_map,
2259 							   &address, &length,
2260 							   &seq, zc,
2261 							   total_bytes_to_map);
2262 			if (ret)
2263 				goto out;
2264 			pages_to_map = 0;
2265 		}
2266 	}
2267 	if (pages_to_map) {
2268 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2269 						   &address, &length, &seq,
2270 						   zc, total_bytes_to_map);
2271 	}
2272 out:
2273 	if (mmap_locked)
2274 		mmap_read_unlock(current->mm);
2275 	else
2276 		vma_end_read(vma);
2277 	/* Try to copy straggler data. */
2278 	if (!ret)
2279 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2280 
2281 	if (length + copylen) {
2282 		WRITE_ONCE(tp->copied_seq, seq);
2283 		tcp_rcv_space_adjust(sk);
2284 
2285 		/* Clean up data we have read: This will do ACK frames. */
2286 		tcp_recv_skb(sk, seq, &offset);
2287 		tcp_cleanup_rbuf(sk, length + copylen);
2288 		ret = 0;
2289 		if (length == zc->length)
2290 			zc->recv_skip_hint = 0;
2291 	} else {
2292 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2293 			ret = -EIO;
2294 	}
2295 	zc->length = length;
2296 	return ret;
2297 }
2298 #endif
2299 
2300 /* Similar to __sock_recv_timestamp, but does not require an skb */
2301 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2302 			struct scm_timestamping_internal *tss)
2303 {
2304 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2305 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2306 	bool has_timestamping = false;
2307 
2308 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2309 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2310 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2311 				if (new_tstamp) {
2312 					struct __kernel_timespec kts = {
2313 						.tv_sec = tss->ts[0].tv_sec,
2314 						.tv_nsec = tss->ts[0].tv_nsec,
2315 					};
2316 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2317 						 sizeof(kts), &kts);
2318 				} else {
2319 					struct __kernel_old_timespec ts_old = {
2320 						.tv_sec = tss->ts[0].tv_sec,
2321 						.tv_nsec = tss->ts[0].tv_nsec,
2322 					};
2323 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2324 						 sizeof(ts_old), &ts_old);
2325 				}
2326 			} else {
2327 				if (new_tstamp) {
2328 					struct __kernel_sock_timeval stv = {
2329 						.tv_sec = tss->ts[0].tv_sec,
2330 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2331 					};
2332 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2333 						 sizeof(stv), &stv);
2334 				} else {
2335 					struct __kernel_old_timeval tv = {
2336 						.tv_sec = tss->ts[0].tv_sec,
2337 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2338 					};
2339 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2340 						 sizeof(tv), &tv);
2341 				}
2342 			}
2343 		}
2344 
2345 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2346 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2347 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2348 			has_timestamping = true;
2349 		else
2350 			tss->ts[0] = (struct timespec64) {0};
2351 	}
2352 
2353 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2354 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2355 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2356 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2357 			has_timestamping = true;
2358 		else
2359 			tss->ts[2] = (struct timespec64) {0};
2360 	}
2361 
2362 	if (has_timestamping) {
2363 		tss->ts[1] = (struct timespec64) {0};
2364 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2365 			put_cmsg_scm_timestamping64(msg, tss);
2366 		else
2367 			put_cmsg_scm_timestamping(msg, tss);
2368 	}
2369 }
2370 
2371 static int tcp_inq_hint(struct sock *sk)
2372 {
2373 	const struct tcp_sock *tp = tcp_sk(sk);
2374 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2375 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2376 	int inq;
2377 
2378 	inq = rcv_nxt - copied_seq;
2379 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2380 		lock_sock(sk);
2381 		inq = tp->rcv_nxt - tp->copied_seq;
2382 		release_sock(sk);
2383 	}
2384 	/* After receiving a FIN, tell the user-space to continue reading
2385 	 * by returning a non-zero inq.
2386 	 */
2387 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2388 		inq = 1;
2389 	return inq;
2390 }
2391 
2392 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2393 struct tcp_xa_pool {
2394 	u8		max; /* max <= MAX_SKB_FRAGS */
2395 	u8		idx; /* idx <= max */
2396 	__u32		tokens[MAX_SKB_FRAGS];
2397 	netmem_ref	netmems[MAX_SKB_FRAGS];
2398 };
2399 
2400 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2401 {
2402 	int i;
2403 
2404 	/* Commit part that has been copied to user space. */
2405 	for (i = 0; i < p->idx; i++)
2406 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2407 			     (__force void *)p->netmems[i], GFP_KERNEL);
2408 	/* Rollback what has been pre-allocated and is no longer needed. */
2409 	for (; i < p->max; i++)
2410 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2411 
2412 	p->max = 0;
2413 	p->idx = 0;
2414 }
2415 
2416 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2417 {
2418 	if (!p->max)
2419 		return;
2420 
2421 	xa_lock_bh(&sk->sk_user_frags);
2422 
2423 	tcp_xa_pool_commit_locked(sk, p);
2424 
2425 	xa_unlock_bh(&sk->sk_user_frags);
2426 }
2427 
2428 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2429 			      unsigned int max_frags)
2430 {
2431 	int err, k;
2432 
2433 	if (p->idx < p->max)
2434 		return 0;
2435 
2436 	xa_lock_bh(&sk->sk_user_frags);
2437 
2438 	tcp_xa_pool_commit_locked(sk, p);
2439 
2440 	for (k = 0; k < max_frags; k++) {
2441 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2442 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2443 		if (err)
2444 			break;
2445 	}
2446 
2447 	xa_unlock_bh(&sk->sk_user_frags);
2448 
2449 	p->max = k;
2450 	p->idx = 0;
2451 	return k ? 0 : err;
2452 }
2453 
2454 /* On error, returns the -errno. On success, returns number of bytes sent to the
2455  * user. May not consume all of @remaining_len.
2456  */
2457 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2458 			      unsigned int offset, struct msghdr *msg,
2459 			      int remaining_len)
2460 {
2461 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2462 	struct tcp_xa_pool tcp_xa_pool;
2463 	unsigned int start;
2464 	int i, copy, n;
2465 	int sent = 0;
2466 	int err = 0;
2467 
2468 	tcp_xa_pool.max = 0;
2469 	tcp_xa_pool.idx = 0;
2470 	do {
2471 		start = skb_headlen(skb);
2472 
2473 		if (skb_frags_readable(skb)) {
2474 			err = -ENODEV;
2475 			goto out;
2476 		}
2477 
2478 		/* Copy header. */
2479 		copy = start - offset;
2480 		if (copy > 0) {
2481 			copy = min(copy, remaining_len);
2482 
2483 			n = copy_to_iter(skb->data + offset, copy,
2484 					 &msg->msg_iter);
2485 			if (n != copy) {
2486 				err = -EFAULT;
2487 				goto out;
2488 			}
2489 
2490 			offset += copy;
2491 			remaining_len -= copy;
2492 
2493 			/* First a dmabuf_cmsg for # bytes copied to user
2494 			 * buffer.
2495 			 */
2496 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2497 			dmabuf_cmsg.frag_size = copy;
2498 			err = put_cmsg_notrunc(msg, SOL_SOCKET,
2499 					       SO_DEVMEM_LINEAR,
2500 					       sizeof(dmabuf_cmsg),
2501 					       &dmabuf_cmsg);
2502 			if (err)
2503 				goto out;
2504 
2505 			sent += copy;
2506 
2507 			if (remaining_len == 0)
2508 				goto out;
2509 		}
2510 
2511 		/* after that, send information of dmabuf pages through a
2512 		 * sequence of cmsg
2513 		 */
2514 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2515 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2516 			struct net_iov *niov;
2517 			u64 frag_offset;
2518 			int end;
2519 
2520 			/* !skb_frags_readable() should indicate that ALL the
2521 			 * frags in this skb are dmabuf net_iovs. We're checking
2522 			 * for that flag above, but also check individual frags
2523 			 * here. If the tcp stack is not setting
2524 			 * skb_frags_readable() correctly, we still don't want
2525 			 * to crash here.
2526 			 */
2527 			if (!skb_frag_net_iov(frag)) {
2528 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2529 				err = -ENODEV;
2530 				goto out;
2531 			}
2532 
2533 			niov = skb_frag_net_iov(frag);
2534 			if (!net_is_devmem_iov(niov)) {
2535 				err = -ENODEV;
2536 				goto out;
2537 			}
2538 
2539 			end = start + skb_frag_size(frag);
2540 			copy = end - offset;
2541 
2542 			if (copy > 0) {
2543 				copy = min(copy, remaining_len);
2544 
2545 				frag_offset = net_iov_virtual_addr(niov) +
2546 					      skb_frag_off(frag) + offset -
2547 					      start;
2548 				dmabuf_cmsg.frag_offset = frag_offset;
2549 				dmabuf_cmsg.frag_size = copy;
2550 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2551 							 skb_shinfo(skb)->nr_frags - i);
2552 				if (err)
2553 					goto out;
2554 
2555 				/* Will perform the exchange later */
2556 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2557 				dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2558 
2559 				offset += copy;
2560 				remaining_len -= copy;
2561 
2562 				err = put_cmsg_notrunc(msg, SOL_SOCKET,
2563 						       SO_DEVMEM_DMABUF,
2564 						       sizeof(dmabuf_cmsg),
2565 						       &dmabuf_cmsg);
2566 				if (err)
2567 					goto out;
2568 
2569 				atomic_long_inc(&niov->pp_ref_count);
2570 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2571 
2572 				sent += copy;
2573 
2574 				if (remaining_len == 0)
2575 					goto out;
2576 			}
2577 			start = end;
2578 		}
2579 
2580 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2581 		if (!remaining_len)
2582 			goto out;
2583 
2584 		/* if remaining_len is not satisfied yet, we need to go to the
2585 		 * next frag in the frag_list to satisfy remaining_len.
2586 		 */
2587 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2588 
2589 		offset = offset - start;
2590 	} while (skb);
2591 
2592 	if (remaining_len) {
2593 		err = -EFAULT;
2594 		goto out;
2595 	}
2596 
2597 out:
2598 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2599 	if (!sent)
2600 		sent = err;
2601 
2602 	return sent;
2603 }
2604 
2605 /*
2606  *	This routine copies from a sock struct into the user buffer.
2607  *
2608  *	Technical note: in 2.3 we work on _locked_ socket, so that
2609  *	tricks with *seq access order and skb->users are not required.
2610  *	Probably, code can be easily improved even more.
2611  */
2612 
2613 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2614 			      int flags, struct scm_timestamping_internal *tss,
2615 			      int *cmsg_flags)
2616 {
2617 	struct tcp_sock *tp = tcp_sk(sk);
2618 	int last_copied_dmabuf = -1; /* uninitialized */
2619 	int copied = 0;
2620 	u32 peek_seq;
2621 	u32 *seq;
2622 	unsigned long used;
2623 	int err;
2624 	int target;		/* Read at least this many bytes */
2625 	long timeo;
2626 	struct sk_buff *skb, *last;
2627 	u32 peek_offset = 0;
2628 	u32 urg_hole = 0;
2629 
2630 	err = -ENOTCONN;
2631 	if (sk->sk_state == TCP_LISTEN)
2632 		goto out;
2633 
2634 	if (tp->recvmsg_inq) {
2635 		*cmsg_flags = TCP_CMSG_INQ;
2636 		msg->msg_get_inq = 1;
2637 	}
2638 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2639 
2640 	/* Urgent data needs to be handled specially. */
2641 	if (flags & MSG_OOB)
2642 		goto recv_urg;
2643 
2644 	if (unlikely(tp->repair)) {
2645 		err = -EPERM;
2646 		if (!(flags & MSG_PEEK))
2647 			goto out;
2648 
2649 		if (tp->repair_queue == TCP_SEND_QUEUE)
2650 			goto recv_sndq;
2651 
2652 		err = -EINVAL;
2653 		if (tp->repair_queue == TCP_NO_QUEUE)
2654 			goto out;
2655 
2656 		/* 'common' recv queue MSG_PEEK-ing */
2657 	}
2658 
2659 	seq = &tp->copied_seq;
2660 	if (flags & MSG_PEEK) {
2661 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2662 		peek_seq = tp->copied_seq + peek_offset;
2663 		seq = &peek_seq;
2664 	}
2665 
2666 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2667 
2668 	do {
2669 		u32 offset;
2670 
2671 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2672 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2673 			if (copied)
2674 				break;
2675 			if (signal_pending(current)) {
2676 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2677 				break;
2678 			}
2679 		}
2680 
2681 		/* Next get a buffer. */
2682 
2683 		last = skb_peek_tail(&sk->sk_receive_queue);
2684 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2685 			last = skb;
2686 			/* Now that we have two receive queues this
2687 			 * shouldn't happen.
2688 			 */
2689 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2690 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2691 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2692 				 flags))
2693 				break;
2694 
2695 			offset = *seq - TCP_SKB_CB(skb)->seq;
2696 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2697 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2698 				offset--;
2699 			}
2700 			if (offset < skb->len)
2701 				goto found_ok_skb;
2702 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2703 				goto found_fin_ok;
2704 			WARN(!(flags & MSG_PEEK),
2705 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2706 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2707 		}
2708 
2709 		/* Well, if we have backlog, try to process it now yet. */
2710 
2711 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2712 			break;
2713 
2714 		if (copied) {
2715 			if (!timeo ||
2716 			    sk->sk_err ||
2717 			    sk->sk_state == TCP_CLOSE ||
2718 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2719 			    signal_pending(current))
2720 				break;
2721 		} else {
2722 			if (sock_flag(sk, SOCK_DONE))
2723 				break;
2724 
2725 			if (sk->sk_err) {
2726 				copied = sock_error(sk);
2727 				break;
2728 			}
2729 
2730 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2731 				break;
2732 
2733 			if (sk->sk_state == TCP_CLOSE) {
2734 				/* This occurs when user tries to read
2735 				 * from never connected socket.
2736 				 */
2737 				copied = -ENOTCONN;
2738 				break;
2739 			}
2740 
2741 			if (!timeo) {
2742 				copied = -EAGAIN;
2743 				break;
2744 			}
2745 
2746 			if (signal_pending(current)) {
2747 				copied = sock_intr_errno(timeo);
2748 				break;
2749 			}
2750 		}
2751 
2752 		if (copied >= target) {
2753 			/* Do not sleep, just process backlog. */
2754 			__sk_flush_backlog(sk);
2755 		} else {
2756 			tcp_cleanup_rbuf(sk, copied);
2757 			err = sk_wait_data(sk, &timeo, last);
2758 			if (err < 0) {
2759 				err = copied ? : err;
2760 				goto out;
2761 			}
2762 		}
2763 
2764 		if ((flags & MSG_PEEK) &&
2765 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2766 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2767 					    current->comm,
2768 					    task_pid_nr(current));
2769 			peek_seq = tp->copied_seq + peek_offset;
2770 		}
2771 		continue;
2772 
2773 found_ok_skb:
2774 		/* Ok so how much can we use? */
2775 		used = skb->len - offset;
2776 		if (len < used)
2777 			used = len;
2778 
2779 		/* Do we have urgent data here? */
2780 		if (unlikely(tp->urg_data)) {
2781 			u32 urg_offset = tp->urg_seq - *seq;
2782 			if (urg_offset < used) {
2783 				if (!urg_offset) {
2784 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2785 						WRITE_ONCE(*seq, *seq + 1);
2786 						urg_hole++;
2787 						offset++;
2788 						used--;
2789 						if (!used)
2790 							goto skip_copy;
2791 					}
2792 				} else
2793 					used = urg_offset;
2794 			}
2795 		}
2796 
2797 		if (!(flags & MSG_TRUNC)) {
2798 			if (last_copied_dmabuf != -1 &&
2799 			    last_copied_dmabuf != !skb_frags_readable(skb))
2800 				break;
2801 
2802 			if (skb_frags_readable(skb)) {
2803 				err = skb_copy_datagram_msg(skb, offset, msg,
2804 							    used);
2805 				if (err) {
2806 					/* Exception. Bailout! */
2807 					if (!copied)
2808 						copied = -EFAULT;
2809 					break;
2810 				}
2811 			} else {
2812 				if (!(flags & MSG_SOCK_DEVMEM)) {
2813 					/* dmabuf skbs can only be received
2814 					 * with the MSG_SOCK_DEVMEM flag.
2815 					 */
2816 					if (!copied)
2817 						copied = -EFAULT;
2818 
2819 					break;
2820 				}
2821 
2822 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2823 							 used);
2824 				if (err <= 0) {
2825 					if (!copied)
2826 						copied = -EFAULT;
2827 
2828 					break;
2829 				}
2830 				used = err;
2831 			}
2832 		}
2833 
2834 		last_copied_dmabuf = !skb_frags_readable(skb);
2835 
2836 		WRITE_ONCE(*seq, *seq + used);
2837 		copied += used;
2838 		len -= used;
2839 		if (flags & MSG_PEEK)
2840 			sk_peek_offset_fwd(sk, used);
2841 		else
2842 			sk_peek_offset_bwd(sk, used);
2843 		tcp_rcv_space_adjust(sk);
2844 
2845 skip_copy:
2846 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2847 			WRITE_ONCE(tp->urg_data, 0);
2848 			tcp_fast_path_check(sk);
2849 		}
2850 
2851 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2852 			tcp_update_recv_tstamps(skb, tss);
2853 			*cmsg_flags |= TCP_CMSG_TS;
2854 		}
2855 
2856 		if (used + offset < skb->len)
2857 			continue;
2858 
2859 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2860 			goto found_fin_ok;
2861 		if (!(flags & MSG_PEEK))
2862 			tcp_eat_recv_skb(sk, skb);
2863 		continue;
2864 
2865 found_fin_ok:
2866 		/* Process the FIN. */
2867 		WRITE_ONCE(*seq, *seq + 1);
2868 		if (!(flags & MSG_PEEK))
2869 			tcp_eat_recv_skb(sk, skb);
2870 		break;
2871 	} while (len > 0);
2872 
2873 	/* According to UNIX98, msg_name/msg_namelen are ignored
2874 	 * on connected socket. I was just happy when found this 8) --ANK
2875 	 */
2876 
2877 	/* Clean up data we have read: This will do ACK frames. */
2878 	tcp_cleanup_rbuf(sk, copied);
2879 	return copied;
2880 
2881 out:
2882 	return err;
2883 
2884 recv_urg:
2885 	err = tcp_recv_urg(sk, msg, len, flags);
2886 	goto out;
2887 
2888 recv_sndq:
2889 	err = tcp_peek_sndq(sk, msg, len);
2890 	goto out;
2891 }
2892 
2893 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2894 		int *addr_len)
2895 {
2896 	int cmsg_flags = 0, ret;
2897 	struct scm_timestamping_internal tss;
2898 
2899 	if (unlikely(flags & MSG_ERRQUEUE))
2900 		return inet_recv_error(sk, msg, len, addr_len);
2901 
2902 	if (sk_can_busy_loop(sk) &&
2903 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2904 	    sk->sk_state == TCP_ESTABLISHED)
2905 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2906 
2907 	lock_sock(sk);
2908 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2909 	release_sock(sk);
2910 
2911 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2912 		if (cmsg_flags & TCP_CMSG_TS)
2913 			tcp_recv_timestamp(msg, sk, &tss);
2914 		if (msg->msg_get_inq) {
2915 			msg->msg_inq = tcp_inq_hint(sk);
2916 			if (cmsg_flags & TCP_CMSG_INQ)
2917 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2918 					 sizeof(msg->msg_inq), &msg->msg_inq);
2919 		}
2920 	}
2921 	return ret;
2922 }
2923 EXPORT_IPV6_MOD(tcp_recvmsg);
2924 
2925 void tcp_set_state(struct sock *sk, int state)
2926 {
2927 	int oldstate = sk->sk_state;
2928 
2929 	/* We defined a new enum for TCP states that are exported in BPF
2930 	 * so as not force the internal TCP states to be frozen. The
2931 	 * following checks will detect if an internal state value ever
2932 	 * differs from the BPF value. If this ever happens, then we will
2933 	 * need to remap the internal value to the BPF value before calling
2934 	 * tcp_call_bpf_2arg.
2935 	 */
2936 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2937 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2938 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2939 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2940 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2941 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2942 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2943 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2944 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2945 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2946 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2947 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2948 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2949 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2950 
2951 	/* bpf uapi header bpf.h defines an anonymous enum with values
2952 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2953 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2954 	 * But clang built vmlinux does not have this enum in DWARF
2955 	 * since clang removes the above code before generating IR/debuginfo.
2956 	 * Let us explicitly emit the type debuginfo to ensure the
2957 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2958 	 * regardless of which compiler is used.
2959 	 */
2960 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2961 
2962 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2963 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2964 
2965 	switch (state) {
2966 	case TCP_ESTABLISHED:
2967 		if (oldstate != TCP_ESTABLISHED)
2968 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2969 		break;
2970 	case TCP_CLOSE_WAIT:
2971 		if (oldstate == TCP_SYN_RECV)
2972 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2973 		break;
2974 
2975 	case TCP_CLOSE:
2976 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2977 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2978 
2979 		sk->sk_prot->unhash(sk);
2980 		if (inet_csk(sk)->icsk_bind_hash &&
2981 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2982 			inet_put_port(sk);
2983 		fallthrough;
2984 	default:
2985 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2986 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2987 	}
2988 
2989 	/* Change state AFTER socket is unhashed to avoid closed
2990 	 * socket sitting in hash tables.
2991 	 */
2992 	inet_sk_state_store(sk, state);
2993 }
2994 EXPORT_SYMBOL_GPL(tcp_set_state);
2995 
2996 /*
2997  *	State processing on a close. This implements the state shift for
2998  *	sending our FIN frame. Note that we only send a FIN for some
2999  *	states. A shutdown() may have already sent the FIN, or we may be
3000  *	closed.
3001  */
3002 
3003 static const unsigned char new_state[16] = {
3004   /* current state:        new state:      action:	*/
3005   [0 /* (Invalid) */]	= TCP_CLOSE,
3006   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3007   [TCP_SYN_SENT]	= TCP_CLOSE,
3008   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3009   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
3010   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
3011   [TCP_TIME_WAIT]	= TCP_CLOSE,
3012   [TCP_CLOSE]		= TCP_CLOSE,
3013   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
3014   [TCP_LAST_ACK]	= TCP_LAST_ACK,
3015   [TCP_LISTEN]		= TCP_CLOSE,
3016   [TCP_CLOSING]		= TCP_CLOSING,
3017   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
3018 };
3019 
3020 static int tcp_close_state(struct sock *sk)
3021 {
3022 	int next = (int)new_state[sk->sk_state];
3023 	int ns = next & TCP_STATE_MASK;
3024 
3025 	tcp_set_state(sk, ns);
3026 
3027 	return next & TCP_ACTION_FIN;
3028 }
3029 
3030 /*
3031  *	Shutdown the sending side of a connection. Much like close except
3032  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3033  */
3034 
3035 void tcp_shutdown(struct sock *sk, int how)
3036 {
3037 	/*	We need to grab some memory, and put together a FIN,
3038 	 *	and then put it into the queue to be sent.
3039 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3040 	 */
3041 	if (!(how & SEND_SHUTDOWN))
3042 		return;
3043 
3044 	/* If we've already sent a FIN, or it's a closed state, skip this. */
3045 	if ((1 << sk->sk_state) &
3046 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3047 	     TCPF_CLOSE_WAIT)) {
3048 		/* Clear out any half completed packets.  FIN if needed. */
3049 		if (tcp_close_state(sk))
3050 			tcp_send_fin(sk);
3051 	}
3052 }
3053 EXPORT_IPV6_MOD(tcp_shutdown);
3054 
3055 int tcp_orphan_count_sum(void)
3056 {
3057 	int i, total = 0;
3058 
3059 	for_each_possible_cpu(i)
3060 		total += per_cpu(tcp_orphan_count, i);
3061 
3062 	return max(total, 0);
3063 }
3064 
3065 static int tcp_orphan_cache;
3066 static struct timer_list tcp_orphan_timer;
3067 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3068 
3069 static void tcp_orphan_update(struct timer_list *unused)
3070 {
3071 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3072 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3073 }
3074 
3075 static bool tcp_too_many_orphans(int shift)
3076 {
3077 	return READ_ONCE(tcp_orphan_cache) << shift >
3078 		READ_ONCE(sysctl_tcp_max_orphans);
3079 }
3080 
3081 static bool tcp_out_of_memory(const struct sock *sk)
3082 {
3083 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3084 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3085 		return true;
3086 	return false;
3087 }
3088 
3089 bool tcp_check_oom(const struct sock *sk, int shift)
3090 {
3091 	bool too_many_orphans, out_of_socket_memory;
3092 
3093 	too_many_orphans = tcp_too_many_orphans(shift);
3094 	out_of_socket_memory = tcp_out_of_memory(sk);
3095 
3096 	if (too_many_orphans)
3097 		net_info_ratelimited("too many orphaned sockets\n");
3098 	if (out_of_socket_memory)
3099 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3100 	return too_many_orphans || out_of_socket_memory;
3101 }
3102 
3103 void __tcp_close(struct sock *sk, long timeout)
3104 {
3105 	struct sk_buff *skb;
3106 	int data_was_unread = 0;
3107 	int state;
3108 
3109 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3110 
3111 	if (sk->sk_state == TCP_LISTEN) {
3112 		tcp_set_state(sk, TCP_CLOSE);
3113 
3114 		/* Special case. */
3115 		inet_csk_listen_stop(sk);
3116 
3117 		goto adjudge_to_death;
3118 	}
3119 
3120 	/*  We need to flush the recv. buffs.  We do this only on the
3121 	 *  descriptor close, not protocol-sourced closes, because the
3122 	 *  reader process may not have drained the data yet!
3123 	 */
3124 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3125 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3126 
3127 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3128 			len--;
3129 		data_was_unread += len;
3130 		__kfree_skb(skb);
3131 	}
3132 
3133 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3134 	if (sk->sk_state == TCP_CLOSE)
3135 		goto adjudge_to_death;
3136 
3137 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3138 	 * data was lost. To witness the awful effects of the old behavior of
3139 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3140 	 * GET in an FTP client, suspend the process, wait for the client to
3141 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3142 	 * Note: timeout is always zero in such a case.
3143 	 */
3144 	if (unlikely(tcp_sk(sk)->repair)) {
3145 		sk->sk_prot->disconnect(sk, 0);
3146 	} else if (data_was_unread) {
3147 		/* Unread data was tossed, zap the connection. */
3148 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3149 		tcp_set_state(sk, TCP_CLOSE);
3150 		tcp_send_active_reset(sk, sk->sk_allocation,
3151 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3152 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3153 		/* Check zero linger _after_ checking for unread data. */
3154 		sk->sk_prot->disconnect(sk, 0);
3155 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3156 	} else if (tcp_close_state(sk)) {
3157 		/* We FIN if the application ate all the data before
3158 		 * zapping the connection.
3159 		 */
3160 
3161 		/* RED-PEN. Formally speaking, we have broken TCP state
3162 		 * machine. State transitions:
3163 		 *
3164 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3165 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3166 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3167 		 *
3168 		 * are legal only when FIN has been sent (i.e. in window),
3169 		 * rather than queued out of window. Purists blame.
3170 		 *
3171 		 * F.e. "RFC state" is ESTABLISHED,
3172 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3173 		 *
3174 		 * The visible declinations are that sometimes
3175 		 * we enter time-wait state, when it is not required really
3176 		 * (harmless), do not send active resets, when they are
3177 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3178 		 * they look as CLOSING or LAST_ACK for Linux)
3179 		 * Probably, I missed some more holelets.
3180 		 * 						--ANK
3181 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3182 		 * in a single packet! (May consider it later but will
3183 		 * probably need API support or TCP_CORK SYN-ACK until
3184 		 * data is written and socket is closed.)
3185 		 */
3186 		tcp_send_fin(sk);
3187 	}
3188 
3189 	sk_stream_wait_close(sk, timeout);
3190 
3191 adjudge_to_death:
3192 	state = sk->sk_state;
3193 	sock_hold(sk);
3194 	sock_orphan(sk);
3195 
3196 	local_bh_disable();
3197 	bh_lock_sock(sk);
3198 	/* remove backlog if any, without releasing ownership. */
3199 	__release_sock(sk);
3200 
3201 	this_cpu_inc(tcp_orphan_count);
3202 
3203 	/* Have we already been destroyed by a softirq or backlog? */
3204 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3205 		goto out;
3206 
3207 	/*	This is a (useful) BSD violating of the RFC. There is a
3208 	 *	problem with TCP as specified in that the other end could
3209 	 *	keep a socket open forever with no application left this end.
3210 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3211 	 *	our end. If they send after that then tough - BUT: long enough
3212 	 *	that we won't make the old 4*rto = almost no time - whoops
3213 	 *	reset mistake.
3214 	 *
3215 	 *	Nope, it was not mistake. It is really desired behaviour
3216 	 *	f.e. on http servers, when such sockets are useless, but
3217 	 *	consume significant resources. Let's do it with special
3218 	 *	linger2	option.					--ANK
3219 	 */
3220 
3221 	if (sk->sk_state == TCP_FIN_WAIT2) {
3222 		struct tcp_sock *tp = tcp_sk(sk);
3223 		if (READ_ONCE(tp->linger2) < 0) {
3224 			tcp_set_state(sk, TCP_CLOSE);
3225 			tcp_send_active_reset(sk, GFP_ATOMIC,
3226 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3227 			__NET_INC_STATS(sock_net(sk),
3228 					LINUX_MIB_TCPABORTONLINGER);
3229 		} else {
3230 			const int tmo = tcp_fin_time(sk);
3231 
3232 			if (tmo > TCP_TIMEWAIT_LEN) {
3233 				tcp_reset_keepalive_timer(sk,
3234 						tmo - TCP_TIMEWAIT_LEN);
3235 			} else {
3236 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3237 				goto out;
3238 			}
3239 		}
3240 	}
3241 	if (sk->sk_state != TCP_CLOSE) {
3242 		if (tcp_check_oom(sk, 0)) {
3243 			tcp_set_state(sk, TCP_CLOSE);
3244 			tcp_send_active_reset(sk, GFP_ATOMIC,
3245 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3246 			__NET_INC_STATS(sock_net(sk),
3247 					LINUX_MIB_TCPABORTONMEMORY);
3248 		} else if (!check_net(sock_net(sk))) {
3249 			/* Not possible to send reset; just close */
3250 			tcp_set_state(sk, TCP_CLOSE);
3251 		}
3252 	}
3253 
3254 	if (sk->sk_state == TCP_CLOSE) {
3255 		struct request_sock *req;
3256 
3257 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3258 						lockdep_sock_is_held(sk));
3259 		/* We could get here with a non-NULL req if the socket is
3260 		 * aborted (e.g., closed with unread data) before 3WHS
3261 		 * finishes.
3262 		 */
3263 		if (req)
3264 			reqsk_fastopen_remove(sk, req, false);
3265 		inet_csk_destroy_sock(sk);
3266 	}
3267 	/* Otherwise, socket is reprieved until protocol close. */
3268 
3269 out:
3270 	bh_unlock_sock(sk);
3271 	local_bh_enable();
3272 }
3273 
3274 void tcp_close(struct sock *sk, long timeout)
3275 {
3276 	lock_sock(sk);
3277 	__tcp_close(sk, timeout);
3278 	release_sock(sk);
3279 	if (!sk->sk_net_refcnt)
3280 		inet_csk_clear_xmit_timers_sync(sk);
3281 	sock_put(sk);
3282 }
3283 EXPORT_SYMBOL(tcp_close);
3284 
3285 /* These states need RST on ABORT according to RFC793 */
3286 
3287 static inline bool tcp_need_reset(int state)
3288 {
3289 	return (1 << state) &
3290 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3291 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3292 }
3293 
3294 static void tcp_rtx_queue_purge(struct sock *sk)
3295 {
3296 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3297 
3298 	tcp_sk(sk)->highest_sack = NULL;
3299 	while (p) {
3300 		struct sk_buff *skb = rb_to_skb(p);
3301 
3302 		p = rb_next(p);
3303 		/* Since we are deleting whole queue, no need to
3304 		 * list_del(&skb->tcp_tsorted_anchor)
3305 		 */
3306 		tcp_rtx_queue_unlink(skb, sk);
3307 		tcp_wmem_free_skb(sk, skb);
3308 	}
3309 }
3310 
3311 void tcp_write_queue_purge(struct sock *sk)
3312 {
3313 	struct sk_buff *skb;
3314 
3315 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3316 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3317 		tcp_skb_tsorted_anchor_cleanup(skb);
3318 		tcp_wmem_free_skb(sk, skb);
3319 	}
3320 	tcp_rtx_queue_purge(sk);
3321 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3322 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3323 	tcp_sk(sk)->packets_out = 0;
3324 	inet_csk(sk)->icsk_backoff = 0;
3325 }
3326 
3327 int tcp_disconnect(struct sock *sk, int flags)
3328 {
3329 	struct inet_sock *inet = inet_sk(sk);
3330 	struct inet_connection_sock *icsk = inet_csk(sk);
3331 	struct tcp_sock *tp = tcp_sk(sk);
3332 	int old_state = sk->sk_state;
3333 	u32 seq;
3334 
3335 	if (old_state != TCP_CLOSE)
3336 		tcp_set_state(sk, TCP_CLOSE);
3337 
3338 	/* ABORT function of RFC793 */
3339 	if (old_state == TCP_LISTEN) {
3340 		inet_csk_listen_stop(sk);
3341 	} else if (unlikely(tp->repair)) {
3342 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3343 	} else if (tcp_need_reset(old_state)) {
3344 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3345 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3346 	} else if (tp->snd_nxt != tp->write_seq &&
3347 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3348 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3349 		 * states
3350 		 */
3351 		tcp_send_active_reset(sk, gfp_any(),
3352 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3353 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3354 	} else if (old_state == TCP_SYN_SENT)
3355 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3356 
3357 	tcp_clear_xmit_timers(sk);
3358 	__skb_queue_purge(&sk->sk_receive_queue);
3359 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3360 	WRITE_ONCE(tp->urg_data, 0);
3361 	sk_set_peek_off(sk, -1);
3362 	tcp_write_queue_purge(sk);
3363 	tcp_fastopen_active_disable_ofo_check(sk);
3364 	skb_rbtree_purge(&tp->out_of_order_queue);
3365 
3366 	inet->inet_dport = 0;
3367 
3368 	inet_bhash2_reset_saddr(sk);
3369 
3370 	WRITE_ONCE(sk->sk_shutdown, 0);
3371 	sock_reset_flag(sk, SOCK_DONE);
3372 	tp->srtt_us = 0;
3373 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3374 	tp->rcv_rtt_last_tsecr = 0;
3375 
3376 	seq = tp->write_seq + tp->max_window + 2;
3377 	if (!seq)
3378 		seq = 1;
3379 	WRITE_ONCE(tp->write_seq, seq);
3380 
3381 	icsk->icsk_backoff = 0;
3382 	icsk->icsk_probes_out = 0;
3383 	icsk->icsk_probes_tstamp = 0;
3384 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3385 	WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3386 	WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3387 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3388 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3389 	tp->snd_cwnd_cnt = 0;
3390 	tp->is_cwnd_limited = 0;
3391 	tp->max_packets_out = 0;
3392 	tp->window_clamp = 0;
3393 	tp->delivered = 0;
3394 	tp->delivered_ce = 0;
3395 	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3396 		icsk->icsk_ca_ops->release(sk);
3397 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3398 	icsk->icsk_ca_initialized = 0;
3399 	tcp_set_ca_state(sk, TCP_CA_Open);
3400 	tp->is_sack_reneg = 0;
3401 	tcp_clear_retrans(tp);
3402 	tp->total_retrans = 0;
3403 	inet_csk_delack_init(sk);
3404 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3405 	 * issue in __tcp_select_window()
3406 	 */
3407 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3408 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3409 	__sk_dst_reset(sk);
3410 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3411 	tcp_saved_syn_free(tp);
3412 	tp->compressed_ack = 0;
3413 	tp->segs_in = 0;
3414 	tp->segs_out = 0;
3415 	tp->bytes_sent = 0;
3416 	tp->bytes_acked = 0;
3417 	tp->bytes_received = 0;
3418 	tp->bytes_retrans = 0;
3419 	tp->data_segs_in = 0;
3420 	tp->data_segs_out = 0;
3421 	tp->duplicate_sack[0].start_seq = 0;
3422 	tp->duplicate_sack[0].end_seq = 0;
3423 	tp->dsack_dups = 0;
3424 	tp->reord_seen = 0;
3425 	tp->retrans_out = 0;
3426 	tp->sacked_out = 0;
3427 	tp->tlp_high_seq = 0;
3428 	tp->last_oow_ack_time = 0;
3429 	tp->plb_rehash = 0;
3430 	/* There's a bubble in the pipe until at least the first ACK. */
3431 	tp->app_limited = ~0U;
3432 	tp->rate_app_limited = 1;
3433 	tp->rack.mstamp = 0;
3434 	tp->rack.advanced = 0;
3435 	tp->rack.reo_wnd_steps = 1;
3436 	tp->rack.last_delivered = 0;
3437 	tp->rack.reo_wnd_persist = 0;
3438 	tp->rack.dsack_seen = 0;
3439 	tp->syn_data_acked = 0;
3440 	tp->syn_fastopen_child = 0;
3441 	tp->rx_opt.saw_tstamp = 0;
3442 	tp->rx_opt.dsack = 0;
3443 	tp->rx_opt.num_sacks = 0;
3444 	tp->rcv_ooopack = 0;
3445 
3446 
3447 	/* Clean up fastopen related fields */
3448 	tcp_free_fastopen_req(tp);
3449 	inet_clear_bit(DEFER_CONNECT, sk);
3450 	tp->fastopen_client_fail = 0;
3451 
3452 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3453 
3454 	if (sk->sk_frag.page) {
3455 		put_page(sk->sk_frag.page);
3456 		sk->sk_frag.page = NULL;
3457 		sk->sk_frag.offset = 0;
3458 	}
3459 	sk_error_report(sk);
3460 	return 0;
3461 }
3462 EXPORT_SYMBOL(tcp_disconnect);
3463 
3464 static inline bool tcp_can_repair_sock(const struct sock *sk)
3465 {
3466 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3467 		(sk->sk_state != TCP_LISTEN);
3468 }
3469 
3470 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3471 {
3472 	struct tcp_repair_window opt;
3473 
3474 	if (!tp->repair)
3475 		return -EPERM;
3476 
3477 	if (len != sizeof(opt))
3478 		return -EINVAL;
3479 
3480 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3481 		return -EFAULT;
3482 
3483 	if (opt.max_window < opt.snd_wnd)
3484 		return -EINVAL;
3485 
3486 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3487 		return -EINVAL;
3488 
3489 	if (after(opt.rcv_wup, tp->rcv_nxt))
3490 		return -EINVAL;
3491 
3492 	tp->snd_wl1	= opt.snd_wl1;
3493 	tp->snd_wnd	= opt.snd_wnd;
3494 	tp->max_window	= opt.max_window;
3495 
3496 	tp->rcv_wnd	= opt.rcv_wnd;
3497 	tp->rcv_wup	= opt.rcv_wup;
3498 
3499 	return 0;
3500 }
3501 
3502 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3503 		unsigned int len)
3504 {
3505 	struct tcp_sock *tp = tcp_sk(sk);
3506 	struct tcp_repair_opt opt;
3507 	size_t offset = 0;
3508 
3509 	while (len >= sizeof(opt)) {
3510 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3511 			return -EFAULT;
3512 
3513 		offset += sizeof(opt);
3514 		len -= sizeof(opt);
3515 
3516 		switch (opt.opt_code) {
3517 		case TCPOPT_MSS:
3518 			tp->rx_opt.mss_clamp = opt.opt_val;
3519 			tcp_mtup_init(sk);
3520 			break;
3521 		case TCPOPT_WINDOW:
3522 			{
3523 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3524 				u16 rcv_wscale = opt.opt_val >> 16;
3525 
3526 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3527 					return -EFBIG;
3528 
3529 				tp->rx_opt.snd_wscale = snd_wscale;
3530 				tp->rx_opt.rcv_wscale = rcv_wscale;
3531 				tp->rx_opt.wscale_ok = 1;
3532 			}
3533 			break;
3534 		case TCPOPT_SACK_PERM:
3535 			if (opt.opt_val != 0)
3536 				return -EINVAL;
3537 
3538 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3539 			break;
3540 		case TCPOPT_TIMESTAMP:
3541 			if (opt.opt_val != 0)
3542 				return -EINVAL;
3543 
3544 			tp->rx_opt.tstamp_ok = 1;
3545 			break;
3546 		}
3547 	}
3548 
3549 	return 0;
3550 }
3551 
3552 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3553 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3554 
3555 static void tcp_enable_tx_delay(void)
3556 {
3557 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3558 		static int __tcp_tx_delay_enabled = 0;
3559 
3560 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3561 			static_branch_enable(&tcp_tx_delay_enabled);
3562 			pr_info("TCP_TX_DELAY enabled\n");
3563 		}
3564 	}
3565 }
3566 
3567 /* When set indicates to always queue non-full frames.  Later the user clears
3568  * this option and we transmit any pending partial frames in the queue.  This is
3569  * meant to be used alongside sendfile() to get properly filled frames when the
3570  * user (for example) must write out headers with a write() call first and then
3571  * use sendfile to send out the data parts.
3572  *
3573  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3574  * TCP_NODELAY.
3575  */
3576 void __tcp_sock_set_cork(struct sock *sk, bool on)
3577 {
3578 	struct tcp_sock *tp = tcp_sk(sk);
3579 
3580 	if (on) {
3581 		tp->nonagle |= TCP_NAGLE_CORK;
3582 	} else {
3583 		tp->nonagle &= ~TCP_NAGLE_CORK;
3584 		if (tp->nonagle & TCP_NAGLE_OFF)
3585 			tp->nonagle |= TCP_NAGLE_PUSH;
3586 		tcp_push_pending_frames(sk);
3587 	}
3588 }
3589 
3590 void tcp_sock_set_cork(struct sock *sk, bool on)
3591 {
3592 	lock_sock(sk);
3593 	__tcp_sock_set_cork(sk, on);
3594 	release_sock(sk);
3595 }
3596 EXPORT_SYMBOL(tcp_sock_set_cork);
3597 
3598 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3599  * remembered, but it is not activated until cork is cleared.
3600  *
3601  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3602  * even TCP_CORK for currently queued segments.
3603  */
3604 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3605 {
3606 	if (on) {
3607 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3608 		tcp_push_pending_frames(sk);
3609 	} else {
3610 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3611 	}
3612 }
3613 
3614 void tcp_sock_set_nodelay(struct sock *sk)
3615 {
3616 	lock_sock(sk);
3617 	__tcp_sock_set_nodelay(sk, true);
3618 	release_sock(sk);
3619 }
3620 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3621 
3622 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3623 {
3624 	if (!val) {
3625 		inet_csk_enter_pingpong_mode(sk);
3626 		return;
3627 	}
3628 
3629 	inet_csk_exit_pingpong_mode(sk);
3630 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3631 	    inet_csk_ack_scheduled(sk)) {
3632 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3633 		tcp_cleanup_rbuf(sk, 1);
3634 		if (!(val & 1))
3635 			inet_csk_enter_pingpong_mode(sk);
3636 	}
3637 }
3638 
3639 void tcp_sock_set_quickack(struct sock *sk, int val)
3640 {
3641 	lock_sock(sk);
3642 	__tcp_sock_set_quickack(sk, val);
3643 	release_sock(sk);
3644 }
3645 EXPORT_SYMBOL(tcp_sock_set_quickack);
3646 
3647 int tcp_sock_set_syncnt(struct sock *sk, int val)
3648 {
3649 	if (val < 1 || val > MAX_TCP_SYNCNT)
3650 		return -EINVAL;
3651 
3652 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3653 	return 0;
3654 }
3655 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3656 
3657 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3658 {
3659 	/* Cap the max time in ms TCP will retry or probe the window
3660 	 * before giving up and aborting (ETIMEDOUT) a connection.
3661 	 */
3662 	if (val < 0)
3663 		return -EINVAL;
3664 
3665 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3666 	return 0;
3667 }
3668 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3669 
3670 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3671 {
3672 	struct tcp_sock *tp = tcp_sk(sk);
3673 
3674 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3675 		return -EINVAL;
3676 
3677 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3678 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3679 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3680 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3681 		u32 elapsed = keepalive_time_elapsed(tp);
3682 
3683 		if (tp->keepalive_time > elapsed)
3684 			elapsed = tp->keepalive_time - elapsed;
3685 		else
3686 			elapsed = 0;
3687 		tcp_reset_keepalive_timer(sk, elapsed);
3688 	}
3689 
3690 	return 0;
3691 }
3692 
3693 int tcp_sock_set_keepidle(struct sock *sk, int val)
3694 {
3695 	int err;
3696 
3697 	lock_sock(sk);
3698 	err = tcp_sock_set_keepidle_locked(sk, val);
3699 	release_sock(sk);
3700 	return err;
3701 }
3702 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3703 
3704 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3705 {
3706 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3707 		return -EINVAL;
3708 
3709 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3710 	return 0;
3711 }
3712 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3713 
3714 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3715 {
3716 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3717 		return -EINVAL;
3718 
3719 	/* Paired with READ_ONCE() in keepalive_probes() */
3720 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3721 	return 0;
3722 }
3723 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3724 
3725 int tcp_set_window_clamp(struct sock *sk, int val)
3726 {
3727 	u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3728 	struct tcp_sock *tp = tcp_sk(sk);
3729 
3730 	if (!val) {
3731 		if (sk->sk_state != TCP_CLOSE)
3732 			return -EINVAL;
3733 		WRITE_ONCE(tp->window_clamp, 0);
3734 		return 0;
3735 	}
3736 
3737 	old_window_clamp = tp->window_clamp;
3738 	new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3739 
3740 	if (new_window_clamp == old_window_clamp)
3741 		return 0;
3742 
3743 	WRITE_ONCE(tp->window_clamp, new_window_clamp);
3744 
3745 	/* Need to apply the reserved mem provisioning only
3746 	 * when shrinking the window clamp.
3747 	 */
3748 	if (new_window_clamp < old_window_clamp) {
3749 		__tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3750 	} else {
3751 		new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3752 		tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3753 	}
3754 	return 0;
3755 }
3756 
3757 /*
3758  *	Socket option code for TCP.
3759  */
3760 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3761 		      sockptr_t optval, unsigned int optlen)
3762 {
3763 	struct tcp_sock *tp = tcp_sk(sk);
3764 	struct inet_connection_sock *icsk = inet_csk(sk);
3765 	struct net *net = sock_net(sk);
3766 	int val;
3767 	int err = 0;
3768 
3769 	/* These are data/string values, all the others are ints */
3770 	switch (optname) {
3771 	case TCP_CONGESTION: {
3772 		char name[TCP_CA_NAME_MAX];
3773 
3774 		if (optlen < 1)
3775 			return -EINVAL;
3776 
3777 		val = strncpy_from_sockptr(name, optval,
3778 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3779 		if (val < 0)
3780 			return -EFAULT;
3781 		name[val] = 0;
3782 
3783 		sockopt_lock_sock(sk);
3784 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3785 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3786 								    CAP_NET_ADMIN));
3787 		sockopt_release_sock(sk);
3788 		return err;
3789 	}
3790 	case TCP_ULP: {
3791 		char name[TCP_ULP_NAME_MAX];
3792 
3793 		if (optlen < 1)
3794 			return -EINVAL;
3795 
3796 		val = strncpy_from_sockptr(name, optval,
3797 					min_t(long, TCP_ULP_NAME_MAX - 1,
3798 					      optlen));
3799 		if (val < 0)
3800 			return -EFAULT;
3801 		name[val] = 0;
3802 
3803 		sockopt_lock_sock(sk);
3804 		err = tcp_set_ulp(sk, name);
3805 		sockopt_release_sock(sk);
3806 		return err;
3807 	}
3808 	case TCP_FASTOPEN_KEY: {
3809 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3810 		__u8 *backup_key = NULL;
3811 
3812 		/* Allow a backup key as well to facilitate key rotation
3813 		 * First key is the active one.
3814 		 */
3815 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3816 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3817 			return -EINVAL;
3818 
3819 		if (copy_from_sockptr(key, optval, optlen))
3820 			return -EFAULT;
3821 
3822 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3823 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3824 
3825 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3826 	}
3827 	default:
3828 		/* fallthru */
3829 		break;
3830 	}
3831 
3832 	if (optlen < sizeof(int))
3833 		return -EINVAL;
3834 
3835 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3836 		return -EFAULT;
3837 
3838 	/* Handle options that can be set without locking the socket. */
3839 	switch (optname) {
3840 	case TCP_SYNCNT:
3841 		return tcp_sock_set_syncnt(sk, val);
3842 	case TCP_USER_TIMEOUT:
3843 		return tcp_sock_set_user_timeout(sk, val);
3844 	case TCP_KEEPINTVL:
3845 		return tcp_sock_set_keepintvl(sk, val);
3846 	case TCP_KEEPCNT:
3847 		return tcp_sock_set_keepcnt(sk, val);
3848 	case TCP_LINGER2:
3849 		if (val < 0)
3850 			WRITE_ONCE(tp->linger2, -1);
3851 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3852 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3853 		else
3854 			WRITE_ONCE(tp->linger2, val * HZ);
3855 		return 0;
3856 	case TCP_DEFER_ACCEPT:
3857 		/* Translate value in seconds to number of retransmits */
3858 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3859 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3860 					   TCP_RTO_MAX / HZ));
3861 		return 0;
3862 	case TCP_RTO_MAX_MS:
3863 		if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3864 			return -EINVAL;
3865 		WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3866 		return 0;
3867 	case TCP_RTO_MIN_US: {
3868 		int rto_min = usecs_to_jiffies(val);
3869 
3870 		if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3871 			return -EINVAL;
3872 		WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3873 		return 0;
3874 	}
3875 	case TCP_DELACK_MAX_US: {
3876 		int delack_max = usecs_to_jiffies(val);
3877 
3878 		if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3879 			return -EINVAL;
3880 		WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3881 		return 0;
3882 	}
3883 	}
3884 
3885 	sockopt_lock_sock(sk);
3886 
3887 	switch (optname) {
3888 	case TCP_MAXSEG:
3889 		/* Values greater than interface MTU won't take effect. However
3890 		 * at the point when this call is done we typically don't yet
3891 		 * know which interface is going to be used
3892 		 */
3893 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3894 			err = -EINVAL;
3895 			break;
3896 		}
3897 		tp->rx_opt.user_mss = val;
3898 		break;
3899 
3900 	case TCP_NODELAY:
3901 		__tcp_sock_set_nodelay(sk, val);
3902 		break;
3903 
3904 	case TCP_THIN_LINEAR_TIMEOUTS:
3905 		if (val < 0 || val > 1)
3906 			err = -EINVAL;
3907 		else
3908 			tp->thin_lto = val;
3909 		break;
3910 
3911 	case TCP_THIN_DUPACK:
3912 		if (val < 0 || val > 1)
3913 			err = -EINVAL;
3914 		break;
3915 
3916 	case TCP_REPAIR:
3917 		if (!tcp_can_repair_sock(sk))
3918 			err = -EPERM;
3919 		else if (val == TCP_REPAIR_ON) {
3920 			tp->repair = 1;
3921 			sk->sk_reuse = SK_FORCE_REUSE;
3922 			tp->repair_queue = TCP_NO_QUEUE;
3923 		} else if (val == TCP_REPAIR_OFF) {
3924 			tp->repair = 0;
3925 			sk->sk_reuse = SK_NO_REUSE;
3926 			tcp_send_window_probe(sk);
3927 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3928 			tp->repair = 0;
3929 			sk->sk_reuse = SK_NO_REUSE;
3930 		} else
3931 			err = -EINVAL;
3932 
3933 		break;
3934 
3935 	case TCP_REPAIR_QUEUE:
3936 		if (!tp->repair)
3937 			err = -EPERM;
3938 		else if ((unsigned int)val < TCP_QUEUES_NR)
3939 			tp->repair_queue = val;
3940 		else
3941 			err = -EINVAL;
3942 		break;
3943 
3944 	case TCP_QUEUE_SEQ:
3945 		if (sk->sk_state != TCP_CLOSE) {
3946 			err = -EPERM;
3947 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3948 			if (!tcp_rtx_queue_empty(sk))
3949 				err = -EPERM;
3950 			else
3951 				WRITE_ONCE(tp->write_seq, val);
3952 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3953 			if (tp->rcv_nxt != tp->copied_seq) {
3954 				err = -EPERM;
3955 			} else {
3956 				WRITE_ONCE(tp->rcv_nxt, val);
3957 				WRITE_ONCE(tp->copied_seq, val);
3958 			}
3959 		} else {
3960 			err = -EINVAL;
3961 		}
3962 		break;
3963 
3964 	case TCP_REPAIR_OPTIONS:
3965 		if (!tp->repair)
3966 			err = -EINVAL;
3967 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3968 			err = tcp_repair_options_est(sk, optval, optlen);
3969 		else
3970 			err = -EPERM;
3971 		break;
3972 
3973 	case TCP_CORK:
3974 		__tcp_sock_set_cork(sk, val);
3975 		break;
3976 
3977 	case TCP_KEEPIDLE:
3978 		err = tcp_sock_set_keepidle_locked(sk, val);
3979 		break;
3980 	case TCP_SAVE_SYN:
3981 		/* 0: disable, 1: enable, 2: start from ether_header */
3982 		if (val < 0 || val > 2)
3983 			err = -EINVAL;
3984 		else
3985 			tp->save_syn = val;
3986 		break;
3987 
3988 	case TCP_WINDOW_CLAMP:
3989 		err = tcp_set_window_clamp(sk, val);
3990 		break;
3991 
3992 	case TCP_QUICKACK:
3993 		__tcp_sock_set_quickack(sk, val);
3994 		break;
3995 
3996 	case TCP_AO_REPAIR:
3997 		if (!tcp_can_repair_sock(sk)) {
3998 			err = -EPERM;
3999 			break;
4000 		}
4001 		err = tcp_ao_set_repair(sk, optval, optlen);
4002 		break;
4003 #ifdef CONFIG_TCP_AO
4004 	case TCP_AO_ADD_KEY:
4005 	case TCP_AO_DEL_KEY:
4006 	case TCP_AO_INFO: {
4007 		/* If this is the first TCP-AO setsockopt() on the socket,
4008 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
4009 		 * in any state.
4010 		 */
4011 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
4012 			goto ao_parse;
4013 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
4014 					      lockdep_sock_is_held(sk)))
4015 			goto ao_parse;
4016 		if (tp->repair)
4017 			goto ao_parse;
4018 		err = -EISCONN;
4019 		break;
4020 ao_parse:
4021 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
4022 		break;
4023 	}
4024 #endif
4025 #ifdef CONFIG_TCP_MD5SIG
4026 	case TCP_MD5SIG:
4027 	case TCP_MD5SIG_EXT:
4028 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4029 		break;
4030 #endif
4031 	case TCP_FASTOPEN:
4032 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4033 		    TCPF_LISTEN))) {
4034 			tcp_fastopen_init_key_once(net);
4035 
4036 			fastopen_queue_tune(sk, val);
4037 		} else {
4038 			err = -EINVAL;
4039 		}
4040 		break;
4041 	case TCP_FASTOPEN_CONNECT:
4042 		if (val > 1 || val < 0) {
4043 			err = -EINVAL;
4044 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4045 			   TFO_CLIENT_ENABLE) {
4046 			if (sk->sk_state == TCP_CLOSE)
4047 				tp->fastopen_connect = val;
4048 			else
4049 				err = -EINVAL;
4050 		} else {
4051 			err = -EOPNOTSUPP;
4052 		}
4053 		break;
4054 	case TCP_FASTOPEN_NO_COOKIE:
4055 		if (val > 1 || val < 0)
4056 			err = -EINVAL;
4057 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4058 			err = -EINVAL;
4059 		else
4060 			tp->fastopen_no_cookie = val;
4061 		break;
4062 	case TCP_TIMESTAMP:
4063 		if (!tp->repair) {
4064 			err = -EPERM;
4065 			break;
4066 		}
4067 		/* val is an opaque field,
4068 		 * and low order bit contains usec_ts enable bit.
4069 		 * Its a best effort, and we do not care if user makes an error.
4070 		 */
4071 		tp->tcp_usec_ts = val & 1;
4072 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4073 		break;
4074 	case TCP_REPAIR_WINDOW:
4075 		err = tcp_repair_set_window(tp, optval, optlen);
4076 		break;
4077 	case TCP_NOTSENT_LOWAT:
4078 		WRITE_ONCE(tp->notsent_lowat, val);
4079 		sk->sk_write_space(sk);
4080 		break;
4081 	case TCP_INQ:
4082 		if (val > 1 || val < 0)
4083 			err = -EINVAL;
4084 		else
4085 			tp->recvmsg_inq = val;
4086 		break;
4087 	case TCP_TX_DELAY:
4088 		if (val)
4089 			tcp_enable_tx_delay();
4090 		WRITE_ONCE(tp->tcp_tx_delay, val);
4091 		break;
4092 	default:
4093 		err = -ENOPROTOOPT;
4094 		break;
4095 	}
4096 
4097 	sockopt_release_sock(sk);
4098 	return err;
4099 }
4100 
4101 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4102 		   unsigned int optlen)
4103 {
4104 	const struct inet_connection_sock *icsk = inet_csk(sk);
4105 
4106 	if (level != SOL_TCP)
4107 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4108 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4109 								optval, optlen);
4110 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4111 }
4112 EXPORT_IPV6_MOD(tcp_setsockopt);
4113 
4114 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4115 				      struct tcp_info *info)
4116 {
4117 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4118 	enum tcp_chrono i;
4119 
4120 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4121 		stats[i] = tp->chrono_stat[i - 1];
4122 		if (i == tp->chrono_type)
4123 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4124 		stats[i] *= USEC_PER_SEC / HZ;
4125 		total += stats[i];
4126 	}
4127 
4128 	info->tcpi_busy_time = total;
4129 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4130 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4131 }
4132 
4133 /* Return information about state of tcp endpoint in API format. */
4134 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4135 {
4136 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4137 	const struct inet_connection_sock *icsk = inet_csk(sk);
4138 	unsigned long rate;
4139 	u32 now;
4140 	u64 rate64;
4141 	bool slow;
4142 
4143 	memset(info, 0, sizeof(*info));
4144 	if (sk->sk_type != SOCK_STREAM)
4145 		return;
4146 
4147 	info->tcpi_state = inet_sk_state_load(sk);
4148 
4149 	/* Report meaningful fields for all TCP states, including listeners */
4150 	rate = READ_ONCE(sk->sk_pacing_rate);
4151 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4152 	info->tcpi_pacing_rate = rate64;
4153 
4154 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4155 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4156 	info->tcpi_max_pacing_rate = rate64;
4157 
4158 	info->tcpi_reordering = tp->reordering;
4159 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4160 
4161 	if (info->tcpi_state == TCP_LISTEN) {
4162 		/* listeners aliased fields :
4163 		 * tcpi_unacked -> Number of children ready for accept()
4164 		 * tcpi_sacked  -> max backlog
4165 		 */
4166 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4167 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4168 		return;
4169 	}
4170 
4171 	slow = lock_sock_fast(sk);
4172 
4173 	info->tcpi_ca_state = icsk->icsk_ca_state;
4174 	info->tcpi_retransmits = icsk->icsk_retransmits;
4175 	info->tcpi_probes = icsk->icsk_probes_out;
4176 	info->tcpi_backoff = icsk->icsk_backoff;
4177 
4178 	if (tp->rx_opt.tstamp_ok)
4179 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4180 	if (tcp_is_sack(tp))
4181 		info->tcpi_options |= TCPI_OPT_SACK;
4182 	if (tp->rx_opt.wscale_ok) {
4183 		info->tcpi_options |= TCPI_OPT_WSCALE;
4184 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4185 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4186 	}
4187 
4188 	if (tcp_ecn_mode_any(tp))
4189 		info->tcpi_options |= TCPI_OPT_ECN;
4190 	if (tp->ecn_flags & TCP_ECN_SEEN)
4191 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4192 	if (tp->syn_data_acked)
4193 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4194 	if (tp->tcp_usec_ts)
4195 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4196 	if (tp->syn_fastopen_child)
4197 		info->tcpi_options |= TCPI_OPT_TFO_CHILD;
4198 
4199 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4200 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4201 						tcp_delack_max(sk)));
4202 	info->tcpi_snd_mss = tp->mss_cache;
4203 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4204 
4205 	info->tcpi_unacked = tp->packets_out;
4206 	info->tcpi_sacked = tp->sacked_out;
4207 
4208 	info->tcpi_lost = tp->lost_out;
4209 	info->tcpi_retrans = tp->retrans_out;
4210 
4211 	now = tcp_jiffies32;
4212 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4213 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4214 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4215 
4216 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4217 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4218 	info->tcpi_rtt = tp->srtt_us >> 3;
4219 	info->tcpi_rttvar = tp->mdev_us >> 2;
4220 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4221 	info->tcpi_advmss = tp->advmss;
4222 
4223 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4224 	info->tcpi_rcv_space = tp->rcvq_space.space;
4225 
4226 	info->tcpi_total_retrans = tp->total_retrans;
4227 
4228 	info->tcpi_bytes_acked = tp->bytes_acked;
4229 	info->tcpi_bytes_received = tp->bytes_received;
4230 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4231 	tcp_get_info_chrono_stats(tp, info);
4232 
4233 	info->tcpi_segs_out = tp->segs_out;
4234 
4235 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4236 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4237 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4238 
4239 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4240 	info->tcpi_data_segs_out = tp->data_segs_out;
4241 
4242 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4243 	rate64 = tcp_compute_delivery_rate(tp);
4244 	if (rate64)
4245 		info->tcpi_delivery_rate = rate64;
4246 	info->tcpi_delivered = tp->delivered;
4247 	info->tcpi_delivered_ce = tp->delivered_ce;
4248 	info->tcpi_bytes_sent = tp->bytes_sent;
4249 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4250 	info->tcpi_dsack_dups = tp->dsack_dups;
4251 	info->tcpi_reord_seen = tp->reord_seen;
4252 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4253 	info->tcpi_snd_wnd = tp->snd_wnd;
4254 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4255 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4256 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4257 
4258 	info->tcpi_total_rto = tp->total_rto;
4259 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4260 	info->tcpi_total_rto_time = tp->total_rto_time;
4261 	if (tp->rto_stamp)
4262 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4263 
4264 	unlock_sock_fast(sk, slow);
4265 }
4266 EXPORT_SYMBOL_GPL(tcp_get_info);
4267 
4268 static size_t tcp_opt_stats_get_size(void)
4269 {
4270 	return
4271 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4272 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4273 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4274 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4275 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4276 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4277 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4278 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4279 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4280 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4281 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4282 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4283 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4284 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4285 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4286 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4287 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4288 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4289 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4290 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4291 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4292 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4293 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4294 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4295 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4296 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4297 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4298 		0;
4299 }
4300 
4301 /* Returns TTL or hop limit of an incoming packet from skb. */
4302 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4303 {
4304 	if (skb->protocol == htons(ETH_P_IP))
4305 		return ip_hdr(skb)->ttl;
4306 	else if (skb->protocol == htons(ETH_P_IPV6))
4307 		return ipv6_hdr(skb)->hop_limit;
4308 	else
4309 		return 0;
4310 }
4311 
4312 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4313 					       const struct sk_buff *orig_skb,
4314 					       const struct sk_buff *ack_skb)
4315 {
4316 	const struct tcp_sock *tp = tcp_sk(sk);
4317 	struct sk_buff *stats;
4318 	struct tcp_info info;
4319 	unsigned long rate;
4320 	u64 rate64;
4321 
4322 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4323 	if (!stats)
4324 		return NULL;
4325 
4326 	tcp_get_info_chrono_stats(tp, &info);
4327 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4328 			  info.tcpi_busy_time, TCP_NLA_PAD);
4329 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4330 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4331 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4332 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4333 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4334 			  tp->data_segs_out, TCP_NLA_PAD);
4335 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4336 			  tp->total_retrans, TCP_NLA_PAD);
4337 
4338 	rate = READ_ONCE(sk->sk_pacing_rate);
4339 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4340 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4341 
4342 	rate64 = tcp_compute_delivery_rate(tp);
4343 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4344 
4345 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4346 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4347 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4348 
4349 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4350 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4351 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4352 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4353 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4354 
4355 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4356 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4357 
4358 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4359 			  TCP_NLA_PAD);
4360 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4361 			  TCP_NLA_PAD);
4362 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4363 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4364 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4365 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4366 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4367 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4368 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4369 			  TCP_NLA_PAD);
4370 	if (ack_skb)
4371 		nla_put_u8(stats, TCP_NLA_TTL,
4372 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4373 
4374 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4375 	return stats;
4376 }
4377 
4378 int do_tcp_getsockopt(struct sock *sk, int level,
4379 		      int optname, sockptr_t optval, sockptr_t optlen)
4380 {
4381 	struct inet_connection_sock *icsk = inet_csk(sk);
4382 	struct tcp_sock *tp = tcp_sk(sk);
4383 	struct net *net = sock_net(sk);
4384 	int val, len;
4385 
4386 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4387 		return -EFAULT;
4388 
4389 	if (len < 0)
4390 		return -EINVAL;
4391 
4392 	len = min_t(unsigned int, len, sizeof(int));
4393 
4394 	switch (optname) {
4395 	case TCP_MAXSEG:
4396 		val = tp->mss_cache;
4397 		if (tp->rx_opt.user_mss &&
4398 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4399 			val = tp->rx_opt.user_mss;
4400 		if (tp->repair)
4401 			val = tp->rx_opt.mss_clamp;
4402 		break;
4403 	case TCP_NODELAY:
4404 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4405 		break;
4406 	case TCP_CORK:
4407 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4408 		break;
4409 	case TCP_KEEPIDLE:
4410 		val = keepalive_time_when(tp) / HZ;
4411 		break;
4412 	case TCP_KEEPINTVL:
4413 		val = keepalive_intvl_when(tp) / HZ;
4414 		break;
4415 	case TCP_KEEPCNT:
4416 		val = keepalive_probes(tp);
4417 		break;
4418 	case TCP_SYNCNT:
4419 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4420 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4421 		break;
4422 	case TCP_LINGER2:
4423 		val = READ_ONCE(tp->linger2);
4424 		if (val >= 0)
4425 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4426 		break;
4427 	case TCP_DEFER_ACCEPT:
4428 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4429 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4430 				      TCP_RTO_MAX / HZ);
4431 		break;
4432 	case TCP_WINDOW_CLAMP:
4433 		val = READ_ONCE(tp->window_clamp);
4434 		break;
4435 	case TCP_INFO: {
4436 		struct tcp_info info;
4437 
4438 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4439 			return -EFAULT;
4440 
4441 		tcp_get_info(sk, &info);
4442 
4443 		len = min_t(unsigned int, len, sizeof(info));
4444 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4445 			return -EFAULT;
4446 		if (copy_to_sockptr(optval, &info, len))
4447 			return -EFAULT;
4448 		return 0;
4449 	}
4450 	case TCP_CC_INFO: {
4451 		const struct tcp_congestion_ops *ca_ops;
4452 		union tcp_cc_info info;
4453 		size_t sz = 0;
4454 		int attr;
4455 
4456 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4457 			return -EFAULT;
4458 
4459 		ca_ops = icsk->icsk_ca_ops;
4460 		if (ca_ops && ca_ops->get_info)
4461 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4462 
4463 		len = min_t(unsigned int, len, sz);
4464 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4465 			return -EFAULT;
4466 		if (copy_to_sockptr(optval, &info, len))
4467 			return -EFAULT;
4468 		return 0;
4469 	}
4470 	case TCP_QUICKACK:
4471 		val = !inet_csk_in_pingpong_mode(sk);
4472 		break;
4473 
4474 	case TCP_CONGESTION:
4475 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4476 			return -EFAULT;
4477 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4478 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4479 			return -EFAULT;
4480 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4481 			return -EFAULT;
4482 		return 0;
4483 
4484 	case TCP_ULP:
4485 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4486 			return -EFAULT;
4487 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4488 		if (!icsk->icsk_ulp_ops) {
4489 			len = 0;
4490 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4491 				return -EFAULT;
4492 			return 0;
4493 		}
4494 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4495 			return -EFAULT;
4496 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4497 			return -EFAULT;
4498 		return 0;
4499 
4500 	case TCP_FASTOPEN_KEY: {
4501 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4502 		unsigned int key_len;
4503 
4504 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4505 			return -EFAULT;
4506 
4507 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4508 				TCP_FASTOPEN_KEY_LENGTH;
4509 		len = min_t(unsigned int, len, key_len);
4510 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4511 			return -EFAULT;
4512 		if (copy_to_sockptr(optval, key, len))
4513 			return -EFAULT;
4514 		return 0;
4515 	}
4516 	case TCP_THIN_LINEAR_TIMEOUTS:
4517 		val = tp->thin_lto;
4518 		break;
4519 
4520 	case TCP_THIN_DUPACK:
4521 		val = 0;
4522 		break;
4523 
4524 	case TCP_REPAIR:
4525 		val = tp->repair;
4526 		break;
4527 
4528 	case TCP_REPAIR_QUEUE:
4529 		if (tp->repair)
4530 			val = tp->repair_queue;
4531 		else
4532 			return -EINVAL;
4533 		break;
4534 
4535 	case TCP_REPAIR_WINDOW: {
4536 		struct tcp_repair_window opt;
4537 
4538 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4539 			return -EFAULT;
4540 
4541 		if (len != sizeof(opt))
4542 			return -EINVAL;
4543 
4544 		if (!tp->repair)
4545 			return -EPERM;
4546 
4547 		opt.snd_wl1	= tp->snd_wl1;
4548 		opt.snd_wnd	= tp->snd_wnd;
4549 		opt.max_window	= tp->max_window;
4550 		opt.rcv_wnd	= tp->rcv_wnd;
4551 		opt.rcv_wup	= tp->rcv_wup;
4552 
4553 		if (copy_to_sockptr(optval, &opt, len))
4554 			return -EFAULT;
4555 		return 0;
4556 	}
4557 	case TCP_QUEUE_SEQ:
4558 		if (tp->repair_queue == TCP_SEND_QUEUE)
4559 			val = tp->write_seq;
4560 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4561 			val = tp->rcv_nxt;
4562 		else
4563 			return -EINVAL;
4564 		break;
4565 
4566 	case TCP_USER_TIMEOUT:
4567 		val = READ_ONCE(icsk->icsk_user_timeout);
4568 		break;
4569 
4570 	case TCP_FASTOPEN:
4571 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4572 		break;
4573 
4574 	case TCP_FASTOPEN_CONNECT:
4575 		val = tp->fastopen_connect;
4576 		break;
4577 
4578 	case TCP_FASTOPEN_NO_COOKIE:
4579 		val = tp->fastopen_no_cookie;
4580 		break;
4581 
4582 	case TCP_TX_DELAY:
4583 		val = READ_ONCE(tp->tcp_tx_delay);
4584 		break;
4585 
4586 	case TCP_TIMESTAMP:
4587 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4588 		if (tp->tcp_usec_ts)
4589 			val |= 1;
4590 		else
4591 			val &= ~1;
4592 		break;
4593 	case TCP_NOTSENT_LOWAT:
4594 		val = READ_ONCE(tp->notsent_lowat);
4595 		break;
4596 	case TCP_INQ:
4597 		val = tp->recvmsg_inq;
4598 		break;
4599 	case TCP_SAVE_SYN:
4600 		val = tp->save_syn;
4601 		break;
4602 	case TCP_SAVED_SYN: {
4603 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4604 			return -EFAULT;
4605 
4606 		sockopt_lock_sock(sk);
4607 		if (tp->saved_syn) {
4608 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4609 				len = tcp_saved_syn_len(tp->saved_syn);
4610 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4611 					sockopt_release_sock(sk);
4612 					return -EFAULT;
4613 				}
4614 				sockopt_release_sock(sk);
4615 				return -EINVAL;
4616 			}
4617 			len = tcp_saved_syn_len(tp->saved_syn);
4618 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4619 				sockopt_release_sock(sk);
4620 				return -EFAULT;
4621 			}
4622 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4623 				sockopt_release_sock(sk);
4624 				return -EFAULT;
4625 			}
4626 			tcp_saved_syn_free(tp);
4627 			sockopt_release_sock(sk);
4628 		} else {
4629 			sockopt_release_sock(sk);
4630 			len = 0;
4631 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4632 				return -EFAULT;
4633 		}
4634 		return 0;
4635 	}
4636 #ifdef CONFIG_MMU
4637 	case TCP_ZEROCOPY_RECEIVE: {
4638 		struct scm_timestamping_internal tss;
4639 		struct tcp_zerocopy_receive zc = {};
4640 		int err;
4641 
4642 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4643 			return -EFAULT;
4644 		if (len < 0 ||
4645 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4646 			return -EINVAL;
4647 		if (unlikely(len > sizeof(zc))) {
4648 			err = check_zeroed_sockptr(optval, sizeof(zc),
4649 						   len - sizeof(zc));
4650 			if (err < 1)
4651 				return err == 0 ? -EINVAL : err;
4652 			len = sizeof(zc);
4653 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4654 				return -EFAULT;
4655 		}
4656 		if (copy_from_sockptr(&zc, optval, len))
4657 			return -EFAULT;
4658 		if (zc.reserved)
4659 			return -EINVAL;
4660 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4661 			return -EINVAL;
4662 		sockopt_lock_sock(sk);
4663 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4664 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4665 							  &zc, &len, err);
4666 		sockopt_release_sock(sk);
4667 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4668 			goto zerocopy_rcv_cmsg;
4669 		switch (len) {
4670 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4671 			goto zerocopy_rcv_cmsg;
4672 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4673 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4674 		case offsetofend(struct tcp_zerocopy_receive, flags):
4675 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4676 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4677 		case offsetofend(struct tcp_zerocopy_receive, err):
4678 			goto zerocopy_rcv_sk_err;
4679 		case offsetofend(struct tcp_zerocopy_receive, inq):
4680 			goto zerocopy_rcv_inq;
4681 		case offsetofend(struct tcp_zerocopy_receive, length):
4682 		default:
4683 			goto zerocopy_rcv_out;
4684 		}
4685 zerocopy_rcv_cmsg:
4686 		if (zc.msg_flags & TCP_CMSG_TS)
4687 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4688 		else
4689 			zc.msg_flags = 0;
4690 zerocopy_rcv_sk_err:
4691 		if (!err)
4692 			zc.err = sock_error(sk);
4693 zerocopy_rcv_inq:
4694 		zc.inq = tcp_inq_hint(sk);
4695 zerocopy_rcv_out:
4696 		if (!err && copy_to_sockptr(optval, &zc, len))
4697 			err = -EFAULT;
4698 		return err;
4699 	}
4700 #endif
4701 	case TCP_AO_REPAIR:
4702 		if (!tcp_can_repair_sock(sk))
4703 			return -EPERM;
4704 		return tcp_ao_get_repair(sk, optval, optlen);
4705 	case TCP_AO_GET_KEYS:
4706 	case TCP_AO_INFO: {
4707 		int err;
4708 
4709 		sockopt_lock_sock(sk);
4710 		if (optname == TCP_AO_GET_KEYS)
4711 			err = tcp_ao_get_mkts(sk, optval, optlen);
4712 		else
4713 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4714 		sockopt_release_sock(sk);
4715 
4716 		return err;
4717 	}
4718 	case TCP_IS_MPTCP:
4719 		val = 0;
4720 		break;
4721 	case TCP_RTO_MAX_MS:
4722 		val = jiffies_to_msecs(tcp_rto_max(sk));
4723 		break;
4724 	case TCP_RTO_MIN_US:
4725 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4726 		break;
4727 	case TCP_DELACK_MAX_US:
4728 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4729 		break;
4730 	default:
4731 		return -ENOPROTOOPT;
4732 	}
4733 
4734 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4735 		return -EFAULT;
4736 	if (copy_to_sockptr(optval, &val, len))
4737 		return -EFAULT;
4738 	return 0;
4739 }
4740 
4741 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4742 {
4743 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4744 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4745 	 */
4746 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4747 		return true;
4748 
4749 	return false;
4750 }
4751 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4752 
4753 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4754 		   int __user *optlen)
4755 {
4756 	struct inet_connection_sock *icsk = inet_csk(sk);
4757 
4758 	if (level != SOL_TCP)
4759 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4760 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4761 								optval, optlen);
4762 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4763 				 USER_SOCKPTR(optlen));
4764 }
4765 EXPORT_IPV6_MOD(tcp_getsockopt);
4766 
4767 #ifdef CONFIG_TCP_MD5SIG
4768 int tcp_md5_sigpool_id = -1;
4769 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id);
4770 
4771 int tcp_md5_alloc_sigpool(void)
4772 {
4773 	size_t scratch_size;
4774 	int ret;
4775 
4776 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4777 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4778 	if (ret >= 0) {
4779 		/* As long as any md5 sigpool was allocated, the return
4780 		 * id would stay the same. Re-write the id only for the case
4781 		 * when previously all MD5 keys were deleted and this call
4782 		 * allocates the first MD5 key, which may return a different
4783 		 * sigpool id than was used previously.
4784 		 */
4785 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4786 		return 0;
4787 	}
4788 	return ret;
4789 }
4790 
4791 void tcp_md5_release_sigpool(void)
4792 {
4793 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4794 }
4795 
4796 void tcp_md5_add_sigpool(void)
4797 {
4798 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4799 }
4800 
4801 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4802 		     const struct tcp_md5sig_key *key)
4803 {
4804 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4805 	struct scatterlist sg;
4806 
4807 	sg_init_one(&sg, key->key, keylen);
4808 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4809 
4810 	/* We use data_race() because tcp_md5_do_add() might change
4811 	 * key->key under us
4812 	 */
4813 	return data_race(crypto_ahash_update(hp->req));
4814 }
4815 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4816 
4817 /* Called with rcu_read_lock() */
4818 static enum skb_drop_reason
4819 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4820 		     const void *saddr, const void *daddr,
4821 		     int family, int l3index, const __u8 *hash_location)
4822 {
4823 	/* This gets called for each TCP segment that has TCP-MD5 option.
4824 	 * We have 3 drop cases:
4825 	 * o No MD5 hash and one expected.
4826 	 * o MD5 hash and we're not expecting one.
4827 	 * o MD5 hash and its wrong.
4828 	 */
4829 	const struct tcp_sock *tp = tcp_sk(sk);
4830 	struct tcp_md5sig_key *key;
4831 	u8 newhash[16];
4832 	int genhash;
4833 
4834 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4835 
4836 	if (!key && hash_location) {
4837 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4838 		trace_tcp_hash_md5_unexpected(sk, skb);
4839 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4840 	}
4841 
4842 	/* Check the signature.
4843 	 * To support dual stack listeners, we need to handle
4844 	 * IPv4-mapped case.
4845 	 */
4846 	if (family == AF_INET)
4847 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4848 	else
4849 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4850 							 NULL, skb);
4851 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4852 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4853 		trace_tcp_hash_md5_mismatch(sk, skb);
4854 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4855 	}
4856 	return SKB_NOT_DROPPED_YET;
4857 }
4858 #else
4859 static inline enum skb_drop_reason
4860 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4861 		     const void *saddr, const void *daddr,
4862 		     int family, int l3index, const __u8 *hash_location)
4863 {
4864 	return SKB_NOT_DROPPED_YET;
4865 }
4866 
4867 #endif
4868 
4869 /* Called with rcu_read_lock() */
4870 enum skb_drop_reason
4871 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4872 		 const struct sk_buff *skb,
4873 		 const void *saddr, const void *daddr,
4874 		 int family, int dif, int sdif)
4875 {
4876 	const struct tcphdr *th = tcp_hdr(skb);
4877 	const struct tcp_ao_hdr *aoh;
4878 	const __u8 *md5_location;
4879 	int l3index;
4880 
4881 	/* Invalid option or two times meet any of auth options */
4882 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4883 		trace_tcp_hash_bad_header(sk, skb);
4884 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4885 	}
4886 
4887 	if (req) {
4888 		if (tcp_rsk_used_ao(req) != !!aoh) {
4889 			u8 keyid, rnext, maclen;
4890 
4891 			if (aoh) {
4892 				keyid = aoh->keyid;
4893 				rnext = aoh->rnext_keyid;
4894 				maclen = tcp_ao_hdr_maclen(aoh);
4895 			} else {
4896 				keyid = rnext = maclen = 0;
4897 			}
4898 
4899 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4900 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4901 			return SKB_DROP_REASON_TCP_AOFAILURE;
4902 		}
4903 	}
4904 
4905 	/* sdif set, means packet ingressed via a device
4906 	 * in an L3 domain and dif is set to the l3mdev
4907 	 */
4908 	l3index = sdif ? dif : 0;
4909 
4910 	/* Fast path: unsigned segments */
4911 	if (likely(!md5_location && !aoh)) {
4912 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4913 		 * for the remote peer. On TCP-AO established connection
4914 		 * the last key is impossible to remove, so there's
4915 		 * always at least one current_key.
4916 		 */
4917 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4918 			trace_tcp_hash_ao_required(sk, skb);
4919 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4920 		}
4921 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4922 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4923 			trace_tcp_hash_md5_required(sk, skb);
4924 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4925 		}
4926 		return SKB_NOT_DROPPED_YET;
4927 	}
4928 
4929 	if (aoh)
4930 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4931 
4932 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4933 				    l3index, md5_location);
4934 }
4935 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4936 
4937 void tcp_done(struct sock *sk)
4938 {
4939 	struct request_sock *req;
4940 
4941 	/* We might be called with a new socket, after
4942 	 * inet_csk_prepare_forced_close() has been called
4943 	 * so we can not use lockdep_sock_is_held(sk)
4944 	 */
4945 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4946 
4947 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4948 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4949 
4950 	tcp_set_state(sk, TCP_CLOSE);
4951 	tcp_clear_xmit_timers(sk);
4952 	if (req)
4953 		reqsk_fastopen_remove(sk, req, false);
4954 
4955 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4956 
4957 	if (!sock_flag(sk, SOCK_DEAD))
4958 		sk->sk_state_change(sk);
4959 	else
4960 		inet_csk_destroy_sock(sk);
4961 }
4962 EXPORT_SYMBOL_GPL(tcp_done);
4963 
4964 int tcp_abort(struct sock *sk, int err)
4965 {
4966 	int state = inet_sk_state_load(sk);
4967 
4968 	if (state == TCP_NEW_SYN_RECV) {
4969 		struct request_sock *req = inet_reqsk(sk);
4970 
4971 		local_bh_disable();
4972 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4973 		local_bh_enable();
4974 		return 0;
4975 	}
4976 	if (state == TCP_TIME_WAIT) {
4977 		struct inet_timewait_sock *tw = inet_twsk(sk);
4978 
4979 		refcount_inc(&tw->tw_refcnt);
4980 		local_bh_disable();
4981 		inet_twsk_deschedule_put(tw);
4982 		local_bh_enable();
4983 		return 0;
4984 	}
4985 
4986 	/* BPF context ensures sock locking. */
4987 	if (!has_current_bpf_ctx())
4988 		/* Don't race with userspace socket closes such as tcp_close. */
4989 		lock_sock(sk);
4990 
4991 	/* Avoid closing the same socket twice. */
4992 	if (sk->sk_state == TCP_CLOSE) {
4993 		if (!has_current_bpf_ctx())
4994 			release_sock(sk);
4995 		return -ENOENT;
4996 	}
4997 
4998 	if (sk->sk_state == TCP_LISTEN) {
4999 		tcp_set_state(sk, TCP_CLOSE);
5000 		inet_csk_listen_stop(sk);
5001 	}
5002 
5003 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
5004 	local_bh_disable();
5005 	bh_lock_sock(sk);
5006 
5007 	if (tcp_need_reset(sk->sk_state))
5008 		tcp_send_active_reset(sk, GFP_ATOMIC,
5009 				      SK_RST_REASON_TCP_STATE);
5010 	tcp_done_with_error(sk, err);
5011 
5012 	bh_unlock_sock(sk);
5013 	local_bh_enable();
5014 	if (!has_current_bpf_ctx())
5015 		release_sock(sk);
5016 	return 0;
5017 }
5018 EXPORT_SYMBOL_GPL(tcp_abort);
5019 
5020 extern struct tcp_congestion_ops tcp_reno;
5021 
5022 static __initdata unsigned long thash_entries;
5023 static int __init set_thash_entries(char *str)
5024 {
5025 	ssize_t ret;
5026 
5027 	if (!str)
5028 		return 0;
5029 
5030 	ret = kstrtoul(str, 0, &thash_entries);
5031 	if (ret)
5032 		return 0;
5033 
5034 	return 1;
5035 }
5036 __setup("thash_entries=", set_thash_entries);
5037 
5038 static void __init tcp_init_mem(void)
5039 {
5040 	unsigned long limit = nr_free_buffer_pages() / 16;
5041 
5042 	limit = max(limit, 128UL);
5043 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
5044 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
5045 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
5046 }
5047 
5048 static void __init tcp_struct_check(void)
5049 {
5050 	/* TX read-mostly hotpath cache lines */
5051 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5052 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5053 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5054 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5055 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5056 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
5057 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5058 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
5059 
5060 	/* TXRX read-mostly hotpath cache lines */
5061 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5062 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5063 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5064 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5065 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5066 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5067 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5068 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5069 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5070 
5071 	/* RX read-mostly hotpath cache lines */
5072 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5073 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5074 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5075 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5076 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5077 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5078 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5079 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5080 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5081 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5082 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5083 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5084 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5085 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked);
5086 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77);
5087 #else
5088 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5089 #endif
5090 
5091 	/* TX read-write hotpath cache lines */
5092 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5093 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5094 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5095 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5096 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5097 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5098 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5099 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5100 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5101 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5102 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5103 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5104 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5105 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5106 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5107 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5108 
5109 	/* TXRX read-write hotpath cache lines */
5110 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5111 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5112 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5113 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5114 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5115 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5116 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5117 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5118 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5119 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5120 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5121 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5122 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5123 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5124 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5125 
5126 	/* 32bit arches with 8byte alignment on u64 fields might need padding
5127 	 * before tcp_clock_cache.
5128 	 */
5129 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5130 
5131 	/* RX read-write hotpath cache lines */
5132 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5133 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5134 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5135 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5136 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5137 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5138 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5139 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5140 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5141 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5142 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5143 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5144 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5145 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5146 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5147 }
5148 
5149 void __init tcp_init(void)
5150 {
5151 	int max_rshare, max_wshare, cnt;
5152 	unsigned long limit;
5153 	unsigned int i;
5154 
5155 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5156 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5157 		     sizeof_field(struct sk_buff, cb));
5158 
5159 	tcp_struct_check();
5160 
5161 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5162 
5163 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5164 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5165 
5166 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5167 			    thash_entries, 21,  /* one slot per 2 MB*/
5168 			    0, 64 * 1024);
5169 	tcp_hashinfo.bind_bucket_cachep =
5170 		kmem_cache_create("tcp_bind_bucket",
5171 				  sizeof(struct inet_bind_bucket), 0,
5172 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5173 				  SLAB_ACCOUNT,
5174 				  NULL);
5175 	tcp_hashinfo.bind2_bucket_cachep =
5176 		kmem_cache_create("tcp_bind2_bucket",
5177 				  sizeof(struct inet_bind2_bucket), 0,
5178 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5179 				  SLAB_ACCOUNT,
5180 				  NULL);
5181 
5182 	/* Size and allocate the main established and bind bucket
5183 	 * hash tables.
5184 	 *
5185 	 * The methodology is similar to that of the buffer cache.
5186 	 */
5187 	tcp_hashinfo.ehash =
5188 		alloc_large_system_hash("TCP established",
5189 					sizeof(struct inet_ehash_bucket),
5190 					thash_entries,
5191 					17, /* one slot per 128 KB of memory */
5192 					0,
5193 					NULL,
5194 					&tcp_hashinfo.ehash_mask,
5195 					0,
5196 					thash_entries ? 0 : 512 * 1024);
5197 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5198 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5199 
5200 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5201 		panic("TCP: failed to alloc ehash_locks");
5202 	tcp_hashinfo.bhash =
5203 		alloc_large_system_hash("TCP bind",
5204 					2 * sizeof(struct inet_bind_hashbucket),
5205 					tcp_hashinfo.ehash_mask + 1,
5206 					17, /* one slot per 128 KB of memory */
5207 					0,
5208 					&tcp_hashinfo.bhash_size,
5209 					NULL,
5210 					0,
5211 					64 * 1024);
5212 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5213 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5214 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5215 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5216 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5217 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5218 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5219 	}
5220 
5221 	tcp_hashinfo.pernet = false;
5222 
5223 	cnt = tcp_hashinfo.ehash_mask + 1;
5224 	sysctl_tcp_max_orphans = cnt / 2;
5225 
5226 	tcp_init_mem();
5227 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5228 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5229 	max_wshare = min(4UL*1024*1024, limit);
5230 	max_rshare = min(32UL*1024*1024, limit);
5231 
5232 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5233 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5234 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5235 
5236 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5237 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5238 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5239 
5240 	pr_info("Hash tables configured (established %u bind %u)\n",
5241 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5242 
5243 	tcp_v4_init();
5244 	tcp_metrics_init();
5245 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5246 	tcp_tasklet_init();
5247 	mptcp_init();
5248 }
5249