1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright 2011-2014 Autronica Fire and Security AS 3 * 4 * Author(s): 5 * 2011-2014 Arvid Brodin, arvid.brodin@alten.se 6 * 7 * The HSR spec says never to forward the same frame twice on the same 8 * interface. A frame is identified by its source MAC address and its HSR 9 * sequence number. This code keeps track of senders and their sequence numbers 10 * to allow filtering of duplicate frames, and to detect HSR ring errors. 11 * Same code handles filtering of duplicates for PRP as well. 12 */ 13 14 #include <linux/if_ether.h> 15 #include <linux/etherdevice.h> 16 #include <linux/slab.h> 17 #include <linux/rculist.h> 18 #include "hsr_main.h" 19 #include "hsr_framereg.h" 20 #include "hsr_netlink.h" 21 22 /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, 23 * false otherwise. 24 */ 25 static bool seq_nr_after(u16 a, u16 b) 26 { 27 /* Remove inconsistency where 28 * seq_nr_after(a, b) == seq_nr_before(a, b) 29 */ 30 if ((int)b - a == 32768) 31 return false; 32 33 return (((s16)(b - a)) < 0); 34 } 35 36 #define seq_nr_before(a, b) seq_nr_after((b), (a)) 37 #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) 38 #define PRP_DROP_WINDOW_LEN 32768 39 40 bool hsr_addr_is_redbox(struct hsr_priv *hsr, unsigned char *addr) 41 { 42 if (!hsr->redbox || !is_valid_ether_addr(hsr->macaddress_redbox)) 43 return false; 44 45 return ether_addr_equal(addr, hsr->macaddress_redbox); 46 } 47 48 bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr) 49 { 50 struct hsr_self_node *sn; 51 bool ret = false; 52 53 rcu_read_lock(); 54 sn = rcu_dereference(hsr->self_node); 55 if (!sn) { 56 WARN_ONCE(1, "HSR: No self node\n"); 57 goto out; 58 } 59 60 if (ether_addr_equal(addr, sn->macaddress_A) || 61 ether_addr_equal(addr, sn->macaddress_B)) 62 ret = true; 63 out: 64 rcu_read_unlock(); 65 return ret; 66 } 67 68 /* Search for mac entry. Caller must hold rcu read lock. 69 */ 70 static struct hsr_node *find_node_by_addr_A(struct list_head *node_db, 71 const unsigned char addr[ETH_ALEN]) 72 { 73 struct hsr_node *node; 74 75 list_for_each_entry_rcu(node, node_db, mac_list) { 76 if (ether_addr_equal(node->macaddress_A, addr)) 77 return node; 78 } 79 80 return NULL; 81 } 82 83 /* Check if node for a given MAC address is already present in data base 84 */ 85 bool hsr_is_node_in_db(struct list_head *node_db, 86 const unsigned char addr[ETH_ALEN]) 87 { 88 return !!find_node_by_addr_A(node_db, addr); 89 } 90 91 /* Helper for device init; the self_node is used in hsr_rcv() to recognize 92 * frames from self that's been looped over the HSR ring. 93 */ 94 int hsr_create_self_node(struct hsr_priv *hsr, 95 const unsigned char addr_a[ETH_ALEN], 96 const unsigned char addr_b[ETH_ALEN]) 97 { 98 struct hsr_self_node *sn, *old; 99 100 sn = kmalloc(sizeof(*sn), GFP_KERNEL); 101 if (!sn) 102 return -ENOMEM; 103 104 ether_addr_copy(sn->macaddress_A, addr_a); 105 ether_addr_copy(sn->macaddress_B, addr_b); 106 107 spin_lock_bh(&hsr->list_lock); 108 old = rcu_replace_pointer(hsr->self_node, sn, 109 lockdep_is_held(&hsr->list_lock)); 110 spin_unlock_bh(&hsr->list_lock); 111 112 if (old) 113 kfree_rcu(old, rcu_head); 114 return 0; 115 } 116 117 void hsr_del_self_node(struct hsr_priv *hsr) 118 { 119 struct hsr_self_node *old; 120 121 spin_lock_bh(&hsr->list_lock); 122 old = rcu_replace_pointer(hsr->self_node, NULL, 123 lockdep_is_held(&hsr->list_lock)); 124 spin_unlock_bh(&hsr->list_lock); 125 if (old) 126 kfree_rcu(old, rcu_head); 127 } 128 129 void hsr_del_nodes(struct list_head *node_db) 130 { 131 struct hsr_node *node; 132 struct hsr_node *tmp; 133 134 list_for_each_entry_safe(node, tmp, node_db, mac_list) 135 kfree(node); 136 } 137 138 void prp_handle_san_frame(bool san, enum hsr_port_type port, 139 struct hsr_node *node) 140 { 141 /* Mark if the SAN node is over LAN_A or LAN_B */ 142 if (port == HSR_PT_SLAVE_A) { 143 node->san_a = true; 144 return; 145 } 146 147 if (port == HSR_PT_SLAVE_B) 148 node->san_b = true; 149 } 150 151 /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A; 152 * seq_out is used to initialize filtering of outgoing duplicate frames 153 * originating from the newly added node. 154 */ 155 static struct hsr_node *hsr_add_node(struct hsr_priv *hsr, 156 struct list_head *node_db, 157 unsigned char addr[], 158 u16 seq_out, bool san, 159 enum hsr_port_type rx_port) 160 { 161 struct hsr_node *new_node, *node; 162 unsigned long now; 163 int i; 164 165 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 166 if (!new_node) 167 return NULL; 168 169 ether_addr_copy(new_node->macaddress_A, addr); 170 spin_lock_init(&new_node->seq_out_lock); 171 172 /* We are only interested in time diffs here, so use current jiffies 173 * as initialization. (0 could trigger an spurious ring error warning). 174 */ 175 now = jiffies; 176 for (i = 0; i < HSR_PT_PORTS; i++) { 177 new_node->time_in[i] = now; 178 new_node->time_out[i] = now; 179 } 180 for (i = 0; i < HSR_PT_PORTS; i++) { 181 new_node->seq_out[i] = seq_out; 182 new_node->seq_expected[i] = seq_out + 1; 183 new_node->seq_start[i] = seq_out + 1; 184 } 185 186 if (san && hsr->proto_ops->handle_san_frame) 187 hsr->proto_ops->handle_san_frame(san, rx_port, new_node); 188 189 spin_lock_bh(&hsr->list_lock); 190 list_for_each_entry_rcu(node, node_db, mac_list, 191 lockdep_is_held(&hsr->list_lock)) { 192 if (ether_addr_equal(node->macaddress_A, addr)) 193 goto out; 194 if (ether_addr_equal(node->macaddress_B, addr)) 195 goto out; 196 } 197 list_add_tail_rcu(&new_node->mac_list, node_db); 198 spin_unlock_bh(&hsr->list_lock); 199 return new_node; 200 out: 201 spin_unlock_bh(&hsr->list_lock); 202 kfree(new_node); 203 return node; 204 } 205 206 void prp_update_san_info(struct hsr_node *node, bool is_sup) 207 { 208 if (!is_sup) 209 return; 210 211 node->san_a = false; 212 node->san_b = false; 213 } 214 215 /* Get the hsr_node from which 'skb' was sent. 216 */ 217 struct hsr_node *hsr_get_node(struct hsr_port *port, struct list_head *node_db, 218 struct sk_buff *skb, bool is_sup, 219 enum hsr_port_type rx_port) 220 { 221 struct hsr_priv *hsr = port->hsr; 222 struct hsr_node *node; 223 struct ethhdr *ethhdr; 224 struct prp_rct *rct; 225 bool san = false; 226 u16 seq_out; 227 228 if (!skb_mac_header_was_set(skb)) 229 return NULL; 230 231 ethhdr = (struct ethhdr *)skb_mac_header(skb); 232 233 list_for_each_entry_rcu(node, node_db, mac_list) { 234 if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) { 235 if (hsr->proto_ops->update_san_info) 236 hsr->proto_ops->update_san_info(node, is_sup); 237 return node; 238 } 239 if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) { 240 if (hsr->proto_ops->update_san_info) 241 hsr->proto_ops->update_san_info(node, is_sup); 242 return node; 243 } 244 } 245 246 /* Check if required node is not in proxy nodes table */ 247 list_for_each_entry_rcu(node, &hsr->proxy_node_db, mac_list) { 248 if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) { 249 if (hsr->proto_ops->update_san_info) 250 hsr->proto_ops->update_san_info(node, is_sup); 251 return node; 252 } 253 } 254 255 /* Everyone may create a node entry, connected node to a HSR/PRP 256 * device. 257 */ 258 if (ethhdr->h_proto == htons(ETH_P_PRP) || 259 ethhdr->h_proto == htons(ETH_P_HSR)) { 260 /* Check if skb contains hsr_ethhdr */ 261 if (skb->mac_len < sizeof(struct hsr_ethhdr)) 262 return NULL; 263 264 /* Use the existing sequence_nr from the tag as starting point 265 * for filtering duplicate frames. 266 */ 267 seq_out = hsr_get_skb_sequence_nr(skb) - 1; 268 } else { 269 rct = skb_get_PRP_rct(skb); 270 if (rct && prp_check_lsdu_size(skb, rct, is_sup)) { 271 seq_out = prp_get_skb_sequence_nr(rct); 272 } else { 273 if (rx_port != HSR_PT_MASTER) 274 san = true; 275 seq_out = HSR_SEQNR_START; 276 } 277 } 278 279 return hsr_add_node(hsr, node_db, ethhdr->h_source, seq_out, 280 san, rx_port); 281 } 282 283 /* Use the Supervision frame's info about an eventual macaddress_B for merging 284 * nodes that has previously had their macaddress_B registered as a separate 285 * node. 286 */ 287 void hsr_handle_sup_frame(struct hsr_frame_info *frame) 288 { 289 struct hsr_node *node_curr = frame->node_src; 290 struct hsr_port *port_rcv = frame->port_rcv; 291 struct hsr_priv *hsr = port_rcv->hsr; 292 struct hsr_sup_payload *hsr_sp; 293 struct hsr_sup_tlv *hsr_sup_tlv; 294 struct hsr_node *node_real; 295 struct sk_buff *skb = NULL; 296 struct list_head *node_db; 297 struct ethhdr *ethhdr; 298 int i; 299 unsigned int pull_size = 0; 300 unsigned int total_pull_size = 0; 301 302 /* Here either frame->skb_hsr or frame->skb_prp should be 303 * valid as supervision frame always will have protocol 304 * header info. 305 */ 306 if (frame->skb_hsr) 307 skb = frame->skb_hsr; 308 else if (frame->skb_prp) 309 skb = frame->skb_prp; 310 else if (frame->skb_std) 311 skb = frame->skb_std; 312 if (!skb) 313 return; 314 315 /* Leave the ethernet header. */ 316 pull_size = sizeof(struct ethhdr); 317 skb_pull(skb, pull_size); 318 total_pull_size += pull_size; 319 320 ethhdr = (struct ethhdr *)skb_mac_header(skb); 321 322 /* And leave the HSR tag. */ 323 if (ethhdr->h_proto == htons(ETH_P_HSR)) { 324 pull_size = sizeof(struct hsr_tag); 325 skb_pull(skb, pull_size); 326 total_pull_size += pull_size; 327 } 328 329 /* And leave the HSR sup tag. */ 330 pull_size = sizeof(struct hsr_sup_tag); 331 skb_pull(skb, pull_size); 332 total_pull_size += pull_size; 333 334 /* get HSR sup payload */ 335 hsr_sp = (struct hsr_sup_payload *)skb->data; 336 337 /* Merge node_curr (registered on macaddress_B) into node_real */ 338 node_db = &port_rcv->hsr->node_db; 339 node_real = find_node_by_addr_A(node_db, hsr_sp->macaddress_A); 340 if (!node_real) 341 /* No frame received from AddrA of this node yet */ 342 node_real = hsr_add_node(hsr, node_db, hsr_sp->macaddress_A, 343 HSR_SEQNR_START - 1, true, 344 port_rcv->type); 345 if (!node_real) 346 goto done; /* No mem */ 347 if (node_real == node_curr) 348 /* Node has already been merged */ 349 goto done; 350 351 /* Leave the first HSR sup payload. */ 352 pull_size = sizeof(struct hsr_sup_payload); 353 skb_pull(skb, pull_size); 354 total_pull_size += pull_size; 355 356 /* Get second supervision tlv */ 357 hsr_sup_tlv = (struct hsr_sup_tlv *)skb->data; 358 /* And check if it is a redbox mac TLV */ 359 if (hsr_sup_tlv->HSR_TLV_type == PRP_TLV_REDBOX_MAC) { 360 /* We could stop here after pushing hsr_sup_payload, 361 * or proceed and allow macaddress_B and for redboxes. 362 */ 363 /* Sanity check length */ 364 if (hsr_sup_tlv->HSR_TLV_length != 6) 365 goto done; 366 367 /* Leave the second HSR sup tlv. */ 368 pull_size = sizeof(struct hsr_sup_tlv); 369 skb_pull(skb, pull_size); 370 total_pull_size += pull_size; 371 372 /* Get redbox mac address. */ 373 hsr_sp = (struct hsr_sup_payload *)skb->data; 374 375 /* Check if redbox mac and node mac are equal. */ 376 if (!ether_addr_equal(node_real->macaddress_A, hsr_sp->macaddress_A)) { 377 /* This is a redbox supervision frame for a VDAN! */ 378 goto done; 379 } 380 } 381 382 ether_addr_copy(node_real->macaddress_B, ethhdr->h_source); 383 spin_lock_bh(&node_real->seq_out_lock); 384 for (i = 0; i < HSR_PT_PORTS; i++) { 385 if (!node_curr->time_in_stale[i] && 386 time_after(node_curr->time_in[i], node_real->time_in[i])) { 387 node_real->time_in[i] = node_curr->time_in[i]; 388 node_real->time_in_stale[i] = 389 node_curr->time_in_stale[i]; 390 } 391 if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i])) 392 node_real->seq_out[i] = node_curr->seq_out[i]; 393 } 394 spin_unlock_bh(&node_real->seq_out_lock); 395 node_real->addr_B_port = port_rcv->type; 396 397 spin_lock_bh(&hsr->list_lock); 398 if (!node_curr->removed) { 399 list_del_rcu(&node_curr->mac_list); 400 node_curr->removed = true; 401 kfree_rcu(node_curr, rcu_head); 402 } 403 spin_unlock_bh(&hsr->list_lock); 404 405 done: 406 /* Push back here */ 407 skb_push(skb, total_pull_size); 408 } 409 410 /* 'skb' is a frame meant for this host, that is to be passed to upper layers. 411 * 412 * If the frame was sent by a node's B interface, replace the source 413 * address with that node's "official" address (macaddress_A) so that upper 414 * layers recognize where it came from. 415 */ 416 void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb) 417 { 418 if (!skb_mac_header_was_set(skb)) { 419 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 420 return; 421 } 422 423 memcpy(ð_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN); 424 } 425 426 /* 'skb' is a frame meant for another host. 427 * 'port' is the outgoing interface 428 * 429 * Substitute the target (dest) MAC address if necessary, so the it matches the 430 * recipient interface MAC address, regardless of whether that is the 431 * recipient's A or B interface. 432 * This is needed to keep the packets flowing through switches that learn on 433 * which "side" the different interfaces are. 434 */ 435 void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb, 436 struct hsr_port *port) 437 { 438 struct hsr_node *node_dst; 439 440 if (!skb_mac_header_was_set(skb)) { 441 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 442 return; 443 } 444 445 if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest)) 446 return; 447 448 node_dst = find_node_by_addr_A(&port->hsr->node_db, 449 eth_hdr(skb)->h_dest); 450 if (!node_dst && port->hsr->redbox) 451 node_dst = find_node_by_addr_A(&port->hsr->proxy_node_db, 452 eth_hdr(skb)->h_dest); 453 454 if (!node_dst) { 455 if (port->hsr->prot_version != PRP_V1 && net_ratelimit()) 456 netdev_err(skb->dev, "%s: Unknown node\n", __func__); 457 return; 458 } 459 if (port->type != node_dst->addr_B_port) 460 return; 461 462 if (is_valid_ether_addr(node_dst->macaddress_B)) 463 ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B); 464 } 465 466 void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port, 467 u16 sequence_nr) 468 { 469 /* Don't register incoming frames without a valid sequence number. This 470 * ensures entries of restarted nodes gets pruned so that they can 471 * re-register and resume communications. 472 */ 473 if (!(port->dev->features & NETIF_F_HW_HSR_TAG_RM) && 474 seq_nr_before(sequence_nr, node->seq_out[port->type])) 475 return; 476 477 node->time_in[port->type] = jiffies; 478 node->time_in_stale[port->type] = false; 479 } 480 481 /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid 482 * ethhdr->h_source address and skb->mac_header set. 483 * 484 * Return: 485 * 1 if frame can be shown to have been sent recently on this interface, 486 * 0 otherwise, or 487 * negative error code on error 488 */ 489 int hsr_register_frame_out(struct hsr_port *port, struct hsr_frame_info *frame) 490 { 491 struct hsr_node *node = frame->node_src; 492 u16 sequence_nr = frame->sequence_nr; 493 494 spin_lock_bh(&node->seq_out_lock); 495 if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type]) && 496 time_is_after_jiffies(node->time_out[port->type] + 497 msecs_to_jiffies(HSR_ENTRY_FORGET_TIME))) { 498 spin_unlock_bh(&node->seq_out_lock); 499 return 1; 500 } 501 502 node->time_out[port->type] = jiffies; 503 node->seq_out[port->type] = sequence_nr; 504 spin_unlock_bh(&node->seq_out_lock); 505 return 0; 506 } 507 508 /* Adaptation of the PRP duplicate discard algorithm described in wireshark 509 * wiki (https://wiki.wireshark.org/PRP) 510 * 511 * A drop window is maintained for both LANs with start sequence set to the 512 * first sequence accepted on the LAN that has not been seen on the other LAN, 513 * and expected sequence set to the latest received sequence number plus one. 514 * 515 * When a frame is received on either LAN it is compared against the received 516 * frames on the other LAN. If it is outside the drop window of the other LAN 517 * the frame is accepted and the drop window is updated. 518 * The drop window for the other LAN is reset. 519 * 520 * 'port' is the outgoing interface 521 * 'frame' is the frame to be sent 522 * 523 * Return: 524 * 1 if frame can be shown to have been sent recently on this interface, 525 * 0 otherwise 526 */ 527 int prp_register_frame_out(struct hsr_port *port, struct hsr_frame_info *frame) 528 { 529 enum hsr_port_type other_port; 530 enum hsr_port_type rcv_port; 531 struct hsr_node *node; 532 u16 sequence_diff; 533 u16 sequence_exp; 534 u16 sequence_nr; 535 536 /* out-going frames are always in order 537 * and can be checked the same way as for HSR 538 */ 539 if (frame->port_rcv->type == HSR_PT_MASTER) 540 return hsr_register_frame_out(port, frame); 541 542 /* for PRP we should only forward frames from the slave ports 543 * to the master port 544 */ 545 if (port->type != HSR_PT_MASTER) 546 return 1; 547 548 node = frame->node_src; 549 sequence_nr = frame->sequence_nr; 550 sequence_exp = sequence_nr + 1; 551 rcv_port = frame->port_rcv->type; 552 other_port = rcv_port == HSR_PT_SLAVE_A ? HSR_PT_SLAVE_B : 553 HSR_PT_SLAVE_A; 554 555 spin_lock_bh(&node->seq_out_lock); 556 if (time_is_before_jiffies(node->time_out[port->type] + 557 msecs_to_jiffies(HSR_ENTRY_FORGET_TIME)) || 558 (node->seq_start[rcv_port] == node->seq_expected[rcv_port] && 559 node->seq_start[other_port] == node->seq_expected[other_port])) { 560 /* the node hasn't been sending for a while 561 * or both drop windows are empty, forward the frame 562 */ 563 node->seq_start[rcv_port] = sequence_nr; 564 } else if (seq_nr_before(sequence_nr, node->seq_expected[other_port]) && 565 seq_nr_before_or_eq(node->seq_start[other_port], sequence_nr)) { 566 /* drop the frame, update the drop window for the other port 567 * and reset our drop window 568 */ 569 node->seq_start[other_port] = sequence_exp; 570 node->seq_expected[rcv_port] = sequence_exp; 571 node->seq_start[rcv_port] = node->seq_expected[rcv_port]; 572 spin_unlock_bh(&node->seq_out_lock); 573 return 1; 574 } 575 576 /* update the drop window for the port where this frame was received 577 * and clear the drop window for the other port 578 */ 579 node->seq_start[other_port] = node->seq_expected[other_port]; 580 node->seq_expected[rcv_port] = sequence_exp; 581 sequence_diff = sequence_exp - node->seq_start[rcv_port]; 582 if (sequence_diff > PRP_DROP_WINDOW_LEN) 583 node->seq_start[rcv_port] = sequence_exp - PRP_DROP_WINDOW_LEN; 584 585 node->time_out[port->type] = jiffies; 586 node->seq_out[port->type] = sequence_nr; 587 spin_unlock_bh(&node->seq_out_lock); 588 return 0; 589 } 590 591 #if IS_MODULE(CONFIG_PRP_DUP_DISCARD_KUNIT_TEST) 592 EXPORT_SYMBOL(prp_register_frame_out); 593 #endif 594 595 static struct hsr_port *get_late_port(struct hsr_priv *hsr, 596 struct hsr_node *node) 597 { 598 if (node->time_in_stale[HSR_PT_SLAVE_A]) 599 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 600 if (node->time_in_stale[HSR_PT_SLAVE_B]) 601 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 602 603 if (time_after(node->time_in[HSR_PT_SLAVE_B], 604 node->time_in[HSR_PT_SLAVE_A] + 605 msecs_to_jiffies(MAX_SLAVE_DIFF))) 606 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A); 607 if (time_after(node->time_in[HSR_PT_SLAVE_A], 608 node->time_in[HSR_PT_SLAVE_B] + 609 msecs_to_jiffies(MAX_SLAVE_DIFF))) 610 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B); 611 612 return NULL; 613 } 614 615 /* Remove stale sequence_nr records. Called by timer every 616 * HSR_LIFE_CHECK_INTERVAL (two seconds or so). 617 */ 618 void hsr_prune_nodes(struct timer_list *t) 619 { 620 struct hsr_priv *hsr = timer_container_of(hsr, t, prune_timer); 621 struct hsr_node *node; 622 struct hsr_node *tmp; 623 struct hsr_port *port; 624 unsigned long timestamp; 625 unsigned long time_a, time_b; 626 627 spin_lock_bh(&hsr->list_lock); 628 list_for_each_entry_safe(node, tmp, &hsr->node_db, mac_list) { 629 /* Don't prune own node. Neither time_in[HSR_PT_SLAVE_A] 630 * nor time_in[HSR_PT_SLAVE_B], will ever be updated for 631 * the master port. Thus the master node will be repeatedly 632 * pruned leading to packet loss. 633 */ 634 if (hsr_addr_is_self(hsr, node->macaddress_A)) 635 continue; 636 637 /* Shorthand */ 638 time_a = node->time_in[HSR_PT_SLAVE_A]; 639 time_b = node->time_in[HSR_PT_SLAVE_B]; 640 641 /* Check for timestamps old enough to risk wrap-around */ 642 if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2)) 643 node->time_in_stale[HSR_PT_SLAVE_A] = true; 644 if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2)) 645 node->time_in_stale[HSR_PT_SLAVE_B] = true; 646 647 /* Get age of newest frame from node. 648 * At least one time_in is OK here; nodes get pruned long 649 * before both time_ins can get stale 650 */ 651 timestamp = time_a; 652 if (node->time_in_stale[HSR_PT_SLAVE_A] || 653 (!node->time_in_stale[HSR_PT_SLAVE_B] && 654 time_after(time_b, time_a))) 655 timestamp = time_b; 656 657 /* Warn of ring error only as long as we get frames at all */ 658 if (time_is_after_jiffies(timestamp + 659 msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) { 660 rcu_read_lock(); 661 port = get_late_port(hsr, node); 662 if (port) 663 hsr_nl_ringerror(hsr, node->macaddress_A, port); 664 rcu_read_unlock(); 665 } 666 667 /* Prune old entries */ 668 if (time_is_before_jiffies(timestamp + 669 msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { 670 hsr_nl_nodedown(hsr, node->macaddress_A); 671 if (!node->removed) { 672 list_del_rcu(&node->mac_list); 673 node->removed = true; 674 /* Note that we need to free this entry later: */ 675 kfree_rcu(node, rcu_head); 676 } 677 } 678 } 679 spin_unlock_bh(&hsr->list_lock); 680 681 /* Restart timer */ 682 mod_timer(&hsr->prune_timer, 683 jiffies + msecs_to_jiffies(PRUNE_PERIOD)); 684 } 685 686 void hsr_prune_proxy_nodes(struct timer_list *t) 687 { 688 struct hsr_priv *hsr = timer_container_of(hsr, t, prune_proxy_timer); 689 unsigned long timestamp; 690 struct hsr_node *node; 691 struct hsr_node *tmp; 692 693 spin_lock_bh(&hsr->list_lock); 694 list_for_each_entry_safe(node, tmp, &hsr->proxy_node_db, mac_list) { 695 /* Don't prune RedBox node. */ 696 if (hsr_addr_is_redbox(hsr, node->macaddress_A)) 697 continue; 698 699 timestamp = node->time_in[HSR_PT_INTERLINK]; 700 701 /* Prune old entries */ 702 if (time_is_before_jiffies(timestamp + 703 msecs_to_jiffies(HSR_PROXY_NODE_FORGET_TIME))) { 704 hsr_nl_nodedown(hsr, node->macaddress_A); 705 if (!node->removed) { 706 list_del_rcu(&node->mac_list); 707 node->removed = true; 708 /* Note that we need to free this entry later: */ 709 kfree_rcu(node, rcu_head); 710 } 711 } 712 } 713 714 spin_unlock_bh(&hsr->list_lock); 715 716 /* Restart timer */ 717 mod_timer(&hsr->prune_proxy_timer, 718 jiffies + msecs_to_jiffies(PRUNE_PROXY_PERIOD)); 719 } 720 721 void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos, 722 unsigned char addr[ETH_ALEN]) 723 { 724 struct hsr_node *node; 725 726 if (!_pos) { 727 node = list_first_or_null_rcu(&hsr->node_db, 728 struct hsr_node, mac_list); 729 if (node) 730 ether_addr_copy(addr, node->macaddress_A); 731 return node; 732 } 733 734 node = _pos; 735 list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) { 736 ether_addr_copy(addr, node->macaddress_A); 737 return node; 738 } 739 740 return NULL; 741 } 742 743 int hsr_get_node_data(struct hsr_priv *hsr, 744 const unsigned char *addr, 745 unsigned char addr_b[ETH_ALEN], 746 unsigned int *addr_b_ifindex, 747 int *if1_age, 748 u16 *if1_seq, 749 int *if2_age, 750 u16 *if2_seq) 751 { 752 struct hsr_node *node; 753 struct hsr_port *port; 754 unsigned long tdiff; 755 756 node = find_node_by_addr_A(&hsr->node_db, addr); 757 if (!node) 758 return -ENOENT; 759 760 ether_addr_copy(addr_b, node->macaddress_B); 761 762 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A]; 763 if (node->time_in_stale[HSR_PT_SLAVE_A]) 764 *if1_age = INT_MAX; 765 #if HZ <= MSEC_PER_SEC 766 else if (tdiff > msecs_to_jiffies(INT_MAX)) 767 *if1_age = INT_MAX; 768 #endif 769 else 770 *if1_age = jiffies_to_msecs(tdiff); 771 772 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B]; 773 if (node->time_in_stale[HSR_PT_SLAVE_B]) 774 *if2_age = INT_MAX; 775 #if HZ <= MSEC_PER_SEC 776 else if (tdiff > msecs_to_jiffies(INT_MAX)) 777 *if2_age = INT_MAX; 778 #endif 779 else 780 *if2_age = jiffies_to_msecs(tdiff); 781 782 /* Present sequence numbers as if they were incoming on interface */ 783 *if1_seq = node->seq_out[HSR_PT_SLAVE_B]; 784 *if2_seq = node->seq_out[HSR_PT_SLAVE_A]; 785 786 if (node->addr_B_port != HSR_PT_NONE) { 787 port = hsr_port_get_hsr(hsr, node->addr_B_port); 788 *addr_b_ifindex = port->dev->ifindex; 789 } else { 790 *addr_b_ifindex = -1; 791 } 792 793 return 0; 794 } 795