1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 /* Free the request command so it is not used as response */ 35 kfree_skb(hdev->req_skb); 36 hdev->req_skb = NULL; 37 38 if (skb) { 39 struct sock *sk = hci_skb_sk(skb); 40 41 /* Drop sk reference if set */ 42 if (sk) 43 sock_put(sk); 44 45 hdev->req_rsp = skb_get(skb); 46 } 47 48 wake_up_interruptible(&hdev->req_wait_q); 49 } 50 51 struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, u32 plen, 52 const void *param, struct sock *sk) 53 { 54 int len = HCI_COMMAND_HDR_SIZE + plen; 55 struct hci_command_hdr *hdr; 56 struct sk_buff *skb; 57 58 skb = bt_skb_alloc(len, GFP_ATOMIC); 59 if (!skb) 60 return NULL; 61 62 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 63 hdr->opcode = cpu_to_le16(opcode); 64 hdr->plen = plen; 65 66 if (plen) 67 skb_put_data(skb, param, plen); 68 69 bt_dev_dbg(hdev, "skb len %d", skb->len); 70 71 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 72 hci_skb_opcode(skb) = opcode; 73 74 /* Grab a reference if command needs to be associated with a sock (e.g. 75 * likely mgmt socket that initiated the command). 76 */ 77 if (sk) { 78 hci_skb_sk(skb) = sk; 79 sock_hold(sk); 80 } 81 82 return skb; 83 } 84 85 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 86 const void *param, u8 event, struct sock *sk) 87 { 88 struct hci_dev *hdev = req->hdev; 89 struct sk_buff *skb; 90 91 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 92 93 /* If an error occurred during request building, there is no point in 94 * queueing the HCI command. We can simply return. 95 */ 96 if (req->err) 97 return; 98 99 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 100 if (!skb) { 101 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 102 opcode); 103 req->err = -ENOMEM; 104 return; 105 } 106 107 if (skb_queue_empty(&req->cmd_q)) 108 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 109 110 hci_skb_event(skb) = event; 111 112 skb_queue_tail(&req->cmd_q, skb); 113 } 114 115 static int hci_req_sync_run(struct hci_request *req) 116 { 117 struct hci_dev *hdev = req->hdev; 118 struct sk_buff *skb; 119 unsigned long flags; 120 121 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 122 123 /* If an error occurred during request building, remove all HCI 124 * commands queued on the HCI request queue. 125 */ 126 if (req->err) { 127 skb_queue_purge(&req->cmd_q); 128 return req->err; 129 } 130 131 /* Do not allow empty requests */ 132 if (skb_queue_empty(&req->cmd_q)) 133 return -ENODATA; 134 135 skb = skb_peek_tail(&req->cmd_q); 136 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 137 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 138 139 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 140 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 141 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 142 143 queue_work(hdev->workqueue, &hdev->cmd_work); 144 145 return 0; 146 } 147 148 static void hci_request_init(struct hci_request *req, struct hci_dev *hdev) 149 { 150 skb_queue_head_init(&req->cmd_q); 151 req->hdev = hdev; 152 req->err = 0; 153 } 154 155 /* This function requires the caller holds hdev->req_lock. */ 156 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 157 const void *param, u8 event, u32 timeout, 158 struct sock *sk) 159 { 160 struct hci_request req; 161 struct sk_buff *skb; 162 int err = 0; 163 164 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 165 166 hci_request_init(&req, hdev); 167 168 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 169 170 hdev->req_status = HCI_REQ_PEND; 171 172 err = hci_req_sync_run(&req); 173 if (err < 0) 174 return ERR_PTR(err); 175 176 err = wait_event_interruptible_timeout(hdev->req_wait_q, 177 hdev->req_status != HCI_REQ_PEND, 178 timeout); 179 180 if (err == -ERESTARTSYS) 181 return ERR_PTR(-EINTR); 182 183 switch (hdev->req_status) { 184 case HCI_REQ_DONE: 185 err = -bt_to_errno(hdev->req_result); 186 break; 187 188 case HCI_REQ_CANCELED: 189 err = -hdev->req_result; 190 break; 191 192 default: 193 err = -ETIMEDOUT; 194 break; 195 } 196 197 hdev->req_status = 0; 198 hdev->req_result = 0; 199 skb = hdev->req_rsp; 200 hdev->req_rsp = NULL; 201 202 bt_dev_dbg(hdev, "end: err %d", err); 203 204 if (err < 0) { 205 kfree_skb(skb); 206 return ERR_PTR(err); 207 } 208 209 /* If command return a status event skb will be set to NULL as there are 210 * no parameters. 211 */ 212 if (!skb) 213 return ERR_PTR(-ENODATA); 214 215 return skb; 216 } 217 EXPORT_SYMBOL(__hci_cmd_sync_sk); 218 219 /* This function requires the caller holds hdev->req_lock. */ 220 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 221 const void *param, u32 timeout) 222 { 223 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 224 } 225 EXPORT_SYMBOL(__hci_cmd_sync); 226 227 /* Send HCI command and wait for command complete event */ 228 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 229 const void *param, u32 timeout) 230 { 231 struct sk_buff *skb; 232 233 if (!test_bit(HCI_UP, &hdev->flags)) 234 return ERR_PTR(-ENETDOWN); 235 236 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 237 238 hci_req_sync_lock(hdev); 239 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 240 hci_req_sync_unlock(hdev); 241 242 return skb; 243 } 244 EXPORT_SYMBOL(hci_cmd_sync); 245 246 /* This function requires the caller holds hdev->req_lock. */ 247 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 248 const void *param, u8 event, u32 timeout) 249 { 250 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 251 NULL); 252 } 253 EXPORT_SYMBOL(__hci_cmd_sync_ev); 254 255 /* This function requires the caller holds hdev->req_lock. */ 256 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 257 const void *param, u8 event, u32 timeout, 258 struct sock *sk) 259 { 260 struct sk_buff *skb; 261 u8 status; 262 263 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 264 265 /* If command return a status event, skb will be set to -ENODATA */ 266 if (skb == ERR_PTR(-ENODATA)) 267 return 0; 268 269 if (IS_ERR(skb)) { 270 if (!event) 271 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 272 PTR_ERR(skb)); 273 return PTR_ERR(skb); 274 } 275 276 status = skb->data[0]; 277 278 kfree_skb(skb); 279 280 return status; 281 } 282 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 283 284 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 285 const void *param, u32 timeout) 286 { 287 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 288 NULL); 289 } 290 EXPORT_SYMBOL(__hci_cmd_sync_status); 291 292 int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 293 const void *param, u32 timeout) 294 { 295 int err; 296 297 hci_req_sync_lock(hdev); 298 err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout); 299 hci_req_sync_unlock(hdev); 300 301 return err; 302 } 303 EXPORT_SYMBOL(hci_cmd_sync_status); 304 305 static void hci_cmd_sync_work(struct work_struct *work) 306 { 307 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 308 309 bt_dev_dbg(hdev, ""); 310 311 /* Dequeue all entries and run them */ 312 while (1) { 313 struct hci_cmd_sync_work_entry *entry; 314 315 mutex_lock(&hdev->cmd_sync_work_lock); 316 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 317 struct hci_cmd_sync_work_entry, 318 list); 319 if (entry) 320 list_del(&entry->list); 321 mutex_unlock(&hdev->cmd_sync_work_lock); 322 323 if (!entry) 324 break; 325 326 bt_dev_dbg(hdev, "entry %p", entry); 327 328 if (entry->func) { 329 int err; 330 331 hci_req_sync_lock(hdev); 332 err = entry->func(hdev, entry->data); 333 if (entry->destroy) 334 entry->destroy(hdev, entry->data, err); 335 hci_req_sync_unlock(hdev); 336 } 337 338 kfree(entry); 339 } 340 } 341 342 static void hci_cmd_sync_cancel_work(struct work_struct *work) 343 { 344 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 345 346 cancel_delayed_work_sync(&hdev->cmd_timer); 347 cancel_delayed_work_sync(&hdev->ncmd_timer); 348 atomic_set(&hdev->cmd_cnt, 1); 349 350 wake_up_interruptible(&hdev->req_wait_q); 351 } 352 353 static int hci_scan_disable_sync(struct hci_dev *hdev); 354 static int scan_disable_sync(struct hci_dev *hdev, void *data) 355 { 356 return hci_scan_disable_sync(hdev); 357 } 358 359 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 360 { 361 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN, 0); 362 } 363 364 static void le_scan_disable(struct work_struct *work) 365 { 366 struct hci_dev *hdev = container_of(work, struct hci_dev, 367 le_scan_disable.work); 368 int status; 369 370 bt_dev_dbg(hdev, ""); 371 hci_dev_lock(hdev); 372 373 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 374 goto _return; 375 376 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 377 if (status) { 378 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 379 goto _return; 380 } 381 382 /* If we were running LE only scan, change discovery state. If 383 * we were running both LE and BR/EDR inquiry simultaneously, 384 * and BR/EDR inquiry is already finished, stop discovery, 385 * otherwise BR/EDR inquiry will stop discovery when finished. 386 * If we will resolve remote device name, do not change 387 * discovery state. 388 */ 389 390 if (hdev->discovery.type == DISCOV_TYPE_LE) 391 goto discov_stopped; 392 393 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 394 goto _return; 395 396 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 397 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 398 hdev->discovery.state != DISCOVERY_RESOLVING) 399 goto discov_stopped; 400 401 goto _return; 402 } 403 404 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 405 if (status) { 406 bt_dev_err(hdev, "inquiry failed: status %d", status); 407 goto discov_stopped; 408 } 409 410 goto _return; 411 412 discov_stopped: 413 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 414 415 _return: 416 hci_dev_unlock(hdev); 417 } 418 419 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 420 u8 filter_dup); 421 422 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 423 { 424 bt_dev_dbg(hdev, ""); 425 426 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 427 list_empty(&hdev->adv_instances)) 428 return 0; 429 430 if (hdev->cur_adv_instance) { 431 return hci_schedule_adv_instance_sync(hdev, 432 hdev->cur_adv_instance, 433 true); 434 } else { 435 if (ext_adv_capable(hdev)) { 436 hci_start_ext_adv_sync(hdev, 0x00); 437 } else { 438 hci_update_adv_data_sync(hdev, 0x00); 439 hci_update_scan_rsp_data_sync(hdev, 0x00); 440 hci_enable_advertising_sync(hdev); 441 } 442 } 443 444 return 0; 445 } 446 447 static void reenable_adv(struct work_struct *work) 448 { 449 struct hci_dev *hdev = container_of(work, struct hci_dev, 450 reenable_adv_work); 451 int status; 452 453 bt_dev_dbg(hdev, ""); 454 455 hci_dev_lock(hdev); 456 457 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 458 if (status) 459 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 460 461 hci_dev_unlock(hdev); 462 } 463 464 static void cancel_adv_timeout(struct hci_dev *hdev) 465 { 466 if (hdev->adv_instance_timeout) { 467 hdev->adv_instance_timeout = 0; 468 cancel_delayed_work(&hdev->adv_instance_expire); 469 } 470 } 471 472 /* For a single instance: 473 * - force == true: The instance will be removed even when its remaining 474 * lifetime is not zero. 475 * - force == false: the instance will be deactivated but kept stored unless 476 * the remaining lifetime is zero. 477 * 478 * For instance == 0x00: 479 * - force == true: All instances will be removed regardless of their timeout 480 * setting. 481 * - force == false: Only instances that have a timeout will be removed. 482 */ 483 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 484 u8 instance, bool force) 485 { 486 struct adv_info *adv_instance, *n, *next_instance = NULL; 487 int err; 488 u8 rem_inst; 489 490 /* Cancel any timeout concerning the removed instance(s). */ 491 if (!instance || hdev->cur_adv_instance == instance) 492 cancel_adv_timeout(hdev); 493 494 /* Get the next instance to advertise BEFORE we remove 495 * the current one. This can be the same instance again 496 * if there is only one instance. 497 */ 498 if (instance && hdev->cur_adv_instance == instance) 499 next_instance = hci_get_next_instance(hdev, instance); 500 501 if (instance == 0x00) { 502 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 503 list) { 504 if (!(force || adv_instance->timeout)) 505 continue; 506 507 rem_inst = adv_instance->instance; 508 err = hci_remove_adv_instance(hdev, rem_inst); 509 if (!err) 510 mgmt_advertising_removed(sk, hdev, rem_inst); 511 } 512 } else { 513 adv_instance = hci_find_adv_instance(hdev, instance); 514 515 if (force || (adv_instance && adv_instance->timeout && 516 !adv_instance->remaining_time)) { 517 /* Don't advertise a removed instance. */ 518 if (next_instance && 519 next_instance->instance == instance) 520 next_instance = NULL; 521 522 err = hci_remove_adv_instance(hdev, instance); 523 if (!err) 524 mgmt_advertising_removed(sk, hdev, instance); 525 } 526 } 527 528 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 529 return 0; 530 531 if (next_instance && !ext_adv_capable(hdev)) 532 return hci_schedule_adv_instance_sync(hdev, 533 next_instance->instance, 534 false); 535 536 return 0; 537 } 538 539 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 540 { 541 u8 instance = *(u8 *)data; 542 543 kfree(data); 544 545 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 546 547 if (list_empty(&hdev->adv_instances)) 548 return hci_disable_advertising_sync(hdev); 549 550 return 0; 551 } 552 553 static void adv_timeout_expire(struct work_struct *work) 554 { 555 u8 *inst_ptr; 556 struct hci_dev *hdev = container_of(work, struct hci_dev, 557 adv_instance_expire.work); 558 559 bt_dev_dbg(hdev, ""); 560 561 hci_dev_lock(hdev); 562 563 hdev->adv_instance_timeout = 0; 564 565 if (hdev->cur_adv_instance == 0x00) 566 goto unlock; 567 568 inst_ptr = kmalloc(1, GFP_KERNEL); 569 if (!inst_ptr) 570 goto unlock; 571 572 *inst_ptr = hdev->cur_adv_instance; 573 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 574 575 unlock: 576 hci_dev_unlock(hdev); 577 } 578 579 static bool is_interleave_scanning(struct hci_dev *hdev) 580 { 581 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 582 } 583 584 static int hci_passive_scan_sync(struct hci_dev *hdev); 585 586 static void interleave_scan_work(struct work_struct *work) 587 { 588 struct hci_dev *hdev = container_of(work, struct hci_dev, 589 interleave_scan.work); 590 unsigned long timeout; 591 592 if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) { 593 timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration); 594 } else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) { 595 timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration); 596 } else { 597 bt_dev_err(hdev, "unexpected error"); 598 return; 599 } 600 601 hci_passive_scan_sync(hdev); 602 603 hci_dev_lock(hdev); 604 605 switch (hdev->interleave_scan_state) { 606 case INTERLEAVE_SCAN_ALLOWLIST: 607 bt_dev_dbg(hdev, "next state: allowlist"); 608 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 609 break; 610 case INTERLEAVE_SCAN_NO_FILTER: 611 bt_dev_dbg(hdev, "next state: no filter"); 612 hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST; 613 break; 614 case INTERLEAVE_SCAN_NONE: 615 bt_dev_err(hdev, "unexpected error"); 616 } 617 618 hci_dev_unlock(hdev); 619 620 /* Don't continue interleaving if it was canceled */ 621 if (is_interleave_scanning(hdev)) 622 queue_delayed_work(hdev->req_workqueue, 623 &hdev->interleave_scan, timeout); 624 } 625 626 void hci_cmd_sync_init(struct hci_dev *hdev) 627 { 628 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 629 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 630 mutex_init(&hdev->cmd_sync_work_lock); 631 mutex_init(&hdev->unregister_lock); 632 633 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 634 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 635 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 636 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 637 INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work); 638 } 639 640 static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 641 struct hci_cmd_sync_work_entry *entry, 642 int err) 643 { 644 if (entry->destroy) 645 entry->destroy(hdev, entry->data, err); 646 647 list_del(&entry->list); 648 kfree(entry); 649 } 650 651 void hci_cmd_sync_clear(struct hci_dev *hdev) 652 { 653 struct hci_cmd_sync_work_entry *entry, *tmp; 654 655 cancel_work_sync(&hdev->cmd_sync_work); 656 cancel_work_sync(&hdev->reenable_adv_work); 657 658 mutex_lock(&hdev->cmd_sync_work_lock); 659 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) 660 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 661 mutex_unlock(&hdev->cmd_sync_work_lock); 662 } 663 664 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 665 { 666 bt_dev_dbg(hdev, "err 0x%2.2x", err); 667 668 if (hdev->req_status == HCI_REQ_PEND) { 669 hdev->req_result = err; 670 hdev->req_status = HCI_REQ_CANCELED; 671 672 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 673 } 674 } 675 EXPORT_SYMBOL(hci_cmd_sync_cancel); 676 677 /* Cancel ongoing command request synchronously: 678 * 679 * - Set result and mark status to HCI_REQ_CANCELED 680 * - Wakeup command sync thread 681 */ 682 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) 683 { 684 bt_dev_dbg(hdev, "err 0x%2.2x", err); 685 686 if (hdev->req_status == HCI_REQ_PEND) { 687 /* req_result is __u32 so error must be positive to be properly 688 * propagated. 689 */ 690 hdev->req_result = err < 0 ? -err : err; 691 hdev->req_status = HCI_REQ_CANCELED; 692 693 wake_up_interruptible(&hdev->req_wait_q); 694 } 695 } 696 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); 697 698 /* Submit HCI command to be run in as cmd_sync_work: 699 * 700 * - hdev must _not_ be unregistered 701 */ 702 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 703 void *data, hci_cmd_sync_work_destroy_t destroy) 704 { 705 struct hci_cmd_sync_work_entry *entry; 706 int err = 0; 707 708 mutex_lock(&hdev->unregister_lock); 709 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 710 err = -ENODEV; 711 goto unlock; 712 } 713 714 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 715 if (!entry) { 716 err = -ENOMEM; 717 goto unlock; 718 } 719 entry->func = func; 720 entry->data = data; 721 entry->destroy = destroy; 722 723 mutex_lock(&hdev->cmd_sync_work_lock); 724 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 725 mutex_unlock(&hdev->cmd_sync_work_lock); 726 727 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 728 729 unlock: 730 mutex_unlock(&hdev->unregister_lock); 731 return err; 732 } 733 EXPORT_SYMBOL(hci_cmd_sync_submit); 734 735 /* Queue HCI command: 736 * 737 * - hdev must be running 738 */ 739 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 740 void *data, hci_cmd_sync_work_destroy_t destroy) 741 { 742 /* Only queue command if hdev is running which means it had been opened 743 * and is either on init phase or is already up. 744 */ 745 if (!test_bit(HCI_RUNNING, &hdev->flags)) 746 return -ENETDOWN; 747 748 return hci_cmd_sync_submit(hdev, func, data, destroy); 749 } 750 EXPORT_SYMBOL(hci_cmd_sync_queue); 751 752 static struct hci_cmd_sync_work_entry * 753 _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 754 void *data, hci_cmd_sync_work_destroy_t destroy) 755 { 756 struct hci_cmd_sync_work_entry *entry, *tmp; 757 758 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 759 if (func && entry->func != func) 760 continue; 761 762 if (data && entry->data != data) 763 continue; 764 765 if (destroy && entry->destroy != destroy) 766 continue; 767 768 return entry; 769 } 770 771 return NULL; 772 } 773 774 /* Queue HCI command entry once: 775 * 776 * - Lookup if an entry already exist and only if it doesn't creates a new entry 777 * and queue it. 778 */ 779 int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 780 void *data, hci_cmd_sync_work_destroy_t destroy) 781 { 782 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 783 return 0; 784 785 return hci_cmd_sync_queue(hdev, func, data, destroy); 786 } 787 EXPORT_SYMBOL(hci_cmd_sync_queue_once); 788 789 /* Run HCI command: 790 * 791 * - hdev must be running 792 * - if on cmd_sync_work then run immediately otherwise queue 793 */ 794 int hci_cmd_sync_run(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 795 void *data, hci_cmd_sync_work_destroy_t destroy) 796 { 797 /* Only queue command if hdev is running which means it had been opened 798 * and is either on init phase or is already up. 799 */ 800 if (!test_bit(HCI_RUNNING, &hdev->flags)) 801 return -ENETDOWN; 802 803 /* If on cmd_sync_work then run immediately otherwise queue */ 804 if (current_work() == &hdev->cmd_sync_work) 805 return func(hdev, data); 806 807 return hci_cmd_sync_submit(hdev, func, data, destroy); 808 } 809 EXPORT_SYMBOL(hci_cmd_sync_run); 810 811 /* Run HCI command entry once: 812 * 813 * - Lookup if an entry already exist and only if it doesn't creates a new entry 814 * and run it. 815 * - if on cmd_sync_work then run immediately otherwise queue 816 */ 817 int hci_cmd_sync_run_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 818 void *data, hci_cmd_sync_work_destroy_t destroy) 819 { 820 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 821 return 0; 822 823 return hci_cmd_sync_run(hdev, func, data, destroy); 824 } 825 EXPORT_SYMBOL(hci_cmd_sync_run_once); 826 827 /* Lookup HCI command entry: 828 * 829 * - Return first entry that matches by function callback or data or 830 * destroy callback. 831 */ 832 struct hci_cmd_sync_work_entry * 833 hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 834 void *data, hci_cmd_sync_work_destroy_t destroy) 835 { 836 struct hci_cmd_sync_work_entry *entry; 837 838 mutex_lock(&hdev->cmd_sync_work_lock); 839 entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 840 mutex_unlock(&hdev->cmd_sync_work_lock); 841 842 return entry; 843 } 844 EXPORT_SYMBOL(hci_cmd_sync_lookup_entry); 845 846 /* Cancel HCI command entry */ 847 void hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 848 struct hci_cmd_sync_work_entry *entry) 849 { 850 mutex_lock(&hdev->cmd_sync_work_lock); 851 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 852 mutex_unlock(&hdev->cmd_sync_work_lock); 853 } 854 EXPORT_SYMBOL(hci_cmd_sync_cancel_entry); 855 856 /* Dequeue one HCI command entry: 857 * 858 * - Lookup and cancel first entry that matches. 859 */ 860 bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev, 861 hci_cmd_sync_work_func_t func, 862 void *data, hci_cmd_sync_work_destroy_t destroy) 863 { 864 struct hci_cmd_sync_work_entry *entry; 865 866 entry = hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 867 if (!entry) 868 return false; 869 870 hci_cmd_sync_cancel_entry(hdev, entry); 871 872 return true; 873 } 874 EXPORT_SYMBOL(hci_cmd_sync_dequeue_once); 875 876 /* Dequeue HCI command entry: 877 * 878 * - Lookup and cancel any entry that matches by function callback or data or 879 * destroy callback. 880 */ 881 bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 882 void *data, hci_cmd_sync_work_destroy_t destroy) 883 { 884 struct hci_cmd_sync_work_entry *entry; 885 bool ret = false; 886 887 mutex_lock(&hdev->cmd_sync_work_lock); 888 while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data, 889 destroy))) { 890 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 891 ret = true; 892 } 893 mutex_unlock(&hdev->cmd_sync_work_lock); 894 895 return ret; 896 } 897 EXPORT_SYMBOL(hci_cmd_sync_dequeue); 898 899 int hci_update_eir_sync(struct hci_dev *hdev) 900 { 901 struct hci_cp_write_eir cp; 902 903 bt_dev_dbg(hdev, ""); 904 905 if (!hdev_is_powered(hdev)) 906 return 0; 907 908 if (!lmp_ext_inq_capable(hdev)) 909 return 0; 910 911 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 912 return 0; 913 914 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 915 return 0; 916 917 memset(&cp, 0, sizeof(cp)); 918 919 eir_create(hdev, cp.data); 920 921 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 922 return 0; 923 924 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 925 926 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 927 HCI_CMD_TIMEOUT); 928 } 929 930 static u8 get_service_classes(struct hci_dev *hdev) 931 { 932 struct bt_uuid *uuid; 933 u8 val = 0; 934 935 list_for_each_entry(uuid, &hdev->uuids, list) 936 val |= uuid->svc_hint; 937 938 return val; 939 } 940 941 int hci_update_class_sync(struct hci_dev *hdev) 942 { 943 u8 cod[3]; 944 945 bt_dev_dbg(hdev, ""); 946 947 if (!hdev_is_powered(hdev)) 948 return 0; 949 950 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 951 return 0; 952 953 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 954 return 0; 955 956 cod[0] = hdev->minor_class; 957 cod[1] = hdev->major_class; 958 cod[2] = get_service_classes(hdev); 959 960 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 961 cod[1] |= 0x20; 962 963 if (memcmp(cod, hdev->dev_class, 3) == 0) 964 return 0; 965 966 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 967 sizeof(cod), cod, HCI_CMD_TIMEOUT); 968 } 969 970 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 971 { 972 /* If there is no connection we are OK to advertise. */ 973 if (hci_conn_num(hdev, LE_LINK) == 0) 974 return true; 975 976 /* Check le_states if there is any connection in peripheral role. */ 977 if (hdev->conn_hash.le_num_peripheral > 0) { 978 /* Peripheral connection state and non connectable mode 979 * bit 20. 980 */ 981 if (!connectable && !(hdev->le_states[2] & 0x10)) 982 return false; 983 984 /* Peripheral connection state and connectable mode bit 38 985 * and scannable bit 21. 986 */ 987 if (connectable && (!(hdev->le_states[4] & 0x40) || 988 !(hdev->le_states[2] & 0x20))) 989 return false; 990 } 991 992 /* Check le_states if there is any connection in central role. */ 993 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 994 /* Central connection state and non connectable mode bit 18. */ 995 if (!connectable && !(hdev->le_states[2] & 0x02)) 996 return false; 997 998 /* Central connection state and connectable mode bit 35 and 999 * scannable 19. 1000 */ 1001 if (connectable && (!(hdev->le_states[4] & 0x08) || 1002 !(hdev->le_states[2] & 0x08))) 1003 return false; 1004 } 1005 1006 return true; 1007 } 1008 1009 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 1010 { 1011 /* If privacy is not enabled don't use RPA */ 1012 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1013 return false; 1014 1015 /* If basic privacy mode is enabled use RPA */ 1016 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 1017 return true; 1018 1019 /* If limited privacy mode is enabled don't use RPA if we're 1020 * both discoverable and bondable. 1021 */ 1022 if ((flags & MGMT_ADV_FLAG_DISCOV) && 1023 hci_dev_test_flag(hdev, HCI_BONDABLE)) 1024 return false; 1025 1026 /* We're neither bondable nor discoverable in the limited 1027 * privacy mode, therefore use RPA. 1028 */ 1029 return true; 1030 } 1031 1032 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 1033 { 1034 /* If a random_addr has been set we're advertising or initiating an LE 1035 * connection we can't go ahead and change the random address at this 1036 * time. This is because the eventual initiator address used for the 1037 * subsequently created connection will be undefined (some 1038 * controllers use the new address and others the one we had 1039 * when the operation started). 1040 * 1041 * In this kind of scenario skip the update and let the random 1042 * address be updated at the next cycle. 1043 */ 1044 if (bacmp(&hdev->random_addr, BDADDR_ANY) && 1045 (hci_dev_test_flag(hdev, HCI_LE_ADV) || 1046 hci_lookup_le_connect(hdev))) { 1047 bt_dev_dbg(hdev, "Deferring random address update"); 1048 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1049 return 0; 1050 } 1051 1052 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 1053 6, rpa, HCI_CMD_TIMEOUT); 1054 } 1055 1056 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 1057 bool rpa, u8 *own_addr_type) 1058 { 1059 int err; 1060 1061 /* If privacy is enabled use a resolvable private address. If 1062 * current RPA has expired or there is something else than 1063 * the current RPA in use, then generate a new one. 1064 */ 1065 if (rpa) { 1066 /* If Controller supports LL Privacy use own address type is 1067 * 0x03 1068 */ 1069 if (ll_privacy_capable(hdev)) 1070 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 1071 else 1072 *own_addr_type = ADDR_LE_DEV_RANDOM; 1073 1074 /* Check if RPA is valid */ 1075 if (rpa_valid(hdev)) 1076 return 0; 1077 1078 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1079 if (err < 0) { 1080 bt_dev_err(hdev, "failed to generate new RPA"); 1081 return err; 1082 } 1083 1084 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 1085 if (err) 1086 return err; 1087 1088 return 0; 1089 } 1090 1091 /* In case of required privacy without resolvable private address, 1092 * use an non-resolvable private address. This is useful for active 1093 * scanning and non-connectable advertising. 1094 */ 1095 if (require_privacy) { 1096 bdaddr_t nrpa; 1097 1098 while (true) { 1099 /* The non-resolvable private address is generated 1100 * from random six bytes with the two most significant 1101 * bits cleared. 1102 */ 1103 get_random_bytes(&nrpa, 6); 1104 nrpa.b[5] &= 0x3f; 1105 1106 /* The non-resolvable private address shall not be 1107 * equal to the public address. 1108 */ 1109 if (bacmp(&hdev->bdaddr, &nrpa)) 1110 break; 1111 } 1112 1113 *own_addr_type = ADDR_LE_DEV_RANDOM; 1114 1115 return hci_set_random_addr_sync(hdev, &nrpa); 1116 } 1117 1118 /* If forcing static address is in use or there is no public 1119 * address use the static address as random address (but skip 1120 * the HCI command if the current random address is already the 1121 * static one. 1122 * 1123 * In case BR/EDR has been disabled on a dual-mode controller 1124 * and a static address has been configured, then use that 1125 * address instead of the public BR/EDR address. 1126 */ 1127 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1128 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1129 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1130 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1131 *own_addr_type = ADDR_LE_DEV_RANDOM; 1132 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1133 return hci_set_random_addr_sync(hdev, 1134 &hdev->static_addr); 1135 return 0; 1136 } 1137 1138 /* Neither privacy nor static address is being used so use a 1139 * public address. 1140 */ 1141 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1142 1143 return 0; 1144 } 1145 1146 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1147 { 1148 struct hci_cp_le_set_ext_adv_enable *cp; 1149 struct hci_cp_ext_adv_set *set; 1150 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1151 u8 size; 1152 struct adv_info *adv = NULL; 1153 1154 /* If request specifies an instance that doesn't exist, fail */ 1155 if (instance > 0) { 1156 adv = hci_find_adv_instance(hdev, instance); 1157 if (!adv) 1158 return -EINVAL; 1159 1160 /* If not enabled there is nothing to do */ 1161 if (!adv->enabled) 1162 return 0; 1163 } 1164 1165 memset(data, 0, sizeof(data)); 1166 1167 cp = (void *)data; 1168 set = (void *)cp->data; 1169 1170 /* Instance 0x00 indicates all advertising instances will be disabled */ 1171 cp->num_of_sets = !!instance; 1172 cp->enable = 0x00; 1173 1174 set->handle = adv ? adv->handle : instance; 1175 1176 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1177 1178 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1179 size, data, HCI_CMD_TIMEOUT); 1180 } 1181 1182 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1183 bdaddr_t *random_addr) 1184 { 1185 struct hci_cp_le_set_adv_set_rand_addr cp; 1186 int err; 1187 1188 if (!instance) { 1189 /* Instance 0x00 doesn't have an adv_info, instead it uses 1190 * hdev->random_addr to track its address so whenever it needs 1191 * to be updated this also set the random address since 1192 * hdev->random_addr is shared with scan state machine. 1193 */ 1194 err = hci_set_random_addr_sync(hdev, random_addr); 1195 if (err) 1196 return err; 1197 } 1198 1199 memset(&cp, 0, sizeof(cp)); 1200 1201 cp.handle = instance; 1202 bacpy(&cp.bdaddr, random_addr); 1203 1204 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1205 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1206 } 1207 1208 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1209 { 1210 struct hci_cp_le_set_ext_adv_params cp; 1211 bool connectable; 1212 u32 flags; 1213 bdaddr_t random_addr; 1214 u8 own_addr_type; 1215 int err; 1216 struct adv_info *adv; 1217 bool secondary_adv; 1218 1219 if (instance > 0) { 1220 adv = hci_find_adv_instance(hdev, instance); 1221 if (!adv) 1222 return -EINVAL; 1223 } else { 1224 adv = NULL; 1225 } 1226 1227 /* Updating parameters of an active instance will return a 1228 * Command Disallowed error, so we must first disable the 1229 * instance if it is active. 1230 */ 1231 if (adv && !adv->pending) { 1232 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1233 if (err) 1234 return err; 1235 } 1236 1237 flags = hci_adv_instance_flags(hdev, instance); 1238 1239 /* If the "connectable" instance flag was not set, then choose between 1240 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1241 */ 1242 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1243 mgmt_get_connectable(hdev); 1244 1245 if (!is_advertising_allowed(hdev, connectable)) 1246 return -EPERM; 1247 1248 /* Set require_privacy to true only when non-connectable 1249 * advertising is used. In that case it is fine to use a 1250 * non-resolvable private address. 1251 */ 1252 err = hci_get_random_address(hdev, !connectable, 1253 adv_use_rpa(hdev, flags), adv, 1254 &own_addr_type, &random_addr); 1255 if (err < 0) 1256 return err; 1257 1258 memset(&cp, 0, sizeof(cp)); 1259 1260 if (adv) { 1261 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1262 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1263 cp.tx_power = adv->tx_power; 1264 cp.sid = adv->sid; 1265 } else { 1266 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1267 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1268 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1269 cp.sid = 0x00; 1270 } 1271 1272 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1273 1274 if (connectable) { 1275 if (secondary_adv) 1276 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1277 else 1278 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1279 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1280 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1281 if (secondary_adv) 1282 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1283 else 1284 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1285 } else { 1286 if (secondary_adv) 1287 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1288 else 1289 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1290 } 1291 1292 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1293 * contains the peer’s Identity Address and the Peer_Address_Type 1294 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1295 * These parameters are used to locate the corresponding local IRK in 1296 * the resolving list; this IRK is used to generate their own address 1297 * used in the advertisement. 1298 */ 1299 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1300 hci_copy_identity_address(hdev, &cp.peer_addr, 1301 &cp.peer_addr_type); 1302 1303 cp.own_addr_type = own_addr_type; 1304 cp.channel_map = hdev->le_adv_channel_map; 1305 cp.handle = adv ? adv->handle : instance; 1306 1307 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1308 cp.primary_phy = HCI_ADV_PHY_1M; 1309 cp.secondary_phy = HCI_ADV_PHY_2M; 1310 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1311 cp.primary_phy = HCI_ADV_PHY_CODED; 1312 cp.secondary_phy = HCI_ADV_PHY_CODED; 1313 } else { 1314 /* In all other cases use 1M */ 1315 cp.primary_phy = HCI_ADV_PHY_1M; 1316 cp.secondary_phy = HCI_ADV_PHY_1M; 1317 } 1318 1319 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1320 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1321 if (err) 1322 return err; 1323 1324 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1325 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1326 bacmp(&random_addr, BDADDR_ANY)) { 1327 /* Check if random address need to be updated */ 1328 if (adv) { 1329 if (!bacmp(&random_addr, &adv->random_addr)) 1330 return 0; 1331 } else { 1332 if (!bacmp(&random_addr, &hdev->random_addr)) 1333 return 0; 1334 } 1335 1336 return hci_set_adv_set_random_addr_sync(hdev, instance, 1337 &random_addr); 1338 } 1339 1340 return 0; 1341 } 1342 1343 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1344 { 1345 DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length, 1346 HCI_MAX_EXT_AD_LENGTH); 1347 u8 len; 1348 struct adv_info *adv = NULL; 1349 int err; 1350 1351 if (instance) { 1352 adv = hci_find_adv_instance(hdev, instance); 1353 if (!adv || !adv->scan_rsp_changed) 1354 return 0; 1355 } 1356 1357 len = eir_create_scan_rsp(hdev, instance, pdu->data); 1358 1359 pdu->handle = adv ? adv->handle : instance; 1360 pdu->length = len; 1361 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1362 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1363 1364 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1365 struct_size(pdu, data, len), pdu, 1366 HCI_CMD_TIMEOUT); 1367 if (err) 1368 return err; 1369 1370 if (adv) { 1371 adv->scan_rsp_changed = false; 1372 } else { 1373 memcpy(hdev->scan_rsp_data, pdu->data, len); 1374 hdev->scan_rsp_data_len = len; 1375 } 1376 1377 return 0; 1378 } 1379 1380 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1381 { 1382 struct hci_cp_le_set_scan_rsp_data cp; 1383 u8 len; 1384 1385 memset(&cp, 0, sizeof(cp)); 1386 1387 len = eir_create_scan_rsp(hdev, instance, cp.data); 1388 1389 if (hdev->scan_rsp_data_len == len && 1390 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1391 return 0; 1392 1393 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1394 hdev->scan_rsp_data_len = len; 1395 1396 cp.length = len; 1397 1398 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1399 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1400 } 1401 1402 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1403 { 1404 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1405 return 0; 1406 1407 if (ext_adv_capable(hdev)) 1408 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1409 1410 return __hci_set_scan_rsp_data_sync(hdev, instance); 1411 } 1412 1413 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1414 { 1415 struct hci_cp_le_set_ext_adv_enable *cp; 1416 struct hci_cp_ext_adv_set *set; 1417 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1418 struct adv_info *adv; 1419 1420 if (instance > 0) { 1421 adv = hci_find_adv_instance(hdev, instance); 1422 if (!adv) 1423 return -EINVAL; 1424 /* If already enabled there is nothing to do */ 1425 if (adv->enabled) 1426 return 0; 1427 } else { 1428 adv = NULL; 1429 } 1430 1431 cp = (void *)data; 1432 set = (void *)cp->data; 1433 1434 memset(cp, 0, sizeof(*cp)); 1435 1436 cp->enable = 0x01; 1437 cp->num_of_sets = 0x01; 1438 1439 memset(set, 0, sizeof(*set)); 1440 1441 set->handle = adv ? adv->handle : instance; 1442 1443 /* Set duration per instance since controller is responsible for 1444 * scheduling it. 1445 */ 1446 if (adv && adv->timeout) { 1447 u16 duration = adv->timeout * MSEC_PER_SEC; 1448 1449 /* Time = N * 10 ms */ 1450 set->duration = cpu_to_le16(duration / 10); 1451 } 1452 1453 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1454 sizeof(*cp) + 1455 sizeof(*set) * cp->num_of_sets, 1456 data, HCI_CMD_TIMEOUT); 1457 } 1458 1459 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1460 { 1461 int err; 1462 1463 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1464 if (err) 1465 return err; 1466 1467 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1468 if (err) 1469 return err; 1470 1471 return hci_enable_ext_advertising_sync(hdev, instance); 1472 } 1473 1474 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1475 { 1476 struct hci_cp_le_set_per_adv_enable cp; 1477 struct adv_info *adv = NULL; 1478 1479 /* If periodic advertising already disabled there is nothing to do. */ 1480 adv = hci_find_adv_instance(hdev, instance); 1481 if (!adv || !adv->periodic || !adv->enabled) 1482 return 0; 1483 1484 memset(&cp, 0, sizeof(cp)); 1485 1486 cp.enable = 0x00; 1487 cp.handle = instance; 1488 1489 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1490 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1491 } 1492 1493 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1494 u16 min_interval, u16 max_interval) 1495 { 1496 struct hci_cp_le_set_per_adv_params cp; 1497 1498 memset(&cp, 0, sizeof(cp)); 1499 1500 if (!min_interval) 1501 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1502 1503 if (!max_interval) 1504 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1505 1506 cp.handle = instance; 1507 cp.min_interval = cpu_to_le16(min_interval); 1508 cp.max_interval = cpu_to_le16(max_interval); 1509 cp.periodic_properties = 0x0000; 1510 1511 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1512 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1513 } 1514 1515 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1516 { 1517 DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length, 1518 HCI_MAX_PER_AD_LENGTH); 1519 u8 len; 1520 struct adv_info *adv = NULL; 1521 1522 if (instance) { 1523 adv = hci_find_adv_instance(hdev, instance); 1524 if (!adv || !adv->periodic) 1525 return 0; 1526 } 1527 1528 len = eir_create_per_adv_data(hdev, instance, pdu->data); 1529 1530 pdu->length = len; 1531 pdu->handle = adv ? adv->handle : instance; 1532 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1533 1534 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1535 struct_size(pdu, data, len), pdu, 1536 HCI_CMD_TIMEOUT); 1537 } 1538 1539 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1540 { 1541 struct hci_cp_le_set_per_adv_enable cp; 1542 struct adv_info *adv = NULL; 1543 1544 /* If periodic advertising already enabled there is nothing to do. */ 1545 adv = hci_find_adv_instance(hdev, instance); 1546 if (adv && adv->periodic && adv->enabled) 1547 return 0; 1548 1549 memset(&cp, 0, sizeof(cp)); 1550 1551 cp.enable = 0x01; 1552 cp.handle = instance; 1553 1554 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1555 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1556 } 1557 1558 /* Checks if periodic advertising data contains a Basic Announcement and if it 1559 * does generates a Broadcast ID and add Broadcast Announcement. 1560 */ 1561 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1562 { 1563 u8 bid[3]; 1564 u8 ad[HCI_MAX_EXT_AD_LENGTH]; 1565 u8 len; 1566 1567 /* Skip if NULL adv as instance 0x00 is used for general purpose 1568 * advertising so it cannot used for the likes of Broadcast Announcement 1569 * as it can be overwritten at any point. 1570 */ 1571 if (!adv) 1572 return 0; 1573 1574 /* Check if PA data doesn't contains a Basic Audio Announcement then 1575 * there is nothing to do. 1576 */ 1577 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1578 0x1851, NULL)) 1579 return 0; 1580 1581 /* Check if advertising data already has a Broadcast Announcement since 1582 * the process may want to control the Broadcast ID directly and in that 1583 * case the kernel shall no interfere. 1584 */ 1585 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1586 NULL)) 1587 return 0; 1588 1589 /* Generate Broadcast ID */ 1590 get_random_bytes(bid, sizeof(bid)); 1591 len = eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1592 memcpy(ad + len, adv->adv_data, adv->adv_data_len); 1593 hci_set_adv_instance_data(hdev, adv->instance, len + adv->adv_data_len, 1594 ad, 0, NULL); 1595 1596 return hci_update_adv_data_sync(hdev, adv->instance); 1597 } 1598 1599 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 sid, 1600 u8 data_len, u8 *data, u32 flags, u16 min_interval, 1601 u16 max_interval, u16 sync_interval) 1602 { 1603 struct adv_info *adv = NULL; 1604 int err; 1605 bool added = false; 1606 1607 hci_disable_per_advertising_sync(hdev, instance); 1608 1609 if (instance) { 1610 adv = hci_find_adv_instance(hdev, instance); 1611 if (adv) { 1612 if (sid != HCI_SID_INVALID && adv->sid != sid) { 1613 /* If the SID don't match attempt to find by 1614 * SID. 1615 */ 1616 adv = hci_find_adv_sid(hdev, sid); 1617 if (!adv) { 1618 bt_dev_err(hdev, 1619 "Unable to find adv_info"); 1620 return -EINVAL; 1621 } 1622 } 1623 1624 /* Turn it into periodic advertising */ 1625 adv->periodic = true; 1626 adv->per_adv_data_len = data_len; 1627 if (data) 1628 memcpy(adv->per_adv_data, data, data_len); 1629 adv->flags = flags; 1630 } else if (!adv) { 1631 /* Create an instance if that could not be found */ 1632 adv = hci_add_per_instance(hdev, instance, sid, flags, 1633 data_len, data, 1634 sync_interval, 1635 sync_interval); 1636 if (IS_ERR(adv)) 1637 return PTR_ERR(adv); 1638 adv->pending = false; 1639 added = true; 1640 } 1641 } 1642 1643 /* Start advertising */ 1644 err = hci_start_ext_adv_sync(hdev, instance); 1645 if (err < 0) 1646 goto fail; 1647 1648 err = hci_adv_bcast_annoucement(hdev, adv); 1649 if (err < 0) 1650 goto fail; 1651 1652 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1653 max_interval); 1654 if (err < 0) 1655 goto fail; 1656 1657 err = hci_set_per_adv_data_sync(hdev, instance); 1658 if (err < 0) 1659 goto fail; 1660 1661 err = hci_enable_per_advertising_sync(hdev, instance); 1662 if (err < 0) 1663 goto fail; 1664 1665 return 0; 1666 1667 fail: 1668 if (added) 1669 hci_remove_adv_instance(hdev, instance); 1670 1671 return err; 1672 } 1673 1674 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1675 { 1676 int err; 1677 1678 if (ext_adv_capable(hdev)) 1679 return hci_start_ext_adv_sync(hdev, instance); 1680 1681 err = hci_update_adv_data_sync(hdev, instance); 1682 if (err) 1683 return err; 1684 1685 err = hci_update_scan_rsp_data_sync(hdev, instance); 1686 if (err) 1687 return err; 1688 1689 return hci_enable_advertising_sync(hdev); 1690 } 1691 1692 int hci_enable_advertising_sync(struct hci_dev *hdev) 1693 { 1694 struct adv_info *adv_instance; 1695 struct hci_cp_le_set_adv_param cp; 1696 u8 own_addr_type, enable = 0x01; 1697 bool connectable; 1698 u16 adv_min_interval, adv_max_interval; 1699 u32 flags; 1700 u8 status; 1701 1702 if (ext_adv_capable(hdev)) 1703 return hci_enable_ext_advertising_sync(hdev, 1704 hdev->cur_adv_instance); 1705 1706 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1707 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1708 1709 /* If the "connectable" instance flag was not set, then choose between 1710 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1711 */ 1712 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1713 mgmt_get_connectable(hdev); 1714 1715 if (!is_advertising_allowed(hdev, connectable)) 1716 return -EINVAL; 1717 1718 status = hci_disable_advertising_sync(hdev); 1719 if (status) 1720 return status; 1721 1722 /* Clear the HCI_LE_ADV bit temporarily so that the 1723 * hci_update_random_address knows that it's safe to go ahead 1724 * and write a new random address. The flag will be set back on 1725 * as soon as the SET_ADV_ENABLE HCI command completes. 1726 */ 1727 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1728 1729 /* Set require_privacy to true only when non-connectable 1730 * advertising is used. In that case it is fine to use a 1731 * non-resolvable private address. 1732 */ 1733 status = hci_update_random_address_sync(hdev, !connectable, 1734 adv_use_rpa(hdev, flags), 1735 &own_addr_type); 1736 if (status) 1737 return status; 1738 1739 memset(&cp, 0, sizeof(cp)); 1740 1741 if (adv_instance) { 1742 adv_min_interval = adv_instance->min_interval; 1743 adv_max_interval = adv_instance->max_interval; 1744 } else { 1745 adv_min_interval = hdev->le_adv_min_interval; 1746 adv_max_interval = hdev->le_adv_max_interval; 1747 } 1748 1749 if (connectable) { 1750 cp.type = LE_ADV_IND; 1751 } else { 1752 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1753 cp.type = LE_ADV_SCAN_IND; 1754 else 1755 cp.type = LE_ADV_NONCONN_IND; 1756 1757 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1758 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1759 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1760 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1761 } 1762 } 1763 1764 cp.min_interval = cpu_to_le16(adv_min_interval); 1765 cp.max_interval = cpu_to_le16(adv_max_interval); 1766 cp.own_address_type = own_addr_type; 1767 cp.channel_map = hdev->le_adv_channel_map; 1768 1769 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1770 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1771 if (status) 1772 return status; 1773 1774 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1775 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1776 } 1777 1778 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1779 { 1780 return hci_enable_advertising_sync(hdev); 1781 } 1782 1783 int hci_enable_advertising(struct hci_dev *hdev) 1784 { 1785 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1786 list_empty(&hdev->adv_instances)) 1787 return 0; 1788 1789 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1790 } 1791 1792 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1793 struct sock *sk) 1794 { 1795 int err; 1796 1797 if (!ext_adv_capable(hdev)) 1798 return 0; 1799 1800 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1801 if (err) 1802 return err; 1803 1804 /* If request specifies an instance that doesn't exist, fail */ 1805 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1806 return -EINVAL; 1807 1808 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1809 sizeof(instance), &instance, 0, 1810 HCI_CMD_TIMEOUT, sk); 1811 } 1812 1813 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1814 { 1815 struct hci_cp_le_term_big cp; 1816 1817 memset(&cp, 0, sizeof(cp)); 1818 cp.handle = handle; 1819 cp.reason = reason; 1820 1821 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1822 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1823 } 1824 1825 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1826 { 1827 DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length, 1828 HCI_MAX_EXT_AD_LENGTH); 1829 u8 len; 1830 struct adv_info *adv = NULL; 1831 int err; 1832 1833 if (instance) { 1834 adv = hci_find_adv_instance(hdev, instance); 1835 if (!adv || !adv->adv_data_changed) 1836 return 0; 1837 } 1838 1839 len = eir_create_adv_data(hdev, instance, pdu->data, 1840 HCI_MAX_EXT_AD_LENGTH); 1841 1842 pdu->length = len; 1843 pdu->handle = adv ? adv->handle : instance; 1844 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1845 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1846 1847 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1848 struct_size(pdu, data, len), pdu, 1849 HCI_CMD_TIMEOUT); 1850 if (err) 1851 return err; 1852 1853 /* Update data if the command succeed */ 1854 if (adv) { 1855 adv->adv_data_changed = false; 1856 } else { 1857 memcpy(hdev->adv_data, pdu->data, len); 1858 hdev->adv_data_len = len; 1859 } 1860 1861 return 0; 1862 } 1863 1864 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1865 { 1866 struct hci_cp_le_set_adv_data cp; 1867 u8 len; 1868 1869 memset(&cp, 0, sizeof(cp)); 1870 1871 len = eir_create_adv_data(hdev, instance, cp.data, sizeof(cp.data)); 1872 1873 /* There's nothing to do if the data hasn't changed */ 1874 if (hdev->adv_data_len == len && 1875 memcmp(cp.data, hdev->adv_data, len) == 0) 1876 return 0; 1877 1878 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1879 hdev->adv_data_len = len; 1880 1881 cp.length = len; 1882 1883 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1884 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1885 } 1886 1887 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1888 { 1889 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1890 return 0; 1891 1892 if (ext_adv_capable(hdev)) 1893 return hci_set_ext_adv_data_sync(hdev, instance); 1894 1895 return hci_set_adv_data_sync(hdev, instance); 1896 } 1897 1898 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1899 bool force) 1900 { 1901 struct adv_info *adv = NULL; 1902 u16 timeout; 1903 1904 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1905 return -EPERM; 1906 1907 if (hdev->adv_instance_timeout) 1908 return -EBUSY; 1909 1910 adv = hci_find_adv_instance(hdev, instance); 1911 if (!adv) 1912 return -ENOENT; 1913 1914 /* A zero timeout means unlimited advertising. As long as there is 1915 * only one instance, duration should be ignored. We still set a timeout 1916 * in case further instances are being added later on. 1917 * 1918 * If the remaining lifetime of the instance is more than the duration 1919 * then the timeout corresponds to the duration, otherwise it will be 1920 * reduced to the remaining instance lifetime. 1921 */ 1922 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1923 timeout = adv->duration; 1924 else 1925 timeout = adv->remaining_time; 1926 1927 /* The remaining time is being reduced unless the instance is being 1928 * advertised without time limit. 1929 */ 1930 if (adv->timeout) 1931 adv->remaining_time = adv->remaining_time - timeout; 1932 1933 /* Only use work for scheduling instances with legacy advertising */ 1934 if (!ext_adv_capable(hdev)) { 1935 hdev->adv_instance_timeout = timeout; 1936 queue_delayed_work(hdev->req_workqueue, 1937 &hdev->adv_instance_expire, 1938 secs_to_jiffies(timeout)); 1939 } 1940 1941 /* If we're just re-scheduling the same instance again then do not 1942 * execute any HCI commands. This happens when a single instance is 1943 * being advertised. 1944 */ 1945 if (!force && hdev->cur_adv_instance == instance && 1946 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1947 return 0; 1948 1949 hdev->cur_adv_instance = instance; 1950 1951 return hci_start_adv_sync(hdev, instance); 1952 } 1953 1954 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1955 { 1956 int err; 1957 1958 if (!ext_adv_capable(hdev)) 1959 return 0; 1960 1961 /* Disable instance 0x00 to disable all instances */ 1962 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1963 if (err) 1964 return err; 1965 1966 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1967 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1968 } 1969 1970 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1971 { 1972 struct adv_info *adv, *n; 1973 int err = 0; 1974 1975 if (ext_adv_capable(hdev)) 1976 /* Remove all existing sets */ 1977 err = hci_clear_adv_sets_sync(hdev, sk); 1978 if (ext_adv_capable(hdev)) 1979 return err; 1980 1981 /* This is safe as long as there is no command send while the lock is 1982 * held. 1983 */ 1984 hci_dev_lock(hdev); 1985 1986 /* Cleanup non-ext instances */ 1987 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1988 u8 instance = adv->instance; 1989 int err; 1990 1991 if (!(force || adv->timeout)) 1992 continue; 1993 1994 err = hci_remove_adv_instance(hdev, instance); 1995 if (!err) 1996 mgmt_advertising_removed(sk, hdev, instance); 1997 } 1998 1999 hci_dev_unlock(hdev); 2000 2001 return 0; 2002 } 2003 2004 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 2005 struct sock *sk) 2006 { 2007 int err = 0; 2008 2009 /* If we use extended advertising, instance has to be removed first. */ 2010 if (ext_adv_capable(hdev)) 2011 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 2012 if (ext_adv_capable(hdev)) 2013 return err; 2014 2015 /* This is safe as long as there is no command send while the lock is 2016 * held. 2017 */ 2018 hci_dev_lock(hdev); 2019 2020 err = hci_remove_adv_instance(hdev, instance); 2021 if (!err) 2022 mgmt_advertising_removed(sk, hdev, instance); 2023 2024 hci_dev_unlock(hdev); 2025 2026 return err; 2027 } 2028 2029 /* For a single instance: 2030 * - force == true: The instance will be removed even when its remaining 2031 * lifetime is not zero. 2032 * - force == false: the instance will be deactivated but kept stored unless 2033 * the remaining lifetime is zero. 2034 * 2035 * For instance == 0x00: 2036 * - force == true: All instances will be removed regardless of their timeout 2037 * setting. 2038 * - force == false: Only instances that have a timeout will be removed. 2039 */ 2040 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 2041 u8 instance, bool force) 2042 { 2043 struct adv_info *next = NULL; 2044 int err; 2045 2046 /* Cancel any timeout concerning the removed instance(s). */ 2047 if (!instance || hdev->cur_adv_instance == instance) 2048 cancel_adv_timeout(hdev); 2049 2050 /* Get the next instance to advertise BEFORE we remove 2051 * the current one. This can be the same instance again 2052 * if there is only one instance. 2053 */ 2054 if (hdev->cur_adv_instance == instance) 2055 next = hci_get_next_instance(hdev, instance); 2056 2057 if (!instance) { 2058 err = hci_clear_adv_sync(hdev, sk, force); 2059 if (err) 2060 return err; 2061 } else { 2062 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 2063 2064 if (force || (adv && adv->timeout && !adv->remaining_time)) { 2065 /* Don't advertise a removed instance. */ 2066 if (next && next->instance == instance) 2067 next = NULL; 2068 2069 err = hci_remove_adv_sync(hdev, instance, sk); 2070 if (err) 2071 return err; 2072 } 2073 } 2074 2075 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2076 return 0; 2077 2078 if (next && !ext_adv_capable(hdev)) 2079 hci_schedule_adv_instance_sync(hdev, next->instance, false); 2080 2081 return 0; 2082 } 2083 2084 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 2085 { 2086 struct hci_cp_read_rssi cp; 2087 2088 cp.handle = handle; 2089 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 2090 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2091 } 2092 2093 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 2094 { 2095 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 2096 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2097 } 2098 2099 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 2100 { 2101 struct hci_cp_read_tx_power cp; 2102 2103 cp.handle = handle; 2104 cp.type = type; 2105 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 2106 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2107 } 2108 2109 int hci_disable_advertising_sync(struct hci_dev *hdev) 2110 { 2111 u8 enable = 0x00; 2112 int err = 0; 2113 2114 /* If controller is not advertising we are done. */ 2115 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 2116 return 0; 2117 2118 if (ext_adv_capable(hdev)) 2119 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 2120 if (ext_adv_capable(hdev)) 2121 return err; 2122 2123 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 2124 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 2125 } 2126 2127 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 2128 u8 filter_dup) 2129 { 2130 struct hci_cp_le_set_ext_scan_enable cp; 2131 2132 memset(&cp, 0, sizeof(cp)); 2133 cp.enable = val; 2134 2135 if (hci_dev_test_flag(hdev, HCI_MESH)) 2136 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2137 else 2138 cp.filter_dup = filter_dup; 2139 2140 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2141 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2142 } 2143 2144 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 2145 u8 filter_dup) 2146 { 2147 struct hci_cp_le_set_scan_enable cp; 2148 2149 if (use_ext_scan(hdev)) 2150 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2151 2152 memset(&cp, 0, sizeof(cp)); 2153 cp.enable = val; 2154 2155 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2156 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2157 else 2158 cp.filter_dup = filter_dup; 2159 2160 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2161 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2162 } 2163 2164 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2165 { 2166 if (!ll_privacy_capable(hdev)) 2167 return 0; 2168 2169 /* If controller is not/already resolving we are done. */ 2170 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2171 return 0; 2172 2173 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2174 sizeof(val), &val, HCI_CMD_TIMEOUT); 2175 } 2176 2177 static int hci_scan_disable_sync(struct hci_dev *hdev) 2178 { 2179 int err; 2180 2181 /* If controller is not scanning we are done. */ 2182 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2183 return 0; 2184 2185 if (hdev->scanning_paused) { 2186 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2187 return 0; 2188 } 2189 2190 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2191 if (err) { 2192 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2193 return err; 2194 } 2195 2196 return err; 2197 } 2198 2199 static bool scan_use_rpa(struct hci_dev *hdev) 2200 { 2201 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2202 } 2203 2204 static void hci_start_interleave_scan(struct hci_dev *hdev) 2205 { 2206 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2207 queue_delayed_work(hdev->req_workqueue, 2208 &hdev->interleave_scan, 0); 2209 } 2210 2211 static void cancel_interleave_scan(struct hci_dev *hdev) 2212 { 2213 bt_dev_dbg(hdev, "cancelling interleave scan"); 2214 2215 cancel_delayed_work_sync(&hdev->interleave_scan); 2216 2217 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2218 } 2219 2220 /* Return true if interleave_scan wasn't started until exiting this function, 2221 * otherwise, return false 2222 */ 2223 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2224 { 2225 /* Do interleaved scan only if all of the following are true: 2226 * - There is at least one ADV monitor 2227 * - At least one pending LE connection or one device to be scanned for 2228 * - Monitor offloading is not supported 2229 * If so, we should alternate between allowlist scan and one without 2230 * any filters to save power. 2231 */ 2232 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2233 !(list_empty(&hdev->pend_le_conns) && 2234 list_empty(&hdev->pend_le_reports)) && 2235 hci_get_adv_monitor_offload_ext(hdev) == 2236 HCI_ADV_MONITOR_EXT_NONE; 2237 bool is_interleaving = is_interleave_scanning(hdev); 2238 2239 if (use_interleaving && !is_interleaving) { 2240 hci_start_interleave_scan(hdev); 2241 bt_dev_dbg(hdev, "starting interleave scan"); 2242 return true; 2243 } 2244 2245 if (!use_interleaving && is_interleaving) 2246 cancel_interleave_scan(hdev); 2247 2248 return false; 2249 } 2250 2251 /* Removes connection to resolve list if needed.*/ 2252 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2253 bdaddr_t *bdaddr, u8 bdaddr_type) 2254 { 2255 struct hci_cp_le_del_from_resolv_list cp; 2256 struct bdaddr_list_with_irk *entry; 2257 2258 if (!ll_privacy_capable(hdev)) 2259 return 0; 2260 2261 /* Check if the IRK has been programmed */ 2262 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2263 bdaddr_type); 2264 if (!entry) 2265 return 0; 2266 2267 cp.bdaddr_type = bdaddr_type; 2268 bacpy(&cp.bdaddr, bdaddr); 2269 2270 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2271 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2272 } 2273 2274 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2275 bdaddr_t *bdaddr, u8 bdaddr_type) 2276 { 2277 struct hci_cp_le_del_from_accept_list cp; 2278 int err; 2279 2280 /* Check if device is on accept list before removing it */ 2281 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2282 return 0; 2283 2284 cp.bdaddr_type = bdaddr_type; 2285 bacpy(&cp.bdaddr, bdaddr); 2286 2287 /* Ignore errors when removing from resolving list as that is likely 2288 * that the device was never added. 2289 */ 2290 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2291 2292 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2293 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2294 if (err) { 2295 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2296 return err; 2297 } 2298 2299 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2300 cp.bdaddr_type); 2301 2302 return 0; 2303 } 2304 2305 struct conn_params { 2306 bdaddr_t addr; 2307 u8 addr_type; 2308 hci_conn_flags_t flags; 2309 u8 privacy_mode; 2310 }; 2311 2312 /* Adds connection to resolve list if needed. 2313 * Setting params to NULL programs local hdev->irk 2314 */ 2315 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2316 struct conn_params *params) 2317 { 2318 struct hci_cp_le_add_to_resolv_list cp; 2319 struct smp_irk *irk; 2320 struct bdaddr_list_with_irk *entry; 2321 struct hci_conn_params *p; 2322 2323 if (!ll_privacy_capable(hdev)) 2324 return 0; 2325 2326 /* Attempt to program local identity address, type and irk if params is 2327 * NULL. 2328 */ 2329 if (!params) { 2330 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2331 return 0; 2332 2333 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2334 memcpy(cp.peer_irk, hdev->irk, 16); 2335 goto done; 2336 } else if (!(params->flags & HCI_CONN_FLAG_ADDRESS_RESOLUTION)) 2337 return 0; 2338 2339 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2340 if (!irk) 2341 return 0; 2342 2343 /* Check if the IK has _not_ been programmed yet. */ 2344 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2345 ¶ms->addr, 2346 params->addr_type); 2347 if (entry) 2348 return 0; 2349 2350 cp.bdaddr_type = params->addr_type; 2351 bacpy(&cp.bdaddr, ¶ms->addr); 2352 memcpy(cp.peer_irk, irk->val, 16); 2353 2354 /* Default privacy mode is always Network */ 2355 params->privacy_mode = HCI_NETWORK_PRIVACY; 2356 2357 rcu_read_lock(); 2358 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2359 ¶ms->addr, params->addr_type); 2360 if (!p) 2361 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2362 ¶ms->addr, params->addr_type); 2363 if (p) 2364 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2365 rcu_read_unlock(); 2366 2367 done: 2368 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2369 memcpy(cp.local_irk, hdev->irk, 16); 2370 else 2371 memset(cp.local_irk, 0, 16); 2372 2373 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2374 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2375 } 2376 2377 /* Set Device Privacy Mode. */ 2378 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2379 struct conn_params *params) 2380 { 2381 struct hci_cp_le_set_privacy_mode cp; 2382 struct smp_irk *irk; 2383 2384 if (!ll_privacy_capable(hdev) || 2385 !(params->flags & HCI_CONN_FLAG_ADDRESS_RESOLUTION)) 2386 return 0; 2387 2388 /* If device privacy mode has already been set there is nothing to do */ 2389 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2390 return 0; 2391 2392 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2393 * indicates that LL Privacy has been enabled and 2394 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2395 */ 2396 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2397 return 0; 2398 2399 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2400 if (!irk) 2401 return 0; 2402 2403 memset(&cp, 0, sizeof(cp)); 2404 cp.bdaddr_type = irk->addr_type; 2405 bacpy(&cp.bdaddr, &irk->bdaddr); 2406 cp.mode = HCI_DEVICE_PRIVACY; 2407 2408 /* Note: params->privacy_mode is not updated since it is a copy */ 2409 2410 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2411 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2412 } 2413 2414 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2415 * this attempts to program the device in the resolving list as well and 2416 * properly set the privacy mode. 2417 */ 2418 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2419 struct conn_params *params, 2420 u8 *num_entries) 2421 { 2422 struct hci_cp_le_add_to_accept_list cp; 2423 int err; 2424 2425 /* During suspend, only wakeable devices can be in acceptlist */ 2426 if (hdev->suspended && 2427 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2428 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2429 params->addr_type); 2430 return 0; 2431 } 2432 2433 /* Select filter policy to accept all advertising */ 2434 if (*num_entries >= hdev->le_accept_list_size) 2435 return -ENOSPC; 2436 2437 /* Attempt to program the device in the resolving list first to avoid 2438 * having to rollback in case it fails since the resolving list is 2439 * dynamic it can probably be smaller than the accept list. 2440 */ 2441 err = hci_le_add_resolve_list_sync(hdev, params); 2442 if (err) { 2443 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2444 return err; 2445 } 2446 2447 /* Set Privacy Mode */ 2448 err = hci_le_set_privacy_mode_sync(hdev, params); 2449 if (err) { 2450 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2451 return err; 2452 } 2453 2454 /* Check if already in accept list */ 2455 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2456 params->addr_type)) 2457 return 0; 2458 2459 *num_entries += 1; 2460 cp.bdaddr_type = params->addr_type; 2461 bacpy(&cp.bdaddr, ¶ms->addr); 2462 2463 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2464 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2465 if (err) { 2466 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2467 /* Rollback the device from the resolving list */ 2468 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2469 return err; 2470 } 2471 2472 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2473 cp.bdaddr_type); 2474 2475 return 0; 2476 } 2477 2478 /* This function disables/pause all advertising instances */ 2479 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2480 { 2481 int err; 2482 int old_state; 2483 2484 /* If already been paused there is nothing to do. */ 2485 if (hdev->advertising_paused) 2486 return 0; 2487 2488 bt_dev_dbg(hdev, "Pausing directed advertising"); 2489 2490 /* Stop directed advertising */ 2491 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2492 if (old_state) { 2493 /* When discoverable timeout triggers, then just make sure 2494 * the limited discoverable flag is cleared. Even in the case 2495 * of a timeout triggered from general discoverable, it is 2496 * safe to unconditionally clear the flag. 2497 */ 2498 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2499 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2500 hdev->discov_timeout = 0; 2501 } 2502 2503 bt_dev_dbg(hdev, "Pausing advertising instances"); 2504 2505 /* Call to disable any advertisements active on the controller. 2506 * This will succeed even if no advertisements are configured. 2507 */ 2508 err = hci_disable_advertising_sync(hdev); 2509 if (err) 2510 return err; 2511 2512 /* If we are using software rotation, pause the loop */ 2513 if (!ext_adv_capable(hdev)) 2514 cancel_adv_timeout(hdev); 2515 2516 hdev->advertising_paused = true; 2517 hdev->advertising_old_state = old_state; 2518 2519 return 0; 2520 } 2521 2522 /* This function enables all user advertising instances */ 2523 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2524 { 2525 struct adv_info *adv, *tmp; 2526 int err; 2527 2528 /* If advertising has not been paused there is nothing to do. */ 2529 if (!hdev->advertising_paused) 2530 return 0; 2531 2532 /* Resume directed advertising */ 2533 hdev->advertising_paused = false; 2534 if (hdev->advertising_old_state) { 2535 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2536 hdev->advertising_old_state = 0; 2537 } 2538 2539 bt_dev_dbg(hdev, "Resuming advertising instances"); 2540 2541 if (ext_adv_capable(hdev)) { 2542 /* Call for each tracked instance to be re-enabled */ 2543 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2544 err = hci_enable_ext_advertising_sync(hdev, 2545 adv->instance); 2546 if (!err) 2547 continue; 2548 2549 /* If the instance cannot be resumed remove it */ 2550 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2551 NULL); 2552 } 2553 } else { 2554 /* Schedule for most recent instance to be restarted and begin 2555 * the software rotation loop 2556 */ 2557 err = hci_schedule_adv_instance_sync(hdev, 2558 hdev->cur_adv_instance, 2559 true); 2560 } 2561 2562 hdev->advertising_paused = false; 2563 2564 return err; 2565 } 2566 2567 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2568 { 2569 int err; 2570 2571 if (!ll_privacy_capable(hdev)) 2572 return 0; 2573 2574 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2575 return 0; 2576 2577 /* Cannot disable addr resolution if scanning is enabled or 2578 * when initiating an LE connection. 2579 */ 2580 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2581 hci_lookup_le_connect(hdev)) { 2582 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2583 return -EPERM; 2584 } 2585 2586 /* Cannot disable addr resolution if advertising is enabled. */ 2587 err = hci_pause_advertising_sync(hdev); 2588 if (err) { 2589 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2590 return err; 2591 } 2592 2593 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2594 if (err) 2595 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2596 err); 2597 2598 /* Return if address resolution is disabled and RPA is not used. */ 2599 if (!err && scan_use_rpa(hdev)) 2600 return 0; 2601 2602 hci_resume_advertising_sync(hdev); 2603 return err; 2604 } 2605 2606 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2607 bool extended, struct sock *sk) 2608 { 2609 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2610 HCI_OP_READ_LOCAL_OOB_DATA; 2611 2612 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2613 } 2614 2615 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2616 { 2617 struct hci_conn_params *params; 2618 struct conn_params *p; 2619 size_t i; 2620 2621 rcu_read_lock(); 2622 2623 i = 0; 2624 list_for_each_entry_rcu(params, list, action) 2625 ++i; 2626 *n = i; 2627 2628 rcu_read_unlock(); 2629 2630 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2631 if (!p) 2632 return NULL; 2633 2634 rcu_read_lock(); 2635 2636 i = 0; 2637 list_for_each_entry_rcu(params, list, action) { 2638 /* Racing adds are handled in next scan update */ 2639 if (i >= *n) 2640 break; 2641 2642 /* No hdev->lock, but: addr, addr_type are immutable. 2643 * privacy_mode is only written by us or in 2644 * hci_cc_le_set_privacy_mode that we wait for. 2645 * We should be idempotent so MGMT updating flags 2646 * while we are processing is OK. 2647 */ 2648 bacpy(&p[i].addr, ¶ms->addr); 2649 p[i].addr_type = params->addr_type; 2650 p[i].flags = READ_ONCE(params->flags); 2651 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2652 ++i; 2653 } 2654 2655 rcu_read_unlock(); 2656 2657 *n = i; 2658 return p; 2659 } 2660 2661 /* Clear LE Accept List */ 2662 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 2663 { 2664 if (!(hdev->commands[26] & 0x80)) 2665 return 0; 2666 2667 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 2668 HCI_CMD_TIMEOUT); 2669 } 2670 2671 /* Device must not be scanning when updating the accept list. 2672 * 2673 * Update is done using the following sequence: 2674 * 2675 * ll_privacy_capable((Disable Advertising) -> Disable Resolving List) -> 2676 * Remove Devices From Accept List -> 2677 * (has IRK && ll_privacy_capable(Remove Devices From Resolving List))-> 2678 * Add Devices to Accept List -> 2679 * (has IRK && ll_privacy_capable(Remove Devices From Resolving List)) -> 2680 * ll_privacy_capable(Enable Resolving List -> (Enable Advertising)) -> 2681 * Enable Scanning 2682 * 2683 * In case of failure advertising shall be restored to its original state and 2684 * return would disable accept list since either accept or resolving list could 2685 * not be programmed. 2686 * 2687 */ 2688 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2689 { 2690 struct conn_params *params; 2691 struct bdaddr_list *b, *t; 2692 u8 num_entries = 0; 2693 bool pend_conn, pend_report; 2694 u8 filter_policy; 2695 size_t i, n; 2696 int err; 2697 2698 /* Pause advertising if resolving list can be used as controllers 2699 * cannot accept resolving list modifications while advertising. 2700 */ 2701 if (ll_privacy_capable(hdev)) { 2702 err = hci_pause_advertising_sync(hdev); 2703 if (err) { 2704 bt_dev_err(hdev, "pause advertising failed: %d", err); 2705 return 0x00; 2706 } 2707 } 2708 2709 /* Disable address resolution while reprogramming accept list since 2710 * devices that do have an IRK will be programmed in the resolving list 2711 * when LL Privacy is enabled. 2712 */ 2713 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2714 if (err) { 2715 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2716 goto done; 2717 } 2718 2719 /* Force address filtering if PA Sync is in progress */ 2720 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2721 struct hci_conn *conn; 2722 2723 conn = hci_conn_hash_lookup_create_pa_sync(hdev); 2724 if (conn) { 2725 struct conn_params pa; 2726 2727 memset(&pa, 0, sizeof(pa)); 2728 2729 bacpy(&pa.addr, &conn->dst); 2730 pa.addr_type = conn->dst_type; 2731 2732 /* Clear first since there could be addresses left 2733 * behind. 2734 */ 2735 hci_le_clear_accept_list_sync(hdev); 2736 2737 num_entries = 1; 2738 err = hci_le_add_accept_list_sync(hdev, &pa, 2739 &num_entries); 2740 goto done; 2741 } 2742 } 2743 2744 /* Go through the current accept list programmed into the 2745 * controller one by one and check if that address is connected or is 2746 * still in the list of pending connections or list of devices to 2747 * report. If not present in either list, then remove it from 2748 * the controller. 2749 */ 2750 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2751 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2752 continue; 2753 2754 /* Pointers not dereferenced, no locks needed */ 2755 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2756 &b->bdaddr, 2757 b->bdaddr_type); 2758 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2759 &b->bdaddr, 2760 b->bdaddr_type); 2761 2762 /* If the device is not likely to connect or report, 2763 * remove it from the acceptlist. 2764 */ 2765 if (!pend_conn && !pend_report) { 2766 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2767 b->bdaddr_type); 2768 continue; 2769 } 2770 2771 num_entries++; 2772 } 2773 2774 /* Since all no longer valid accept list entries have been 2775 * removed, walk through the list of pending connections 2776 * and ensure that any new device gets programmed into 2777 * the controller. 2778 * 2779 * If the list of the devices is larger than the list of 2780 * available accept list entries in the controller, then 2781 * just abort and return filer policy value to not use the 2782 * accept list. 2783 * 2784 * The list and params may be mutated while we wait for events, 2785 * so make a copy and iterate it. 2786 */ 2787 2788 params = conn_params_copy(&hdev->pend_le_conns, &n); 2789 if (!params) { 2790 err = -ENOMEM; 2791 goto done; 2792 } 2793 2794 for (i = 0; i < n; ++i) { 2795 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2796 &num_entries); 2797 if (err) { 2798 kvfree(params); 2799 goto done; 2800 } 2801 } 2802 2803 kvfree(params); 2804 2805 /* After adding all new pending connections, walk through 2806 * the list of pending reports and also add these to the 2807 * accept list if there is still space. Abort if space runs out. 2808 */ 2809 2810 params = conn_params_copy(&hdev->pend_le_reports, &n); 2811 if (!params) { 2812 err = -ENOMEM; 2813 goto done; 2814 } 2815 2816 for (i = 0; i < n; ++i) { 2817 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2818 &num_entries); 2819 if (err) { 2820 kvfree(params); 2821 goto done; 2822 } 2823 } 2824 2825 kvfree(params); 2826 2827 /* Use the allowlist unless the following conditions are all true: 2828 * - We are not currently suspending 2829 * - There are 1 or more ADV monitors registered and it's not offloaded 2830 * - Interleaved scanning is not currently using the allowlist 2831 */ 2832 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2833 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2834 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2835 err = -EINVAL; 2836 2837 done: 2838 filter_policy = err ? 0x00 : 0x01; 2839 2840 /* Enable address resolution when LL Privacy is enabled. */ 2841 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2842 if (err) 2843 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2844 2845 /* Resume advertising if it was paused */ 2846 if (ll_privacy_capable(hdev)) 2847 hci_resume_advertising_sync(hdev); 2848 2849 /* Select filter policy to use accept list */ 2850 return filter_policy; 2851 } 2852 2853 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, 2854 u8 type, u16 interval, u16 window) 2855 { 2856 cp->type = type; 2857 cp->interval = cpu_to_le16(interval); 2858 cp->window = cpu_to_le16(window); 2859 } 2860 2861 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2862 u16 interval, u16 window, 2863 u8 own_addr_type, u8 filter_policy) 2864 { 2865 struct hci_cp_le_set_ext_scan_params *cp; 2866 struct hci_cp_le_scan_phy_params *phy; 2867 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2868 u8 num_phy = 0x00; 2869 2870 cp = (void *)data; 2871 phy = (void *)cp->data; 2872 2873 memset(data, 0, sizeof(data)); 2874 2875 cp->own_addr_type = own_addr_type; 2876 cp->filter_policy = filter_policy; 2877 2878 /* Check if PA Sync is in progress then select the PHY based on the 2879 * hci_conn.iso_qos. 2880 */ 2881 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2882 struct hci_cp_le_add_to_accept_list *sent; 2883 2884 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 2885 if (sent) { 2886 struct hci_conn *conn; 2887 2888 conn = hci_conn_hash_lookup_ba(hdev, BIS_LINK, 2889 &sent->bdaddr); 2890 if (conn) { 2891 struct bt_iso_qos *qos = &conn->iso_qos; 2892 2893 if (qos->bcast.in.phy & BT_ISO_PHY_1M || 2894 qos->bcast.in.phy & BT_ISO_PHY_2M) { 2895 cp->scanning_phys |= LE_SCAN_PHY_1M; 2896 hci_le_scan_phy_params(phy, type, 2897 interval, 2898 window); 2899 num_phy++; 2900 phy++; 2901 } 2902 2903 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { 2904 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2905 hci_le_scan_phy_params(phy, type, 2906 interval * 3, 2907 window * 3); 2908 num_phy++; 2909 phy++; 2910 } 2911 2912 if (num_phy) 2913 goto done; 2914 } 2915 } 2916 } 2917 2918 if (scan_1m(hdev) || scan_2m(hdev)) { 2919 cp->scanning_phys |= LE_SCAN_PHY_1M; 2920 hci_le_scan_phy_params(phy, type, interval, window); 2921 num_phy++; 2922 phy++; 2923 } 2924 2925 if (scan_coded(hdev)) { 2926 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2927 hci_le_scan_phy_params(phy, type, interval * 3, window * 3); 2928 num_phy++; 2929 phy++; 2930 } 2931 2932 done: 2933 if (!num_phy) 2934 return -EINVAL; 2935 2936 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2937 sizeof(*cp) + sizeof(*phy) * num_phy, 2938 data, HCI_CMD_TIMEOUT); 2939 } 2940 2941 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2942 u16 interval, u16 window, 2943 u8 own_addr_type, u8 filter_policy) 2944 { 2945 struct hci_cp_le_set_scan_param cp; 2946 2947 if (use_ext_scan(hdev)) 2948 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2949 window, own_addr_type, 2950 filter_policy); 2951 2952 memset(&cp, 0, sizeof(cp)); 2953 cp.type = type; 2954 cp.interval = cpu_to_le16(interval); 2955 cp.window = cpu_to_le16(window); 2956 cp.own_address_type = own_addr_type; 2957 cp.filter_policy = filter_policy; 2958 2959 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2960 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2961 } 2962 2963 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2964 u16 window, u8 own_addr_type, u8 filter_policy, 2965 u8 filter_dup) 2966 { 2967 int err; 2968 2969 if (hdev->scanning_paused) { 2970 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2971 return 0; 2972 } 2973 2974 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2975 own_addr_type, filter_policy); 2976 if (err) 2977 return err; 2978 2979 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2980 } 2981 2982 static int hci_passive_scan_sync(struct hci_dev *hdev) 2983 { 2984 u8 own_addr_type; 2985 u8 filter_policy; 2986 u16 window, interval; 2987 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2988 int err; 2989 2990 if (hdev->scanning_paused) { 2991 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2992 return 0; 2993 } 2994 2995 err = hci_scan_disable_sync(hdev); 2996 if (err) { 2997 bt_dev_err(hdev, "disable scanning failed: %d", err); 2998 return err; 2999 } 3000 3001 /* Set require_privacy to false since no SCAN_REQ are send 3002 * during passive scanning. Not using an non-resolvable address 3003 * here is important so that peer devices using direct 3004 * advertising with our address will be correctly reported 3005 * by the controller. 3006 */ 3007 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 3008 &own_addr_type)) 3009 return 0; 3010 3011 if (hdev->enable_advmon_interleave_scan && 3012 hci_update_interleaved_scan_sync(hdev)) 3013 return 0; 3014 3015 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 3016 3017 /* Adding or removing entries from the accept list must 3018 * happen before enabling scanning. The controller does 3019 * not allow accept list modification while scanning. 3020 */ 3021 filter_policy = hci_update_accept_list_sync(hdev); 3022 3023 /* If suspended and filter_policy set to 0x00 (no acceptlist) then 3024 * passive scanning cannot be started since that would require the host 3025 * to be woken up to process the reports. 3026 */ 3027 if (hdev->suspended && !filter_policy) { 3028 /* Check if accept list is empty then there is no need to scan 3029 * while suspended. 3030 */ 3031 if (list_empty(&hdev->le_accept_list)) 3032 return 0; 3033 3034 /* If there are devices is the accept_list that means some 3035 * devices could not be programmed which in non-suspended case 3036 * means filter_policy needs to be set to 0x00 so the host needs 3037 * to filter, but since this is treating suspended case we 3038 * can ignore device needing host to filter to allow devices in 3039 * the acceptlist to be able to wakeup the system. 3040 */ 3041 filter_policy = 0x01; 3042 } 3043 3044 /* When the controller is using random resolvable addresses and 3045 * with that having LE privacy enabled, then controllers with 3046 * Extended Scanner Filter Policies support can now enable support 3047 * for handling directed advertising. 3048 * 3049 * So instead of using filter polices 0x00 (no acceptlist) 3050 * and 0x01 (acceptlist enabled) use the new filter policies 3051 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 3052 */ 3053 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 3054 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 3055 filter_policy |= 0x02; 3056 3057 if (hdev->suspended) { 3058 window = hdev->le_scan_window_suspend; 3059 interval = hdev->le_scan_int_suspend; 3060 } else if (hci_is_le_conn_scanning(hdev)) { 3061 window = hdev->le_scan_window_connect; 3062 interval = hdev->le_scan_int_connect; 3063 } else if (hci_is_adv_monitoring(hdev)) { 3064 window = hdev->le_scan_window_adv_monitor; 3065 interval = hdev->le_scan_int_adv_monitor; 3066 3067 /* Disable duplicates filter when scanning for advertisement 3068 * monitor for the following reasons. 3069 * 3070 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm 3071 * controllers ignore RSSI_Sampling_Period when the duplicates 3072 * filter is enabled. 3073 * 3074 * For SW pattern filtering, when we're not doing interleaved 3075 * scanning, it is necessary to disable duplicates filter, 3076 * otherwise hosts can only receive one advertisement and it's 3077 * impossible to know if a peer is still in range. 3078 */ 3079 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3080 } else { 3081 window = hdev->le_scan_window; 3082 interval = hdev->le_scan_interval; 3083 } 3084 3085 /* Disable all filtering for Mesh */ 3086 if (hci_dev_test_flag(hdev, HCI_MESH)) { 3087 filter_policy = 0; 3088 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3089 } 3090 3091 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 3092 3093 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 3094 own_addr_type, filter_policy, filter_dups); 3095 } 3096 3097 /* This function controls the passive scanning based on hdev->pend_le_conns 3098 * list. If there are pending LE connection we start the background scanning, 3099 * otherwise we stop it in the following sequence: 3100 * 3101 * If there are devices to scan: 3102 * 3103 * Disable Scanning -> Update Accept List -> 3104 * ll_privacy_capable((Disable Advertising) -> Disable Resolving List -> 3105 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 3106 * Enable Scanning 3107 * 3108 * Otherwise: 3109 * 3110 * Disable Scanning 3111 */ 3112 int hci_update_passive_scan_sync(struct hci_dev *hdev) 3113 { 3114 int err; 3115 3116 if (!test_bit(HCI_UP, &hdev->flags) || 3117 test_bit(HCI_INIT, &hdev->flags) || 3118 hci_dev_test_flag(hdev, HCI_SETUP) || 3119 hci_dev_test_flag(hdev, HCI_CONFIG) || 3120 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3121 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3122 return 0; 3123 3124 /* No point in doing scanning if LE support hasn't been enabled */ 3125 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3126 return 0; 3127 3128 /* If discovery is active don't interfere with it */ 3129 if (hdev->discovery.state != DISCOVERY_STOPPED) 3130 return 0; 3131 3132 /* Reset RSSI and UUID filters when starting background scanning 3133 * since these filters are meant for service discovery only. 3134 * 3135 * The Start Discovery and Start Service Discovery operations 3136 * ensure to set proper values for RSSI threshold and UUID 3137 * filter list. So it is safe to just reset them here. 3138 */ 3139 hci_discovery_filter_clear(hdev); 3140 3141 bt_dev_dbg(hdev, "ADV monitoring is %s", 3142 hci_is_adv_monitoring(hdev) ? "on" : "off"); 3143 3144 if (!hci_dev_test_flag(hdev, HCI_MESH) && 3145 list_empty(&hdev->pend_le_conns) && 3146 list_empty(&hdev->pend_le_reports) && 3147 !hci_is_adv_monitoring(hdev) && 3148 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 3149 /* If there is no pending LE connections or devices 3150 * to be scanned for or no ADV monitors, we should stop the 3151 * background scanning. 3152 */ 3153 3154 bt_dev_dbg(hdev, "stopping background scanning"); 3155 3156 err = hci_scan_disable_sync(hdev); 3157 if (err) 3158 bt_dev_err(hdev, "stop background scanning failed: %d", 3159 err); 3160 } else { 3161 /* If there is at least one pending LE connection, we should 3162 * keep the background scan running. 3163 */ 3164 3165 /* If controller is connecting, we should not start scanning 3166 * since some controllers are not able to scan and connect at 3167 * the same time. 3168 */ 3169 if (hci_lookup_le_connect(hdev)) 3170 return 0; 3171 3172 bt_dev_dbg(hdev, "start background scanning"); 3173 3174 err = hci_passive_scan_sync(hdev); 3175 if (err) 3176 bt_dev_err(hdev, "start background scanning failed: %d", 3177 err); 3178 } 3179 3180 return err; 3181 } 3182 3183 static int update_scan_sync(struct hci_dev *hdev, void *data) 3184 { 3185 return hci_update_scan_sync(hdev); 3186 } 3187 3188 int hci_update_scan(struct hci_dev *hdev) 3189 { 3190 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 3191 } 3192 3193 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 3194 { 3195 return hci_update_passive_scan_sync(hdev); 3196 } 3197 3198 int hci_update_passive_scan(struct hci_dev *hdev) 3199 { 3200 /* Only queue if it would have any effect */ 3201 if (!test_bit(HCI_UP, &hdev->flags) || 3202 test_bit(HCI_INIT, &hdev->flags) || 3203 hci_dev_test_flag(hdev, HCI_SETUP) || 3204 hci_dev_test_flag(hdev, HCI_CONFIG) || 3205 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3206 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3207 return 0; 3208 3209 return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL, 3210 NULL); 3211 } 3212 3213 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 3214 { 3215 int err; 3216 3217 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 3218 return 0; 3219 3220 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3221 sizeof(val), &val, HCI_CMD_TIMEOUT); 3222 3223 if (!err) { 3224 if (val) { 3225 hdev->features[1][0] |= LMP_HOST_SC; 3226 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 3227 } else { 3228 hdev->features[1][0] &= ~LMP_HOST_SC; 3229 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 3230 } 3231 } 3232 3233 return err; 3234 } 3235 3236 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 3237 { 3238 int err; 3239 3240 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3241 lmp_host_ssp_capable(hdev)) 3242 return 0; 3243 3244 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3245 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3246 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3247 } 3248 3249 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3250 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3251 if (err) 3252 return err; 3253 3254 return hci_write_sc_support_sync(hdev, 0x01); 3255 } 3256 3257 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3258 { 3259 struct hci_cp_write_le_host_supported cp; 3260 3261 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3262 !lmp_bredr_capable(hdev)) 3263 return 0; 3264 3265 /* Check first if we already have the right host state 3266 * (host features set) 3267 */ 3268 if (le == lmp_host_le_capable(hdev) && 3269 simul == lmp_host_le_br_capable(hdev)) 3270 return 0; 3271 3272 memset(&cp, 0, sizeof(cp)); 3273 3274 cp.le = le; 3275 cp.simul = simul; 3276 3277 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3278 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3279 } 3280 3281 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3282 { 3283 struct adv_info *adv, *tmp; 3284 int err; 3285 3286 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3287 return 0; 3288 3289 /* If RPA Resolution has not been enable yet it means the 3290 * resolving list is empty and we should attempt to program the 3291 * local IRK in order to support using own_addr_type 3292 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3293 */ 3294 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3295 hci_le_add_resolve_list_sync(hdev, NULL); 3296 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3297 } 3298 3299 /* Make sure the controller has a good default for 3300 * advertising data. This also applies to the case 3301 * where BR/EDR was toggled during the AUTO_OFF phase. 3302 */ 3303 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3304 list_empty(&hdev->adv_instances)) { 3305 if (ext_adv_capable(hdev)) { 3306 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3307 if (!err) 3308 hci_update_scan_rsp_data_sync(hdev, 0x00); 3309 } else { 3310 err = hci_update_adv_data_sync(hdev, 0x00); 3311 if (!err) 3312 hci_update_scan_rsp_data_sync(hdev, 0x00); 3313 } 3314 3315 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3316 hci_enable_advertising_sync(hdev); 3317 } 3318 3319 /* Call for each tracked instance to be scheduled */ 3320 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3321 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3322 3323 return 0; 3324 } 3325 3326 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3327 { 3328 u8 link_sec; 3329 3330 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3331 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3332 return 0; 3333 3334 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3335 sizeof(link_sec), &link_sec, 3336 HCI_CMD_TIMEOUT); 3337 } 3338 3339 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3340 { 3341 struct hci_cp_write_page_scan_activity cp; 3342 u8 type; 3343 int err = 0; 3344 3345 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3346 return 0; 3347 3348 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3349 return 0; 3350 3351 memset(&cp, 0, sizeof(cp)); 3352 3353 if (enable) { 3354 type = PAGE_SCAN_TYPE_INTERLACED; 3355 3356 /* 160 msec page scan interval */ 3357 cp.interval = cpu_to_le16(0x0100); 3358 } else { 3359 type = hdev->def_page_scan_type; 3360 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3361 } 3362 3363 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3364 3365 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3366 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3367 err = __hci_cmd_sync_status(hdev, 3368 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3369 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3370 if (err) 3371 return err; 3372 } 3373 3374 if (hdev->page_scan_type != type) 3375 err = __hci_cmd_sync_status(hdev, 3376 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3377 sizeof(type), &type, 3378 HCI_CMD_TIMEOUT); 3379 3380 return err; 3381 } 3382 3383 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3384 { 3385 struct bdaddr_list *b; 3386 3387 list_for_each_entry(b, &hdev->accept_list, list) { 3388 struct hci_conn *conn; 3389 3390 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3391 if (!conn) 3392 return true; 3393 3394 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3395 return true; 3396 } 3397 3398 return false; 3399 } 3400 3401 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3402 { 3403 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3404 sizeof(val), &val, 3405 HCI_CMD_TIMEOUT); 3406 } 3407 3408 int hci_update_scan_sync(struct hci_dev *hdev) 3409 { 3410 u8 scan; 3411 3412 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3413 return 0; 3414 3415 if (!hdev_is_powered(hdev)) 3416 return 0; 3417 3418 if (mgmt_powering_down(hdev)) 3419 return 0; 3420 3421 if (hdev->scanning_paused) 3422 return 0; 3423 3424 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3425 disconnected_accept_list_entries(hdev)) 3426 scan = SCAN_PAGE; 3427 else 3428 scan = SCAN_DISABLED; 3429 3430 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3431 scan |= SCAN_INQUIRY; 3432 3433 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3434 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3435 return 0; 3436 3437 return hci_write_scan_enable_sync(hdev, scan); 3438 } 3439 3440 int hci_update_name_sync(struct hci_dev *hdev) 3441 { 3442 struct hci_cp_write_local_name cp; 3443 3444 memset(&cp, 0, sizeof(cp)); 3445 3446 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3447 3448 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3449 sizeof(cp), &cp, 3450 HCI_CMD_TIMEOUT); 3451 } 3452 3453 /* This function perform powered update HCI command sequence after the HCI init 3454 * sequence which end up resetting all states, the sequence is as follows: 3455 * 3456 * HCI_SSP_ENABLED(Enable SSP) 3457 * HCI_LE_ENABLED(Enable LE) 3458 * HCI_LE_ENABLED(ll_privacy_capable(Add local IRK to Resolving List) -> 3459 * Update adv data) 3460 * Enable Authentication 3461 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3462 * Set Name -> Set EIR) 3463 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3464 */ 3465 int hci_powered_update_sync(struct hci_dev *hdev) 3466 { 3467 int err; 3468 3469 /* Register the available SMP channels (BR/EDR and LE) only when 3470 * successfully powering on the controller. This late 3471 * registration is required so that LE SMP can clearly decide if 3472 * the public address or static address is used. 3473 */ 3474 smp_register(hdev); 3475 3476 err = hci_write_ssp_mode_sync(hdev, 0x01); 3477 if (err) 3478 return err; 3479 3480 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3481 if (err) 3482 return err; 3483 3484 err = hci_powered_update_adv_sync(hdev); 3485 if (err) 3486 return err; 3487 3488 err = hci_write_auth_enable_sync(hdev); 3489 if (err) 3490 return err; 3491 3492 if (lmp_bredr_capable(hdev)) { 3493 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3494 hci_write_fast_connectable_sync(hdev, true); 3495 else 3496 hci_write_fast_connectable_sync(hdev, false); 3497 hci_update_scan_sync(hdev); 3498 hci_update_class_sync(hdev); 3499 hci_update_name_sync(hdev); 3500 hci_update_eir_sync(hdev); 3501 } 3502 3503 /* If forcing static address is in use or there is no public 3504 * address use the static address as random address (but skip 3505 * the HCI command if the current random address is already the 3506 * static one. 3507 * 3508 * In case BR/EDR has been disabled on a dual-mode controller 3509 * and a static address has been configured, then use that 3510 * address instead of the public BR/EDR address. 3511 */ 3512 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3513 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3514 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3515 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3516 return hci_set_random_addr_sync(hdev, 3517 &hdev->static_addr); 3518 } 3519 3520 return 0; 3521 } 3522 3523 /** 3524 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3525 * (BD_ADDR) for a HCI device from 3526 * a firmware node property. 3527 * @hdev: The HCI device 3528 * 3529 * Search the firmware node for 'local-bd-address'. 3530 * 3531 * All-zero BD addresses are rejected, because those could be properties 3532 * that exist in the firmware tables, but were not updated by the firmware. For 3533 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3534 */ 3535 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3536 { 3537 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3538 bdaddr_t ba; 3539 int ret; 3540 3541 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3542 (u8 *)&ba, sizeof(ba)); 3543 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3544 return; 3545 3546 if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks)) 3547 baswap(&hdev->public_addr, &ba); 3548 else 3549 bacpy(&hdev->public_addr, &ba); 3550 } 3551 3552 struct hci_init_stage { 3553 int (*func)(struct hci_dev *hdev); 3554 }; 3555 3556 /* Run init stage NULL terminated function table */ 3557 static int hci_init_stage_sync(struct hci_dev *hdev, 3558 const struct hci_init_stage *stage) 3559 { 3560 size_t i; 3561 3562 for (i = 0; stage[i].func; i++) { 3563 int err; 3564 3565 err = stage[i].func(hdev); 3566 if (err) 3567 return err; 3568 } 3569 3570 return 0; 3571 } 3572 3573 /* Read Local Version */ 3574 static int hci_read_local_version_sync(struct hci_dev *hdev) 3575 { 3576 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3577 0, NULL, HCI_CMD_TIMEOUT); 3578 } 3579 3580 /* Read BD Address */ 3581 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3582 { 3583 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3584 0, NULL, HCI_CMD_TIMEOUT); 3585 } 3586 3587 #define HCI_INIT(_func) \ 3588 { \ 3589 .func = _func, \ 3590 } 3591 3592 static const struct hci_init_stage hci_init0[] = { 3593 /* HCI_OP_READ_LOCAL_VERSION */ 3594 HCI_INIT(hci_read_local_version_sync), 3595 /* HCI_OP_READ_BD_ADDR */ 3596 HCI_INIT(hci_read_bd_addr_sync), 3597 {} 3598 }; 3599 3600 int hci_reset_sync(struct hci_dev *hdev) 3601 { 3602 int err; 3603 3604 set_bit(HCI_RESET, &hdev->flags); 3605 3606 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3607 HCI_CMD_TIMEOUT); 3608 if (err) 3609 return err; 3610 3611 return 0; 3612 } 3613 3614 static int hci_init0_sync(struct hci_dev *hdev) 3615 { 3616 int err; 3617 3618 bt_dev_dbg(hdev, ""); 3619 3620 /* Reset */ 3621 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3622 err = hci_reset_sync(hdev); 3623 if (err) 3624 return err; 3625 } 3626 3627 return hci_init_stage_sync(hdev, hci_init0); 3628 } 3629 3630 static int hci_unconf_init_sync(struct hci_dev *hdev) 3631 { 3632 int err; 3633 3634 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3635 return 0; 3636 3637 err = hci_init0_sync(hdev); 3638 if (err < 0) 3639 return err; 3640 3641 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3642 hci_debugfs_create_basic(hdev); 3643 3644 return 0; 3645 } 3646 3647 /* Read Local Supported Features. */ 3648 static int hci_read_local_features_sync(struct hci_dev *hdev) 3649 { 3650 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3651 0, NULL, HCI_CMD_TIMEOUT); 3652 } 3653 3654 /* BR Controller init stage 1 command sequence */ 3655 static const struct hci_init_stage br_init1[] = { 3656 /* HCI_OP_READ_LOCAL_FEATURES */ 3657 HCI_INIT(hci_read_local_features_sync), 3658 /* HCI_OP_READ_LOCAL_VERSION */ 3659 HCI_INIT(hci_read_local_version_sync), 3660 /* HCI_OP_READ_BD_ADDR */ 3661 HCI_INIT(hci_read_bd_addr_sync), 3662 {} 3663 }; 3664 3665 /* Read Local Commands */ 3666 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3667 { 3668 /* All Bluetooth 1.2 and later controllers should support the 3669 * HCI command for reading the local supported commands. 3670 * 3671 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3672 * but do not have support for this command. If that is the case, 3673 * the driver can quirk the behavior and skip reading the local 3674 * supported commands. 3675 */ 3676 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3677 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3678 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3679 0, NULL, HCI_CMD_TIMEOUT); 3680 3681 return 0; 3682 } 3683 3684 static int hci_init1_sync(struct hci_dev *hdev) 3685 { 3686 int err; 3687 3688 bt_dev_dbg(hdev, ""); 3689 3690 /* Reset */ 3691 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3692 err = hci_reset_sync(hdev); 3693 if (err) 3694 return err; 3695 } 3696 3697 return hci_init_stage_sync(hdev, br_init1); 3698 } 3699 3700 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3701 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3702 { 3703 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3704 0, NULL, HCI_CMD_TIMEOUT); 3705 } 3706 3707 /* Read Class of Device */ 3708 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3709 { 3710 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3711 0, NULL, HCI_CMD_TIMEOUT); 3712 } 3713 3714 /* Read Local Name */ 3715 static int hci_read_local_name_sync(struct hci_dev *hdev) 3716 { 3717 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3718 0, NULL, HCI_CMD_TIMEOUT); 3719 } 3720 3721 /* Read Voice Setting */ 3722 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3723 { 3724 if (!read_voice_setting_capable(hdev)) 3725 return 0; 3726 3727 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3728 0, NULL, HCI_CMD_TIMEOUT); 3729 } 3730 3731 /* Read Number of Supported IAC */ 3732 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3733 { 3734 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3735 0, NULL, HCI_CMD_TIMEOUT); 3736 } 3737 3738 /* Read Current IAC LAP */ 3739 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3740 { 3741 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3742 0, NULL, HCI_CMD_TIMEOUT); 3743 } 3744 3745 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3746 u8 cond_type, bdaddr_t *bdaddr, 3747 u8 auto_accept) 3748 { 3749 struct hci_cp_set_event_filter cp; 3750 3751 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3752 return 0; 3753 3754 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3755 return 0; 3756 3757 memset(&cp, 0, sizeof(cp)); 3758 cp.flt_type = flt_type; 3759 3760 if (flt_type != HCI_FLT_CLEAR_ALL) { 3761 cp.cond_type = cond_type; 3762 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3763 cp.addr_conn_flt.auto_accept = auto_accept; 3764 } 3765 3766 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3767 flt_type == HCI_FLT_CLEAR_ALL ? 3768 sizeof(cp.flt_type) : sizeof(cp), &cp, 3769 HCI_CMD_TIMEOUT); 3770 } 3771 3772 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3773 { 3774 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3775 return 0; 3776 3777 /* In theory the state machine should not reach here unless 3778 * a hci_set_event_filter_sync() call succeeds, but we do 3779 * the check both for parity and as a future reminder. 3780 */ 3781 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3782 return 0; 3783 3784 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3785 BDADDR_ANY, 0x00); 3786 } 3787 3788 /* Connection accept timeout ~20 secs */ 3789 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3790 { 3791 __le16 param = cpu_to_le16(0x7d00); 3792 3793 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3794 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3795 } 3796 3797 /* Enable SCO flow control if supported */ 3798 static int hci_write_sync_flowctl_sync(struct hci_dev *hdev) 3799 { 3800 struct hci_cp_write_sync_flowctl cp; 3801 int err; 3802 3803 /* Check if the controller supports SCO and HCI_OP_WRITE_SYNC_FLOWCTL */ 3804 if (!lmp_sco_capable(hdev) || !(hdev->commands[10] & BIT(4)) || 3805 !test_bit(HCI_QUIRK_SYNC_FLOWCTL_SUPPORTED, &hdev->quirks)) 3806 return 0; 3807 3808 memset(&cp, 0, sizeof(cp)); 3809 cp.enable = 0x01; 3810 3811 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SYNC_FLOWCTL, 3812 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3813 if (!err) 3814 hci_dev_set_flag(hdev, HCI_SCO_FLOWCTL); 3815 3816 return err; 3817 } 3818 3819 /* BR Controller init stage 2 command sequence */ 3820 static const struct hci_init_stage br_init2[] = { 3821 /* HCI_OP_READ_BUFFER_SIZE */ 3822 HCI_INIT(hci_read_buffer_size_sync), 3823 /* HCI_OP_READ_CLASS_OF_DEV */ 3824 HCI_INIT(hci_read_dev_class_sync), 3825 /* HCI_OP_READ_LOCAL_NAME */ 3826 HCI_INIT(hci_read_local_name_sync), 3827 /* HCI_OP_READ_VOICE_SETTING */ 3828 HCI_INIT(hci_read_voice_setting_sync), 3829 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3830 HCI_INIT(hci_read_num_supported_iac_sync), 3831 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3832 HCI_INIT(hci_read_current_iac_lap_sync), 3833 /* HCI_OP_SET_EVENT_FLT */ 3834 HCI_INIT(hci_clear_event_filter_sync), 3835 /* HCI_OP_WRITE_CA_TIMEOUT */ 3836 HCI_INIT(hci_write_ca_timeout_sync), 3837 /* HCI_OP_WRITE_SYNC_FLOWCTL */ 3838 HCI_INIT(hci_write_sync_flowctl_sync), 3839 {} 3840 }; 3841 3842 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3843 { 3844 u8 mode = 0x01; 3845 3846 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3847 return 0; 3848 3849 /* When SSP is available, then the host features page 3850 * should also be available as well. However some 3851 * controllers list the max_page as 0 as long as SSP 3852 * has not been enabled. To achieve proper debugging 3853 * output, force the minimum max_page to 1 at least. 3854 */ 3855 hdev->max_page = 0x01; 3856 3857 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3858 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3859 } 3860 3861 static int hci_write_eir_sync(struct hci_dev *hdev) 3862 { 3863 struct hci_cp_write_eir cp; 3864 3865 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3866 return 0; 3867 3868 memset(hdev->eir, 0, sizeof(hdev->eir)); 3869 memset(&cp, 0, sizeof(cp)); 3870 3871 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3872 HCI_CMD_TIMEOUT); 3873 } 3874 3875 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3876 { 3877 u8 mode; 3878 3879 if (!lmp_inq_rssi_capable(hdev) && 3880 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3881 return 0; 3882 3883 /* If Extended Inquiry Result events are supported, then 3884 * they are clearly preferred over Inquiry Result with RSSI 3885 * events. 3886 */ 3887 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3888 3889 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3890 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3891 } 3892 3893 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3894 { 3895 if (!lmp_inq_tx_pwr_capable(hdev)) 3896 return 0; 3897 3898 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3899 0, NULL, HCI_CMD_TIMEOUT); 3900 } 3901 3902 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3903 { 3904 struct hci_cp_read_local_ext_features cp; 3905 3906 if (!lmp_ext_feat_capable(hdev)) 3907 return 0; 3908 3909 memset(&cp, 0, sizeof(cp)); 3910 cp.page = page; 3911 3912 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3913 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3914 } 3915 3916 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3917 { 3918 return hci_read_local_ext_features_sync(hdev, 0x01); 3919 } 3920 3921 /* HCI Controller init stage 2 command sequence */ 3922 static const struct hci_init_stage hci_init2[] = { 3923 /* HCI_OP_READ_LOCAL_COMMANDS */ 3924 HCI_INIT(hci_read_local_cmds_sync), 3925 /* HCI_OP_WRITE_SSP_MODE */ 3926 HCI_INIT(hci_write_ssp_mode_1_sync), 3927 /* HCI_OP_WRITE_EIR */ 3928 HCI_INIT(hci_write_eir_sync), 3929 /* HCI_OP_WRITE_INQUIRY_MODE */ 3930 HCI_INIT(hci_write_inquiry_mode_sync), 3931 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3932 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3933 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3934 HCI_INIT(hci_read_local_ext_features_1_sync), 3935 /* HCI_OP_WRITE_AUTH_ENABLE */ 3936 HCI_INIT(hci_write_auth_enable_sync), 3937 {} 3938 }; 3939 3940 /* Read LE Buffer Size */ 3941 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3942 { 3943 /* Use Read LE Buffer Size V2 if supported */ 3944 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3945 return __hci_cmd_sync_status(hdev, 3946 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3947 0, NULL, HCI_CMD_TIMEOUT); 3948 3949 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3950 0, NULL, HCI_CMD_TIMEOUT); 3951 } 3952 3953 /* Read LE Local Supported Features */ 3954 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3955 { 3956 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3957 0, NULL, HCI_CMD_TIMEOUT); 3958 } 3959 3960 /* Read LE Supported States */ 3961 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3962 { 3963 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3964 0, NULL, HCI_CMD_TIMEOUT); 3965 } 3966 3967 /* LE Controller init stage 2 command sequence */ 3968 static const struct hci_init_stage le_init2[] = { 3969 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3970 HCI_INIT(hci_le_read_local_features_sync), 3971 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3972 HCI_INIT(hci_le_read_buffer_size_sync), 3973 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3974 HCI_INIT(hci_le_read_supported_states_sync), 3975 {} 3976 }; 3977 3978 static int hci_init2_sync(struct hci_dev *hdev) 3979 { 3980 int err; 3981 3982 bt_dev_dbg(hdev, ""); 3983 3984 err = hci_init_stage_sync(hdev, hci_init2); 3985 if (err) 3986 return err; 3987 3988 if (lmp_bredr_capable(hdev)) { 3989 err = hci_init_stage_sync(hdev, br_init2); 3990 if (err) 3991 return err; 3992 } else { 3993 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3994 } 3995 3996 if (lmp_le_capable(hdev)) { 3997 err = hci_init_stage_sync(hdev, le_init2); 3998 if (err) 3999 return err; 4000 /* LE-only controllers have LE implicitly enabled */ 4001 if (!lmp_bredr_capable(hdev)) 4002 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 4003 } 4004 4005 return 0; 4006 } 4007 4008 static int hci_set_event_mask_sync(struct hci_dev *hdev) 4009 { 4010 /* The second byte is 0xff instead of 0x9f (two reserved bits 4011 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 4012 * command otherwise. 4013 */ 4014 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 4015 4016 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 4017 * any event mask for pre 1.2 devices. 4018 */ 4019 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 4020 return 0; 4021 4022 if (lmp_bredr_capable(hdev)) { 4023 events[4] |= 0x01; /* Flow Specification Complete */ 4024 4025 /* Don't set Disconnect Complete and mode change when 4026 * suspended as that would wakeup the host when disconnecting 4027 * due to suspend. 4028 */ 4029 if (hdev->suspended) { 4030 events[0] &= 0xef; 4031 events[2] &= 0xf7; 4032 } 4033 } else { 4034 /* Use a different default for LE-only devices */ 4035 memset(events, 0, sizeof(events)); 4036 events[1] |= 0x20; /* Command Complete */ 4037 events[1] |= 0x40; /* Command Status */ 4038 events[1] |= 0x80; /* Hardware Error */ 4039 4040 /* If the controller supports the Disconnect command, enable 4041 * the corresponding event. In addition enable packet flow 4042 * control related events. 4043 */ 4044 if (hdev->commands[0] & 0x20) { 4045 /* Don't set Disconnect Complete when suspended as that 4046 * would wakeup the host when disconnecting due to 4047 * suspend. 4048 */ 4049 if (!hdev->suspended) 4050 events[0] |= 0x10; /* Disconnection Complete */ 4051 events[2] |= 0x04; /* Number of Completed Packets */ 4052 events[3] |= 0x02; /* Data Buffer Overflow */ 4053 } 4054 4055 /* If the controller supports the Read Remote Version 4056 * Information command, enable the corresponding event. 4057 */ 4058 if (hdev->commands[2] & 0x80) 4059 events[1] |= 0x08; /* Read Remote Version Information 4060 * Complete 4061 */ 4062 4063 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 4064 events[0] |= 0x80; /* Encryption Change */ 4065 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4066 } 4067 } 4068 4069 if (lmp_inq_rssi_capable(hdev) || 4070 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 4071 events[4] |= 0x02; /* Inquiry Result with RSSI */ 4072 4073 if (lmp_ext_feat_capable(hdev)) 4074 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 4075 4076 if (lmp_esco_capable(hdev)) { 4077 events[5] |= 0x08; /* Synchronous Connection Complete */ 4078 events[5] |= 0x10; /* Synchronous Connection Changed */ 4079 } 4080 4081 if (lmp_sniffsubr_capable(hdev)) 4082 events[5] |= 0x20; /* Sniff Subrating */ 4083 4084 if (lmp_pause_enc_capable(hdev)) 4085 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4086 4087 if (lmp_ext_inq_capable(hdev)) 4088 events[5] |= 0x40; /* Extended Inquiry Result */ 4089 4090 if (lmp_no_flush_capable(hdev)) 4091 events[7] |= 0x01; /* Enhanced Flush Complete */ 4092 4093 if (lmp_lsto_capable(hdev)) 4094 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 4095 4096 if (lmp_ssp_capable(hdev)) { 4097 events[6] |= 0x01; /* IO Capability Request */ 4098 events[6] |= 0x02; /* IO Capability Response */ 4099 events[6] |= 0x04; /* User Confirmation Request */ 4100 events[6] |= 0x08; /* User Passkey Request */ 4101 events[6] |= 0x10; /* Remote OOB Data Request */ 4102 events[6] |= 0x20; /* Simple Pairing Complete */ 4103 events[7] |= 0x04; /* User Passkey Notification */ 4104 events[7] |= 0x08; /* Keypress Notification */ 4105 events[7] |= 0x10; /* Remote Host Supported 4106 * Features Notification 4107 */ 4108 } 4109 4110 if (lmp_le_capable(hdev)) 4111 events[7] |= 0x20; /* LE Meta-Event */ 4112 4113 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 4114 sizeof(events), events, HCI_CMD_TIMEOUT); 4115 } 4116 4117 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 4118 { 4119 struct hci_cp_read_stored_link_key cp; 4120 4121 if (!(hdev->commands[6] & 0x20) || 4122 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4123 return 0; 4124 4125 memset(&cp, 0, sizeof(cp)); 4126 bacpy(&cp.bdaddr, BDADDR_ANY); 4127 cp.read_all = 0x01; 4128 4129 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 4130 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4131 } 4132 4133 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 4134 { 4135 struct hci_cp_write_def_link_policy cp; 4136 u16 link_policy = 0; 4137 4138 if (!(hdev->commands[5] & 0x10)) 4139 return 0; 4140 4141 memset(&cp, 0, sizeof(cp)); 4142 4143 if (lmp_rswitch_capable(hdev)) 4144 link_policy |= HCI_LP_RSWITCH; 4145 if (lmp_hold_capable(hdev)) 4146 link_policy |= HCI_LP_HOLD; 4147 if (lmp_sniff_capable(hdev)) 4148 link_policy |= HCI_LP_SNIFF; 4149 if (lmp_park_capable(hdev)) 4150 link_policy |= HCI_LP_PARK; 4151 4152 cp.policy = cpu_to_le16(link_policy); 4153 4154 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 4155 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4156 } 4157 4158 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 4159 { 4160 if (!(hdev->commands[8] & 0x01)) 4161 return 0; 4162 4163 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 4164 0, NULL, HCI_CMD_TIMEOUT); 4165 } 4166 4167 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 4168 { 4169 if (!(hdev->commands[18] & 0x04) || 4170 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4171 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4172 return 0; 4173 4174 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4175 0, NULL, HCI_CMD_TIMEOUT); 4176 } 4177 4178 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 4179 { 4180 /* Some older Broadcom based Bluetooth 1.2 controllers do not 4181 * support the Read Page Scan Type command. Check support for 4182 * this command in the bit mask of supported commands. 4183 */ 4184 if (!(hdev->commands[13] & 0x01) || 4185 test_bit(HCI_QUIRK_BROKEN_READ_PAGE_SCAN_TYPE, &hdev->quirks)) 4186 return 0; 4187 4188 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 4189 0, NULL, HCI_CMD_TIMEOUT); 4190 } 4191 4192 /* Read features beyond page 1 if available */ 4193 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 4194 { 4195 u8 page; 4196 int err; 4197 4198 if (!lmp_ext_feat_capable(hdev)) 4199 return 0; 4200 4201 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 4202 page++) { 4203 err = hci_read_local_ext_features_sync(hdev, page); 4204 if (err) 4205 return err; 4206 } 4207 4208 return 0; 4209 } 4210 4211 /* HCI Controller init stage 3 command sequence */ 4212 static const struct hci_init_stage hci_init3[] = { 4213 /* HCI_OP_SET_EVENT_MASK */ 4214 HCI_INIT(hci_set_event_mask_sync), 4215 /* HCI_OP_READ_STORED_LINK_KEY */ 4216 HCI_INIT(hci_read_stored_link_key_sync), 4217 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 4218 HCI_INIT(hci_setup_link_policy_sync), 4219 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 4220 HCI_INIT(hci_read_page_scan_activity_sync), 4221 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 4222 HCI_INIT(hci_read_def_err_data_reporting_sync), 4223 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 4224 HCI_INIT(hci_read_page_scan_type_sync), 4225 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4226 HCI_INIT(hci_read_local_ext_features_all_sync), 4227 {} 4228 }; 4229 4230 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4231 { 4232 u8 events[8]; 4233 4234 if (!lmp_le_capable(hdev)) 4235 return 0; 4236 4237 memset(events, 0, sizeof(events)); 4238 4239 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4240 events[0] |= 0x10; /* LE Long Term Key Request */ 4241 4242 /* If controller supports the Connection Parameters Request 4243 * Link Layer Procedure, enable the corresponding event. 4244 */ 4245 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4246 /* LE Remote Connection Parameter Request */ 4247 events[0] |= 0x20; 4248 4249 /* If the controller supports the Data Length Extension 4250 * feature, enable the corresponding event. 4251 */ 4252 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4253 events[0] |= 0x40; /* LE Data Length Change */ 4254 4255 /* If the controller supports LL Privacy feature or LE Extended Adv, 4256 * enable the corresponding event. 4257 */ 4258 if (use_enhanced_conn_complete(hdev)) 4259 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4260 4261 /* Mark Device Privacy if Privacy Mode is supported */ 4262 if (privacy_mode_capable(hdev)) 4263 hdev->conn_flags |= HCI_CONN_FLAG_DEVICE_PRIVACY; 4264 4265 /* Mark Address Resolution if LL Privacy is supported */ 4266 if (ll_privacy_capable(hdev)) 4267 hdev->conn_flags |= HCI_CONN_FLAG_ADDRESS_RESOLUTION; 4268 4269 /* If the controller supports Extended Scanner Filter 4270 * Policies, enable the corresponding event. 4271 */ 4272 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4273 events[1] |= 0x04; /* LE Direct Advertising Report */ 4274 4275 /* If the controller supports Channel Selection Algorithm #2 4276 * feature, enable the corresponding event. 4277 */ 4278 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4279 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4280 4281 /* If the controller supports the LE Set Scan Enable command, 4282 * enable the corresponding advertising report event. 4283 */ 4284 if (hdev->commands[26] & 0x08) 4285 events[0] |= 0x02; /* LE Advertising Report */ 4286 4287 /* If the controller supports the LE Create Connection 4288 * command, enable the corresponding event. 4289 */ 4290 if (hdev->commands[26] & 0x10) 4291 events[0] |= 0x01; /* LE Connection Complete */ 4292 4293 /* If the controller supports the LE Connection Update 4294 * command, enable the corresponding event. 4295 */ 4296 if (hdev->commands[27] & 0x04) 4297 events[0] |= 0x04; /* LE Connection Update Complete */ 4298 4299 /* If the controller supports the LE Read Remote Used Features 4300 * command, enable the corresponding event. 4301 */ 4302 if (hdev->commands[27] & 0x20) 4303 /* LE Read Remote Used Features Complete */ 4304 events[0] |= 0x08; 4305 4306 /* If the controller supports the LE Read Local P-256 4307 * Public Key command, enable the corresponding event. 4308 */ 4309 if (hdev->commands[34] & 0x02) 4310 /* LE Read Local P-256 Public Key Complete */ 4311 events[0] |= 0x80; 4312 4313 /* If the controller supports the LE Generate DHKey 4314 * command, enable the corresponding event. 4315 */ 4316 if (hdev->commands[34] & 0x04) 4317 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4318 4319 /* If the controller supports the LE Set Default PHY or 4320 * LE Set PHY commands, enable the corresponding event. 4321 */ 4322 if (hdev->commands[35] & (0x20 | 0x40)) 4323 events[1] |= 0x08; /* LE PHY Update Complete */ 4324 4325 /* If the controller supports LE Set Extended Scan Parameters 4326 * and LE Set Extended Scan Enable commands, enable the 4327 * corresponding event. 4328 */ 4329 if (use_ext_scan(hdev)) 4330 events[1] |= 0x10; /* LE Extended Advertising Report */ 4331 4332 /* If the controller supports the LE Extended Advertising 4333 * command, enable the corresponding event. 4334 */ 4335 if (ext_adv_capable(hdev)) 4336 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4337 4338 if (cis_capable(hdev)) { 4339 events[3] |= 0x01; /* LE CIS Established */ 4340 if (cis_peripheral_capable(hdev)) 4341 events[3] |= 0x02; /* LE CIS Request */ 4342 } 4343 4344 if (bis_capable(hdev)) { 4345 events[1] |= 0x20; /* LE PA Report */ 4346 events[1] |= 0x40; /* LE PA Sync Established */ 4347 events[3] |= 0x04; /* LE Create BIG Complete */ 4348 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4349 events[3] |= 0x10; /* LE BIG Sync Established */ 4350 events[3] |= 0x20; /* LE BIG Sync Loss */ 4351 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4352 } 4353 4354 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4355 sizeof(events), events, HCI_CMD_TIMEOUT); 4356 } 4357 4358 /* Read LE Advertising Channel TX Power */ 4359 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4360 { 4361 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4362 /* HCI TS spec forbids mixing of legacy and extended 4363 * advertising commands wherein READ_ADV_TX_POWER is 4364 * also included. So do not call it if extended adv 4365 * is supported otherwise controller will return 4366 * COMMAND_DISALLOWED for extended commands. 4367 */ 4368 return __hci_cmd_sync_status(hdev, 4369 HCI_OP_LE_READ_ADV_TX_POWER, 4370 0, NULL, HCI_CMD_TIMEOUT); 4371 } 4372 4373 return 0; 4374 } 4375 4376 /* Read LE Min/Max Tx Power*/ 4377 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4378 { 4379 if (!(hdev->commands[38] & 0x80) || 4380 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4381 return 0; 4382 4383 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4384 0, NULL, HCI_CMD_TIMEOUT); 4385 } 4386 4387 /* Read LE Accept List Size */ 4388 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4389 { 4390 if (!(hdev->commands[26] & 0x40)) 4391 return 0; 4392 4393 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4394 0, NULL, HCI_CMD_TIMEOUT); 4395 } 4396 4397 /* Read LE Resolving List Size */ 4398 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4399 { 4400 if (!(hdev->commands[34] & 0x40)) 4401 return 0; 4402 4403 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4404 0, NULL, HCI_CMD_TIMEOUT); 4405 } 4406 4407 /* Clear LE Resolving List */ 4408 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4409 { 4410 if (!(hdev->commands[34] & 0x20)) 4411 return 0; 4412 4413 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4414 HCI_CMD_TIMEOUT); 4415 } 4416 4417 /* Set RPA timeout */ 4418 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4419 { 4420 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4421 4422 if (!(hdev->commands[35] & 0x04) || 4423 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4424 return 0; 4425 4426 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4427 sizeof(timeout), &timeout, 4428 HCI_CMD_TIMEOUT); 4429 } 4430 4431 /* Read LE Maximum Data Length */ 4432 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4433 { 4434 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4435 return 0; 4436 4437 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4438 HCI_CMD_TIMEOUT); 4439 } 4440 4441 /* Read LE Suggested Default Data Length */ 4442 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4443 { 4444 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4445 return 0; 4446 4447 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4448 HCI_CMD_TIMEOUT); 4449 } 4450 4451 /* Read LE Number of Supported Advertising Sets */ 4452 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4453 { 4454 if (!ext_adv_capable(hdev)) 4455 return 0; 4456 4457 return __hci_cmd_sync_status(hdev, 4458 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4459 0, NULL, HCI_CMD_TIMEOUT); 4460 } 4461 4462 /* Write LE Host Supported */ 4463 static int hci_set_le_support_sync(struct hci_dev *hdev) 4464 { 4465 struct hci_cp_write_le_host_supported cp; 4466 4467 /* LE-only devices do not support explicit enablement */ 4468 if (!lmp_bredr_capable(hdev)) 4469 return 0; 4470 4471 memset(&cp, 0, sizeof(cp)); 4472 4473 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4474 cp.le = 0x01; 4475 cp.simul = 0x00; 4476 } 4477 4478 if (cp.le == lmp_host_le_capable(hdev)) 4479 return 0; 4480 4481 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4482 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4483 } 4484 4485 /* LE Set Host Feature */ 4486 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4487 { 4488 struct hci_cp_le_set_host_feature cp; 4489 4490 if (!cis_capable(hdev)) 4491 return 0; 4492 4493 memset(&cp, 0, sizeof(cp)); 4494 4495 /* Connected Isochronous Channels (Host Support) */ 4496 cp.bit_number = 32; 4497 cp.bit_value = 1; 4498 4499 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4500 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4501 } 4502 4503 /* LE Controller init stage 3 command sequence */ 4504 static const struct hci_init_stage le_init3[] = { 4505 /* HCI_OP_LE_SET_EVENT_MASK */ 4506 HCI_INIT(hci_le_set_event_mask_sync), 4507 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4508 HCI_INIT(hci_le_read_adv_tx_power_sync), 4509 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4510 HCI_INIT(hci_le_read_tx_power_sync), 4511 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4512 HCI_INIT(hci_le_read_accept_list_size_sync), 4513 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4514 HCI_INIT(hci_le_clear_accept_list_sync), 4515 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4516 HCI_INIT(hci_le_read_resolv_list_size_sync), 4517 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4518 HCI_INIT(hci_le_clear_resolv_list_sync), 4519 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4520 HCI_INIT(hci_le_set_rpa_timeout_sync), 4521 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4522 HCI_INIT(hci_le_read_max_data_len_sync), 4523 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4524 HCI_INIT(hci_le_read_def_data_len_sync), 4525 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4526 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4527 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4528 HCI_INIT(hci_set_le_support_sync), 4529 /* HCI_OP_LE_SET_HOST_FEATURE */ 4530 HCI_INIT(hci_le_set_host_feature_sync), 4531 {} 4532 }; 4533 4534 static int hci_init3_sync(struct hci_dev *hdev) 4535 { 4536 int err; 4537 4538 bt_dev_dbg(hdev, ""); 4539 4540 err = hci_init_stage_sync(hdev, hci_init3); 4541 if (err) 4542 return err; 4543 4544 if (lmp_le_capable(hdev)) 4545 return hci_init_stage_sync(hdev, le_init3); 4546 4547 return 0; 4548 } 4549 4550 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4551 { 4552 struct hci_cp_delete_stored_link_key cp; 4553 4554 /* Some Broadcom based Bluetooth controllers do not support the 4555 * Delete Stored Link Key command. They are clearly indicating its 4556 * absence in the bit mask of supported commands. 4557 * 4558 * Check the supported commands and only if the command is marked 4559 * as supported send it. If not supported assume that the controller 4560 * does not have actual support for stored link keys which makes this 4561 * command redundant anyway. 4562 * 4563 * Some controllers indicate that they support handling deleting 4564 * stored link keys, but they don't. The quirk lets a driver 4565 * just disable this command. 4566 */ 4567 if (!(hdev->commands[6] & 0x80) || 4568 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4569 return 0; 4570 4571 memset(&cp, 0, sizeof(cp)); 4572 bacpy(&cp.bdaddr, BDADDR_ANY); 4573 cp.delete_all = 0x01; 4574 4575 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4576 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4577 } 4578 4579 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4580 { 4581 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4582 bool changed = false; 4583 4584 /* Set event mask page 2 if the HCI command for it is supported */ 4585 if (!(hdev->commands[22] & 0x04)) 4586 return 0; 4587 4588 /* If Connectionless Peripheral Broadcast central role is supported 4589 * enable all necessary events for it. 4590 */ 4591 if (lmp_cpb_central_capable(hdev)) { 4592 events[1] |= 0x40; /* Triggered Clock Capture */ 4593 events[1] |= 0x80; /* Synchronization Train Complete */ 4594 events[2] |= 0x08; /* Truncated Page Complete */ 4595 events[2] |= 0x20; /* CPB Channel Map Change */ 4596 changed = true; 4597 } 4598 4599 /* If Connectionless Peripheral Broadcast peripheral role is supported 4600 * enable all necessary events for it. 4601 */ 4602 if (lmp_cpb_peripheral_capable(hdev)) { 4603 events[2] |= 0x01; /* Synchronization Train Received */ 4604 events[2] |= 0x02; /* CPB Receive */ 4605 events[2] |= 0x04; /* CPB Timeout */ 4606 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4607 changed = true; 4608 } 4609 4610 /* Enable Authenticated Payload Timeout Expired event if supported */ 4611 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4612 events[2] |= 0x80; 4613 changed = true; 4614 } 4615 4616 /* Some Broadcom based controllers indicate support for Set Event 4617 * Mask Page 2 command, but then actually do not support it. Since 4618 * the default value is all bits set to zero, the command is only 4619 * required if the event mask has to be changed. In case no change 4620 * to the event mask is needed, skip this command. 4621 */ 4622 if (!changed) 4623 return 0; 4624 4625 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4626 sizeof(events), events, HCI_CMD_TIMEOUT); 4627 } 4628 4629 /* Read local codec list if the HCI command is supported */ 4630 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4631 { 4632 if (hdev->commands[45] & 0x04) 4633 hci_read_supported_codecs_v2(hdev); 4634 else if (hdev->commands[29] & 0x20) 4635 hci_read_supported_codecs(hdev); 4636 4637 return 0; 4638 } 4639 4640 /* Read local pairing options if the HCI command is supported */ 4641 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4642 { 4643 if (!(hdev->commands[41] & 0x08)) 4644 return 0; 4645 4646 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4647 0, NULL, HCI_CMD_TIMEOUT); 4648 } 4649 4650 /* Get MWS transport configuration if the HCI command is supported */ 4651 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4652 { 4653 if (!mws_transport_config_capable(hdev)) 4654 return 0; 4655 4656 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4657 0, NULL, HCI_CMD_TIMEOUT); 4658 } 4659 4660 /* Check for Synchronization Train support */ 4661 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4662 { 4663 if (!lmp_sync_train_capable(hdev)) 4664 return 0; 4665 4666 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4667 0, NULL, HCI_CMD_TIMEOUT); 4668 } 4669 4670 /* Enable Secure Connections if supported and configured */ 4671 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4672 { 4673 u8 support = 0x01; 4674 4675 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4676 !bredr_sc_enabled(hdev)) 4677 return 0; 4678 4679 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4680 sizeof(support), &support, 4681 HCI_CMD_TIMEOUT); 4682 } 4683 4684 /* Set erroneous data reporting if supported to the wideband speech 4685 * setting value 4686 */ 4687 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4688 { 4689 struct hci_cp_write_def_err_data_reporting cp; 4690 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4691 4692 if (!(hdev->commands[18] & 0x08) || 4693 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4694 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4695 return 0; 4696 4697 if (enabled == hdev->err_data_reporting) 4698 return 0; 4699 4700 memset(&cp, 0, sizeof(cp)); 4701 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4702 ERR_DATA_REPORTING_DISABLED; 4703 4704 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4705 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4706 } 4707 4708 static const struct hci_init_stage hci_init4[] = { 4709 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4710 HCI_INIT(hci_delete_stored_link_key_sync), 4711 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4712 HCI_INIT(hci_set_event_mask_page_2_sync), 4713 /* HCI_OP_READ_LOCAL_CODECS */ 4714 HCI_INIT(hci_read_local_codecs_sync), 4715 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4716 HCI_INIT(hci_read_local_pairing_opts_sync), 4717 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4718 HCI_INIT(hci_get_mws_transport_config_sync), 4719 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4720 HCI_INIT(hci_read_sync_train_params_sync), 4721 /* HCI_OP_WRITE_SC_SUPPORT */ 4722 HCI_INIT(hci_write_sc_support_1_sync), 4723 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4724 HCI_INIT(hci_set_err_data_report_sync), 4725 {} 4726 }; 4727 4728 /* Set Suggested Default Data Length to maximum if supported */ 4729 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4730 { 4731 struct hci_cp_le_write_def_data_len cp; 4732 4733 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4734 return 0; 4735 4736 memset(&cp, 0, sizeof(cp)); 4737 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4738 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4739 4740 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4741 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4742 } 4743 4744 /* Set Default PHY parameters if command is supported, enables all supported 4745 * PHYs according to the LE Features bits. 4746 */ 4747 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4748 { 4749 struct hci_cp_le_set_default_phy cp; 4750 4751 if (!(hdev->commands[35] & 0x20)) { 4752 /* If the command is not supported it means only 1M PHY is 4753 * supported. 4754 */ 4755 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4756 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4757 return 0; 4758 } 4759 4760 memset(&cp, 0, sizeof(cp)); 4761 cp.all_phys = 0x00; 4762 cp.tx_phys = HCI_LE_SET_PHY_1M; 4763 cp.rx_phys = HCI_LE_SET_PHY_1M; 4764 4765 /* Enables 2M PHY if supported */ 4766 if (le_2m_capable(hdev)) { 4767 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4768 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4769 } 4770 4771 /* Enables Coded PHY if supported */ 4772 if (le_coded_capable(hdev)) { 4773 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4774 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4775 } 4776 4777 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4778 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4779 } 4780 4781 static const struct hci_init_stage le_init4[] = { 4782 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4783 HCI_INIT(hci_le_set_write_def_data_len_sync), 4784 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4785 HCI_INIT(hci_le_set_default_phy_sync), 4786 {} 4787 }; 4788 4789 static int hci_init4_sync(struct hci_dev *hdev) 4790 { 4791 int err; 4792 4793 bt_dev_dbg(hdev, ""); 4794 4795 err = hci_init_stage_sync(hdev, hci_init4); 4796 if (err) 4797 return err; 4798 4799 if (lmp_le_capable(hdev)) 4800 return hci_init_stage_sync(hdev, le_init4); 4801 4802 return 0; 4803 } 4804 4805 static int hci_init_sync(struct hci_dev *hdev) 4806 { 4807 int err; 4808 4809 err = hci_init1_sync(hdev); 4810 if (err < 0) 4811 return err; 4812 4813 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4814 hci_debugfs_create_basic(hdev); 4815 4816 err = hci_init2_sync(hdev); 4817 if (err < 0) 4818 return err; 4819 4820 err = hci_init3_sync(hdev); 4821 if (err < 0) 4822 return err; 4823 4824 err = hci_init4_sync(hdev); 4825 if (err < 0) 4826 return err; 4827 4828 /* This function is only called when the controller is actually in 4829 * configured state. When the controller is marked as unconfigured, 4830 * this initialization procedure is not run. 4831 * 4832 * It means that it is possible that a controller runs through its 4833 * setup phase and then discovers missing settings. If that is the 4834 * case, then this function will not be called. It then will only 4835 * be called during the config phase. 4836 * 4837 * So only when in setup phase or config phase, create the debugfs 4838 * entries and register the SMP channels. 4839 */ 4840 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4841 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4842 return 0; 4843 4844 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4845 return 0; 4846 4847 hci_debugfs_create_common(hdev); 4848 4849 if (lmp_bredr_capable(hdev)) 4850 hci_debugfs_create_bredr(hdev); 4851 4852 if (lmp_le_capable(hdev)) 4853 hci_debugfs_create_le(hdev); 4854 4855 return 0; 4856 } 4857 4858 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4859 4860 static const struct { 4861 unsigned long quirk; 4862 const char *desc; 4863 } hci_broken_table[] = { 4864 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4865 "HCI Read Local Supported Commands not supported"), 4866 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4867 "HCI Delete Stored Link Key command is advertised, " 4868 "but not supported."), 4869 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4870 "HCI Read Default Erroneous Data Reporting command is " 4871 "advertised, but not supported."), 4872 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4873 "HCI Read Transmit Power Level command is advertised, " 4874 "but not supported."), 4875 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4876 "HCI Set Event Filter command not supported."), 4877 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4878 "HCI Enhanced Setup Synchronous Connection command is " 4879 "advertised, but not supported."), 4880 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4881 "HCI LE Set Random Private Address Timeout command is " 4882 "advertised, but not supported."), 4883 HCI_QUIRK_BROKEN(EXT_CREATE_CONN, 4884 "HCI LE Extended Create Connection command is " 4885 "advertised, but not supported."), 4886 HCI_QUIRK_BROKEN(WRITE_AUTH_PAYLOAD_TIMEOUT, 4887 "HCI WRITE AUTH PAYLOAD TIMEOUT command leads " 4888 "to unexpected SMP errors when pairing " 4889 "and will not be used."), 4890 HCI_QUIRK_BROKEN(LE_CODED, 4891 "HCI LE Coded PHY feature bit is set, " 4892 "but its usage is not supported.") 4893 }; 4894 4895 /* This function handles hdev setup stage: 4896 * 4897 * Calls hdev->setup 4898 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4899 */ 4900 static int hci_dev_setup_sync(struct hci_dev *hdev) 4901 { 4902 int ret = 0; 4903 bool invalid_bdaddr; 4904 size_t i; 4905 4906 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4907 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4908 return 0; 4909 4910 bt_dev_dbg(hdev, ""); 4911 4912 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4913 4914 if (hdev->setup) 4915 ret = hdev->setup(hdev); 4916 4917 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4918 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4919 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4920 } 4921 4922 /* The transport driver can set the quirk to mark the 4923 * BD_ADDR invalid before creating the HCI device or in 4924 * its setup callback. 4925 */ 4926 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4927 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4928 if (!ret) { 4929 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4930 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4931 hci_dev_get_bd_addr_from_property(hdev); 4932 4933 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4934 hdev->set_bdaddr) { 4935 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4936 if (!ret) 4937 invalid_bdaddr = false; 4938 } 4939 } 4940 4941 /* The transport driver can set these quirks before 4942 * creating the HCI device or in its setup callback. 4943 * 4944 * For the invalid BD_ADDR quirk it is possible that 4945 * it becomes a valid address if the bootloader does 4946 * provide it (see above). 4947 * 4948 * In case any of them is set, the controller has to 4949 * start up as unconfigured. 4950 */ 4951 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4952 invalid_bdaddr) 4953 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4954 4955 /* For an unconfigured controller it is required to 4956 * read at least the version information provided by 4957 * the Read Local Version Information command. 4958 * 4959 * If the set_bdaddr driver callback is provided, then 4960 * also the original Bluetooth public device address 4961 * will be read using the Read BD Address command. 4962 */ 4963 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4964 return hci_unconf_init_sync(hdev); 4965 4966 return ret; 4967 } 4968 4969 /* This function handles hdev init stage: 4970 * 4971 * Calls hci_dev_setup_sync to perform setup stage 4972 * Calls hci_init_sync to perform HCI command init sequence 4973 */ 4974 static int hci_dev_init_sync(struct hci_dev *hdev) 4975 { 4976 int ret; 4977 4978 bt_dev_dbg(hdev, ""); 4979 4980 atomic_set(&hdev->cmd_cnt, 1); 4981 set_bit(HCI_INIT, &hdev->flags); 4982 4983 ret = hci_dev_setup_sync(hdev); 4984 4985 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4986 /* If public address change is configured, ensure that 4987 * the address gets programmed. If the driver does not 4988 * support changing the public address, fail the power 4989 * on procedure. 4990 */ 4991 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4992 hdev->set_bdaddr) 4993 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4994 else 4995 ret = -EADDRNOTAVAIL; 4996 } 4997 4998 if (!ret) { 4999 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 5000 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5001 ret = hci_init_sync(hdev); 5002 if (!ret && hdev->post_init) 5003 ret = hdev->post_init(hdev); 5004 } 5005 } 5006 5007 /* If the HCI Reset command is clearing all diagnostic settings, 5008 * then they need to be reprogrammed after the init procedure 5009 * completed. 5010 */ 5011 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 5012 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5013 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 5014 ret = hdev->set_diag(hdev, true); 5015 5016 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5017 msft_do_open(hdev); 5018 aosp_do_open(hdev); 5019 } 5020 5021 clear_bit(HCI_INIT, &hdev->flags); 5022 5023 return ret; 5024 } 5025 5026 int hci_dev_open_sync(struct hci_dev *hdev) 5027 { 5028 int ret; 5029 5030 bt_dev_dbg(hdev, ""); 5031 5032 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 5033 ret = -ENODEV; 5034 goto done; 5035 } 5036 5037 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5038 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 5039 /* Check for rfkill but allow the HCI setup stage to 5040 * proceed (which in itself doesn't cause any RF activity). 5041 */ 5042 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 5043 ret = -ERFKILL; 5044 goto done; 5045 } 5046 5047 /* Check for valid public address or a configured static 5048 * random address, but let the HCI setup proceed to 5049 * be able to determine if there is a public address 5050 * or not. 5051 * 5052 * In case of user channel usage, it is not important 5053 * if a public address or static random address is 5054 * available. 5055 */ 5056 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5057 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5058 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 5059 ret = -EADDRNOTAVAIL; 5060 goto done; 5061 } 5062 } 5063 5064 if (test_bit(HCI_UP, &hdev->flags)) { 5065 ret = -EALREADY; 5066 goto done; 5067 } 5068 5069 if (hdev->open(hdev)) { 5070 ret = -EIO; 5071 goto done; 5072 } 5073 5074 hci_devcd_reset(hdev); 5075 5076 set_bit(HCI_RUNNING, &hdev->flags); 5077 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 5078 5079 ret = hci_dev_init_sync(hdev); 5080 if (!ret) { 5081 hci_dev_hold(hdev); 5082 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 5083 hci_adv_instances_set_rpa_expired(hdev, true); 5084 set_bit(HCI_UP, &hdev->flags); 5085 hci_sock_dev_event(hdev, HCI_DEV_UP); 5086 hci_leds_update_powered(hdev, true); 5087 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5088 !hci_dev_test_flag(hdev, HCI_CONFIG) && 5089 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 5090 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5091 hci_dev_test_flag(hdev, HCI_MGMT)) { 5092 ret = hci_powered_update_sync(hdev); 5093 mgmt_power_on(hdev, ret); 5094 } 5095 } else { 5096 /* Init failed, cleanup */ 5097 flush_work(&hdev->tx_work); 5098 5099 /* Since hci_rx_work() is possible to awake new cmd_work 5100 * it should be flushed first to avoid unexpected call of 5101 * hci_cmd_work() 5102 */ 5103 flush_work(&hdev->rx_work); 5104 flush_work(&hdev->cmd_work); 5105 5106 skb_queue_purge(&hdev->cmd_q); 5107 skb_queue_purge(&hdev->rx_q); 5108 5109 if (hdev->flush) 5110 hdev->flush(hdev); 5111 5112 if (hdev->sent_cmd) { 5113 cancel_delayed_work_sync(&hdev->cmd_timer); 5114 kfree_skb(hdev->sent_cmd); 5115 hdev->sent_cmd = NULL; 5116 } 5117 5118 if (hdev->req_skb) { 5119 kfree_skb(hdev->req_skb); 5120 hdev->req_skb = NULL; 5121 } 5122 5123 clear_bit(HCI_RUNNING, &hdev->flags); 5124 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5125 5126 hdev->close(hdev); 5127 hdev->flags &= BIT(HCI_RAW); 5128 } 5129 5130 done: 5131 return ret; 5132 } 5133 5134 /* This function requires the caller holds hdev->lock */ 5135 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 5136 { 5137 struct hci_conn_params *p; 5138 5139 list_for_each_entry(p, &hdev->le_conn_params, list) { 5140 hci_pend_le_list_del_init(p); 5141 if (p->conn) { 5142 hci_conn_drop(p->conn); 5143 hci_conn_put(p->conn); 5144 p->conn = NULL; 5145 } 5146 } 5147 5148 BT_DBG("All LE pending actions cleared"); 5149 } 5150 5151 static int hci_dev_shutdown(struct hci_dev *hdev) 5152 { 5153 int err = 0; 5154 /* Similar to how we first do setup and then set the exclusive access 5155 * bit for userspace, we must first unset userchannel and then clean up. 5156 * Otherwise, the kernel can't properly use the hci channel to clean up 5157 * the controller (some shutdown routines require sending additional 5158 * commands to the controller for example). 5159 */ 5160 bool was_userchannel = 5161 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 5162 5163 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 5164 test_bit(HCI_UP, &hdev->flags)) { 5165 /* Execute vendor specific shutdown routine */ 5166 if (hdev->shutdown) 5167 err = hdev->shutdown(hdev); 5168 } 5169 5170 if (was_userchannel) 5171 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 5172 5173 return err; 5174 } 5175 5176 int hci_dev_close_sync(struct hci_dev *hdev) 5177 { 5178 bool auto_off; 5179 int err = 0; 5180 5181 bt_dev_dbg(hdev, ""); 5182 5183 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 5184 disable_delayed_work(&hdev->power_off); 5185 disable_delayed_work(&hdev->ncmd_timer); 5186 disable_delayed_work(&hdev->le_scan_disable); 5187 } else { 5188 cancel_delayed_work(&hdev->power_off); 5189 cancel_delayed_work(&hdev->ncmd_timer); 5190 cancel_delayed_work(&hdev->le_scan_disable); 5191 } 5192 5193 hci_cmd_sync_cancel_sync(hdev, ENODEV); 5194 5195 cancel_interleave_scan(hdev); 5196 5197 if (hdev->adv_instance_timeout) { 5198 cancel_delayed_work_sync(&hdev->adv_instance_expire); 5199 hdev->adv_instance_timeout = 0; 5200 } 5201 5202 err = hci_dev_shutdown(hdev); 5203 5204 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 5205 cancel_delayed_work_sync(&hdev->cmd_timer); 5206 return err; 5207 } 5208 5209 hci_leds_update_powered(hdev, false); 5210 5211 /* Flush RX and TX works */ 5212 flush_work(&hdev->tx_work); 5213 flush_work(&hdev->rx_work); 5214 5215 if (hdev->discov_timeout > 0) { 5216 hdev->discov_timeout = 0; 5217 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 5218 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 5219 } 5220 5221 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 5222 cancel_delayed_work(&hdev->service_cache); 5223 5224 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 5225 struct adv_info *adv_instance; 5226 5227 cancel_delayed_work_sync(&hdev->rpa_expired); 5228 5229 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5230 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5231 } 5232 5233 /* Avoid potential lockdep warnings from the *_flush() calls by 5234 * ensuring the workqueue is empty up front. 5235 */ 5236 drain_workqueue(hdev->workqueue); 5237 5238 hci_dev_lock(hdev); 5239 5240 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5241 5242 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5243 5244 if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5245 hci_dev_test_flag(hdev, HCI_MGMT)) 5246 __mgmt_power_off(hdev); 5247 5248 hci_inquiry_cache_flush(hdev); 5249 hci_pend_le_actions_clear(hdev); 5250 hci_conn_hash_flush(hdev); 5251 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5252 smp_unregister(hdev); 5253 hci_dev_unlock(hdev); 5254 5255 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5256 5257 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5258 aosp_do_close(hdev); 5259 msft_do_close(hdev); 5260 } 5261 5262 if (hdev->flush) 5263 hdev->flush(hdev); 5264 5265 /* Reset device */ 5266 skb_queue_purge(&hdev->cmd_q); 5267 atomic_set(&hdev->cmd_cnt, 1); 5268 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5269 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5270 set_bit(HCI_INIT, &hdev->flags); 5271 hci_reset_sync(hdev); 5272 clear_bit(HCI_INIT, &hdev->flags); 5273 } 5274 5275 /* flush cmd work */ 5276 flush_work(&hdev->cmd_work); 5277 5278 /* Drop queues */ 5279 skb_queue_purge(&hdev->rx_q); 5280 skb_queue_purge(&hdev->cmd_q); 5281 skb_queue_purge(&hdev->raw_q); 5282 5283 /* Drop last sent command */ 5284 if (hdev->sent_cmd) { 5285 cancel_delayed_work_sync(&hdev->cmd_timer); 5286 kfree_skb(hdev->sent_cmd); 5287 hdev->sent_cmd = NULL; 5288 } 5289 5290 /* Drop last request */ 5291 if (hdev->req_skb) { 5292 kfree_skb(hdev->req_skb); 5293 hdev->req_skb = NULL; 5294 } 5295 5296 clear_bit(HCI_RUNNING, &hdev->flags); 5297 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5298 5299 /* After this point our queues are empty and no tasks are scheduled. */ 5300 hdev->close(hdev); 5301 5302 /* Clear flags */ 5303 hdev->flags &= BIT(HCI_RAW); 5304 hci_dev_clear_volatile_flags(hdev); 5305 5306 memset(hdev->eir, 0, sizeof(hdev->eir)); 5307 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5308 bacpy(&hdev->random_addr, BDADDR_ANY); 5309 hci_codec_list_clear(&hdev->local_codecs); 5310 5311 hci_dev_put(hdev); 5312 return err; 5313 } 5314 5315 /* This function perform power on HCI command sequence as follows: 5316 * 5317 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5318 * sequence otherwise run hci_dev_open_sync which will follow with 5319 * hci_powered_update_sync after the init sequence is completed. 5320 */ 5321 static int hci_power_on_sync(struct hci_dev *hdev) 5322 { 5323 int err; 5324 5325 if (test_bit(HCI_UP, &hdev->flags) && 5326 hci_dev_test_flag(hdev, HCI_MGMT) && 5327 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5328 cancel_delayed_work(&hdev->power_off); 5329 return hci_powered_update_sync(hdev); 5330 } 5331 5332 err = hci_dev_open_sync(hdev); 5333 if (err < 0) 5334 return err; 5335 5336 /* During the HCI setup phase, a few error conditions are 5337 * ignored and they need to be checked now. If they are still 5338 * valid, it is important to return the device back off. 5339 */ 5340 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5341 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5342 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 5343 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5344 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5345 hci_dev_close_sync(hdev); 5346 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5347 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5348 HCI_AUTO_OFF_TIMEOUT); 5349 } 5350 5351 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5352 /* For unconfigured devices, set the HCI_RAW flag 5353 * so that userspace can easily identify them. 5354 */ 5355 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5356 set_bit(HCI_RAW, &hdev->flags); 5357 5358 /* For fully configured devices, this will send 5359 * the Index Added event. For unconfigured devices, 5360 * it will send Unconfigued Index Added event. 5361 * 5362 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5363 * and no event will be send. 5364 */ 5365 mgmt_index_added(hdev); 5366 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5367 /* When the controller is now configured, then it 5368 * is important to clear the HCI_RAW flag. 5369 */ 5370 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5371 clear_bit(HCI_RAW, &hdev->flags); 5372 5373 /* Powering on the controller with HCI_CONFIG set only 5374 * happens with the transition from unconfigured to 5375 * configured. This will send the Index Added event. 5376 */ 5377 mgmt_index_added(hdev); 5378 } 5379 5380 return 0; 5381 } 5382 5383 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5384 { 5385 struct hci_cp_remote_name_req_cancel cp; 5386 5387 memset(&cp, 0, sizeof(cp)); 5388 bacpy(&cp.bdaddr, addr); 5389 5390 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5391 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5392 } 5393 5394 int hci_stop_discovery_sync(struct hci_dev *hdev) 5395 { 5396 struct discovery_state *d = &hdev->discovery; 5397 struct inquiry_entry *e; 5398 int err; 5399 5400 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5401 5402 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5403 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5404 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5405 0, NULL, HCI_CMD_TIMEOUT); 5406 if (err) 5407 return err; 5408 } 5409 5410 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5411 cancel_delayed_work(&hdev->le_scan_disable); 5412 5413 err = hci_scan_disable_sync(hdev); 5414 if (err) 5415 return err; 5416 } 5417 5418 } else { 5419 err = hci_scan_disable_sync(hdev); 5420 if (err) 5421 return err; 5422 } 5423 5424 /* Resume advertising if it was paused */ 5425 if (ll_privacy_capable(hdev)) 5426 hci_resume_advertising_sync(hdev); 5427 5428 /* No further actions needed for LE-only discovery */ 5429 if (d->type == DISCOV_TYPE_LE) 5430 return 0; 5431 5432 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5433 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5434 NAME_PENDING); 5435 if (!e) 5436 return 0; 5437 5438 /* Ignore cancel errors since it should interfere with stopping 5439 * of the discovery. 5440 */ 5441 hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5442 } 5443 5444 return 0; 5445 } 5446 5447 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5448 u8 reason) 5449 { 5450 struct hci_cp_disconnect cp; 5451 5452 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5453 /* This is a BIS connection, hci_conn_del will 5454 * do the necessary cleanup. 5455 */ 5456 hci_dev_lock(hdev); 5457 hci_conn_failed(conn, reason); 5458 hci_dev_unlock(hdev); 5459 5460 return 0; 5461 } 5462 5463 memset(&cp, 0, sizeof(cp)); 5464 cp.handle = cpu_to_le16(conn->handle); 5465 cp.reason = reason; 5466 5467 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5468 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5469 * used when suspending or powering off, where we don't want to wait 5470 * for the peer's response. 5471 */ 5472 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5473 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5474 sizeof(cp), &cp, 5475 HCI_EV_DISCONN_COMPLETE, 5476 HCI_CMD_TIMEOUT, NULL); 5477 5478 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5479 HCI_CMD_TIMEOUT); 5480 } 5481 5482 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5483 struct hci_conn *conn, u8 reason) 5484 { 5485 /* Return reason if scanning since the connection shall probably be 5486 * cleanup directly. 5487 */ 5488 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5489 return reason; 5490 5491 if (conn->role == HCI_ROLE_SLAVE || 5492 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5493 return 0; 5494 5495 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5496 0, NULL, HCI_CMD_TIMEOUT); 5497 } 5498 5499 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5500 u8 reason) 5501 { 5502 if (conn->type == LE_LINK) 5503 return hci_le_connect_cancel_sync(hdev, conn, reason); 5504 5505 if (conn->type == CIS_LINK) { 5506 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5507 * page 1857: 5508 * 5509 * If this command is issued for a CIS on the Central and the 5510 * CIS is successfully terminated before being established, 5511 * then an HCI_LE_CIS_Established event shall also be sent for 5512 * this CIS with the Status Operation Cancelled by Host (0x44). 5513 */ 5514 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5515 return hci_disconnect_sync(hdev, conn, reason); 5516 5517 /* CIS with no Create CIS sent have nothing to cancel */ 5518 return HCI_ERROR_LOCAL_HOST_TERM; 5519 } 5520 5521 if (conn->type == BIS_LINK) { 5522 /* There is no way to cancel a BIS without terminating the BIG 5523 * which is done later on connection cleanup. 5524 */ 5525 return 0; 5526 } 5527 5528 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5529 return 0; 5530 5531 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5532 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5533 * used when suspending or powering off, where we don't want to wait 5534 * for the peer's response. 5535 */ 5536 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5537 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5538 6, &conn->dst, 5539 HCI_EV_CONN_COMPLETE, 5540 HCI_CMD_TIMEOUT, NULL); 5541 5542 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5543 6, &conn->dst, HCI_CMD_TIMEOUT); 5544 } 5545 5546 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5547 u8 reason) 5548 { 5549 struct hci_cp_reject_sync_conn_req cp; 5550 5551 memset(&cp, 0, sizeof(cp)); 5552 bacpy(&cp.bdaddr, &conn->dst); 5553 cp.reason = reason; 5554 5555 /* SCO rejection has its own limited set of 5556 * allowed error values (0x0D-0x0F). 5557 */ 5558 if (reason < 0x0d || reason > 0x0f) 5559 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5560 5561 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5562 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5563 } 5564 5565 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5566 u8 reason) 5567 { 5568 struct hci_cp_le_reject_cis cp; 5569 5570 memset(&cp, 0, sizeof(cp)); 5571 cp.handle = cpu_to_le16(conn->handle); 5572 cp.reason = reason; 5573 5574 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5575 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5576 } 5577 5578 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5579 u8 reason) 5580 { 5581 struct hci_cp_reject_conn_req cp; 5582 5583 if (conn->type == CIS_LINK) 5584 return hci_le_reject_cis_sync(hdev, conn, reason); 5585 5586 if (conn->type == BIS_LINK) 5587 return -EINVAL; 5588 5589 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5590 return hci_reject_sco_sync(hdev, conn, reason); 5591 5592 memset(&cp, 0, sizeof(cp)); 5593 bacpy(&cp.bdaddr, &conn->dst); 5594 cp.reason = reason; 5595 5596 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5597 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5598 } 5599 5600 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5601 { 5602 int err = 0; 5603 u16 handle = conn->handle; 5604 bool disconnect = false; 5605 struct hci_conn *c; 5606 5607 switch (conn->state) { 5608 case BT_CONNECTED: 5609 case BT_CONFIG: 5610 err = hci_disconnect_sync(hdev, conn, reason); 5611 break; 5612 case BT_CONNECT: 5613 err = hci_connect_cancel_sync(hdev, conn, reason); 5614 break; 5615 case BT_CONNECT2: 5616 err = hci_reject_conn_sync(hdev, conn, reason); 5617 break; 5618 case BT_OPEN: 5619 case BT_BOUND: 5620 break; 5621 default: 5622 disconnect = true; 5623 break; 5624 } 5625 5626 hci_dev_lock(hdev); 5627 5628 /* Check if the connection has been cleaned up concurrently */ 5629 c = hci_conn_hash_lookup_handle(hdev, handle); 5630 if (!c || c != conn) { 5631 err = 0; 5632 goto unlock; 5633 } 5634 5635 /* Cleanup hci_conn object if it cannot be cancelled as it 5636 * likelly means the controller and host stack are out of sync 5637 * or in case of LE it was still scanning so it can be cleanup 5638 * safely. 5639 */ 5640 if (disconnect) { 5641 conn->state = BT_CLOSED; 5642 hci_disconn_cfm(conn, reason); 5643 hci_conn_del(conn); 5644 } else { 5645 hci_conn_failed(conn, reason); 5646 } 5647 5648 unlock: 5649 hci_dev_unlock(hdev); 5650 return err; 5651 } 5652 5653 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5654 { 5655 struct list_head *head = &hdev->conn_hash.list; 5656 struct hci_conn *conn; 5657 5658 rcu_read_lock(); 5659 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5660 /* Make sure the connection is not freed while unlocking */ 5661 conn = hci_conn_get(conn); 5662 rcu_read_unlock(); 5663 /* Disregard possible errors since hci_conn_del shall have been 5664 * called even in case of errors had occurred since it would 5665 * then cause hci_conn_failed to be called which calls 5666 * hci_conn_del internally. 5667 */ 5668 hci_abort_conn_sync(hdev, conn, reason); 5669 hci_conn_put(conn); 5670 rcu_read_lock(); 5671 } 5672 rcu_read_unlock(); 5673 5674 return 0; 5675 } 5676 5677 /* This function perform power off HCI command sequence as follows: 5678 * 5679 * Clear Advertising 5680 * Stop Discovery 5681 * Disconnect all connections 5682 * hci_dev_close_sync 5683 */ 5684 static int hci_power_off_sync(struct hci_dev *hdev) 5685 { 5686 int err; 5687 5688 /* If controller is already down there is nothing to do */ 5689 if (!test_bit(HCI_UP, &hdev->flags)) 5690 return 0; 5691 5692 hci_dev_set_flag(hdev, HCI_POWERING_DOWN); 5693 5694 if (test_bit(HCI_ISCAN, &hdev->flags) || 5695 test_bit(HCI_PSCAN, &hdev->flags)) { 5696 err = hci_write_scan_enable_sync(hdev, 0x00); 5697 if (err) 5698 goto out; 5699 } 5700 5701 err = hci_clear_adv_sync(hdev, NULL, false); 5702 if (err) 5703 goto out; 5704 5705 err = hci_stop_discovery_sync(hdev); 5706 if (err) 5707 goto out; 5708 5709 /* Terminated due to Power Off */ 5710 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5711 if (err) 5712 goto out; 5713 5714 err = hci_dev_close_sync(hdev); 5715 5716 out: 5717 hci_dev_clear_flag(hdev, HCI_POWERING_DOWN); 5718 return err; 5719 } 5720 5721 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5722 { 5723 if (val) 5724 return hci_power_on_sync(hdev); 5725 5726 return hci_power_off_sync(hdev); 5727 } 5728 5729 static int hci_write_iac_sync(struct hci_dev *hdev) 5730 { 5731 struct hci_cp_write_current_iac_lap cp; 5732 5733 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5734 return 0; 5735 5736 memset(&cp, 0, sizeof(cp)); 5737 5738 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5739 /* Limited discoverable mode */ 5740 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5741 cp.iac_lap[0] = 0x00; /* LIAC */ 5742 cp.iac_lap[1] = 0x8b; 5743 cp.iac_lap[2] = 0x9e; 5744 cp.iac_lap[3] = 0x33; /* GIAC */ 5745 cp.iac_lap[4] = 0x8b; 5746 cp.iac_lap[5] = 0x9e; 5747 } else { 5748 /* General discoverable mode */ 5749 cp.num_iac = 1; 5750 cp.iac_lap[0] = 0x33; /* GIAC */ 5751 cp.iac_lap[1] = 0x8b; 5752 cp.iac_lap[2] = 0x9e; 5753 } 5754 5755 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5756 (cp.num_iac * 3) + 1, &cp, 5757 HCI_CMD_TIMEOUT); 5758 } 5759 5760 int hci_update_discoverable_sync(struct hci_dev *hdev) 5761 { 5762 int err = 0; 5763 5764 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5765 err = hci_write_iac_sync(hdev); 5766 if (err) 5767 return err; 5768 5769 err = hci_update_scan_sync(hdev); 5770 if (err) 5771 return err; 5772 5773 err = hci_update_class_sync(hdev); 5774 if (err) 5775 return err; 5776 } 5777 5778 /* Advertising instances don't use the global discoverable setting, so 5779 * only update AD if advertising was enabled using Set Advertising. 5780 */ 5781 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5782 err = hci_update_adv_data_sync(hdev, 0x00); 5783 if (err) 5784 return err; 5785 5786 /* Discoverable mode affects the local advertising 5787 * address in limited privacy mode. 5788 */ 5789 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5790 if (ext_adv_capable(hdev)) 5791 err = hci_start_ext_adv_sync(hdev, 0x00); 5792 else 5793 err = hci_enable_advertising_sync(hdev); 5794 } 5795 } 5796 5797 return err; 5798 } 5799 5800 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5801 { 5802 return hci_update_discoverable_sync(hdev); 5803 } 5804 5805 int hci_update_discoverable(struct hci_dev *hdev) 5806 { 5807 /* Only queue if it would have any effect */ 5808 if (hdev_is_powered(hdev) && 5809 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5810 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5811 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5812 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5813 NULL); 5814 5815 return 0; 5816 } 5817 5818 int hci_update_connectable_sync(struct hci_dev *hdev) 5819 { 5820 int err; 5821 5822 err = hci_update_scan_sync(hdev); 5823 if (err) 5824 return err; 5825 5826 /* If BR/EDR is not enabled and we disable advertising as a 5827 * by-product of disabling connectable, we need to update the 5828 * advertising flags. 5829 */ 5830 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5831 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5832 5833 /* Update the advertising parameters if necessary */ 5834 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5835 !list_empty(&hdev->adv_instances)) { 5836 if (ext_adv_capable(hdev)) 5837 err = hci_start_ext_adv_sync(hdev, 5838 hdev->cur_adv_instance); 5839 else 5840 err = hci_enable_advertising_sync(hdev); 5841 5842 if (err) 5843 return err; 5844 } 5845 5846 return hci_update_passive_scan_sync(hdev); 5847 } 5848 5849 int hci_inquiry_sync(struct hci_dev *hdev, u8 length, u8 num_rsp) 5850 { 5851 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5852 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5853 struct hci_cp_inquiry cp; 5854 5855 bt_dev_dbg(hdev, ""); 5856 5857 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5858 return 0; 5859 5860 hci_dev_lock(hdev); 5861 hci_inquiry_cache_flush(hdev); 5862 hci_dev_unlock(hdev); 5863 5864 memset(&cp, 0, sizeof(cp)); 5865 5866 if (hdev->discovery.limited) 5867 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5868 else 5869 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5870 5871 cp.length = length; 5872 cp.num_rsp = num_rsp; 5873 5874 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5875 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5876 } 5877 5878 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5879 { 5880 u8 own_addr_type; 5881 /* Accept list is not used for discovery */ 5882 u8 filter_policy = 0x00; 5883 /* Default is to enable duplicates filter */ 5884 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5885 int err; 5886 5887 bt_dev_dbg(hdev, ""); 5888 5889 /* If controller is scanning, it means the passive scanning is 5890 * running. Thus, we should temporarily stop it in order to set the 5891 * discovery scanning parameters. 5892 */ 5893 err = hci_scan_disable_sync(hdev); 5894 if (err) { 5895 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5896 return err; 5897 } 5898 5899 cancel_interleave_scan(hdev); 5900 5901 /* Pause address resolution for active scan and stop advertising if 5902 * privacy is enabled. 5903 */ 5904 err = hci_pause_addr_resolution(hdev); 5905 if (err) 5906 goto failed; 5907 5908 /* All active scans will be done with either a resolvable private 5909 * address (when privacy feature has been enabled) or non-resolvable 5910 * private address. 5911 */ 5912 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5913 &own_addr_type); 5914 if (err < 0) 5915 own_addr_type = ADDR_LE_DEV_PUBLIC; 5916 5917 if (hci_is_adv_monitoring(hdev) || 5918 (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5919 hdev->discovery.result_filtering)) { 5920 /* Duplicate filter should be disabled when some advertisement 5921 * monitor is activated, otherwise AdvMon can only receive one 5922 * advertisement for one peer(*) during active scanning, and 5923 * might report loss to these peers. 5924 * 5925 * If controller does strict duplicate filtering and the 5926 * discovery requires result filtering disables controller based 5927 * filtering since that can cause reports that would match the 5928 * host filter to not be reported. 5929 */ 5930 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5931 } 5932 5933 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5934 hdev->le_scan_window_discovery, 5935 own_addr_type, filter_policy, filter_dup); 5936 if (!err) 5937 return err; 5938 5939 failed: 5940 /* Resume advertising if it was paused */ 5941 if (ll_privacy_capable(hdev)) 5942 hci_resume_advertising_sync(hdev); 5943 5944 /* Resume passive scanning */ 5945 hci_update_passive_scan_sync(hdev); 5946 return err; 5947 } 5948 5949 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5950 { 5951 int err; 5952 5953 bt_dev_dbg(hdev, ""); 5954 5955 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5956 if (err) 5957 return err; 5958 5959 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5960 } 5961 5962 int hci_start_discovery_sync(struct hci_dev *hdev) 5963 { 5964 unsigned long timeout; 5965 int err; 5966 5967 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5968 5969 switch (hdev->discovery.type) { 5970 case DISCOV_TYPE_BREDR: 5971 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5972 case DISCOV_TYPE_INTERLEAVED: 5973 /* When running simultaneous discovery, the LE scanning time 5974 * should occupy the whole discovery time sine BR/EDR inquiry 5975 * and LE scanning are scheduled by the controller. 5976 * 5977 * For interleaving discovery in comparison, BR/EDR inquiry 5978 * and LE scanning are done sequentially with separate 5979 * timeouts. 5980 */ 5981 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5982 &hdev->quirks)) { 5983 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5984 /* During simultaneous discovery, we double LE scan 5985 * interval. We must leave some time for the controller 5986 * to do BR/EDR inquiry. 5987 */ 5988 err = hci_start_interleaved_discovery_sync(hdev); 5989 break; 5990 } 5991 5992 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5993 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5994 break; 5995 case DISCOV_TYPE_LE: 5996 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5997 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5998 break; 5999 default: 6000 return -EINVAL; 6001 } 6002 6003 if (err) 6004 return err; 6005 6006 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 6007 6008 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 6009 timeout); 6010 return 0; 6011 } 6012 6013 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 6014 { 6015 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6016 case HCI_ADV_MONITOR_EXT_MSFT: 6017 msft_suspend_sync(hdev); 6018 break; 6019 default: 6020 return; 6021 } 6022 } 6023 6024 /* This function disables discovery and mark it as paused */ 6025 static int hci_pause_discovery_sync(struct hci_dev *hdev) 6026 { 6027 int old_state = hdev->discovery.state; 6028 int err; 6029 6030 /* If discovery already stopped/stopping/paused there nothing to do */ 6031 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 6032 hdev->discovery_paused) 6033 return 0; 6034 6035 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 6036 err = hci_stop_discovery_sync(hdev); 6037 if (err) 6038 return err; 6039 6040 hdev->discovery_paused = true; 6041 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 6042 6043 return 0; 6044 } 6045 6046 static int hci_update_event_filter_sync(struct hci_dev *hdev) 6047 { 6048 struct bdaddr_list_with_flags *b; 6049 u8 scan = SCAN_DISABLED; 6050 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 6051 int err; 6052 6053 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 6054 return 0; 6055 6056 /* Some fake CSR controllers lock up after setting this type of 6057 * filter, so avoid sending the request altogether. 6058 */ 6059 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 6060 return 0; 6061 6062 /* Always clear event filter when starting */ 6063 hci_clear_event_filter_sync(hdev); 6064 6065 list_for_each_entry(b, &hdev->accept_list, list) { 6066 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 6067 continue; 6068 6069 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 6070 6071 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 6072 HCI_CONN_SETUP_ALLOW_BDADDR, 6073 &b->bdaddr, 6074 HCI_CONN_SETUP_AUTO_ON); 6075 if (err) 6076 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 6077 &b->bdaddr); 6078 else 6079 scan = SCAN_PAGE; 6080 } 6081 6082 if (scan && !scanning) 6083 hci_write_scan_enable_sync(hdev, scan); 6084 else if (!scan && scanning) 6085 hci_write_scan_enable_sync(hdev, scan); 6086 6087 return 0; 6088 } 6089 6090 /* This function disables scan (BR and LE) and mark it as paused */ 6091 static int hci_pause_scan_sync(struct hci_dev *hdev) 6092 { 6093 if (hdev->scanning_paused) 6094 return 0; 6095 6096 /* Disable page scan if enabled */ 6097 if (test_bit(HCI_PSCAN, &hdev->flags)) 6098 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 6099 6100 hci_scan_disable_sync(hdev); 6101 6102 hdev->scanning_paused = true; 6103 6104 return 0; 6105 } 6106 6107 /* This function performs the HCI suspend procedures in the follow order: 6108 * 6109 * Pause discovery (active scanning/inquiry) 6110 * Pause Directed Advertising/Advertising 6111 * Pause Scanning (passive scanning in case discovery was not active) 6112 * Disconnect all connections 6113 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 6114 * otherwise: 6115 * Update event mask (only set events that are allowed to wake up the host) 6116 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 6117 * Update passive scanning (lower duty cycle) 6118 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 6119 */ 6120 int hci_suspend_sync(struct hci_dev *hdev) 6121 { 6122 int err; 6123 6124 /* If marked as suspended there nothing to do */ 6125 if (hdev->suspended) 6126 return 0; 6127 6128 /* Mark device as suspended */ 6129 hdev->suspended = true; 6130 6131 /* Pause discovery if not already stopped */ 6132 hci_pause_discovery_sync(hdev); 6133 6134 /* Pause other advertisements */ 6135 hci_pause_advertising_sync(hdev); 6136 6137 /* Suspend monitor filters */ 6138 hci_suspend_monitor_sync(hdev); 6139 6140 /* Prevent disconnects from causing scanning to be re-enabled */ 6141 hci_pause_scan_sync(hdev); 6142 6143 if (hci_conn_count(hdev)) { 6144 /* Soft disconnect everything (power off) */ 6145 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 6146 if (err) { 6147 /* Set state to BT_RUNNING so resume doesn't notify */ 6148 hdev->suspend_state = BT_RUNNING; 6149 hci_resume_sync(hdev); 6150 return err; 6151 } 6152 6153 /* Update event mask so only the allowed event can wakeup the 6154 * host. 6155 */ 6156 hci_set_event_mask_sync(hdev); 6157 } 6158 6159 /* Only configure accept list if disconnect succeeded and wake 6160 * isn't being prevented. 6161 */ 6162 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 6163 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 6164 return 0; 6165 } 6166 6167 /* Unpause to take care of updating scanning params */ 6168 hdev->scanning_paused = false; 6169 6170 /* Enable event filter for paired devices */ 6171 hci_update_event_filter_sync(hdev); 6172 6173 /* Update LE passive scan if enabled */ 6174 hci_update_passive_scan_sync(hdev); 6175 6176 /* Pause scan changes again. */ 6177 hdev->scanning_paused = true; 6178 6179 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 6180 6181 return 0; 6182 } 6183 6184 /* This function resumes discovery */ 6185 static int hci_resume_discovery_sync(struct hci_dev *hdev) 6186 { 6187 int err; 6188 6189 /* If discovery not paused there nothing to do */ 6190 if (!hdev->discovery_paused) 6191 return 0; 6192 6193 hdev->discovery_paused = false; 6194 6195 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 6196 6197 err = hci_start_discovery_sync(hdev); 6198 6199 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 6200 DISCOVERY_FINDING); 6201 6202 return err; 6203 } 6204 6205 static void hci_resume_monitor_sync(struct hci_dev *hdev) 6206 { 6207 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6208 case HCI_ADV_MONITOR_EXT_MSFT: 6209 msft_resume_sync(hdev); 6210 break; 6211 default: 6212 return; 6213 } 6214 } 6215 6216 /* This function resume scan and reset paused flag */ 6217 static int hci_resume_scan_sync(struct hci_dev *hdev) 6218 { 6219 if (!hdev->scanning_paused) 6220 return 0; 6221 6222 hdev->scanning_paused = false; 6223 6224 hci_update_scan_sync(hdev); 6225 6226 /* Reset passive scanning to normal */ 6227 hci_update_passive_scan_sync(hdev); 6228 6229 return 0; 6230 } 6231 6232 /* This function performs the HCI suspend procedures in the follow order: 6233 * 6234 * Restore event mask 6235 * Clear event filter 6236 * Update passive scanning (normal duty cycle) 6237 * Resume Directed Advertising/Advertising 6238 * Resume discovery (active scanning/inquiry) 6239 */ 6240 int hci_resume_sync(struct hci_dev *hdev) 6241 { 6242 /* If not marked as suspended there nothing to do */ 6243 if (!hdev->suspended) 6244 return 0; 6245 6246 hdev->suspended = false; 6247 6248 /* Restore event mask */ 6249 hci_set_event_mask_sync(hdev); 6250 6251 /* Clear any event filters and restore scan state */ 6252 hci_clear_event_filter_sync(hdev); 6253 6254 /* Resume scanning */ 6255 hci_resume_scan_sync(hdev); 6256 6257 /* Resume monitor filters */ 6258 hci_resume_monitor_sync(hdev); 6259 6260 /* Resume other advertisements */ 6261 hci_resume_advertising_sync(hdev); 6262 6263 /* Resume discovery */ 6264 hci_resume_discovery_sync(hdev); 6265 6266 return 0; 6267 } 6268 6269 static bool conn_use_rpa(struct hci_conn *conn) 6270 { 6271 struct hci_dev *hdev = conn->hdev; 6272 6273 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6274 } 6275 6276 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6277 struct hci_conn *conn) 6278 { 6279 struct hci_cp_le_set_ext_adv_params cp; 6280 int err; 6281 bdaddr_t random_addr; 6282 u8 own_addr_type; 6283 6284 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6285 &own_addr_type); 6286 if (err) 6287 return err; 6288 6289 /* Set require_privacy to false so that the remote device has a 6290 * chance of identifying us. 6291 */ 6292 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6293 &own_addr_type, &random_addr); 6294 if (err) 6295 return err; 6296 6297 memset(&cp, 0, sizeof(cp)); 6298 6299 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6300 cp.channel_map = hdev->le_adv_channel_map; 6301 cp.tx_power = HCI_TX_POWER_INVALID; 6302 cp.primary_phy = HCI_ADV_PHY_1M; 6303 cp.secondary_phy = HCI_ADV_PHY_1M; 6304 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6305 cp.own_addr_type = own_addr_type; 6306 cp.peer_addr_type = conn->dst_type; 6307 bacpy(&cp.peer_addr, &conn->dst); 6308 6309 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6310 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6311 * does not supports advertising data when the advertising set already 6312 * contains some, the controller shall return erroc code 'Invalid 6313 * HCI Command Parameters(0x12). 6314 * So it is required to remove adv set for handle 0x00. since we use 6315 * instance 0 for directed adv. 6316 */ 6317 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6318 if (err) 6319 return err; 6320 6321 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6322 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6323 if (err) 6324 return err; 6325 6326 /* Check if random address need to be updated */ 6327 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6328 bacmp(&random_addr, BDADDR_ANY) && 6329 bacmp(&random_addr, &hdev->random_addr)) { 6330 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6331 &random_addr); 6332 if (err) 6333 return err; 6334 } 6335 6336 return hci_enable_ext_advertising_sync(hdev, 0x00); 6337 } 6338 6339 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6340 struct hci_conn *conn) 6341 { 6342 struct hci_cp_le_set_adv_param cp; 6343 u8 status; 6344 u8 own_addr_type; 6345 u8 enable; 6346 6347 if (ext_adv_capable(hdev)) 6348 return hci_le_ext_directed_advertising_sync(hdev, conn); 6349 6350 /* Clear the HCI_LE_ADV bit temporarily so that the 6351 * hci_update_random_address knows that it's safe to go ahead 6352 * and write a new random address. The flag will be set back on 6353 * as soon as the SET_ADV_ENABLE HCI command completes. 6354 */ 6355 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6356 6357 /* Set require_privacy to false so that the remote device has a 6358 * chance of identifying us. 6359 */ 6360 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6361 &own_addr_type); 6362 if (status) 6363 return status; 6364 6365 memset(&cp, 0, sizeof(cp)); 6366 6367 /* Some controllers might reject command if intervals are not 6368 * within range for undirected advertising. 6369 * BCM20702A0 is known to be affected by this. 6370 */ 6371 cp.min_interval = cpu_to_le16(0x0020); 6372 cp.max_interval = cpu_to_le16(0x0020); 6373 6374 cp.type = LE_ADV_DIRECT_IND; 6375 cp.own_address_type = own_addr_type; 6376 cp.direct_addr_type = conn->dst_type; 6377 bacpy(&cp.direct_addr, &conn->dst); 6378 cp.channel_map = hdev->le_adv_channel_map; 6379 6380 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6381 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6382 if (status) 6383 return status; 6384 6385 enable = 0x01; 6386 6387 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6388 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6389 } 6390 6391 static void set_ext_conn_params(struct hci_conn *conn, 6392 struct hci_cp_le_ext_conn_param *p) 6393 { 6394 struct hci_dev *hdev = conn->hdev; 6395 6396 memset(p, 0, sizeof(*p)); 6397 6398 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6399 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6400 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6401 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6402 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6403 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6404 p->min_ce_len = cpu_to_le16(0x0000); 6405 p->max_ce_len = cpu_to_le16(0x0000); 6406 } 6407 6408 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6409 struct hci_conn *conn, u8 own_addr_type) 6410 { 6411 struct hci_cp_le_ext_create_conn *cp; 6412 struct hci_cp_le_ext_conn_param *p; 6413 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6414 u32 plen; 6415 6416 cp = (void *)data; 6417 p = (void *)cp->data; 6418 6419 memset(cp, 0, sizeof(*cp)); 6420 6421 bacpy(&cp->peer_addr, &conn->dst); 6422 cp->peer_addr_type = conn->dst_type; 6423 cp->own_addr_type = own_addr_type; 6424 6425 plen = sizeof(*cp); 6426 6427 if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M || 6428 conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) { 6429 cp->phys |= LE_SCAN_PHY_1M; 6430 set_ext_conn_params(conn, p); 6431 6432 p++; 6433 plen += sizeof(*p); 6434 } 6435 6436 if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M || 6437 conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) { 6438 cp->phys |= LE_SCAN_PHY_2M; 6439 set_ext_conn_params(conn, p); 6440 6441 p++; 6442 plen += sizeof(*p); 6443 } 6444 6445 if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED || 6446 conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) { 6447 cp->phys |= LE_SCAN_PHY_CODED; 6448 set_ext_conn_params(conn, p); 6449 6450 plen += sizeof(*p); 6451 } 6452 6453 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6454 plen, data, 6455 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6456 conn->conn_timeout, NULL); 6457 } 6458 6459 static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data) 6460 { 6461 struct hci_cp_le_create_conn cp; 6462 struct hci_conn_params *params; 6463 u8 own_addr_type; 6464 int err; 6465 struct hci_conn *conn = data; 6466 6467 if (!hci_conn_valid(hdev, conn)) 6468 return -ECANCELED; 6469 6470 bt_dev_dbg(hdev, "conn %p", conn); 6471 6472 clear_bit(HCI_CONN_SCANNING, &conn->flags); 6473 conn->state = BT_CONNECT; 6474 6475 /* If requested to connect as peripheral use directed advertising */ 6476 if (conn->role == HCI_ROLE_SLAVE) { 6477 /* If we're active scanning and simultaneous roles is not 6478 * enabled simply reject the attempt. 6479 */ 6480 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6481 hdev->le_scan_type == LE_SCAN_ACTIVE && 6482 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6483 hci_conn_del(conn); 6484 return -EBUSY; 6485 } 6486 6487 /* Pause advertising while doing directed advertising. */ 6488 hci_pause_advertising_sync(hdev); 6489 6490 err = hci_le_directed_advertising_sync(hdev, conn); 6491 goto done; 6492 } 6493 6494 /* Disable advertising if simultaneous roles is not in use. */ 6495 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6496 hci_pause_advertising_sync(hdev); 6497 6498 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6499 if (params) { 6500 conn->le_conn_min_interval = params->conn_min_interval; 6501 conn->le_conn_max_interval = params->conn_max_interval; 6502 conn->le_conn_latency = params->conn_latency; 6503 conn->le_supv_timeout = params->supervision_timeout; 6504 } else { 6505 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6506 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6507 conn->le_conn_latency = hdev->le_conn_latency; 6508 conn->le_supv_timeout = hdev->le_supv_timeout; 6509 } 6510 6511 /* If controller is scanning, we stop it since some controllers are 6512 * not able to scan and connect at the same time. Also set the 6513 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6514 * handler for scan disabling knows to set the correct discovery 6515 * state. 6516 */ 6517 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6518 hci_scan_disable_sync(hdev); 6519 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6520 } 6521 6522 /* Update random address, but set require_privacy to false so 6523 * that we never connect with an non-resolvable address. 6524 */ 6525 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6526 &own_addr_type); 6527 if (err) 6528 goto done; 6529 /* Send command LE Extended Create Connection if supported */ 6530 if (use_ext_conn(hdev)) { 6531 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6532 goto done; 6533 } 6534 6535 memset(&cp, 0, sizeof(cp)); 6536 6537 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6538 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6539 6540 bacpy(&cp.peer_addr, &conn->dst); 6541 cp.peer_addr_type = conn->dst_type; 6542 cp.own_address_type = own_addr_type; 6543 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6544 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6545 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6546 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6547 cp.min_ce_len = cpu_to_le16(0x0000); 6548 cp.max_ce_len = cpu_to_le16(0x0000); 6549 6550 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6551 * 6552 * If this event is unmasked and the HCI_LE_Connection_Complete event 6553 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6554 * sent when a new connection has been created. 6555 */ 6556 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6557 sizeof(cp), &cp, 6558 use_enhanced_conn_complete(hdev) ? 6559 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6560 HCI_EV_LE_CONN_COMPLETE, 6561 conn->conn_timeout, NULL); 6562 6563 done: 6564 if (err == -ETIMEDOUT) 6565 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6566 6567 /* Re-enable advertising after the connection attempt is finished. */ 6568 hci_resume_advertising_sync(hdev); 6569 return err; 6570 } 6571 6572 int hci_le_create_cis_sync(struct hci_dev *hdev) 6573 { 6574 DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f); 6575 size_t aux_num_cis = 0; 6576 struct hci_conn *conn; 6577 u8 cig = BT_ISO_QOS_CIG_UNSET; 6578 6579 /* The spec allows only one pending LE Create CIS command at a time. If 6580 * the command is pending now, don't do anything. We check for pending 6581 * connections after each CIS Established event. 6582 * 6583 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6584 * page 2566: 6585 * 6586 * If the Host issues this command before all the 6587 * HCI_LE_CIS_Established events from the previous use of the 6588 * command have been generated, the Controller shall return the 6589 * error code Command Disallowed (0x0C). 6590 * 6591 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6592 * page 2567: 6593 * 6594 * When the Controller receives the HCI_LE_Create_CIS command, the 6595 * Controller sends the HCI_Command_Status event to the Host. An 6596 * HCI_LE_CIS_Established event will be generated for each CIS when it 6597 * is established or if it is disconnected or considered lost before 6598 * being established; until all the events are generated, the command 6599 * remains pending. 6600 */ 6601 6602 hci_dev_lock(hdev); 6603 6604 rcu_read_lock(); 6605 6606 /* Wait until previous Create CIS has completed */ 6607 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6608 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6609 goto done; 6610 } 6611 6612 /* Find CIG with all CIS ready */ 6613 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6614 struct hci_conn *link; 6615 6616 if (hci_conn_check_create_cis(conn)) 6617 continue; 6618 6619 cig = conn->iso_qos.ucast.cig; 6620 6621 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6622 if (hci_conn_check_create_cis(link) > 0 && 6623 link->iso_qos.ucast.cig == cig && 6624 link->state != BT_CONNECTED) { 6625 cig = BT_ISO_QOS_CIG_UNSET; 6626 break; 6627 } 6628 } 6629 6630 if (cig != BT_ISO_QOS_CIG_UNSET) 6631 break; 6632 } 6633 6634 if (cig == BT_ISO_QOS_CIG_UNSET) 6635 goto done; 6636 6637 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6638 struct hci_cis *cis = &cmd->cis[aux_num_cis]; 6639 6640 if (hci_conn_check_create_cis(conn) || 6641 conn->iso_qos.ucast.cig != cig) 6642 continue; 6643 6644 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6645 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6646 cis->cis_handle = cpu_to_le16(conn->handle); 6647 aux_num_cis++; 6648 6649 if (aux_num_cis >= cmd->num_cis) 6650 break; 6651 } 6652 cmd->num_cis = aux_num_cis; 6653 6654 done: 6655 rcu_read_unlock(); 6656 6657 hci_dev_unlock(hdev); 6658 6659 if (!aux_num_cis) 6660 return 0; 6661 6662 /* Wait for HCI_LE_CIS_Established */ 6663 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6664 struct_size(cmd, cis, cmd->num_cis), 6665 cmd, HCI_EVT_LE_CIS_ESTABLISHED, 6666 conn->conn_timeout, NULL); 6667 } 6668 6669 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6670 { 6671 struct hci_cp_le_remove_cig cp; 6672 6673 memset(&cp, 0, sizeof(cp)); 6674 cp.cig_id = handle; 6675 6676 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6677 &cp, HCI_CMD_TIMEOUT); 6678 } 6679 6680 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6681 { 6682 struct hci_cp_le_big_term_sync cp; 6683 6684 memset(&cp, 0, sizeof(cp)); 6685 cp.handle = handle; 6686 6687 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6688 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6689 } 6690 6691 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6692 { 6693 struct hci_cp_le_pa_term_sync cp; 6694 6695 memset(&cp, 0, sizeof(cp)); 6696 cp.handle = cpu_to_le16(handle); 6697 6698 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6699 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6700 } 6701 6702 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6703 bool use_rpa, struct adv_info *adv_instance, 6704 u8 *own_addr_type, bdaddr_t *rand_addr) 6705 { 6706 int err; 6707 6708 bacpy(rand_addr, BDADDR_ANY); 6709 6710 /* If privacy is enabled use a resolvable private address. If 6711 * current RPA has expired then generate a new one. 6712 */ 6713 if (use_rpa) { 6714 /* If Controller supports LL Privacy use own address type is 6715 * 0x03 6716 */ 6717 if (ll_privacy_capable(hdev)) 6718 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6719 else 6720 *own_addr_type = ADDR_LE_DEV_RANDOM; 6721 6722 if (adv_instance) { 6723 if (adv_rpa_valid(adv_instance)) 6724 return 0; 6725 } else { 6726 if (rpa_valid(hdev)) 6727 return 0; 6728 } 6729 6730 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6731 if (err < 0) { 6732 bt_dev_err(hdev, "failed to generate new RPA"); 6733 return err; 6734 } 6735 6736 bacpy(rand_addr, &hdev->rpa); 6737 6738 return 0; 6739 } 6740 6741 /* In case of required privacy without resolvable private address, 6742 * use an non-resolvable private address. This is useful for 6743 * non-connectable advertising. 6744 */ 6745 if (require_privacy) { 6746 bdaddr_t nrpa; 6747 6748 while (true) { 6749 /* The non-resolvable private address is generated 6750 * from random six bytes with the two most significant 6751 * bits cleared. 6752 */ 6753 get_random_bytes(&nrpa, 6); 6754 nrpa.b[5] &= 0x3f; 6755 6756 /* The non-resolvable private address shall not be 6757 * equal to the public address. 6758 */ 6759 if (bacmp(&hdev->bdaddr, &nrpa)) 6760 break; 6761 } 6762 6763 *own_addr_type = ADDR_LE_DEV_RANDOM; 6764 bacpy(rand_addr, &nrpa); 6765 6766 return 0; 6767 } 6768 6769 /* No privacy so use a public address. */ 6770 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6771 6772 return 0; 6773 } 6774 6775 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6776 { 6777 u8 instance = PTR_UINT(data); 6778 6779 return hci_update_adv_data_sync(hdev, instance); 6780 } 6781 6782 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6783 { 6784 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6785 UINT_PTR(instance), NULL); 6786 } 6787 6788 static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data) 6789 { 6790 struct hci_conn *conn = data; 6791 struct inquiry_entry *ie; 6792 struct hci_cp_create_conn cp; 6793 int err; 6794 6795 if (!hci_conn_valid(hdev, conn)) 6796 return -ECANCELED; 6797 6798 /* Many controllers disallow HCI Create Connection while it is doing 6799 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 6800 * Connection. This may cause the MGMT discovering state to become false 6801 * without user space's request but it is okay since the MGMT Discovery 6802 * APIs do not promise that discovery should be done forever. Instead, 6803 * the user space monitors the status of MGMT discovering and it may 6804 * request for discovery again when this flag becomes false. 6805 */ 6806 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 6807 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0, 6808 NULL, HCI_CMD_TIMEOUT); 6809 if (err) 6810 bt_dev_warn(hdev, "Failed to cancel inquiry %d", err); 6811 } 6812 6813 conn->state = BT_CONNECT; 6814 conn->out = true; 6815 conn->role = HCI_ROLE_MASTER; 6816 6817 conn->attempt++; 6818 6819 conn->link_policy = hdev->link_policy; 6820 6821 memset(&cp, 0, sizeof(cp)); 6822 bacpy(&cp.bdaddr, &conn->dst); 6823 cp.pscan_rep_mode = 0x02; 6824 6825 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 6826 if (ie) { 6827 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 6828 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 6829 cp.pscan_mode = ie->data.pscan_mode; 6830 cp.clock_offset = ie->data.clock_offset | 6831 cpu_to_le16(0x8000); 6832 } 6833 6834 memcpy(conn->dev_class, ie->data.dev_class, 3); 6835 } 6836 6837 cp.pkt_type = cpu_to_le16(conn->pkt_type); 6838 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 6839 cp.role_switch = 0x01; 6840 else 6841 cp.role_switch = 0x00; 6842 6843 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN, 6844 sizeof(cp), &cp, 6845 HCI_EV_CONN_COMPLETE, 6846 conn->conn_timeout, NULL); 6847 } 6848 6849 int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn) 6850 { 6851 return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn, 6852 NULL); 6853 } 6854 6855 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 6856 { 6857 struct hci_conn *conn = data; 6858 6859 bt_dev_dbg(hdev, "err %d", err); 6860 6861 if (err == -ECANCELED) 6862 return; 6863 6864 hci_dev_lock(hdev); 6865 6866 if (!hci_conn_valid(hdev, conn)) 6867 goto done; 6868 6869 if (!err) { 6870 hci_connect_le_scan_cleanup(conn, 0x00); 6871 goto done; 6872 } 6873 6874 /* Check if connection is still pending */ 6875 if (conn != hci_lookup_le_connect(hdev)) 6876 goto done; 6877 6878 /* Flush to make sure we send create conn cancel command if needed */ 6879 flush_delayed_work(&conn->le_conn_timeout); 6880 hci_conn_failed(conn, bt_status(err)); 6881 6882 done: 6883 hci_dev_unlock(hdev); 6884 } 6885 6886 int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn) 6887 { 6888 return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn, 6889 create_le_conn_complete); 6890 } 6891 6892 int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn) 6893 { 6894 if (conn->state != BT_OPEN) 6895 return -EINVAL; 6896 6897 switch (conn->type) { 6898 case ACL_LINK: 6899 return !hci_cmd_sync_dequeue_once(hdev, 6900 hci_acl_create_conn_sync, 6901 conn, NULL); 6902 case LE_LINK: 6903 return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync, 6904 conn, create_le_conn_complete); 6905 } 6906 6907 return -ENOENT; 6908 } 6909 6910 int hci_le_conn_update_sync(struct hci_dev *hdev, struct hci_conn *conn, 6911 struct hci_conn_params *params) 6912 { 6913 struct hci_cp_le_conn_update cp; 6914 6915 memset(&cp, 0, sizeof(cp)); 6916 cp.handle = cpu_to_le16(conn->handle); 6917 cp.conn_interval_min = cpu_to_le16(params->conn_min_interval); 6918 cp.conn_interval_max = cpu_to_le16(params->conn_max_interval); 6919 cp.conn_latency = cpu_to_le16(params->conn_latency); 6920 cp.supervision_timeout = cpu_to_le16(params->supervision_timeout); 6921 cp.min_ce_len = cpu_to_le16(0x0000); 6922 cp.max_ce_len = cpu_to_le16(0x0000); 6923 6924 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CONN_UPDATE, 6925 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6926 } 6927 6928 static void create_pa_complete(struct hci_dev *hdev, void *data, int err) 6929 { 6930 struct hci_conn *conn = data; 6931 struct hci_conn *pa_sync; 6932 6933 bt_dev_dbg(hdev, "err %d", err); 6934 6935 if (err == -ECANCELED) 6936 return; 6937 6938 hci_dev_lock(hdev); 6939 6940 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 6941 6942 if (!hci_conn_valid(hdev, conn)) 6943 clear_bit(HCI_CONN_CREATE_PA_SYNC, &conn->flags); 6944 6945 if (!err) 6946 goto unlock; 6947 6948 /* Add connection to indicate PA sync error */ 6949 pa_sync = hci_conn_add_unset(hdev, BIS_LINK, BDADDR_ANY, 6950 HCI_ROLE_SLAVE); 6951 6952 if (IS_ERR(pa_sync)) 6953 goto unlock; 6954 6955 set_bit(HCI_CONN_PA_SYNC_FAILED, &pa_sync->flags); 6956 6957 /* Notify iso layer */ 6958 hci_connect_cfm(pa_sync, bt_status(err)); 6959 6960 unlock: 6961 hci_dev_unlock(hdev); 6962 } 6963 6964 static int hci_le_pa_create_sync(struct hci_dev *hdev, void *data) 6965 { 6966 struct hci_cp_le_pa_create_sync cp; 6967 struct hci_conn *conn = data; 6968 struct bt_iso_qos *qos = &conn->iso_qos; 6969 int err; 6970 6971 if (!hci_conn_valid(hdev, conn)) 6972 return -ECANCELED; 6973 6974 if (conn->sync_handle != HCI_SYNC_HANDLE_INVALID) 6975 return -EINVAL; 6976 6977 if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC)) 6978 return -EBUSY; 6979 6980 /* Stop scanning if SID has not been set and active scanning is enabled 6981 * so we use passive scanning which will be scanning using the allow 6982 * list programmed to contain only the connection address. 6983 */ 6984 if (conn->sid == HCI_SID_INVALID && 6985 hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6986 hci_scan_disable_sync(hdev); 6987 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6988 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 6989 } 6990 6991 /* Mark HCI_CONN_CREATE_PA_SYNC so hci_update_passive_scan_sync can 6992 * program the address in the allow list so PA advertisements can be 6993 * received. 6994 */ 6995 set_bit(HCI_CONN_CREATE_PA_SYNC, &conn->flags); 6996 6997 hci_update_passive_scan_sync(hdev); 6998 6999 /* SID has not been set listen for HCI_EV_LE_EXT_ADV_REPORT to update 7000 * it. 7001 */ 7002 if (conn->sid == HCI_SID_INVALID) 7003 __hci_cmd_sync_status_sk(hdev, HCI_OP_NOP, 0, NULL, 7004 HCI_EV_LE_EXT_ADV_REPORT, 7005 conn->conn_timeout, NULL); 7006 7007 memset(&cp, 0, sizeof(cp)); 7008 cp.options = qos->bcast.options; 7009 cp.sid = conn->sid; 7010 cp.addr_type = conn->dst_type; 7011 bacpy(&cp.addr, &conn->dst); 7012 cp.skip = cpu_to_le16(qos->bcast.skip); 7013 cp.sync_timeout = cpu_to_le16(qos->bcast.sync_timeout); 7014 cp.sync_cte_type = qos->bcast.sync_cte_type; 7015 7016 /* The spec allows only one pending LE Periodic Advertising Create 7017 * Sync command at a time so we forcefully wait for PA Sync Established 7018 * event since cmd_work can only schedule one command at a time. 7019 * 7020 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 7021 * page 2493: 7022 * 7023 * If the Host issues this command when another HCI_LE_Periodic_ 7024 * Advertising_Create_Sync command is pending, the Controller shall 7025 * return the error code Command Disallowed (0x0C). 7026 */ 7027 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_PA_CREATE_SYNC, 7028 sizeof(cp), &cp, 7029 HCI_EV_LE_PA_SYNC_ESTABLISHED, 7030 conn->conn_timeout, NULL); 7031 if (err == -ETIMEDOUT) 7032 __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_CREATE_SYNC_CANCEL, 7033 0, NULL, HCI_CMD_TIMEOUT); 7034 7035 return err; 7036 } 7037 7038 int hci_connect_pa_sync(struct hci_dev *hdev, struct hci_conn *conn) 7039 { 7040 return hci_cmd_sync_queue_once(hdev, hci_le_pa_create_sync, conn, 7041 create_pa_complete); 7042 } 7043 7044 static void create_big_complete(struct hci_dev *hdev, void *data, int err) 7045 { 7046 struct hci_conn *conn = data; 7047 7048 bt_dev_dbg(hdev, "err %d", err); 7049 7050 if (err == -ECANCELED) 7051 return; 7052 7053 if (hci_conn_valid(hdev, conn)) 7054 clear_bit(HCI_CONN_CREATE_BIG_SYNC, &conn->flags); 7055 } 7056 7057 static int hci_le_big_create_sync(struct hci_dev *hdev, void *data) 7058 { 7059 DEFINE_FLEX(struct hci_cp_le_big_create_sync, cp, bis, num_bis, 0x11); 7060 struct hci_conn *conn = data; 7061 struct bt_iso_qos *qos = &conn->iso_qos; 7062 int err; 7063 7064 if (!hci_conn_valid(hdev, conn)) 7065 return -ECANCELED; 7066 7067 set_bit(HCI_CONN_CREATE_BIG_SYNC, &conn->flags); 7068 7069 memset(cp, 0, sizeof(*cp)); 7070 cp->handle = qos->bcast.big; 7071 cp->sync_handle = cpu_to_le16(conn->sync_handle); 7072 cp->encryption = qos->bcast.encryption; 7073 memcpy(cp->bcode, qos->bcast.bcode, sizeof(cp->bcode)); 7074 cp->mse = qos->bcast.mse; 7075 cp->timeout = cpu_to_le16(qos->bcast.timeout); 7076 cp->num_bis = conn->num_bis; 7077 memcpy(cp->bis, conn->bis, conn->num_bis); 7078 7079 /* The spec allows only one pending LE BIG Create Sync command at 7080 * a time, so we forcefully wait for BIG Sync Established event since 7081 * cmd_work can only schedule one command at a time. 7082 * 7083 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 7084 * page 2586: 7085 * 7086 * If the Host sends this command when the Controller is in the 7087 * process of synchronizing to any BIG, i.e. the HCI_LE_BIG_Sync_ 7088 * Established event has not been generated, the Controller shall 7089 * return the error code Command Disallowed (0x0C). 7090 */ 7091 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_BIG_CREATE_SYNC, 7092 struct_size(cp, bis, cp->num_bis), cp, 7093 HCI_EVT_LE_BIG_SYNC_ESTABLISHED, 7094 conn->conn_timeout, NULL); 7095 if (err == -ETIMEDOUT) 7096 hci_le_big_terminate_sync(hdev, cp->handle); 7097 7098 return err; 7099 } 7100 7101 int hci_connect_big_sync(struct hci_dev *hdev, struct hci_conn *conn) 7102 { 7103 return hci_cmd_sync_queue_once(hdev, hci_le_big_create_sync, conn, 7104 create_big_complete); 7105 } 7106