1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Workingset detection 4 * 5 * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner 6 */ 7 8 #include <linux/memcontrol.h> 9 #include <linux/mm_inline.h> 10 #include <linux/writeback.h> 11 #include <linux/shmem_fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/atomic.h> 14 #include <linux/module.h> 15 #include <linux/swap.h> 16 #include <linux/dax.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include "internal.h" 20 21 /* 22 * Double CLOCK lists 23 * 24 * Per node, two clock lists are maintained for file pages: the 25 * inactive and the active list. Freshly faulted pages start out at 26 * the head of the inactive list and page reclaim scans pages from the 27 * tail. Pages that are accessed multiple times on the inactive list 28 * are promoted to the active list, to protect them from reclaim, 29 * whereas active pages are demoted to the inactive list when the 30 * active list grows too big. 31 * 32 * fault ------------------------+ 33 * | 34 * +--------------+ | +-------------+ 35 * reclaim <- | inactive | <-+-- demotion | active | <--+ 36 * +--------------+ +-------------+ | 37 * | | 38 * +-------------- promotion ------------------+ 39 * 40 * 41 * Access frequency and refault distance 42 * 43 * A workload is thrashing when its pages are frequently used but they 44 * are evicted from the inactive list every time before another access 45 * would have promoted them to the active list. 46 * 47 * In cases where the average access distance between thrashing pages 48 * is bigger than the size of memory there is nothing that can be 49 * done - the thrashing set could never fit into memory under any 50 * circumstance. 51 * 52 * However, the average access distance could be bigger than the 53 * inactive list, yet smaller than the size of memory. In this case, 54 * the set could fit into memory if it weren't for the currently 55 * active pages - which may be used more, hopefully less frequently: 56 * 57 * +-memory available to cache-+ 58 * | | 59 * +-inactive------+-active----+ 60 * a b | c d e f g h i | J K L M N | 61 * +---------------+-----------+ 62 * 63 * It is prohibitively expensive to accurately track access frequency 64 * of pages. But a reasonable approximation can be made to measure 65 * thrashing on the inactive list, after which refaulting pages can be 66 * activated optimistically to compete with the existing active pages. 67 * 68 * Approximating inactive page access frequency - Observations: 69 * 70 * 1. When a page is accessed for the first time, it is added to the 71 * head of the inactive list, slides every existing inactive page 72 * towards the tail by one slot, and pushes the current tail page 73 * out of memory. 74 * 75 * 2. When a page is accessed for the second time, it is promoted to 76 * the active list, shrinking the inactive list by one slot. This 77 * also slides all inactive pages that were faulted into the cache 78 * more recently than the activated page towards the tail of the 79 * inactive list. 80 * 81 * Thus: 82 * 83 * 1. The sum of evictions and activations between any two points in 84 * time indicate the minimum number of inactive pages accessed in 85 * between. 86 * 87 * 2. Moving one inactive page N page slots towards the tail of the 88 * list requires at least N inactive page accesses. 89 * 90 * Combining these: 91 * 92 * 1. When a page is finally evicted from memory, the number of 93 * inactive pages accessed while the page was in cache is at least 94 * the number of page slots on the inactive list. 95 * 96 * 2. In addition, measuring the sum of evictions and activations (E) 97 * at the time of a page's eviction, and comparing it to another 98 * reading (R) at the time the page faults back into memory tells 99 * the minimum number of accesses while the page was not cached. 100 * This is called the refault distance. 101 * 102 * Because the first access of the page was the fault and the second 103 * access the refault, we combine the in-cache distance with the 104 * out-of-cache distance to get the complete minimum access distance 105 * of this page: 106 * 107 * NR_inactive + (R - E) 108 * 109 * And knowing the minimum access distance of a page, we can easily 110 * tell if the page would be able to stay in cache assuming all page 111 * slots in the cache were available: 112 * 113 * NR_inactive + (R - E) <= NR_inactive + NR_active 114 * 115 * If we have swap we should consider about NR_inactive_anon and 116 * NR_active_anon, so for page cache and anonymous respectively: 117 * 118 * NR_inactive_file + (R - E) <= NR_inactive_file + NR_active_file 119 * + NR_inactive_anon + NR_active_anon 120 * 121 * NR_inactive_anon + (R - E) <= NR_inactive_anon + NR_active_anon 122 * + NR_inactive_file + NR_active_file 123 * 124 * Which can be further simplified to: 125 * 126 * (R - E) <= NR_active_file + NR_inactive_anon + NR_active_anon 127 * 128 * (R - E) <= NR_active_anon + NR_inactive_file + NR_active_file 129 * 130 * Put into words, the refault distance (out-of-cache) can be seen as 131 * a deficit in inactive list space (in-cache). If the inactive list 132 * had (R - E) more page slots, the page would not have been evicted 133 * in between accesses, but activated instead. And on a full system, 134 * the only thing eating into inactive list space is active pages. 135 * 136 * 137 * Refaulting inactive pages 138 * 139 * All that is known about the active list is that the pages have been 140 * accessed more than once in the past. This means that at any given 141 * time there is actually a good chance that pages on the active list 142 * are no longer in active use. 143 * 144 * So when a refault distance of (R - E) is observed and there are at 145 * least (R - E) pages in the userspace workingset, the refaulting page 146 * is activated optimistically in the hope that (R - E) pages are actually 147 * used less frequently than the refaulting page - or even not used at 148 * all anymore. 149 * 150 * That means if inactive cache is refaulting with a suitable refault 151 * distance, we assume the cache workingset is transitioning and put 152 * pressure on the current workingset. 153 * 154 * If this is wrong and demotion kicks in, the pages which are truly 155 * used more frequently will be reactivated while the less frequently 156 * used once will be evicted from memory. 157 * 158 * But if this is right, the stale pages will be pushed out of memory 159 * and the used pages get to stay in cache. 160 * 161 * Refaulting active pages 162 * 163 * If on the other hand the refaulting pages have recently been 164 * deactivated, it means that the active list is no longer protecting 165 * actively used cache from reclaim. The cache is NOT transitioning to 166 * a different workingset; the existing workingset is thrashing in the 167 * space allocated to the page cache. 168 * 169 * 170 * Implementation 171 * 172 * For each node's LRU lists, a counter for inactive evictions and 173 * activations is maintained (node->nonresident_age). 174 * 175 * On eviction, a snapshot of this counter (along with some bits to 176 * identify the node) is stored in the now empty page cache 177 * slot of the evicted page. This is called a shadow entry. 178 * 179 * On cache misses for which there are shadow entries, an eligible 180 * refault distance will immediately activate the refaulting page. 181 */ 182 183 #define WORKINGSET_SHIFT 1 184 #define EVICTION_SHIFT ((BITS_PER_LONG - BITS_PER_XA_VALUE) + \ 185 WORKINGSET_SHIFT + NODES_SHIFT + \ 186 MEM_CGROUP_ID_SHIFT) 187 #define EVICTION_MASK (~0UL >> EVICTION_SHIFT) 188 189 /* 190 * Eviction timestamps need to be able to cover the full range of 191 * actionable refaults. However, bits are tight in the xarray 192 * entry, and after storing the identifier for the lruvec there might 193 * not be enough left to represent every single actionable refault. In 194 * that case, we have to sacrifice granularity for distance, and group 195 * evictions into coarser buckets by shaving off lower timestamp bits. 196 */ 197 static unsigned int bucket_order __read_mostly; 198 199 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction, 200 bool workingset) 201 { 202 eviction &= EVICTION_MASK; 203 eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid; 204 eviction = (eviction << NODES_SHIFT) | pgdat->node_id; 205 eviction = (eviction << WORKINGSET_SHIFT) | workingset; 206 207 return xa_mk_value(eviction); 208 } 209 210 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat, 211 unsigned long *evictionp, bool *workingsetp) 212 { 213 unsigned long entry = xa_to_value(shadow); 214 int memcgid, nid; 215 bool workingset; 216 217 workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1); 218 entry >>= WORKINGSET_SHIFT; 219 nid = entry & ((1UL << NODES_SHIFT) - 1); 220 entry >>= NODES_SHIFT; 221 memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1); 222 entry >>= MEM_CGROUP_ID_SHIFT; 223 224 *memcgidp = memcgid; 225 *pgdat = NODE_DATA(nid); 226 *evictionp = entry; 227 *workingsetp = workingset; 228 } 229 230 #ifdef CONFIG_LRU_GEN 231 232 static void *lru_gen_eviction(struct folio *folio) 233 { 234 int hist; 235 unsigned long token; 236 unsigned long min_seq; 237 struct lruvec *lruvec; 238 struct lru_gen_folio *lrugen; 239 int type = folio_is_file_lru(folio); 240 int delta = folio_nr_pages(folio); 241 int refs = folio_lru_refs(folio); 242 bool workingset = folio_test_workingset(folio); 243 int tier = lru_tier_from_refs(refs, workingset); 244 struct mem_cgroup *memcg = folio_memcg(folio); 245 struct pglist_data *pgdat = folio_pgdat(folio); 246 247 BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT); 248 249 lruvec = mem_cgroup_lruvec(memcg, pgdat); 250 lrugen = &lruvec->lrugen; 251 min_seq = READ_ONCE(lrugen->min_seq[type]); 252 token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0); 253 254 hist = lru_hist_from_seq(min_seq); 255 atomic_long_add(delta, &lrugen->evicted[hist][type][tier]); 256 257 return pack_shadow(mem_cgroup_id(memcg), pgdat, token, workingset); 258 } 259 260 /* 261 * Tests if the shadow entry is for a folio that was recently evicted. 262 * Fills in @lruvec, @token, @workingset with the values unpacked from shadow. 263 */ 264 static bool lru_gen_test_recent(void *shadow, struct lruvec **lruvec, 265 unsigned long *token, bool *workingset) 266 { 267 int memcg_id; 268 unsigned long max_seq; 269 struct mem_cgroup *memcg; 270 struct pglist_data *pgdat; 271 272 unpack_shadow(shadow, &memcg_id, &pgdat, token, workingset); 273 274 memcg = mem_cgroup_from_id(memcg_id); 275 *lruvec = mem_cgroup_lruvec(memcg, pgdat); 276 277 max_seq = READ_ONCE((*lruvec)->lrugen.max_seq); 278 max_seq &= EVICTION_MASK >> LRU_REFS_WIDTH; 279 280 return abs_diff(max_seq, *token >> LRU_REFS_WIDTH) < MAX_NR_GENS; 281 } 282 283 static void lru_gen_refault(struct folio *folio, void *shadow) 284 { 285 bool recent; 286 int hist, tier, refs; 287 bool workingset; 288 unsigned long token; 289 struct lruvec *lruvec; 290 struct lru_gen_folio *lrugen; 291 int type = folio_is_file_lru(folio); 292 int delta = folio_nr_pages(folio); 293 294 rcu_read_lock(); 295 296 recent = lru_gen_test_recent(shadow, &lruvec, &token, &workingset); 297 if (lruvec != folio_lruvec(folio)) 298 goto unlock; 299 300 mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta); 301 302 if (!recent) 303 goto unlock; 304 305 lrugen = &lruvec->lrugen; 306 307 hist = lru_hist_from_seq(READ_ONCE(lrugen->min_seq[type])); 308 refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + 1; 309 tier = lru_tier_from_refs(refs, workingset); 310 311 atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]); 312 313 /* see folio_add_lru() where folio_set_active() will be called */ 314 if (lru_gen_in_fault()) 315 mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); 316 317 if (workingset) { 318 folio_set_workingset(folio); 319 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta); 320 } else 321 set_mask_bits(&folio->flags, LRU_REFS_MASK, (refs - 1UL) << LRU_REFS_PGOFF); 322 unlock: 323 rcu_read_unlock(); 324 } 325 326 #else /* !CONFIG_LRU_GEN */ 327 328 static void *lru_gen_eviction(struct folio *folio) 329 { 330 return NULL; 331 } 332 333 static bool lru_gen_test_recent(void *shadow, struct lruvec **lruvec, 334 unsigned long *token, bool *workingset) 335 { 336 return false; 337 } 338 339 static void lru_gen_refault(struct folio *folio, void *shadow) 340 { 341 } 342 343 #endif /* CONFIG_LRU_GEN */ 344 345 /** 346 * workingset_age_nonresident - age non-resident entries as LRU ages 347 * @lruvec: the lruvec that was aged 348 * @nr_pages: the number of pages to count 349 * 350 * As in-memory pages are aged, non-resident pages need to be aged as 351 * well, in order for the refault distances later on to be comparable 352 * to the in-memory dimensions. This function allows reclaim and LRU 353 * operations to drive the non-resident aging along in parallel. 354 */ 355 void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages) 356 { 357 /* 358 * Reclaiming a cgroup means reclaiming all its children in a 359 * round-robin fashion. That means that each cgroup has an LRU 360 * order that is composed of the LRU orders of its child 361 * cgroups; and every page has an LRU position not just in the 362 * cgroup that owns it, but in all of that group's ancestors. 363 * 364 * So when the physical inactive list of a leaf cgroup ages, 365 * the virtual inactive lists of all its parents, including 366 * the root cgroup's, age as well. 367 */ 368 do { 369 atomic_long_add(nr_pages, &lruvec->nonresident_age); 370 } while ((lruvec = parent_lruvec(lruvec))); 371 } 372 373 /** 374 * workingset_eviction - note the eviction of a folio from memory 375 * @target_memcg: the cgroup that is causing the reclaim 376 * @folio: the folio being evicted 377 * 378 * Return: a shadow entry to be stored in @folio->mapping->i_pages in place 379 * of the evicted @folio so that a later refault can be detected. 380 */ 381 void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg) 382 { 383 struct pglist_data *pgdat = folio_pgdat(folio); 384 unsigned long eviction; 385 struct lruvec *lruvec; 386 int memcgid; 387 388 /* Folio is fully exclusive and pins folio's memory cgroup pointer */ 389 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 390 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 391 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 392 393 if (lru_gen_enabled()) 394 return lru_gen_eviction(folio); 395 396 lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 397 /* XXX: target_memcg can be NULL, go through lruvec */ 398 memcgid = mem_cgroup_id(lruvec_memcg(lruvec)); 399 eviction = atomic_long_read(&lruvec->nonresident_age); 400 eviction >>= bucket_order; 401 workingset_age_nonresident(lruvec, folio_nr_pages(folio)); 402 return pack_shadow(memcgid, pgdat, eviction, 403 folio_test_workingset(folio)); 404 } 405 406 /** 407 * workingset_test_recent - tests if the shadow entry is for a folio that was 408 * recently evicted. Also fills in @workingset with the value unpacked from 409 * shadow. 410 * @shadow: the shadow entry to be tested. 411 * @file: whether the corresponding folio is from the file lru. 412 * @workingset: where the workingset value unpacked from shadow should 413 * be stored. 414 * @flush: whether to flush cgroup rstat. 415 * 416 * Return: true if the shadow is for a recently evicted folio; false otherwise. 417 */ 418 bool workingset_test_recent(void *shadow, bool file, bool *workingset, 419 bool flush) 420 { 421 struct mem_cgroup *eviction_memcg; 422 struct lruvec *eviction_lruvec; 423 unsigned long refault_distance; 424 unsigned long workingset_size; 425 unsigned long refault; 426 int memcgid; 427 struct pglist_data *pgdat; 428 unsigned long eviction; 429 430 if (lru_gen_enabled()) { 431 bool recent; 432 433 rcu_read_lock(); 434 recent = lru_gen_test_recent(shadow, &eviction_lruvec, &eviction, workingset); 435 rcu_read_unlock(); 436 return recent; 437 } 438 439 rcu_read_lock(); 440 unpack_shadow(shadow, &memcgid, &pgdat, &eviction, workingset); 441 eviction <<= bucket_order; 442 443 /* 444 * Look up the memcg associated with the stored ID. It might 445 * have been deleted since the folio's eviction. 446 * 447 * Note that in rare events the ID could have been recycled 448 * for a new cgroup that refaults a shared folio. This is 449 * impossible to tell from the available data. However, this 450 * should be a rare and limited disturbance, and activations 451 * are always speculative anyway. Ultimately, it's the aging 452 * algorithm's job to shake out the minimum access frequency 453 * for the active cache. 454 * 455 * XXX: On !CONFIG_MEMCG, this will always return NULL; it 456 * would be better if the root_mem_cgroup existed in all 457 * configurations instead. 458 */ 459 eviction_memcg = mem_cgroup_from_id(memcgid); 460 if (!mem_cgroup_tryget(eviction_memcg)) 461 eviction_memcg = NULL; 462 rcu_read_unlock(); 463 464 if (!mem_cgroup_disabled() && !eviction_memcg) 465 return false; 466 /* 467 * Flush stats (and potentially sleep) outside the RCU read section. 468 * 469 * Note that workingset_test_recent() itself might be called in RCU read 470 * section (for e.g, in cachestat) - these callers need to skip flushing 471 * stats (via the flush argument). 472 * 473 * XXX: With per-memcg flushing and thresholding, is ratelimiting 474 * still needed here? 475 */ 476 if (flush) 477 mem_cgroup_flush_stats_ratelimited(eviction_memcg); 478 479 eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat); 480 refault = atomic_long_read(&eviction_lruvec->nonresident_age); 481 482 /* 483 * Calculate the refault distance 484 * 485 * The unsigned subtraction here gives an accurate distance 486 * across nonresident_age overflows in most cases. There is a 487 * special case: usually, shadow entries have a short lifetime 488 * and are either refaulted or reclaimed along with the inode 489 * before they get too old. But it is not impossible for the 490 * nonresident_age to lap a shadow entry in the field, which 491 * can then result in a false small refault distance, leading 492 * to a false activation should this old entry actually 493 * refault again. However, earlier kernels used to deactivate 494 * unconditionally with *every* reclaim invocation for the 495 * longest time, so the occasional inappropriate activation 496 * leading to pressure on the active list is not a problem. 497 */ 498 refault_distance = (refault - eviction) & EVICTION_MASK; 499 500 /* 501 * Compare the distance to the existing workingset size. We 502 * don't activate pages that couldn't stay resident even if 503 * all the memory was available to the workingset. Whether 504 * workingset competition needs to consider anon or not depends 505 * on having free swap space. 506 */ 507 workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE); 508 if (!file) { 509 workingset_size += lruvec_page_state(eviction_lruvec, 510 NR_INACTIVE_FILE); 511 } 512 if (mem_cgroup_get_nr_swap_pages(eviction_memcg) > 0) { 513 workingset_size += lruvec_page_state(eviction_lruvec, 514 NR_ACTIVE_ANON); 515 if (file) { 516 workingset_size += lruvec_page_state(eviction_lruvec, 517 NR_INACTIVE_ANON); 518 } 519 } 520 521 mem_cgroup_put(eviction_memcg); 522 return refault_distance <= workingset_size; 523 } 524 525 /** 526 * workingset_refault - Evaluate the refault of a previously evicted folio. 527 * @folio: The freshly allocated replacement folio. 528 * @shadow: Shadow entry of the evicted folio. 529 * 530 * Calculates and evaluates the refault distance of the previously 531 * evicted folio in the context of the node and the memcg whose memory 532 * pressure caused the eviction. 533 */ 534 void workingset_refault(struct folio *folio, void *shadow) 535 { 536 bool file = folio_is_file_lru(folio); 537 struct pglist_data *pgdat; 538 struct mem_cgroup *memcg; 539 struct lruvec *lruvec; 540 bool workingset; 541 long nr; 542 543 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 544 545 if (lru_gen_enabled()) { 546 lru_gen_refault(folio, shadow); 547 return; 548 } 549 550 /* 551 * The activation decision for this folio is made at the level 552 * where the eviction occurred, as that is where the LRU order 553 * during folio reclaim is being determined. 554 * 555 * However, the cgroup that will own the folio is the one that 556 * is actually experiencing the refault event. Make sure the folio is 557 * locked to guarantee folio_memcg() stability throughout. 558 */ 559 nr = folio_nr_pages(folio); 560 memcg = folio_memcg(folio); 561 pgdat = folio_pgdat(folio); 562 lruvec = mem_cgroup_lruvec(memcg, pgdat); 563 564 mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr); 565 566 if (!workingset_test_recent(shadow, file, &workingset, true)) 567 return; 568 569 folio_set_active(folio); 570 workingset_age_nonresident(lruvec, nr); 571 mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr); 572 573 /* Folio was active prior to eviction */ 574 if (workingset) { 575 folio_set_workingset(folio); 576 /* 577 * XXX: Move to folio_add_lru() when it supports new vs 578 * putback 579 */ 580 lru_note_cost_refault(folio); 581 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr); 582 } 583 } 584 585 /** 586 * workingset_activation - note a page activation 587 * @folio: Folio that is being activated. 588 */ 589 void workingset_activation(struct folio *folio) 590 { 591 /* 592 * Filter non-memcg pages here, e.g. unmap can call 593 * mark_page_accessed() on VDSO pages. 594 */ 595 if (mem_cgroup_disabled() || folio_memcg_charged(folio)) 596 workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio)); 597 } 598 599 /* 600 * Shadow entries reflect the share of the working set that does not 601 * fit into memory, so their number depends on the access pattern of 602 * the workload. In most cases, they will refault or get reclaimed 603 * along with the inode, but a (malicious) workload that streams 604 * through files with a total size several times that of available 605 * memory, while preventing the inodes from being reclaimed, can 606 * create excessive amounts of shadow nodes. To keep a lid on this, 607 * track shadow nodes and reclaim them when they grow way past the 608 * point where they would still be useful. 609 */ 610 611 struct list_lru shadow_nodes; 612 613 void workingset_update_node(struct xa_node *node) 614 { 615 struct page *page = virt_to_page(node); 616 617 /* 618 * Track non-empty nodes that contain only shadow entries; 619 * unlink those that contain pages or are being freed. 620 * 621 * Avoid acquiring the list_lru lock when the nodes are 622 * already where they should be. The list_empty() test is safe 623 * as node->private_list is protected by the i_pages lock. 624 */ 625 lockdep_assert_held(&node->array->xa_lock); 626 627 if (node->count && node->count == node->nr_values) { 628 if (list_empty(&node->private_list)) { 629 list_lru_add_obj(&shadow_nodes, &node->private_list); 630 __inc_node_page_state(page, WORKINGSET_NODES); 631 } 632 } else { 633 if (!list_empty(&node->private_list)) { 634 list_lru_del_obj(&shadow_nodes, &node->private_list); 635 __dec_node_page_state(page, WORKINGSET_NODES); 636 } 637 } 638 } 639 640 static unsigned long count_shadow_nodes(struct shrinker *shrinker, 641 struct shrink_control *sc) 642 { 643 unsigned long max_nodes; 644 unsigned long nodes; 645 unsigned long pages; 646 647 nodes = list_lru_shrink_count(&shadow_nodes, sc); 648 if (!nodes) 649 return SHRINK_EMPTY; 650 651 /* 652 * Approximate a reasonable limit for the nodes 653 * containing shadow entries. We don't need to keep more 654 * shadow entries than possible pages on the active list, 655 * since refault distances bigger than that are dismissed. 656 * 657 * The size of the active list converges toward 100% of 658 * overall page cache as memory grows, with only a tiny 659 * inactive list. Assume the total cache size for that. 660 * 661 * Nodes might be sparsely populated, with only one shadow 662 * entry in the extreme case. Obviously, we cannot keep one 663 * node for every eligible shadow entry, so compromise on a 664 * worst-case density of 1/8th. Below that, not all eligible 665 * refaults can be detected anymore. 666 * 667 * On 64-bit with 7 xa_nodes per page and 64 slots 668 * each, this will reclaim shadow entries when they consume 669 * ~1.8% of available memory: 670 * 671 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE 672 */ 673 #ifdef CONFIG_MEMCG 674 if (sc->memcg) { 675 struct lruvec *lruvec; 676 int i; 677 678 mem_cgroup_flush_stats_ratelimited(sc->memcg); 679 lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid)); 680 for (pages = 0, i = 0; i < NR_LRU_LISTS; i++) 681 pages += lruvec_page_state_local(lruvec, 682 NR_LRU_BASE + i); 683 pages += lruvec_page_state_local( 684 lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT; 685 pages += lruvec_page_state_local( 686 lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT; 687 } else 688 #endif 689 pages = node_present_pages(sc->nid); 690 691 max_nodes = pages >> (XA_CHUNK_SHIFT - 3); 692 693 if (nodes <= max_nodes) 694 return 0; 695 return nodes - max_nodes; 696 } 697 698 static enum lru_status shadow_lru_isolate(struct list_head *item, 699 struct list_lru_one *lru, 700 void *arg) __must_hold(lru->lock) 701 { 702 struct xa_node *node = container_of(item, struct xa_node, private_list); 703 struct address_space *mapping; 704 int ret; 705 706 /* 707 * Page cache insertions and deletions synchronously maintain 708 * the shadow node LRU under the i_pages lock and the 709 * &lru->lock. Because the page cache tree is emptied before 710 * the inode can be destroyed, holding the &lru->lock pins any 711 * address_space that has nodes on the LRU. 712 * 713 * We can then safely transition to the i_pages lock to 714 * pin only the address_space of the particular node we want 715 * to reclaim, take the node off-LRU, and drop the &lru->lock. 716 */ 717 718 mapping = container_of(node->array, struct address_space, i_pages); 719 720 /* Coming from the list, invert the lock order */ 721 if (!xa_trylock(&mapping->i_pages)) { 722 spin_unlock_irq(&lru->lock); 723 ret = LRU_RETRY; 724 goto out; 725 } 726 727 /* For page cache we need to hold i_lock */ 728 if (mapping->host != NULL) { 729 if (!spin_trylock(&mapping->host->i_lock)) { 730 xa_unlock(&mapping->i_pages); 731 spin_unlock_irq(&lru->lock); 732 ret = LRU_RETRY; 733 goto out; 734 } 735 } 736 737 list_lru_isolate(lru, item); 738 __dec_node_page_state(virt_to_page(node), WORKINGSET_NODES); 739 740 spin_unlock(&lru->lock); 741 742 /* 743 * The nodes should only contain one or more shadow entries, 744 * no pages, so we expect to be able to remove them all and 745 * delete and free the empty node afterwards. 746 */ 747 if (WARN_ON_ONCE(!node->nr_values)) 748 goto out_invalid; 749 if (WARN_ON_ONCE(node->count != node->nr_values)) 750 goto out_invalid; 751 xa_delete_node(node, workingset_update_node); 752 __inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM); 753 754 out_invalid: 755 xa_unlock_irq(&mapping->i_pages); 756 if (mapping->host != NULL) { 757 if (mapping_shrinkable(mapping)) 758 inode_add_lru(mapping->host); 759 spin_unlock(&mapping->host->i_lock); 760 } 761 ret = LRU_REMOVED_RETRY; 762 out: 763 cond_resched(); 764 return ret; 765 } 766 767 static unsigned long scan_shadow_nodes(struct shrinker *shrinker, 768 struct shrink_control *sc) 769 { 770 /* list_lru lock nests inside the IRQ-safe i_pages lock */ 771 return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate, 772 NULL); 773 } 774 775 /* 776 * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe 777 * i_pages lock. 778 */ 779 static struct lock_class_key shadow_nodes_key; 780 781 static int __init workingset_init(void) 782 { 783 struct shrinker *workingset_shadow_shrinker; 784 unsigned int timestamp_bits; 785 unsigned int max_order; 786 int ret = -ENOMEM; 787 788 BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT); 789 /* 790 * Calculate the eviction bucket size to cover the longest 791 * actionable refault distance, which is currently half of 792 * memory (totalram_pages/2). However, memory hotplug may add 793 * some more pages at runtime, so keep working with up to 794 * double the initial memory by using totalram_pages as-is. 795 */ 796 timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT; 797 max_order = fls_long(totalram_pages() - 1); 798 if (max_order > timestamp_bits) 799 bucket_order = max_order - timestamp_bits; 800 pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n", 801 timestamp_bits, max_order, bucket_order); 802 803 workingset_shadow_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 804 SHRINKER_MEMCG_AWARE, 805 "mm-shadow"); 806 if (!workingset_shadow_shrinker) 807 goto err; 808 809 ret = list_lru_init_memcg_key(&shadow_nodes, workingset_shadow_shrinker, 810 &shadow_nodes_key); 811 if (ret) 812 goto err_list_lru; 813 814 workingset_shadow_shrinker->count_objects = count_shadow_nodes; 815 workingset_shadow_shrinker->scan_objects = scan_shadow_nodes; 816 /* ->count reports only fully expendable nodes */ 817 workingset_shadow_shrinker->seeks = 0; 818 819 shrinker_register(workingset_shadow_shrinker); 820 return 0; 821 err_list_lru: 822 shrinker_free(workingset_shadow_shrinker); 823 err: 824 return ret; 825 } 826 module_init(workingset_init); 827