1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lockless hierarchical page accounting & limiting
4  *
5  * Copyright (C) 2014 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/page_counter.h>
9 #include <linux/atomic.h>
10 #include <linux/kernel.h>
11 #include <linux/string.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <asm/page.h>
15 
16 static bool track_protection(struct page_counter *c)
17 {
18 	return c->protection_support;
19 }
20 
21 static void propagate_protected_usage(struct page_counter *c,
22 				      unsigned long usage)
23 {
24 	unsigned long protected, old_protected;
25 	long delta;
26 
27 	if (!c->parent)
28 		return;
29 
30 	protected = min(usage, READ_ONCE(c->min));
31 	old_protected = atomic_long_read(&c->min_usage);
32 	if (protected != old_protected) {
33 		old_protected = atomic_long_xchg(&c->min_usage, protected);
34 		delta = protected - old_protected;
35 		if (delta)
36 			atomic_long_add(delta, &c->parent->children_min_usage);
37 	}
38 
39 	protected = min(usage, READ_ONCE(c->low));
40 	old_protected = atomic_long_read(&c->low_usage);
41 	if (protected != old_protected) {
42 		old_protected = atomic_long_xchg(&c->low_usage, protected);
43 		delta = protected - old_protected;
44 		if (delta)
45 			atomic_long_add(delta, &c->parent->children_low_usage);
46 	}
47 }
48 
49 /**
50  * page_counter_cancel - take pages out of the local counter
51  * @counter: counter
52  * @nr_pages: number of pages to cancel
53  */
54 void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages)
55 {
56 	long new;
57 
58 	new = atomic_long_sub_return(nr_pages, &counter->usage);
59 	/* More uncharges than charges? */
60 	if (WARN_ONCE(new < 0, "page_counter underflow: %ld nr_pages=%lu\n",
61 		      new, nr_pages)) {
62 		new = 0;
63 		atomic_long_set(&counter->usage, new);
64 	}
65 	if (track_protection(counter))
66 		propagate_protected_usage(counter, new);
67 }
68 
69 /**
70  * page_counter_charge - hierarchically charge pages
71  * @counter: counter
72  * @nr_pages: number of pages to charge
73  *
74  * NOTE: This does not consider any configured counter limits.
75  */
76 void page_counter_charge(struct page_counter *counter, unsigned long nr_pages)
77 {
78 	struct page_counter *c;
79 	bool protection = track_protection(counter);
80 
81 	for (c = counter; c; c = c->parent) {
82 		long new;
83 
84 		new = atomic_long_add_return(nr_pages, &c->usage);
85 		if (protection)
86 			propagate_protected_usage(c, new);
87 		/*
88 		 * This is indeed racy, but we can live with some
89 		 * inaccuracy in the watermark.
90 		 *
91 		 * Notably, we have two watermarks to allow for both a globally
92 		 * visible peak and one that can be reset at a smaller scope.
93 		 *
94 		 * Since we reset both watermarks when the global reset occurs,
95 		 * we can guarantee that watermark >= local_watermark, so we
96 		 * don't need to do both comparisons every time.
97 		 *
98 		 * On systems with branch predictors, the inner condition should
99 		 * be almost free.
100 		 */
101 		if (new > READ_ONCE(c->local_watermark)) {
102 			WRITE_ONCE(c->local_watermark, new);
103 			if (new > READ_ONCE(c->watermark))
104 				WRITE_ONCE(c->watermark, new);
105 		}
106 	}
107 }
108 
109 /**
110  * page_counter_try_charge - try to hierarchically charge pages
111  * @counter: counter
112  * @nr_pages: number of pages to charge
113  * @fail: points first counter to hit its limit, if any
114  *
115  * Returns %true on success, or %false and @fail if the counter or one
116  * of its ancestors has hit its configured limit.
117  */
118 bool page_counter_try_charge(struct page_counter *counter,
119 			     unsigned long nr_pages,
120 			     struct page_counter **fail)
121 {
122 	struct page_counter *c;
123 	bool protection = track_protection(counter);
124 	bool track_failcnt = counter->track_failcnt;
125 
126 	for (c = counter; c; c = c->parent) {
127 		long new;
128 		/*
129 		 * Charge speculatively to avoid an expensive CAS.  If
130 		 * a bigger charge fails, it might falsely lock out a
131 		 * racing smaller charge and send it into reclaim
132 		 * early, but the error is limited to the difference
133 		 * between the two sizes, which is less than 2M/4M in
134 		 * case of a THP locking out a regular page charge.
135 		 *
136 		 * The atomic_long_add_return() implies a full memory
137 		 * barrier between incrementing the count and reading
138 		 * the limit.  When racing with page_counter_set_max(),
139 		 * we either see the new limit or the setter sees the
140 		 * counter has changed and retries.
141 		 */
142 		new = atomic_long_add_return(nr_pages, &c->usage);
143 		if (new > c->max) {
144 			atomic_long_sub(nr_pages, &c->usage);
145 			/*
146 			 * This is racy, but we can live with some
147 			 * inaccuracy in the failcnt which is only used
148 			 * to report stats.
149 			 */
150 			if (track_failcnt)
151 				data_race(c->failcnt++);
152 			*fail = c;
153 			goto failed;
154 		}
155 		if (protection)
156 			propagate_protected_usage(c, new);
157 
158 		/* see comment on page_counter_charge */
159 		if (new > READ_ONCE(c->local_watermark)) {
160 			WRITE_ONCE(c->local_watermark, new);
161 			if (new > READ_ONCE(c->watermark))
162 				WRITE_ONCE(c->watermark, new);
163 		}
164 	}
165 	return true;
166 
167 failed:
168 	for (c = counter; c != *fail; c = c->parent)
169 		page_counter_cancel(c, nr_pages);
170 
171 	return false;
172 }
173 
174 /**
175  * page_counter_uncharge - hierarchically uncharge pages
176  * @counter: counter
177  * @nr_pages: number of pages to uncharge
178  */
179 void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages)
180 {
181 	struct page_counter *c;
182 
183 	for (c = counter; c; c = c->parent)
184 		page_counter_cancel(c, nr_pages);
185 }
186 
187 /**
188  * page_counter_set_max - set the maximum number of pages allowed
189  * @counter: counter
190  * @nr_pages: limit to set
191  *
192  * Returns 0 on success, -EBUSY if the current number of pages on the
193  * counter already exceeds the specified limit.
194  *
195  * The caller must serialize invocations on the same counter.
196  */
197 int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages)
198 {
199 	for (;;) {
200 		unsigned long old;
201 		long usage;
202 
203 		/*
204 		 * Update the limit while making sure that it's not
205 		 * below the concurrently-changing counter value.
206 		 *
207 		 * The xchg implies two full memory barriers before
208 		 * and after, so the read-swap-read is ordered and
209 		 * ensures coherency with page_counter_try_charge():
210 		 * that function modifies the count before checking
211 		 * the limit, so if it sees the old limit, we see the
212 		 * modified counter and retry.
213 		 */
214 		usage = page_counter_read(counter);
215 
216 		if (usage > nr_pages)
217 			return -EBUSY;
218 
219 		old = xchg(&counter->max, nr_pages);
220 
221 		if (page_counter_read(counter) <= usage || nr_pages >= old)
222 			return 0;
223 
224 		counter->max = old;
225 		cond_resched();
226 	}
227 }
228 
229 /**
230  * page_counter_set_min - set the amount of protected memory
231  * @counter: counter
232  * @nr_pages: value to set
233  *
234  * The caller must serialize invocations on the same counter.
235  */
236 void page_counter_set_min(struct page_counter *counter, unsigned long nr_pages)
237 {
238 	struct page_counter *c;
239 
240 	WRITE_ONCE(counter->min, nr_pages);
241 
242 	for (c = counter; c; c = c->parent)
243 		propagate_protected_usage(c, atomic_long_read(&c->usage));
244 }
245 
246 /**
247  * page_counter_set_low - set the amount of protected memory
248  * @counter: counter
249  * @nr_pages: value to set
250  *
251  * The caller must serialize invocations on the same counter.
252  */
253 void page_counter_set_low(struct page_counter *counter, unsigned long nr_pages)
254 {
255 	struct page_counter *c;
256 
257 	WRITE_ONCE(counter->low, nr_pages);
258 
259 	for (c = counter; c; c = c->parent)
260 		propagate_protected_usage(c, atomic_long_read(&c->usage));
261 }
262 
263 /**
264  * page_counter_memparse - memparse() for page counter limits
265  * @buf: string to parse
266  * @max: string meaning maximum possible value
267  * @nr_pages: returns the result in number of pages
268  *
269  * Returns -EINVAL, or 0 and @nr_pages on success.  @nr_pages will be
270  * limited to %PAGE_COUNTER_MAX.
271  */
272 int page_counter_memparse(const char *buf, const char *max,
273 			  unsigned long *nr_pages)
274 {
275 	char *end;
276 	u64 bytes;
277 
278 	if (!strcmp(buf, max)) {
279 		*nr_pages = PAGE_COUNTER_MAX;
280 		return 0;
281 	}
282 
283 	bytes = memparse(buf, &end);
284 	if (*end != '\0')
285 		return -EINVAL;
286 
287 	*nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX);
288 
289 	return 0;
290 }
291 
292 
293 #if IS_ENABLED(CONFIG_MEMCG) || IS_ENABLED(CONFIG_CGROUP_DMEM)
294 /*
295  * This function calculates an individual page counter's effective
296  * protection which is derived from its own memory.min/low, its
297  * parent's and siblings' settings, as well as the actual memory
298  * distribution in the tree.
299  *
300  * The following rules apply to the effective protection values:
301  *
302  * 1. At the first level of reclaim, effective protection is equal to
303  *    the declared protection in memory.min and memory.low.
304  *
305  * 2. To enable safe delegation of the protection configuration, at
306  *    subsequent levels the effective protection is capped to the
307  *    parent's effective protection.
308  *
309  * 3. To make complex and dynamic subtrees easier to configure, the
310  *    user is allowed to overcommit the declared protection at a given
311  *    level. If that is the case, the parent's effective protection is
312  *    distributed to the children in proportion to how much protection
313  *    they have declared and how much of it they are utilizing.
314  *
315  *    This makes distribution proportional, but also work-conserving:
316  *    if one counter claims much more protection than it uses memory,
317  *    the unused remainder is available to its siblings.
318  *
319  * 4. Conversely, when the declared protection is undercommitted at a
320  *    given level, the distribution of the larger parental protection
321  *    budget is NOT proportional. A counter's protection from a sibling
322  *    is capped to its own memory.min/low setting.
323  *
324  * 5. However, to allow protecting recursive subtrees from each other
325  *    without having to declare each individual counter's fixed share
326  *    of the ancestor's claim to protection, any unutilized -
327  *    "floating" - protection from up the tree is distributed in
328  *    proportion to each counter's *usage*. This makes the protection
329  *    neutral wrt sibling cgroups and lets them compete freely over
330  *    the shared parental protection budget, but it protects the
331  *    subtree as a whole from neighboring subtrees.
332  *
333  * Note that 4. and 5. are not in conflict: 4. is about protecting
334  * against immediate siblings whereas 5. is about protecting against
335  * neighboring subtrees.
336  */
337 static unsigned long effective_protection(unsigned long usage,
338 					  unsigned long parent_usage,
339 					  unsigned long setting,
340 					  unsigned long parent_effective,
341 					  unsigned long siblings_protected,
342 					  bool recursive_protection)
343 {
344 	unsigned long protected;
345 	unsigned long ep;
346 
347 	protected = min(usage, setting);
348 	/*
349 	 * If all cgroups at this level combined claim and use more
350 	 * protection than what the parent affords them, distribute
351 	 * shares in proportion to utilization.
352 	 *
353 	 * We are using actual utilization rather than the statically
354 	 * claimed protection in order to be work-conserving: claimed
355 	 * but unused protection is available to siblings that would
356 	 * otherwise get a smaller chunk than what they claimed.
357 	 */
358 	if (siblings_protected > parent_effective)
359 		return protected * parent_effective / siblings_protected;
360 
361 	/*
362 	 * Ok, utilized protection of all children is within what the
363 	 * parent affords them, so we know whatever this child claims
364 	 * and utilizes is effectively protected.
365 	 *
366 	 * If there is unprotected usage beyond this value, reclaim
367 	 * will apply pressure in proportion to that amount.
368 	 *
369 	 * If there is unutilized protection, the cgroup will be fully
370 	 * shielded from reclaim, but we do return a smaller value for
371 	 * protection than what the group could enjoy in theory. This
372 	 * is okay. With the overcommit distribution above, effective
373 	 * protection is always dependent on how memory is actually
374 	 * consumed among the siblings anyway.
375 	 */
376 	ep = protected;
377 
378 	/*
379 	 * If the children aren't claiming (all of) the protection
380 	 * afforded to them by the parent, distribute the remainder in
381 	 * proportion to the (unprotected) memory of each cgroup. That
382 	 * way, cgroups that aren't explicitly prioritized wrt each
383 	 * other compete freely over the allowance, but they are
384 	 * collectively protected from neighboring trees.
385 	 *
386 	 * We're using unprotected memory for the weight so that if
387 	 * some cgroups DO claim explicit protection, we don't protect
388 	 * the same bytes twice.
389 	 *
390 	 * Check both usage and parent_usage against the respective
391 	 * protected values. One should imply the other, but they
392 	 * aren't read atomically - make sure the division is sane.
393 	 */
394 	if (!recursive_protection)
395 		return ep;
396 
397 	if (parent_effective > siblings_protected &&
398 	    parent_usage > siblings_protected &&
399 	    usage > protected) {
400 		unsigned long unclaimed;
401 
402 		unclaimed = parent_effective - siblings_protected;
403 		unclaimed *= usage - protected;
404 		unclaimed /= parent_usage - siblings_protected;
405 
406 		ep += unclaimed;
407 	}
408 
409 	return ep;
410 }
411 
412 
413 /**
414  * page_counter_calculate_protection - check if memory consumption is in the normal range
415  * @root: the top ancestor of the sub-tree being checked
416  * @counter: the page_counter the counter to update
417  * @recursive_protection: Whether to use memory_recursiveprot behavior.
418  *
419  * Calculates elow/emin thresholds for given page_counter.
420  *
421  * WARNING: This function is not stateless! It can only be used as part
422  *          of a top-down tree iteration, not for isolated queries.
423  */
424 void page_counter_calculate_protection(struct page_counter *root,
425 				       struct page_counter *counter,
426 				       bool recursive_protection)
427 {
428 	unsigned long usage, parent_usage;
429 	struct page_counter *parent = counter->parent;
430 
431 	/*
432 	 * Effective values of the reclaim targets are ignored so they
433 	 * can be stale. Have a look at mem_cgroup_protection for more
434 	 * details.
435 	 * TODO: calculation should be more robust so that we do not need
436 	 * that special casing.
437 	 */
438 	if (root == counter)
439 		return;
440 
441 	usage = page_counter_read(counter);
442 	if (!usage)
443 		return;
444 
445 	if (parent == root) {
446 		counter->emin = READ_ONCE(counter->min);
447 		counter->elow = READ_ONCE(counter->low);
448 		return;
449 	}
450 
451 	parent_usage = page_counter_read(parent);
452 
453 	WRITE_ONCE(counter->emin, effective_protection(usage, parent_usage,
454 			READ_ONCE(counter->min),
455 			READ_ONCE(parent->emin),
456 			atomic_long_read(&parent->children_min_usage),
457 			recursive_protection));
458 
459 	WRITE_ONCE(counter->elow, effective_protection(usage, parent_usage,
460 			READ_ONCE(counter->low),
461 			READ_ONCE(parent->elow),
462 			atomic_long_read(&parent->children_low_usage),
463 			recursive_protection));
464 }
465 #endif /* CONFIG_MEMCG || CONFIG_CGROUP_DMEM */
466