xref: /linux/mm/memcontrol-v1.c (revision 6b956934ad6d9f76c66c8fab570b07536c6ca472)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #include <linux/memcontrol.h>
4 #include <linux/swap.h>
5 #include <linux/mm_inline.h>
6 #include <linux/pagewalk.h>
7 #include <linux/backing-dev.h>
8 #include <linux/swap_cgroup.h>
9 #include <linux/eventfd.h>
10 #include <linux/poll.h>
11 #include <linux/sort.h>
12 #include <linux/file.h>
13 #include <linux/seq_buf.h>
14 
15 #include "internal.h"
16 #include "swap.h"
17 #include "memcontrol-v1.h"
18 
19 /*
20  * Cgroups above their limits are maintained in a RB-Tree, independent of
21  * their hierarchy representation
22  */
23 
24 struct mem_cgroup_tree_per_node {
25 	struct rb_root rb_root;
26 	struct rb_node *rb_rightmost;
27 	spinlock_t lock;
28 };
29 
30 struct mem_cgroup_tree {
31 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
32 };
33 
34 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
35 
36 /*
37  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
38  * limit reclaim to prevent infinite loops, if they ever occur.
39  */
40 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
41 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
42 
43 /* for OOM */
44 struct mem_cgroup_eventfd_list {
45 	struct list_head list;
46 	struct eventfd_ctx *eventfd;
47 };
48 
49 /*
50  * cgroup_event represents events which userspace want to receive.
51  */
52 struct mem_cgroup_event {
53 	/*
54 	 * memcg which the event belongs to.
55 	 */
56 	struct mem_cgroup *memcg;
57 	/*
58 	 * eventfd to signal userspace about the event.
59 	 */
60 	struct eventfd_ctx *eventfd;
61 	/*
62 	 * Each of these stored in a list by the cgroup.
63 	 */
64 	struct list_head list;
65 	/*
66 	 * register_event() callback will be used to add new userspace
67 	 * waiter for changes related to this event.  Use eventfd_signal()
68 	 * on eventfd to send notification to userspace.
69 	 */
70 	int (*register_event)(struct mem_cgroup *memcg,
71 			      struct eventfd_ctx *eventfd, const char *args);
72 	/*
73 	 * unregister_event() callback will be called when userspace closes
74 	 * the eventfd or on cgroup removing.  This callback must be set,
75 	 * if you want provide notification functionality.
76 	 */
77 	void (*unregister_event)(struct mem_cgroup *memcg,
78 				 struct eventfd_ctx *eventfd);
79 	/*
80 	 * All fields below needed to unregister event when
81 	 * userspace closes eventfd.
82 	 */
83 	poll_table pt;
84 	wait_queue_head_t *wqh;
85 	wait_queue_entry_t wait;
86 	struct work_struct remove;
87 };
88 
89 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
90 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
91 #define MEMFILE_ATTR(val)	((val) & 0xffff)
92 
93 enum {
94 	RES_USAGE,
95 	RES_LIMIT,
96 	RES_MAX_USAGE,
97 	RES_FAILCNT,
98 	RES_SOFT_LIMIT,
99 };
100 
101 #ifdef CONFIG_LOCKDEP
102 static struct lockdep_map memcg_oom_lock_dep_map = {
103 	.name = "memcg_oom_lock",
104 };
105 #endif
106 
107 DEFINE_SPINLOCK(memcg_oom_lock);
108 
109 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
110 					 struct mem_cgroup_tree_per_node *mctz,
111 					 unsigned long new_usage_in_excess)
112 {
113 	struct rb_node **p = &mctz->rb_root.rb_node;
114 	struct rb_node *parent = NULL;
115 	struct mem_cgroup_per_node *mz_node;
116 	bool rightmost = true;
117 
118 	if (mz->on_tree)
119 		return;
120 
121 	mz->usage_in_excess = new_usage_in_excess;
122 	if (!mz->usage_in_excess)
123 		return;
124 	while (*p) {
125 		parent = *p;
126 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
127 					tree_node);
128 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
129 			p = &(*p)->rb_left;
130 			rightmost = false;
131 		} else {
132 			p = &(*p)->rb_right;
133 		}
134 	}
135 
136 	if (rightmost)
137 		mctz->rb_rightmost = &mz->tree_node;
138 
139 	rb_link_node(&mz->tree_node, parent, p);
140 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
141 	mz->on_tree = true;
142 }
143 
144 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
145 					 struct mem_cgroup_tree_per_node *mctz)
146 {
147 	if (!mz->on_tree)
148 		return;
149 
150 	if (&mz->tree_node == mctz->rb_rightmost)
151 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
152 
153 	rb_erase(&mz->tree_node, &mctz->rb_root);
154 	mz->on_tree = false;
155 }
156 
157 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
158 				       struct mem_cgroup_tree_per_node *mctz)
159 {
160 	unsigned long flags;
161 
162 	spin_lock_irqsave(&mctz->lock, flags);
163 	__mem_cgroup_remove_exceeded(mz, mctz);
164 	spin_unlock_irqrestore(&mctz->lock, flags);
165 }
166 
167 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
168 {
169 	unsigned long nr_pages = page_counter_read(&memcg->memory);
170 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
171 	unsigned long excess = 0;
172 
173 	if (nr_pages > soft_limit)
174 		excess = nr_pages - soft_limit;
175 
176 	return excess;
177 }
178 
179 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
180 {
181 	unsigned long excess;
182 	struct mem_cgroup_per_node *mz;
183 	struct mem_cgroup_tree_per_node *mctz;
184 
185 	if (lru_gen_enabled()) {
186 		if (soft_limit_excess(memcg))
187 			lru_gen_soft_reclaim(memcg, nid);
188 		return;
189 	}
190 
191 	mctz = soft_limit_tree.rb_tree_per_node[nid];
192 	if (!mctz)
193 		return;
194 	/*
195 	 * Necessary to update all ancestors when hierarchy is used.
196 	 * because their event counter is not touched.
197 	 */
198 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
199 		mz = memcg->nodeinfo[nid];
200 		excess = soft_limit_excess(memcg);
201 		/*
202 		 * We have to update the tree if mz is on RB-tree or
203 		 * mem is over its softlimit.
204 		 */
205 		if (excess || mz->on_tree) {
206 			unsigned long flags;
207 
208 			spin_lock_irqsave(&mctz->lock, flags);
209 			/* if on-tree, remove it */
210 			if (mz->on_tree)
211 				__mem_cgroup_remove_exceeded(mz, mctz);
212 			/*
213 			 * Insert again. mz->usage_in_excess will be updated.
214 			 * If excess is 0, no tree ops.
215 			 */
216 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
217 			spin_unlock_irqrestore(&mctz->lock, flags);
218 		}
219 	}
220 }
221 
222 void memcg1_remove_from_trees(struct mem_cgroup *memcg)
223 {
224 	struct mem_cgroup_tree_per_node *mctz;
225 	struct mem_cgroup_per_node *mz;
226 	int nid;
227 
228 	for_each_node(nid) {
229 		mz = memcg->nodeinfo[nid];
230 		mctz = soft_limit_tree.rb_tree_per_node[nid];
231 		if (mctz)
232 			mem_cgroup_remove_exceeded(mz, mctz);
233 	}
234 }
235 
236 static struct mem_cgroup_per_node *
237 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
238 {
239 	struct mem_cgroup_per_node *mz;
240 
241 retry:
242 	mz = NULL;
243 	if (!mctz->rb_rightmost)
244 		goto done;		/* Nothing to reclaim from */
245 
246 	mz = rb_entry(mctz->rb_rightmost,
247 		      struct mem_cgroup_per_node, tree_node);
248 	/*
249 	 * Remove the node now but someone else can add it back,
250 	 * we will to add it back at the end of reclaim to its correct
251 	 * position in the tree.
252 	 */
253 	__mem_cgroup_remove_exceeded(mz, mctz);
254 	if (!soft_limit_excess(mz->memcg) ||
255 	    !css_tryget(&mz->memcg->css))
256 		goto retry;
257 done:
258 	return mz;
259 }
260 
261 static struct mem_cgroup_per_node *
262 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
263 {
264 	struct mem_cgroup_per_node *mz;
265 
266 	spin_lock_irq(&mctz->lock);
267 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
268 	spin_unlock_irq(&mctz->lock);
269 	return mz;
270 }
271 
272 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
273 				   pg_data_t *pgdat,
274 				   gfp_t gfp_mask,
275 				   unsigned long *total_scanned)
276 {
277 	struct mem_cgroup *victim = NULL;
278 	int total = 0;
279 	int loop = 0;
280 	unsigned long excess;
281 	unsigned long nr_scanned;
282 	struct mem_cgroup_reclaim_cookie reclaim = {
283 		.pgdat = pgdat,
284 	};
285 
286 	excess = soft_limit_excess(root_memcg);
287 
288 	while (1) {
289 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
290 		if (!victim) {
291 			loop++;
292 			if (loop >= 2) {
293 				/*
294 				 * If we have not been able to reclaim
295 				 * anything, it might because there are
296 				 * no reclaimable pages under this hierarchy
297 				 */
298 				if (!total)
299 					break;
300 				/*
301 				 * We want to do more targeted reclaim.
302 				 * excess >> 2 is not to excessive so as to
303 				 * reclaim too much, nor too less that we keep
304 				 * coming back to reclaim from this cgroup
305 				 */
306 				if (total >= (excess >> 2) ||
307 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
308 					break;
309 			}
310 			continue;
311 		}
312 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
313 					pgdat, &nr_scanned);
314 		*total_scanned += nr_scanned;
315 		if (!soft_limit_excess(root_memcg))
316 			break;
317 	}
318 	mem_cgroup_iter_break(root_memcg, victim);
319 	return total;
320 }
321 
322 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
323 					    gfp_t gfp_mask,
324 					    unsigned long *total_scanned)
325 {
326 	unsigned long nr_reclaimed = 0;
327 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
328 	unsigned long reclaimed;
329 	int loop = 0;
330 	struct mem_cgroup_tree_per_node *mctz;
331 	unsigned long excess;
332 
333 	if (lru_gen_enabled())
334 		return 0;
335 
336 	if (order > 0)
337 		return 0;
338 
339 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
340 
341 	/*
342 	 * Do not even bother to check the largest node if the root
343 	 * is empty. Do it lockless to prevent lock bouncing. Races
344 	 * are acceptable as soft limit is best effort anyway.
345 	 */
346 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
347 		return 0;
348 
349 	/*
350 	 * This loop can run a while, specially if mem_cgroup's continuously
351 	 * keep exceeding their soft limit and putting the system under
352 	 * pressure
353 	 */
354 	do {
355 		if (next_mz)
356 			mz = next_mz;
357 		else
358 			mz = mem_cgroup_largest_soft_limit_node(mctz);
359 		if (!mz)
360 			break;
361 
362 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
363 						    gfp_mask, total_scanned);
364 		nr_reclaimed += reclaimed;
365 		spin_lock_irq(&mctz->lock);
366 
367 		/*
368 		 * If we failed to reclaim anything from this memory cgroup
369 		 * it is time to move on to the next cgroup
370 		 */
371 		next_mz = NULL;
372 		if (!reclaimed)
373 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
374 
375 		excess = soft_limit_excess(mz->memcg);
376 		/*
377 		 * One school of thought says that we should not add
378 		 * back the node to the tree if reclaim returns 0.
379 		 * But our reclaim could return 0, simply because due
380 		 * to priority we are exposing a smaller subset of
381 		 * memory to reclaim from. Consider this as a longer
382 		 * term TODO.
383 		 */
384 		/* If excess == 0, no tree ops */
385 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
386 		spin_unlock_irq(&mctz->lock);
387 		css_put(&mz->memcg->css);
388 		loop++;
389 		/*
390 		 * Could not reclaim anything and there are no more
391 		 * mem cgroups to try or we seem to be looping without
392 		 * reclaiming anything.
393 		 */
394 		if (!nr_reclaimed &&
395 			(next_mz == NULL ||
396 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
397 			break;
398 	} while (!nr_reclaimed);
399 	if (next_mz)
400 		css_put(&next_mz->memcg->css);
401 	return nr_reclaimed;
402 }
403 
404 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
405 				struct cftype *cft)
406 {
407 	return 0;
408 }
409 
410 #ifdef CONFIG_MMU
411 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
412 				 struct cftype *cft, u64 val)
413 {
414 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
415 		     "Please report your usecase to linux-mm@kvack.org if you "
416 		     "depend on this functionality.\n");
417 
418 	if (val != 0)
419 		return -EINVAL;
420 	return 0;
421 }
422 #else
423 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
424 				 struct cftype *cft, u64 val)
425 {
426 	return -ENOSYS;
427 }
428 #endif
429 
430 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
431 {
432 	struct mem_cgroup_threshold_ary *t;
433 	unsigned long usage;
434 	int i;
435 
436 	rcu_read_lock();
437 	if (!swap)
438 		t = rcu_dereference(memcg->thresholds.primary);
439 	else
440 		t = rcu_dereference(memcg->memsw_thresholds.primary);
441 
442 	if (!t)
443 		goto unlock;
444 
445 	usage = mem_cgroup_usage(memcg, swap);
446 
447 	/*
448 	 * current_threshold points to threshold just below or equal to usage.
449 	 * If it's not true, a threshold was crossed after last
450 	 * call of __mem_cgroup_threshold().
451 	 */
452 	i = t->current_threshold;
453 
454 	/*
455 	 * Iterate backward over array of thresholds starting from
456 	 * current_threshold and check if a threshold is crossed.
457 	 * If none of thresholds below usage is crossed, we read
458 	 * only one element of the array here.
459 	 */
460 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
461 		eventfd_signal(t->entries[i].eventfd);
462 
463 	/* i = current_threshold + 1 */
464 	i++;
465 
466 	/*
467 	 * Iterate forward over array of thresholds starting from
468 	 * current_threshold+1 and check if a threshold is crossed.
469 	 * If none of thresholds above usage is crossed, we read
470 	 * only one element of the array here.
471 	 */
472 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
473 		eventfd_signal(t->entries[i].eventfd);
474 
475 	/* Update current_threshold */
476 	t->current_threshold = i - 1;
477 unlock:
478 	rcu_read_unlock();
479 }
480 
481 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
482 {
483 	while (memcg) {
484 		__mem_cgroup_threshold(memcg, false);
485 		if (do_memsw_account())
486 			__mem_cgroup_threshold(memcg, true);
487 
488 		memcg = parent_mem_cgroup(memcg);
489 	}
490 }
491 
492 /* Cgroup1: threshold notifications & softlimit tree updates */
493 
494 /*
495  * Per memcg event counter is incremented at every pagein/pageout. With THP,
496  * it will be incremented by the number of pages. This counter is used
497  * to trigger some periodic events. This is straightforward and better
498  * than using jiffies etc. to handle periodic memcg event.
499  */
500 enum mem_cgroup_events_target {
501 	MEM_CGROUP_TARGET_THRESH,
502 	MEM_CGROUP_TARGET_SOFTLIMIT,
503 	MEM_CGROUP_NTARGETS,
504 };
505 
506 struct memcg1_events_percpu {
507 	unsigned long nr_page_events;
508 	unsigned long targets[MEM_CGROUP_NTARGETS];
509 };
510 
511 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages)
512 {
513 	/* pagein of a big page is an event. So, ignore page size */
514 	if (nr_pages > 0)
515 		__count_memcg_events(memcg, PGPGIN, 1);
516 	else {
517 		__count_memcg_events(memcg, PGPGOUT, 1);
518 		nr_pages = -nr_pages; /* for event */
519 	}
520 
521 	__this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages);
522 }
523 
524 #define THRESHOLDS_EVENTS_TARGET 128
525 #define SOFTLIMIT_EVENTS_TARGET 1024
526 
527 static bool memcg1_event_ratelimit(struct mem_cgroup *memcg,
528 				enum mem_cgroup_events_target target)
529 {
530 	unsigned long val, next;
531 
532 	val = __this_cpu_read(memcg->events_percpu->nr_page_events);
533 	next = __this_cpu_read(memcg->events_percpu->targets[target]);
534 	/* from time_after() in jiffies.h */
535 	if ((long)(next - val) < 0) {
536 		switch (target) {
537 		case MEM_CGROUP_TARGET_THRESH:
538 			next = val + THRESHOLDS_EVENTS_TARGET;
539 			break;
540 		case MEM_CGROUP_TARGET_SOFTLIMIT:
541 			next = val + SOFTLIMIT_EVENTS_TARGET;
542 			break;
543 		default:
544 			break;
545 		}
546 		__this_cpu_write(memcg->events_percpu->targets[target], next);
547 		return true;
548 	}
549 	return false;
550 }
551 
552 /*
553  * Check events in order.
554  *
555  */
556 static void memcg1_check_events(struct mem_cgroup *memcg, int nid)
557 {
558 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
559 		return;
560 
561 	/* threshold event is triggered in finer grain than soft limit */
562 	if (unlikely(memcg1_event_ratelimit(memcg,
563 						MEM_CGROUP_TARGET_THRESH))) {
564 		bool do_softlimit;
565 
566 		do_softlimit = memcg1_event_ratelimit(memcg,
567 						MEM_CGROUP_TARGET_SOFTLIMIT);
568 		mem_cgroup_threshold(memcg);
569 		if (unlikely(do_softlimit))
570 			memcg1_update_tree(memcg, nid);
571 	}
572 }
573 
574 void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
575 {
576 	unsigned long flags;
577 
578 	local_irq_save(flags);
579 	memcg1_charge_statistics(memcg, folio_nr_pages(folio));
580 	memcg1_check_events(memcg, folio_nid(folio));
581 	local_irq_restore(flags);
582 }
583 
584 /**
585  * memcg1_swapout - transfer a memsw charge to swap
586  * @folio: folio whose memsw charge to transfer
587  * @entry: swap entry to move the charge to
588  *
589  * Transfer the memsw charge of @folio to @entry.
590  */
591 void memcg1_swapout(struct folio *folio, swp_entry_t entry)
592 {
593 	struct mem_cgroup *memcg, *swap_memcg;
594 	unsigned int nr_entries;
595 
596 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
597 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
598 
599 	if (mem_cgroup_disabled())
600 		return;
601 
602 	if (!do_memsw_account())
603 		return;
604 
605 	memcg = folio_memcg(folio);
606 
607 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
608 	if (!memcg)
609 		return;
610 
611 	/*
612 	 * In case the memcg owning these pages has been offlined and doesn't
613 	 * have an ID allocated to it anymore, charge the closest online
614 	 * ancestor for the swap instead and transfer the memory+swap charge.
615 	 */
616 	swap_memcg = mem_cgroup_id_get_online(memcg);
617 	nr_entries = folio_nr_pages(folio);
618 	/* Get references for the tail pages, too */
619 	if (nr_entries > 1)
620 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
621 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
622 
623 	swap_cgroup_record(folio, mem_cgroup_id(swap_memcg), entry);
624 
625 	folio_unqueue_deferred_split(folio);
626 	folio->memcg_data = 0;
627 
628 	if (!mem_cgroup_is_root(memcg))
629 		page_counter_uncharge(&memcg->memory, nr_entries);
630 
631 	if (memcg != swap_memcg) {
632 		if (!mem_cgroup_is_root(swap_memcg))
633 			page_counter_charge(&swap_memcg->memsw, nr_entries);
634 		page_counter_uncharge(&memcg->memsw, nr_entries);
635 	}
636 
637 	/*
638 	 * Interrupts should be disabled here because the caller holds the
639 	 * i_pages lock which is taken with interrupts-off. It is
640 	 * important here to have the interrupts disabled because it is the
641 	 * only synchronisation we have for updating the per-CPU variables.
642 	 */
643 	preempt_disable_nested();
644 	VM_WARN_ON_IRQS_ENABLED();
645 	memcg1_charge_statistics(memcg, -folio_nr_pages(folio));
646 	preempt_enable_nested();
647 	memcg1_check_events(memcg, folio_nid(folio));
648 
649 	css_put(&memcg->css);
650 }
651 
652 /*
653  * memcg1_swapin - uncharge swap slot
654  * @entry: the first swap entry for which the pages are charged
655  * @nr_pages: number of pages which will be uncharged
656  *
657  * Call this function after successfully adding the charged page to swapcache.
658  *
659  * Note: This function assumes the page for which swap slot is being uncharged
660  * is order 0 page.
661  */
662 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
663 {
664 	/*
665 	 * Cgroup1's unified memory+swap counter has been charged with the
666 	 * new swapcache page, finish the transfer by uncharging the swap
667 	 * slot. The swap slot would also get uncharged when it dies, but
668 	 * it can stick around indefinitely and we'd count the page twice
669 	 * the entire time.
670 	 *
671 	 * Cgroup2 has separate resource counters for memory and swap,
672 	 * so this is a non-issue here. Memory and swap charge lifetimes
673 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
674 	 * page to memory here, and uncharge swap when the slot is freed.
675 	 */
676 	if (do_memsw_account()) {
677 		/*
678 		 * The swap entry might not get freed for a long time,
679 		 * let's not wait for it.  The page already received a
680 		 * memory+swap charge, drop the swap entry duplicate.
681 		 */
682 		mem_cgroup_uncharge_swap(entry, nr_pages);
683 	}
684 }
685 
686 void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
687 			   unsigned long nr_memory, int nid)
688 {
689 	unsigned long flags;
690 
691 	local_irq_save(flags);
692 	__count_memcg_events(memcg, PGPGOUT, pgpgout);
693 	__this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory);
694 	memcg1_check_events(memcg, nid);
695 	local_irq_restore(flags);
696 }
697 
698 static int compare_thresholds(const void *a, const void *b)
699 {
700 	const struct mem_cgroup_threshold *_a = a;
701 	const struct mem_cgroup_threshold *_b = b;
702 
703 	if (_a->threshold > _b->threshold)
704 		return 1;
705 
706 	if (_a->threshold < _b->threshold)
707 		return -1;
708 
709 	return 0;
710 }
711 
712 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
713 {
714 	struct mem_cgroup_eventfd_list *ev;
715 
716 	spin_lock(&memcg_oom_lock);
717 
718 	list_for_each_entry(ev, &memcg->oom_notify, list)
719 		eventfd_signal(ev->eventfd);
720 
721 	spin_unlock(&memcg_oom_lock);
722 	return 0;
723 }
724 
725 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
726 {
727 	struct mem_cgroup *iter;
728 
729 	for_each_mem_cgroup_tree(iter, memcg)
730 		mem_cgroup_oom_notify_cb(iter);
731 }
732 
733 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
734 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
735 {
736 	struct mem_cgroup_thresholds *thresholds;
737 	struct mem_cgroup_threshold_ary *new;
738 	unsigned long threshold;
739 	unsigned long usage;
740 	int i, size, ret;
741 
742 	ret = page_counter_memparse(args, "-1", &threshold);
743 	if (ret)
744 		return ret;
745 
746 	mutex_lock(&memcg->thresholds_lock);
747 
748 	if (type == _MEM) {
749 		thresholds = &memcg->thresholds;
750 		usage = mem_cgroup_usage(memcg, false);
751 	} else if (type == _MEMSWAP) {
752 		thresholds = &memcg->memsw_thresholds;
753 		usage = mem_cgroup_usage(memcg, true);
754 	} else
755 		BUG();
756 
757 	/* Check if a threshold crossed before adding a new one */
758 	if (thresholds->primary)
759 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
760 
761 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
762 
763 	/* Allocate memory for new array of thresholds */
764 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
765 	if (!new) {
766 		ret = -ENOMEM;
767 		goto unlock;
768 	}
769 	new->size = size;
770 
771 	/* Copy thresholds (if any) to new array */
772 	if (thresholds->primary)
773 		memcpy(new->entries, thresholds->primary->entries,
774 		       flex_array_size(new, entries, size - 1));
775 
776 	/* Add new threshold */
777 	new->entries[size - 1].eventfd = eventfd;
778 	new->entries[size - 1].threshold = threshold;
779 
780 	/* Sort thresholds. Registering of new threshold isn't time-critical */
781 	sort(new->entries, size, sizeof(*new->entries),
782 			compare_thresholds, NULL);
783 
784 	/* Find current threshold */
785 	new->current_threshold = -1;
786 	for (i = 0; i < size; i++) {
787 		if (new->entries[i].threshold <= usage) {
788 			/*
789 			 * new->current_threshold will not be used until
790 			 * rcu_assign_pointer(), so it's safe to increment
791 			 * it here.
792 			 */
793 			++new->current_threshold;
794 		} else
795 			break;
796 	}
797 
798 	/* Free old spare buffer and save old primary buffer as spare */
799 	kfree(thresholds->spare);
800 	thresholds->spare = thresholds->primary;
801 
802 	rcu_assign_pointer(thresholds->primary, new);
803 
804 	/* To be sure that nobody uses thresholds */
805 	synchronize_rcu();
806 
807 unlock:
808 	mutex_unlock(&memcg->thresholds_lock);
809 
810 	return ret;
811 }
812 
813 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
814 	struct eventfd_ctx *eventfd, const char *args)
815 {
816 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
817 }
818 
819 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
820 	struct eventfd_ctx *eventfd, const char *args)
821 {
822 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
823 }
824 
825 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
826 	struct eventfd_ctx *eventfd, enum res_type type)
827 {
828 	struct mem_cgroup_thresholds *thresholds;
829 	struct mem_cgroup_threshold_ary *new;
830 	unsigned long usage;
831 	int i, j, size, entries;
832 
833 	mutex_lock(&memcg->thresholds_lock);
834 
835 	if (type == _MEM) {
836 		thresholds = &memcg->thresholds;
837 		usage = mem_cgroup_usage(memcg, false);
838 	} else if (type == _MEMSWAP) {
839 		thresholds = &memcg->memsw_thresholds;
840 		usage = mem_cgroup_usage(memcg, true);
841 	} else
842 		BUG();
843 
844 	if (!thresholds->primary)
845 		goto unlock;
846 
847 	/* Check if a threshold crossed before removing */
848 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
849 
850 	/* Calculate new number of threshold */
851 	size = entries = 0;
852 	for (i = 0; i < thresholds->primary->size; i++) {
853 		if (thresholds->primary->entries[i].eventfd != eventfd)
854 			size++;
855 		else
856 			entries++;
857 	}
858 
859 	new = thresholds->spare;
860 
861 	/* If no items related to eventfd have been cleared, nothing to do */
862 	if (!entries)
863 		goto unlock;
864 
865 	/* Set thresholds array to NULL if we don't have thresholds */
866 	if (!size) {
867 		kfree(new);
868 		new = NULL;
869 		goto swap_buffers;
870 	}
871 
872 	new->size = size;
873 
874 	/* Copy thresholds and find current threshold */
875 	new->current_threshold = -1;
876 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
877 		if (thresholds->primary->entries[i].eventfd == eventfd)
878 			continue;
879 
880 		new->entries[j] = thresholds->primary->entries[i];
881 		if (new->entries[j].threshold <= usage) {
882 			/*
883 			 * new->current_threshold will not be used
884 			 * until rcu_assign_pointer(), so it's safe to increment
885 			 * it here.
886 			 */
887 			++new->current_threshold;
888 		}
889 		j++;
890 	}
891 
892 swap_buffers:
893 	/* Swap primary and spare array */
894 	thresholds->spare = thresholds->primary;
895 
896 	rcu_assign_pointer(thresholds->primary, new);
897 
898 	/* To be sure that nobody uses thresholds */
899 	synchronize_rcu();
900 
901 	/* If all events are unregistered, free the spare array */
902 	if (!new) {
903 		kfree(thresholds->spare);
904 		thresholds->spare = NULL;
905 	}
906 unlock:
907 	mutex_unlock(&memcg->thresholds_lock);
908 }
909 
910 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
911 	struct eventfd_ctx *eventfd)
912 {
913 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
914 }
915 
916 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
917 	struct eventfd_ctx *eventfd)
918 {
919 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
920 }
921 
922 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
923 	struct eventfd_ctx *eventfd, const char *args)
924 {
925 	struct mem_cgroup_eventfd_list *event;
926 
927 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
928 	if (!event)
929 		return -ENOMEM;
930 
931 	spin_lock(&memcg_oom_lock);
932 
933 	event->eventfd = eventfd;
934 	list_add(&event->list, &memcg->oom_notify);
935 
936 	/* already in OOM ? */
937 	if (memcg->under_oom)
938 		eventfd_signal(eventfd);
939 	spin_unlock(&memcg_oom_lock);
940 
941 	return 0;
942 }
943 
944 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
945 	struct eventfd_ctx *eventfd)
946 {
947 	struct mem_cgroup_eventfd_list *ev, *tmp;
948 
949 	spin_lock(&memcg_oom_lock);
950 
951 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
952 		if (ev->eventfd == eventfd) {
953 			list_del(&ev->list);
954 			kfree(ev);
955 		}
956 	}
957 
958 	spin_unlock(&memcg_oom_lock);
959 }
960 
961 /*
962  * DO NOT USE IN NEW FILES.
963  *
964  * "cgroup.event_control" implementation.
965  *
966  * This is way over-engineered.  It tries to support fully configurable
967  * events for each user.  Such level of flexibility is completely
968  * unnecessary especially in the light of the planned unified hierarchy.
969  *
970  * Please deprecate this and replace with something simpler if at all
971  * possible.
972  */
973 
974 /*
975  * Unregister event and free resources.
976  *
977  * Gets called from workqueue.
978  */
979 static void memcg_event_remove(struct work_struct *work)
980 {
981 	struct mem_cgroup_event *event =
982 		container_of(work, struct mem_cgroup_event, remove);
983 	struct mem_cgroup *memcg = event->memcg;
984 
985 	remove_wait_queue(event->wqh, &event->wait);
986 
987 	event->unregister_event(memcg, event->eventfd);
988 
989 	/* Notify userspace the event is going away. */
990 	eventfd_signal(event->eventfd);
991 
992 	eventfd_ctx_put(event->eventfd);
993 	kfree(event);
994 	css_put(&memcg->css);
995 }
996 
997 /*
998  * Gets called on EPOLLHUP on eventfd when user closes it.
999  *
1000  * Called with wqh->lock held and interrupts disabled.
1001  */
1002 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned int mode,
1003 			    int sync, void *key)
1004 {
1005 	struct mem_cgroup_event *event =
1006 		container_of(wait, struct mem_cgroup_event, wait);
1007 	struct mem_cgroup *memcg = event->memcg;
1008 	__poll_t flags = key_to_poll(key);
1009 
1010 	if (flags & EPOLLHUP) {
1011 		/*
1012 		 * If the event has been detached at cgroup removal, we
1013 		 * can simply return knowing the other side will cleanup
1014 		 * for us.
1015 		 *
1016 		 * We can't race against event freeing since the other
1017 		 * side will require wqh->lock via remove_wait_queue(),
1018 		 * which we hold.
1019 		 */
1020 		spin_lock(&memcg->event_list_lock);
1021 		if (!list_empty(&event->list)) {
1022 			list_del_init(&event->list);
1023 			/*
1024 			 * We are in atomic context, but cgroup_event_remove()
1025 			 * may sleep, so we have to call it in workqueue.
1026 			 */
1027 			schedule_work(&event->remove);
1028 		}
1029 		spin_unlock(&memcg->event_list_lock);
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 static void memcg_event_ptable_queue_proc(struct file *file,
1036 		wait_queue_head_t *wqh, poll_table *pt)
1037 {
1038 	struct mem_cgroup_event *event =
1039 		container_of(pt, struct mem_cgroup_event, pt);
1040 
1041 	event->wqh = wqh;
1042 	add_wait_queue(wqh, &event->wait);
1043 }
1044 
1045 /*
1046  * DO NOT USE IN NEW FILES.
1047  *
1048  * Parse input and register new cgroup event handler.
1049  *
1050  * Input must be in format '<event_fd> <control_fd> <args>'.
1051  * Interpretation of args is defined by control file implementation.
1052  */
1053 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
1054 					 char *buf, size_t nbytes, loff_t off)
1055 {
1056 	struct cgroup_subsys_state *css = of_css(of);
1057 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1058 	struct mem_cgroup_event *event;
1059 	struct cgroup_subsys_state *cfile_css;
1060 	unsigned int efd, cfd;
1061 	struct dentry *cdentry;
1062 	const char *name;
1063 	char *endp;
1064 	int ret;
1065 
1066 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
1067 		return -EOPNOTSUPP;
1068 
1069 	buf = strstrip(buf);
1070 
1071 	efd = simple_strtoul(buf, &endp, 10);
1072 	if (*endp != ' ')
1073 		return -EINVAL;
1074 	buf = endp + 1;
1075 
1076 	cfd = simple_strtoul(buf, &endp, 10);
1077 	if (*endp == '\0')
1078 		buf = endp;
1079 	else if (*endp == ' ')
1080 		buf = endp + 1;
1081 	else
1082 		return -EINVAL;
1083 
1084 	CLASS(fd, efile)(efd);
1085 	if (fd_empty(efile))
1086 		return -EBADF;
1087 
1088 	CLASS(fd, cfile)(cfd);
1089 
1090 	event = kzalloc(sizeof(*event), GFP_KERNEL);
1091 	if (!event)
1092 		return -ENOMEM;
1093 
1094 	event->memcg = memcg;
1095 	INIT_LIST_HEAD(&event->list);
1096 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
1097 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
1098 	INIT_WORK(&event->remove, memcg_event_remove);
1099 
1100 	event->eventfd = eventfd_ctx_fileget(fd_file(efile));
1101 	if (IS_ERR(event->eventfd)) {
1102 		ret = PTR_ERR(event->eventfd);
1103 		goto out_kfree;
1104 	}
1105 
1106 	if (fd_empty(cfile)) {
1107 		ret = -EBADF;
1108 		goto out_put_eventfd;
1109 	}
1110 
1111 	/* the process need read permission on control file */
1112 	/* AV: shouldn't we check that it's been opened for read instead? */
1113 	ret = file_permission(fd_file(cfile), MAY_READ);
1114 	if (ret < 0)
1115 		goto out_put_eventfd;
1116 
1117 	/*
1118 	 * The control file must be a regular cgroup1 file. As a regular cgroup
1119 	 * file can't be renamed, it's safe to access its name afterwards.
1120 	 */
1121 	cdentry = fd_file(cfile)->f_path.dentry;
1122 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
1123 		ret = -EINVAL;
1124 		goto out_put_eventfd;
1125 	}
1126 
1127 	/*
1128 	 * Determine the event callbacks and set them in @event.  This used
1129 	 * to be done via struct cftype but cgroup core no longer knows
1130 	 * about these events.  The following is crude but the whole thing
1131 	 * is for compatibility anyway.
1132 	 *
1133 	 * DO NOT ADD NEW FILES.
1134 	 */
1135 	name = cdentry->d_name.name;
1136 
1137 	if (!strcmp(name, "memory.usage_in_bytes")) {
1138 		event->register_event = mem_cgroup_usage_register_event;
1139 		event->unregister_event = mem_cgroup_usage_unregister_event;
1140 	} else if (!strcmp(name, "memory.oom_control")) {
1141 		pr_warn_once("oom_control is deprecated and will be removed. "
1142 			     "Please report your usecase to linux-mm-@kvack.org"
1143 			     " if you depend on this functionality.\n");
1144 		event->register_event = mem_cgroup_oom_register_event;
1145 		event->unregister_event = mem_cgroup_oom_unregister_event;
1146 	} else if (!strcmp(name, "memory.pressure_level")) {
1147 		pr_warn_once("pressure_level is deprecated and will be removed. "
1148 			     "Please report your usecase to linux-mm-@kvack.org "
1149 			     "if you depend on this functionality.\n");
1150 		event->register_event = vmpressure_register_event;
1151 		event->unregister_event = vmpressure_unregister_event;
1152 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
1153 		event->register_event = memsw_cgroup_usage_register_event;
1154 		event->unregister_event = memsw_cgroup_usage_unregister_event;
1155 	} else {
1156 		ret = -EINVAL;
1157 		goto out_put_eventfd;
1158 	}
1159 
1160 	/*
1161 	 * Verify @cfile should belong to @css.  Also, remaining events are
1162 	 * automatically removed on cgroup destruction but the removal is
1163 	 * asynchronous, so take an extra ref on @css.
1164 	 */
1165 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
1166 					       &memory_cgrp_subsys);
1167 	ret = -EINVAL;
1168 	if (IS_ERR(cfile_css))
1169 		goto out_put_eventfd;
1170 	if (cfile_css != css)
1171 		goto out_put_css;
1172 
1173 	ret = event->register_event(memcg, event->eventfd, buf);
1174 	if (ret)
1175 		goto out_put_css;
1176 
1177 	vfs_poll(fd_file(efile), &event->pt);
1178 
1179 	spin_lock_irq(&memcg->event_list_lock);
1180 	list_add(&event->list, &memcg->event_list);
1181 	spin_unlock_irq(&memcg->event_list_lock);
1182 	return nbytes;
1183 
1184 out_put_css:
1185 	css_put(cfile_css);
1186 out_put_eventfd:
1187 	eventfd_ctx_put(event->eventfd);
1188 out_kfree:
1189 	kfree(event);
1190 	return ret;
1191 }
1192 
1193 void memcg1_memcg_init(struct mem_cgroup *memcg)
1194 {
1195 	INIT_LIST_HEAD(&memcg->oom_notify);
1196 	mutex_init(&memcg->thresholds_lock);
1197 	INIT_LIST_HEAD(&memcg->event_list);
1198 	spin_lock_init(&memcg->event_list_lock);
1199 }
1200 
1201 void memcg1_css_offline(struct mem_cgroup *memcg)
1202 {
1203 	struct mem_cgroup_event *event, *tmp;
1204 
1205 	/*
1206 	 * Unregister events and notify userspace.
1207 	 * Notify userspace about cgroup removing only after rmdir of cgroup
1208 	 * directory to avoid race between userspace and kernelspace.
1209 	 */
1210 	spin_lock_irq(&memcg->event_list_lock);
1211 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
1212 		list_del_init(&event->list);
1213 		schedule_work(&event->remove);
1214 	}
1215 	spin_unlock_irq(&memcg->event_list_lock);
1216 }
1217 
1218 /*
1219  * Check OOM-Killer is already running under our hierarchy.
1220  * If someone is running, return false.
1221  */
1222 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1223 {
1224 	struct mem_cgroup *iter, *failed = NULL;
1225 
1226 	spin_lock(&memcg_oom_lock);
1227 
1228 	for_each_mem_cgroup_tree(iter, memcg) {
1229 		if (iter->oom_lock) {
1230 			/*
1231 			 * this subtree of our hierarchy is already locked
1232 			 * so we cannot give a lock.
1233 			 */
1234 			failed = iter;
1235 			mem_cgroup_iter_break(memcg, iter);
1236 			break;
1237 		}
1238 		iter->oom_lock = true;
1239 	}
1240 
1241 	if (failed) {
1242 		/*
1243 		 * OK, we failed to lock the whole subtree so we have
1244 		 * to clean up what we set up to the failing subtree
1245 		 */
1246 		for_each_mem_cgroup_tree(iter, memcg) {
1247 			if (iter == failed) {
1248 				mem_cgroup_iter_break(memcg, iter);
1249 				break;
1250 			}
1251 			iter->oom_lock = false;
1252 		}
1253 	} else
1254 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1255 
1256 	spin_unlock(&memcg_oom_lock);
1257 
1258 	return !failed;
1259 }
1260 
1261 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1262 {
1263 	struct mem_cgroup *iter;
1264 
1265 	spin_lock(&memcg_oom_lock);
1266 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1267 	for_each_mem_cgroup_tree(iter, memcg)
1268 		iter->oom_lock = false;
1269 	spin_unlock(&memcg_oom_lock);
1270 }
1271 
1272 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1273 {
1274 	struct mem_cgroup *iter;
1275 
1276 	spin_lock(&memcg_oom_lock);
1277 	for_each_mem_cgroup_tree(iter, memcg)
1278 		iter->under_oom++;
1279 	spin_unlock(&memcg_oom_lock);
1280 }
1281 
1282 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1283 {
1284 	struct mem_cgroup *iter;
1285 
1286 	/*
1287 	 * Be careful about under_oom underflows because a child memcg
1288 	 * could have been added after mem_cgroup_mark_under_oom.
1289 	 */
1290 	spin_lock(&memcg_oom_lock);
1291 	for_each_mem_cgroup_tree(iter, memcg)
1292 		if (iter->under_oom > 0)
1293 			iter->under_oom--;
1294 	spin_unlock(&memcg_oom_lock);
1295 }
1296 
1297 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1298 
1299 struct oom_wait_info {
1300 	struct mem_cgroup *memcg;
1301 	wait_queue_entry_t	wait;
1302 };
1303 
1304 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1305 	unsigned int mode, int sync, void *arg)
1306 {
1307 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1308 	struct mem_cgroup *oom_wait_memcg;
1309 	struct oom_wait_info *oom_wait_info;
1310 
1311 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1312 	oom_wait_memcg = oom_wait_info->memcg;
1313 
1314 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1315 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1316 		return 0;
1317 	return autoremove_wake_function(wait, mode, sync, arg);
1318 }
1319 
1320 void memcg1_oom_recover(struct mem_cgroup *memcg)
1321 {
1322 	/*
1323 	 * For the following lockless ->under_oom test, the only required
1324 	 * guarantee is that it must see the state asserted by an OOM when
1325 	 * this function is called as a result of userland actions
1326 	 * triggered by the notification of the OOM.  This is trivially
1327 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1328 	 * triggering notification.
1329 	 */
1330 	if (memcg && memcg->under_oom)
1331 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1332 }
1333 
1334 /**
1335  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1336  * @handle: actually kill/wait or just clean up the OOM state
1337  *
1338  * This has to be called at the end of a page fault if the memcg OOM
1339  * handler was enabled.
1340  *
1341  * Memcg supports userspace OOM handling where failed allocations must
1342  * sleep on a waitqueue until the userspace task resolves the
1343  * situation.  Sleeping directly in the charge context with all kinds
1344  * of locks held is not a good idea, instead we remember an OOM state
1345  * in the task and mem_cgroup_oom_synchronize() has to be called at
1346  * the end of the page fault to complete the OOM handling.
1347  *
1348  * Returns %true if an ongoing memcg OOM situation was detected and
1349  * completed, %false otherwise.
1350  */
1351 bool mem_cgroup_oom_synchronize(bool handle)
1352 {
1353 	struct mem_cgroup *memcg = current->memcg_in_oom;
1354 	struct oom_wait_info owait;
1355 	bool locked;
1356 
1357 	/* OOM is global, do not handle */
1358 	if (!memcg)
1359 		return false;
1360 
1361 	if (!handle)
1362 		goto cleanup;
1363 
1364 	owait.memcg = memcg;
1365 	owait.wait.flags = 0;
1366 	owait.wait.func = memcg_oom_wake_function;
1367 	owait.wait.private = current;
1368 	INIT_LIST_HEAD(&owait.wait.entry);
1369 
1370 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1371 	mem_cgroup_mark_under_oom(memcg);
1372 
1373 	locked = mem_cgroup_oom_trylock(memcg);
1374 
1375 	if (locked)
1376 		mem_cgroup_oom_notify(memcg);
1377 
1378 	schedule();
1379 	mem_cgroup_unmark_under_oom(memcg);
1380 	finish_wait(&memcg_oom_waitq, &owait.wait);
1381 
1382 	if (locked)
1383 		mem_cgroup_oom_unlock(memcg);
1384 cleanup:
1385 	current->memcg_in_oom = NULL;
1386 	css_put(&memcg->css);
1387 	return true;
1388 }
1389 
1390 
1391 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
1392 {
1393 	/*
1394 	 * We are in the middle of the charge context here, so we
1395 	 * don't want to block when potentially sitting on a callstack
1396 	 * that holds all kinds of filesystem and mm locks.
1397 	 *
1398 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1399 	 * handling until the charge can succeed; remember the context and put
1400 	 * the task to sleep at the end of the page fault when all locks are
1401 	 * released.
1402 	 *
1403 	 * On the other hand, in-kernel OOM killer allows for an async victim
1404 	 * memory reclaim (oom_reaper) and that means that we are not solely
1405 	 * relying on the oom victim to make a forward progress and we can
1406 	 * invoke the oom killer here.
1407 	 *
1408 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1409 	 * victim and then we have to bail out from the charge path.
1410 	 */
1411 	if (READ_ONCE(memcg->oom_kill_disable)) {
1412 		if (current->in_user_fault) {
1413 			css_get(&memcg->css);
1414 			current->memcg_in_oom = memcg;
1415 		}
1416 		return false;
1417 	}
1418 
1419 	mem_cgroup_mark_under_oom(memcg);
1420 
1421 	*locked = mem_cgroup_oom_trylock(memcg);
1422 
1423 	if (*locked)
1424 		mem_cgroup_oom_notify(memcg);
1425 
1426 	mem_cgroup_unmark_under_oom(memcg);
1427 
1428 	return true;
1429 }
1430 
1431 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
1432 {
1433 	if (locked)
1434 		mem_cgroup_oom_unlock(memcg);
1435 }
1436 
1437 static DEFINE_MUTEX(memcg_max_mutex);
1438 
1439 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
1440 				 unsigned long max, bool memsw)
1441 {
1442 	bool enlarge = false;
1443 	bool drained = false;
1444 	int ret;
1445 	bool limits_invariant;
1446 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
1447 
1448 	do {
1449 		if (signal_pending(current)) {
1450 			ret = -EINTR;
1451 			break;
1452 		}
1453 
1454 		mutex_lock(&memcg_max_mutex);
1455 		/*
1456 		 * Make sure that the new limit (memsw or memory limit) doesn't
1457 		 * break our basic invariant rule memory.max <= memsw.max.
1458 		 */
1459 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
1460 					   max <= memcg->memsw.max;
1461 		if (!limits_invariant) {
1462 			mutex_unlock(&memcg_max_mutex);
1463 			ret = -EINVAL;
1464 			break;
1465 		}
1466 		if (max > counter->max)
1467 			enlarge = true;
1468 		ret = page_counter_set_max(counter, max);
1469 		mutex_unlock(&memcg_max_mutex);
1470 
1471 		if (!ret)
1472 			break;
1473 
1474 		if (!drained) {
1475 			drain_all_stock(memcg);
1476 			drained = true;
1477 			continue;
1478 		}
1479 
1480 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
1481 				memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
1482 			ret = -EBUSY;
1483 			break;
1484 		}
1485 	} while (true);
1486 
1487 	if (!ret && enlarge)
1488 		memcg1_oom_recover(memcg);
1489 
1490 	return ret;
1491 }
1492 
1493 /*
1494  * Reclaims as many pages from the given memcg as possible.
1495  *
1496  * Caller is responsible for holding css reference for memcg.
1497  */
1498 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
1499 {
1500 	int nr_retries = MAX_RECLAIM_RETRIES;
1501 
1502 	/* we call try-to-free pages for make this cgroup empty */
1503 	lru_add_drain_all();
1504 
1505 	drain_all_stock(memcg);
1506 
1507 	/* try to free all pages in this cgroup */
1508 	while (nr_retries && page_counter_read(&memcg->memory)) {
1509 		if (signal_pending(current))
1510 			return -EINTR;
1511 
1512 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
1513 						  MEMCG_RECLAIM_MAY_SWAP, NULL))
1514 			nr_retries--;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
1521 					    char *buf, size_t nbytes,
1522 					    loff_t off)
1523 {
1524 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1525 
1526 	if (mem_cgroup_is_root(memcg))
1527 		return -EINVAL;
1528 	return mem_cgroup_force_empty(memcg) ?: nbytes;
1529 }
1530 
1531 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
1532 				     struct cftype *cft)
1533 {
1534 	return 1;
1535 }
1536 
1537 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
1538 				      struct cftype *cft, u64 val)
1539 {
1540 	if (val == 1)
1541 		return 0;
1542 
1543 	pr_warn_once("Non-hierarchical mode is deprecated. "
1544 		     "Please report your usecase to linux-mm@kvack.org if you "
1545 		     "depend on this functionality.\n");
1546 
1547 	return -EINVAL;
1548 }
1549 
1550 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
1551 			       struct cftype *cft)
1552 {
1553 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1554 	struct page_counter *counter;
1555 
1556 	switch (MEMFILE_TYPE(cft->private)) {
1557 	case _MEM:
1558 		counter = &memcg->memory;
1559 		break;
1560 	case _MEMSWAP:
1561 		counter = &memcg->memsw;
1562 		break;
1563 	case _KMEM:
1564 		counter = &memcg->kmem;
1565 		break;
1566 	case _TCP:
1567 		counter = &memcg->tcpmem;
1568 		break;
1569 	default:
1570 		BUG();
1571 	}
1572 
1573 	switch (MEMFILE_ATTR(cft->private)) {
1574 	case RES_USAGE:
1575 		if (counter == &memcg->memory)
1576 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
1577 		if (counter == &memcg->memsw)
1578 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
1579 		return (u64)page_counter_read(counter) * PAGE_SIZE;
1580 	case RES_LIMIT:
1581 		return (u64)counter->max * PAGE_SIZE;
1582 	case RES_MAX_USAGE:
1583 		return (u64)counter->watermark * PAGE_SIZE;
1584 	case RES_FAILCNT:
1585 		return counter->failcnt;
1586 	case RES_SOFT_LIMIT:
1587 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
1588 	default:
1589 		BUG();
1590 	}
1591 }
1592 
1593 /*
1594  * This function doesn't do anything useful. Its only job is to provide a read
1595  * handler for a file so that cgroup_file_mode() will add read permissions.
1596  */
1597 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
1598 				     __always_unused void *v)
1599 {
1600 	return -EINVAL;
1601 }
1602 
1603 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
1604 {
1605 	int ret;
1606 
1607 	mutex_lock(&memcg_max_mutex);
1608 
1609 	ret = page_counter_set_max(&memcg->tcpmem, max);
1610 	if (ret)
1611 		goto out;
1612 
1613 	if (!memcg->tcpmem_active) {
1614 		/*
1615 		 * The active flag needs to be written after the static_key
1616 		 * update. This is what guarantees that the socket activation
1617 		 * function is the last one to run. See mem_cgroup_sk_alloc()
1618 		 * for details, and note that we don't mark any socket as
1619 		 * belonging to this memcg until that flag is up.
1620 		 *
1621 		 * We need to do this, because static_keys will span multiple
1622 		 * sites, but we can't control their order. If we mark a socket
1623 		 * as accounted, but the accounting functions are not patched in
1624 		 * yet, we'll lose accounting.
1625 		 *
1626 		 * We never race with the readers in mem_cgroup_sk_alloc(),
1627 		 * because when this value change, the code to process it is not
1628 		 * patched in yet.
1629 		 */
1630 		static_branch_inc(&memcg_sockets_enabled_key);
1631 		memcg->tcpmem_active = true;
1632 	}
1633 out:
1634 	mutex_unlock(&memcg_max_mutex);
1635 	return ret;
1636 }
1637 
1638 /*
1639  * The user of this function is...
1640  * RES_LIMIT.
1641  */
1642 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
1643 				char *buf, size_t nbytes, loff_t off)
1644 {
1645 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1646 	unsigned long nr_pages;
1647 	int ret;
1648 
1649 	buf = strstrip(buf);
1650 	ret = page_counter_memparse(buf, "-1", &nr_pages);
1651 	if (ret)
1652 		return ret;
1653 
1654 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
1655 	case RES_LIMIT:
1656 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
1657 			ret = -EINVAL;
1658 			break;
1659 		}
1660 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
1661 		case _MEM:
1662 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
1663 			break;
1664 		case _MEMSWAP:
1665 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
1666 			break;
1667 		case _KMEM:
1668 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
1669 				     "Writing any value to this file has no effect. "
1670 				     "Please report your usecase to linux-mm@kvack.org if you "
1671 				     "depend on this functionality.\n");
1672 			ret = 0;
1673 			break;
1674 		case _TCP:
1675 			pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. "
1676 				     "Please report your usecase to linux-mm@kvack.org if you "
1677 				     "depend on this functionality.\n");
1678 			ret = memcg_update_tcp_max(memcg, nr_pages);
1679 			break;
1680 		}
1681 		break;
1682 	case RES_SOFT_LIMIT:
1683 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1684 			ret = -EOPNOTSUPP;
1685 		} else {
1686 			pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. "
1687 				     "Please report your usecase to linux-mm@kvack.org if you "
1688 				     "depend on this functionality.\n");
1689 			WRITE_ONCE(memcg->soft_limit, nr_pages);
1690 			ret = 0;
1691 		}
1692 		break;
1693 	}
1694 	return ret ?: nbytes;
1695 }
1696 
1697 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
1698 				size_t nbytes, loff_t off)
1699 {
1700 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1701 	struct page_counter *counter;
1702 
1703 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
1704 	case _MEM:
1705 		counter = &memcg->memory;
1706 		break;
1707 	case _MEMSWAP:
1708 		counter = &memcg->memsw;
1709 		break;
1710 	case _KMEM:
1711 		counter = &memcg->kmem;
1712 		break;
1713 	case _TCP:
1714 		counter = &memcg->tcpmem;
1715 		break;
1716 	default:
1717 		BUG();
1718 	}
1719 
1720 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
1721 	case RES_MAX_USAGE:
1722 		page_counter_reset_watermark(counter);
1723 		break;
1724 	case RES_FAILCNT:
1725 		counter->failcnt = 0;
1726 		break;
1727 	default:
1728 		BUG();
1729 	}
1730 
1731 	return nbytes;
1732 }
1733 
1734 #ifdef CONFIG_NUMA
1735 
1736 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
1737 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
1738 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
1739 
1740 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1741 				int nid, unsigned int lru_mask, bool tree)
1742 {
1743 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
1744 	unsigned long nr = 0;
1745 	enum lru_list lru;
1746 
1747 	VM_BUG_ON((unsigned int)nid >= nr_node_ids);
1748 
1749 	for_each_lru(lru) {
1750 		if (!(BIT(lru) & lru_mask))
1751 			continue;
1752 		if (tree)
1753 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
1754 		else
1755 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
1756 	}
1757 	return nr;
1758 }
1759 
1760 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1761 					     unsigned int lru_mask,
1762 					     bool tree)
1763 {
1764 	unsigned long nr = 0;
1765 	enum lru_list lru;
1766 
1767 	for_each_lru(lru) {
1768 		if (!(BIT(lru) & lru_mask))
1769 			continue;
1770 		if (tree)
1771 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
1772 		else
1773 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
1774 	}
1775 	return nr;
1776 }
1777 
1778 static int memcg_numa_stat_show(struct seq_file *m, void *v)
1779 {
1780 	struct numa_stat {
1781 		const char *name;
1782 		unsigned int lru_mask;
1783 	};
1784 
1785 	static const struct numa_stat stats[] = {
1786 		{ "total", LRU_ALL },
1787 		{ "file", LRU_ALL_FILE },
1788 		{ "anon", LRU_ALL_ANON },
1789 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
1790 	};
1791 	const struct numa_stat *stat;
1792 	int nid;
1793 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1794 
1795 	mem_cgroup_flush_stats(memcg);
1796 
1797 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
1798 		seq_printf(m, "%s=%lu", stat->name,
1799 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
1800 						   false));
1801 		for_each_node_state(nid, N_MEMORY)
1802 			seq_printf(m, " N%d=%lu", nid,
1803 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
1804 							stat->lru_mask, false));
1805 		seq_putc(m, '\n');
1806 	}
1807 
1808 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
1809 
1810 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
1811 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
1812 						   true));
1813 		for_each_node_state(nid, N_MEMORY)
1814 			seq_printf(m, " N%d=%lu", nid,
1815 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
1816 							stat->lru_mask, true));
1817 		seq_putc(m, '\n');
1818 	}
1819 
1820 	return 0;
1821 }
1822 #endif /* CONFIG_NUMA */
1823 
1824 static const unsigned int memcg1_stats[] = {
1825 	NR_FILE_PAGES,
1826 	NR_ANON_MAPPED,
1827 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1828 	NR_ANON_THPS,
1829 #endif
1830 	NR_SHMEM,
1831 	NR_FILE_MAPPED,
1832 	NR_FILE_DIRTY,
1833 	NR_WRITEBACK,
1834 	WORKINGSET_REFAULT_ANON,
1835 	WORKINGSET_REFAULT_FILE,
1836 #ifdef CONFIG_SWAP
1837 	MEMCG_SWAP,
1838 	NR_SWAPCACHE,
1839 #endif
1840 };
1841 
1842 static const char *const memcg1_stat_names[] = {
1843 	"cache",
1844 	"rss",
1845 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1846 	"rss_huge",
1847 #endif
1848 	"shmem",
1849 	"mapped_file",
1850 	"dirty",
1851 	"writeback",
1852 	"workingset_refault_anon",
1853 	"workingset_refault_file",
1854 #ifdef CONFIG_SWAP
1855 	"swap",
1856 	"swapcached",
1857 #endif
1858 };
1859 
1860 /* Universal VM events cgroup1 shows, original sort order */
1861 static const unsigned int memcg1_events[] = {
1862 	PGPGIN,
1863 	PGPGOUT,
1864 	PGFAULT,
1865 	PGMAJFAULT,
1866 };
1867 
1868 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1869 {
1870 	unsigned long memory, memsw;
1871 	struct mem_cgroup *mi;
1872 	unsigned int i;
1873 
1874 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
1875 
1876 	mem_cgroup_flush_stats(memcg);
1877 
1878 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1879 		unsigned long nr;
1880 
1881 		nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
1882 		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
1883 	}
1884 
1885 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
1886 		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
1887 			       memcg_events_local(memcg, memcg1_events[i]));
1888 
1889 	for (i = 0; i < NR_LRU_LISTS; i++)
1890 		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
1891 			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
1892 			       PAGE_SIZE);
1893 
1894 	/* Hierarchical information */
1895 	memory = memsw = PAGE_COUNTER_MAX;
1896 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
1897 		memory = min(memory, READ_ONCE(mi->memory.max));
1898 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
1899 	}
1900 	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
1901 		       (u64)memory * PAGE_SIZE);
1902 	seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
1903 		       (u64)memsw * PAGE_SIZE);
1904 
1905 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1906 		unsigned long nr;
1907 
1908 		nr = memcg_page_state_output(memcg, memcg1_stats[i]);
1909 		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
1910 			       (u64)nr);
1911 	}
1912 
1913 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
1914 		seq_buf_printf(s, "total_%s %llu\n",
1915 			       vm_event_name(memcg1_events[i]),
1916 			       (u64)memcg_events(memcg, memcg1_events[i]));
1917 
1918 	for (i = 0; i < NR_LRU_LISTS; i++)
1919 		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
1920 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1921 			       PAGE_SIZE);
1922 
1923 #ifdef CONFIG_DEBUG_VM
1924 	{
1925 		pg_data_t *pgdat;
1926 		struct mem_cgroup_per_node *mz;
1927 		unsigned long anon_cost = 0;
1928 		unsigned long file_cost = 0;
1929 
1930 		for_each_online_pgdat(pgdat) {
1931 			mz = memcg->nodeinfo[pgdat->node_id];
1932 
1933 			anon_cost += mz->lruvec.anon_cost;
1934 			file_cost += mz->lruvec.file_cost;
1935 		}
1936 		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
1937 		seq_buf_printf(s, "file_cost %lu\n", file_cost);
1938 	}
1939 #endif
1940 }
1941 
1942 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
1943 				      struct cftype *cft)
1944 {
1945 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1946 
1947 	return mem_cgroup_swappiness(memcg);
1948 }
1949 
1950 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
1951 				       struct cftype *cft, u64 val)
1952 {
1953 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1954 
1955 	if (val > MAX_SWAPPINESS)
1956 		return -EINVAL;
1957 
1958 	if (!mem_cgroup_is_root(memcg)) {
1959 		pr_info_once("Per memcg swappiness does not exist in cgroup v2. "
1960 			     "See memory.reclaim or memory.swap.max there\n ");
1961 		WRITE_ONCE(memcg->swappiness, val);
1962 	} else
1963 		WRITE_ONCE(vm_swappiness, val);
1964 
1965 	return 0;
1966 }
1967 
1968 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
1969 {
1970 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
1971 
1972 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
1973 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
1974 	seq_printf(sf, "oom_kill %lu\n",
1975 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
1976 	return 0;
1977 }
1978 
1979 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
1980 	struct cftype *cft, u64 val)
1981 {
1982 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1983 
1984 	pr_warn_once("oom_control is deprecated and will be removed. "
1985 		     "Please report your usecase to linux-mm-@kvack.org if you "
1986 		     "depend on this functionality.\n");
1987 
1988 	/* cannot set to root cgroup and only 0 and 1 are allowed */
1989 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
1990 		return -EINVAL;
1991 
1992 	WRITE_ONCE(memcg->oom_kill_disable, val);
1993 	if (!val)
1994 		memcg1_oom_recover(memcg);
1995 
1996 	return 0;
1997 }
1998 
1999 #ifdef CONFIG_SLUB_DEBUG
2000 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
2001 {
2002 	/*
2003 	 * Deprecated.
2004 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
2005 	 */
2006 	return 0;
2007 }
2008 #endif
2009 
2010 struct cftype mem_cgroup_legacy_files[] = {
2011 	{
2012 		.name = "usage_in_bytes",
2013 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2014 		.read_u64 = mem_cgroup_read_u64,
2015 	},
2016 	{
2017 		.name = "max_usage_in_bytes",
2018 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2019 		.write = mem_cgroup_reset,
2020 		.read_u64 = mem_cgroup_read_u64,
2021 	},
2022 	{
2023 		.name = "limit_in_bytes",
2024 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2025 		.write = mem_cgroup_write,
2026 		.read_u64 = mem_cgroup_read_u64,
2027 	},
2028 	{
2029 		.name = "soft_limit_in_bytes",
2030 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2031 		.write = mem_cgroup_write,
2032 		.read_u64 = mem_cgroup_read_u64,
2033 	},
2034 	{
2035 		.name = "failcnt",
2036 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2037 		.write = mem_cgroup_reset,
2038 		.read_u64 = mem_cgroup_read_u64,
2039 	},
2040 	{
2041 		.name = "stat",
2042 		.seq_show = memory_stat_show,
2043 	},
2044 	{
2045 		.name = "force_empty",
2046 		.write = mem_cgroup_force_empty_write,
2047 	},
2048 	{
2049 		.name = "use_hierarchy",
2050 		.write_u64 = mem_cgroup_hierarchy_write,
2051 		.read_u64 = mem_cgroup_hierarchy_read,
2052 	},
2053 	{
2054 		.name = "cgroup.event_control",		/* XXX: for compat */
2055 		.write = memcg_write_event_control,
2056 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
2057 	},
2058 	{
2059 		.name = "swappiness",
2060 		.read_u64 = mem_cgroup_swappiness_read,
2061 		.write_u64 = mem_cgroup_swappiness_write,
2062 	},
2063 	{
2064 		.name = "move_charge_at_immigrate",
2065 		.read_u64 = mem_cgroup_move_charge_read,
2066 		.write_u64 = mem_cgroup_move_charge_write,
2067 	},
2068 	{
2069 		.name = "oom_control",
2070 		.seq_show = mem_cgroup_oom_control_read,
2071 		.write_u64 = mem_cgroup_oom_control_write,
2072 	},
2073 	{
2074 		.name = "pressure_level",
2075 		.seq_show = mem_cgroup_dummy_seq_show,
2076 	},
2077 #ifdef CONFIG_NUMA
2078 	{
2079 		.name = "numa_stat",
2080 		.seq_show = memcg_numa_stat_show,
2081 	},
2082 #endif
2083 	{
2084 		.name = "kmem.limit_in_bytes",
2085 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
2086 		.write = mem_cgroup_write,
2087 		.read_u64 = mem_cgroup_read_u64,
2088 	},
2089 	{
2090 		.name = "kmem.usage_in_bytes",
2091 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
2092 		.read_u64 = mem_cgroup_read_u64,
2093 	},
2094 	{
2095 		.name = "kmem.failcnt",
2096 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
2097 		.write = mem_cgroup_reset,
2098 		.read_u64 = mem_cgroup_read_u64,
2099 	},
2100 	{
2101 		.name = "kmem.max_usage_in_bytes",
2102 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
2103 		.write = mem_cgroup_reset,
2104 		.read_u64 = mem_cgroup_read_u64,
2105 	},
2106 #ifdef CONFIG_SLUB_DEBUG
2107 	{
2108 		.name = "kmem.slabinfo",
2109 		.seq_show = mem_cgroup_slab_show,
2110 	},
2111 #endif
2112 	{
2113 		.name = "kmem.tcp.limit_in_bytes",
2114 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
2115 		.write = mem_cgroup_write,
2116 		.read_u64 = mem_cgroup_read_u64,
2117 	},
2118 	{
2119 		.name = "kmem.tcp.usage_in_bytes",
2120 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
2121 		.read_u64 = mem_cgroup_read_u64,
2122 	},
2123 	{
2124 		.name = "kmem.tcp.failcnt",
2125 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
2126 		.write = mem_cgroup_reset,
2127 		.read_u64 = mem_cgroup_read_u64,
2128 	},
2129 	{
2130 		.name = "kmem.tcp.max_usage_in_bytes",
2131 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
2132 		.write = mem_cgroup_reset,
2133 		.read_u64 = mem_cgroup_read_u64,
2134 	},
2135 	{ },	/* terminate */
2136 };
2137 
2138 struct cftype memsw_files[] = {
2139 	{
2140 		.name = "memsw.usage_in_bytes",
2141 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2142 		.read_u64 = mem_cgroup_read_u64,
2143 	},
2144 	{
2145 		.name = "memsw.max_usage_in_bytes",
2146 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2147 		.write = mem_cgroup_reset,
2148 		.read_u64 = mem_cgroup_read_u64,
2149 	},
2150 	{
2151 		.name = "memsw.limit_in_bytes",
2152 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2153 		.write = mem_cgroup_write,
2154 		.read_u64 = mem_cgroup_read_u64,
2155 	},
2156 	{
2157 		.name = "memsw.failcnt",
2158 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2159 		.write = mem_cgroup_reset,
2160 		.read_u64 = mem_cgroup_read_u64,
2161 	},
2162 	{ },	/* terminate */
2163 };
2164 
2165 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2166 {
2167 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2168 		if (nr_pages > 0)
2169 			page_counter_charge(&memcg->kmem, nr_pages);
2170 		else
2171 			page_counter_uncharge(&memcg->kmem, -nr_pages);
2172 	}
2173 }
2174 
2175 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
2176 			 gfp_t gfp_mask)
2177 {
2178 	struct page_counter *fail;
2179 
2180 	if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
2181 		memcg->tcpmem_pressure = 0;
2182 		return true;
2183 	}
2184 	memcg->tcpmem_pressure = 1;
2185 	if (gfp_mask & __GFP_NOFAIL) {
2186 		page_counter_charge(&memcg->tcpmem, nr_pages);
2187 		return true;
2188 	}
2189 	return false;
2190 }
2191 
2192 bool memcg1_alloc_events(struct mem_cgroup *memcg)
2193 {
2194 	memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu,
2195 						GFP_KERNEL_ACCOUNT);
2196 	return !!memcg->events_percpu;
2197 }
2198 
2199 void memcg1_free_events(struct mem_cgroup *memcg)
2200 {
2201 	if (memcg->events_percpu)
2202 		free_percpu(memcg->events_percpu);
2203 }
2204 
2205 static int __init memcg1_init(void)
2206 {
2207 	int node;
2208 
2209 	for_each_node(node) {
2210 		struct mem_cgroup_tree_per_node *rtpn;
2211 
2212 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
2213 
2214 		rtpn->rb_root = RB_ROOT;
2215 		rtpn->rb_rightmost = NULL;
2216 		spin_lock_init(&rtpn->lock);
2217 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
2218 	}
2219 
2220 	return 0;
2221 }
2222 subsys_initcall(memcg1_init);
2223