1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/numa_balancing.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/backing-dev.h> 21 #include <linux/dax.h> 22 #include <linux/mm_types.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 #include <linux/compat.h> 41 #include <linux/pgalloc_tag.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlb.h> 45 #include <asm/pgalloc.h> 46 #include "internal.h" 47 #include "swap.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/thp.h> 51 52 /* 53 * By default, transparent hugepage support is disabled in order to avoid 54 * risking an increased memory footprint for applications that are not 55 * guaranteed to benefit from it. When transparent hugepage support is 56 * enabled, it is for all mappings, and khugepaged scans all mappings. 57 * Defrag is invoked by khugepaged hugepage allocations and by page faults 58 * for all hugepage allocations. 59 */ 60 unsigned long transparent_hugepage_flags __read_mostly = 61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 62 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 63 #endif 64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 65 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 66 #endif 67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 68 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 69 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 70 71 static struct shrinker *deferred_split_shrinker; 72 static unsigned long deferred_split_count(struct shrinker *shrink, 73 struct shrink_control *sc); 74 static unsigned long deferred_split_scan(struct shrinker *shrink, 75 struct shrink_control *sc); 76 static bool split_underused_thp = true; 77 78 static atomic_t huge_zero_refcount; 79 struct folio *huge_zero_folio __read_mostly; 80 unsigned long huge_zero_pfn __read_mostly = ~0UL; 81 unsigned long huge_anon_orders_always __read_mostly; 82 unsigned long huge_anon_orders_madvise __read_mostly; 83 unsigned long huge_anon_orders_inherit __read_mostly; 84 static bool anon_orders_configured __initdata; 85 86 static inline bool file_thp_enabled(struct vm_area_struct *vma) 87 { 88 struct inode *inode; 89 90 if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) 91 return false; 92 93 if (!vma->vm_file) 94 return false; 95 96 inode = file_inode(vma->vm_file); 97 98 return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode); 99 } 100 101 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 102 unsigned long vm_flags, 103 unsigned long tva_flags, 104 unsigned long orders) 105 { 106 bool smaps = tva_flags & TVA_SMAPS; 107 bool in_pf = tva_flags & TVA_IN_PF; 108 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS; 109 unsigned long supported_orders; 110 111 /* Check the intersection of requested and supported orders. */ 112 if (vma_is_anonymous(vma)) 113 supported_orders = THP_ORDERS_ALL_ANON; 114 else if (vma_is_special_huge(vma)) 115 supported_orders = THP_ORDERS_ALL_SPECIAL; 116 else 117 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT; 118 119 orders &= supported_orders; 120 if (!orders) 121 return 0; 122 123 if (!vma->vm_mm) /* vdso */ 124 return 0; 125 126 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags)) 127 return 0; 128 129 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 130 if (vma_is_dax(vma)) 131 return in_pf ? orders : 0; 132 133 /* 134 * khugepaged special VMA and hugetlb VMA. 135 * Must be checked after dax since some dax mappings may have 136 * VM_MIXEDMAP set. 137 */ 138 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 139 return 0; 140 141 /* 142 * Check alignment for file vma and size for both file and anon vma by 143 * filtering out the unsuitable orders. 144 * 145 * Skip the check for page fault. Huge fault does the check in fault 146 * handlers. 147 */ 148 if (!in_pf) { 149 int order = highest_order(orders); 150 unsigned long addr; 151 152 while (orders) { 153 addr = vma->vm_end - (PAGE_SIZE << order); 154 if (thp_vma_suitable_order(vma, addr, order)) 155 break; 156 order = next_order(&orders, order); 157 } 158 159 if (!orders) 160 return 0; 161 } 162 163 /* 164 * Enabled via shmem mount options or sysfs settings. 165 * Must be done before hugepage flags check since shmem has its 166 * own flags. 167 */ 168 if (!in_pf && shmem_file(vma->vm_file)) 169 return shmem_allowable_huge_orders(file_inode(vma->vm_file), 170 vma, vma->vm_pgoff, 0, 171 !enforce_sysfs); 172 173 if (!vma_is_anonymous(vma)) { 174 /* 175 * Enforce sysfs THP requirements as necessary. Anonymous vmas 176 * were already handled in thp_vma_allowable_orders(). 177 */ 178 if (enforce_sysfs && 179 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 180 !hugepage_global_always()))) 181 return 0; 182 183 /* 184 * Trust that ->huge_fault() handlers know what they are doing 185 * in fault path. 186 */ 187 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 188 return orders; 189 /* Only regular file is valid in collapse path */ 190 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 191 return orders; 192 return 0; 193 } 194 195 if (vma_is_temporary_stack(vma)) 196 return 0; 197 198 /* 199 * THPeligible bit of smaps should show 1 for proper VMAs even 200 * though anon_vma is not initialized yet. 201 * 202 * Allow page fault since anon_vma may be not initialized until 203 * the first page fault. 204 */ 205 if (!vma->anon_vma) 206 return (smaps || in_pf) ? orders : 0; 207 208 return orders; 209 } 210 211 static bool get_huge_zero_page(void) 212 { 213 struct folio *zero_folio; 214 retry: 215 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 216 return true; 217 218 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 219 HPAGE_PMD_ORDER); 220 if (!zero_folio) { 221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 222 return false; 223 } 224 /* Ensure zero folio won't have large_rmappable flag set. */ 225 folio_clear_large_rmappable(zero_folio); 226 preempt_disable(); 227 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) { 228 preempt_enable(); 229 folio_put(zero_folio); 230 goto retry; 231 } 232 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio)); 233 234 /* We take additional reference here. It will be put back by shrinker */ 235 atomic_set(&huge_zero_refcount, 2); 236 preempt_enable(); 237 count_vm_event(THP_ZERO_PAGE_ALLOC); 238 return true; 239 } 240 241 static void put_huge_zero_page(void) 242 { 243 /* 244 * Counter should never go to zero here. Only shrinker can put 245 * last reference. 246 */ 247 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 248 } 249 250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm) 251 { 252 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 253 return READ_ONCE(huge_zero_folio); 254 255 if (!get_huge_zero_page()) 256 return NULL; 257 258 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 259 put_huge_zero_page(); 260 261 return READ_ONCE(huge_zero_folio); 262 } 263 264 void mm_put_huge_zero_folio(struct mm_struct *mm) 265 { 266 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 267 put_huge_zero_page(); 268 } 269 270 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 271 struct shrink_control *sc) 272 { 273 /* we can free zero page only if last reference remains */ 274 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 275 } 276 277 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 278 struct shrink_control *sc) 279 { 280 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 281 struct folio *zero_folio = xchg(&huge_zero_folio, NULL); 282 BUG_ON(zero_folio == NULL); 283 WRITE_ONCE(huge_zero_pfn, ~0UL); 284 folio_put(zero_folio); 285 return HPAGE_PMD_NR; 286 } 287 288 return 0; 289 } 290 291 static struct shrinker *huge_zero_page_shrinker; 292 293 #ifdef CONFIG_SYSFS 294 static ssize_t enabled_show(struct kobject *kobj, 295 struct kobj_attribute *attr, char *buf) 296 { 297 const char *output; 298 299 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 300 output = "[always] madvise never"; 301 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 302 &transparent_hugepage_flags)) 303 output = "always [madvise] never"; 304 else 305 output = "always madvise [never]"; 306 307 return sysfs_emit(buf, "%s\n", output); 308 } 309 310 static ssize_t enabled_store(struct kobject *kobj, 311 struct kobj_attribute *attr, 312 const char *buf, size_t count) 313 { 314 ssize_t ret = count; 315 316 if (sysfs_streq(buf, "always")) { 317 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 318 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 319 } else if (sysfs_streq(buf, "madvise")) { 320 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 321 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 322 } else if (sysfs_streq(buf, "never")) { 323 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 324 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 325 } else 326 ret = -EINVAL; 327 328 if (ret > 0) { 329 int err = start_stop_khugepaged(); 330 if (err) 331 ret = err; 332 } 333 return ret; 334 } 335 336 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 337 338 ssize_t single_hugepage_flag_show(struct kobject *kobj, 339 struct kobj_attribute *attr, char *buf, 340 enum transparent_hugepage_flag flag) 341 { 342 return sysfs_emit(buf, "%d\n", 343 !!test_bit(flag, &transparent_hugepage_flags)); 344 } 345 346 ssize_t single_hugepage_flag_store(struct kobject *kobj, 347 struct kobj_attribute *attr, 348 const char *buf, size_t count, 349 enum transparent_hugepage_flag flag) 350 { 351 unsigned long value; 352 int ret; 353 354 ret = kstrtoul(buf, 10, &value); 355 if (ret < 0) 356 return ret; 357 if (value > 1) 358 return -EINVAL; 359 360 if (value) 361 set_bit(flag, &transparent_hugepage_flags); 362 else 363 clear_bit(flag, &transparent_hugepage_flags); 364 365 return count; 366 } 367 368 static ssize_t defrag_show(struct kobject *kobj, 369 struct kobj_attribute *attr, char *buf) 370 { 371 const char *output; 372 373 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 374 &transparent_hugepage_flags)) 375 output = "[always] defer defer+madvise madvise never"; 376 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 377 &transparent_hugepage_flags)) 378 output = "always [defer] defer+madvise madvise never"; 379 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 380 &transparent_hugepage_flags)) 381 output = "always defer [defer+madvise] madvise never"; 382 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 383 &transparent_hugepage_flags)) 384 output = "always defer defer+madvise [madvise] never"; 385 else 386 output = "always defer defer+madvise madvise [never]"; 387 388 return sysfs_emit(buf, "%s\n", output); 389 } 390 391 static ssize_t defrag_store(struct kobject *kobj, 392 struct kobj_attribute *attr, 393 const char *buf, size_t count) 394 { 395 if (sysfs_streq(buf, "always")) { 396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 399 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 400 } else if (sysfs_streq(buf, "defer+madvise")) { 401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 404 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 405 } else if (sysfs_streq(buf, "defer")) { 406 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 409 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 410 } else if (sysfs_streq(buf, "madvise")) { 411 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 414 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 415 } else if (sysfs_streq(buf, "never")) { 416 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 419 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 420 } else 421 return -EINVAL; 422 423 return count; 424 } 425 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 426 427 static ssize_t use_zero_page_show(struct kobject *kobj, 428 struct kobj_attribute *attr, char *buf) 429 { 430 return single_hugepage_flag_show(kobj, attr, buf, 431 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 432 } 433 static ssize_t use_zero_page_store(struct kobject *kobj, 434 struct kobj_attribute *attr, const char *buf, size_t count) 435 { 436 return single_hugepage_flag_store(kobj, attr, buf, count, 437 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 438 } 439 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 440 441 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 442 struct kobj_attribute *attr, char *buf) 443 { 444 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 445 } 446 static struct kobj_attribute hpage_pmd_size_attr = 447 __ATTR_RO(hpage_pmd_size); 448 449 static ssize_t split_underused_thp_show(struct kobject *kobj, 450 struct kobj_attribute *attr, char *buf) 451 { 452 return sysfs_emit(buf, "%d\n", split_underused_thp); 453 } 454 455 static ssize_t split_underused_thp_store(struct kobject *kobj, 456 struct kobj_attribute *attr, 457 const char *buf, size_t count) 458 { 459 int err = kstrtobool(buf, &split_underused_thp); 460 461 if (err < 0) 462 return err; 463 464 return count; 465 } 466 467 static struct kobj_attribute split_underused_thp_attr = __ATTR( 468 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store); 469 470 static struct attribute *hugepage_attr[] = { 471 &enabled_attr.attr, 472 &defrag_attr.attr, 473 &use_zero_page_attr.attr, 474 &hpage_pmd_size_attr.attr, 475 #ifdef CONFIG_SHMEM 476 &shmem_enabled_attr.attr, 477 #endif 478 &split_underused_thp_attr.attr, 479 NULL, 480 }; 481 482 static const struct attribute_group hugepage_attr_group = { 483 .attrs = hugepage_attr, 484 }; 485 486 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 487 static void thpsize_release(struct kobject *kobj); 488 static DEFINE_SPINLOCK(huge_anon_orders_lock); 489 static LIST_HEAD(thpsize_list); 490 491 static ssize_t anon_enabled_show(struct kobject *kobj, 492 struct kobj_attribute *attr, char *buf) 493 { 494 int order = to_thpsize(kobj)->order; 495 const char *output; 496 497 if (test_bit(order, &huge_anon_orders_always)) 498 output = "[always] inherit madvise never"; 499 else if (test_bit(order, &huge_anon_orders_inherit)) 500 output = "always [inherit] madvise never"; 501 else if (test_bit(order, &huge_anon_orders_madvise)) 502 output = "always inherit [madvise] never"; 503 else 504 output = "always inherit madvise [never]"; 505 506 return sysfs_emit(buf, "%s\n", output); 507 } 508 509 static ssize_t anon_enabled_store(struct kobject *kobj, 510 struct kobj_attribute *attr, 511 const char *buf, size_t count) 512 { 513 int order = to_thpsize(kobj)->order; 514 ssize_t ret = count; 515 516 if (sysfs_streq(buf, "always")) { 517 spin_lock(&huge_anon_orders_lock); 518 clear_bit(order, &huge_anon_orders_inherit); 519 clear_bit(order, &huge_anon_orders_madvise); 520 set_bit(order, &huge_anon_orders_always); 521 spin_unlock(&huge_anon_orders_lock); 522 } else if (sysfs_streq(buf, "inherit")) { 523 spin_lock(&huge_anon_orders_lock); 524 clear_bit(order, &huge_anon_orders_always); 525 clear_bit(order, &huge_anon_orders_madvise); 526 set_bit(order, &huge_anon_orders_inherit); 527 spin_unlock(&huge_anon_orders_lock); 528 } else if (sysfs_streq(buf, "madvise")) { 529 spin_lock(&huge_anon_orders_lock); 530 clear_bit(order, &huge_anon_orders_always); 531 clear_bit(order, &huge_anon_orders_inherit); 532 set_bit(order, &huge_anon_orders_madvise); 533 spin_unlock(&huge_anon_orders_lock); 534 } else if (sysfs_streq(buf, "never")) { 535 spin_lock(&huge_anon_orders_lock); 536 clear_bit(order, &huge_anon_orders_always); 537 clear_bit(order, &huge_anon_orders_inherit); 538 clear_bit(order, &huge_anon_orders_madvise); 539 spin_unlock(&huge_anon_orders_lock); 540 } else 541 ret = -EINVAL; 542 543 if (ret > 0) { 544 int err; 545 546 err = start_stop_khugepaged(); 547 if (err) 548 ret = err; 549 } 550 return ret; 551 } 552 553 static struct kobj_attribute anon_enabled_attr = 554 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store); 555 556 static struct attribute *anon_ctrl_attrs[] = { 557 &anon_enabled_attr.attr, 558 NULL, 559 }; 560 561 static const struct attribute_group anon_ctrl_attr_grp = { 562 .attrs = anon_ctrl_attrs, 563 }; 564 565 static struct attribute *file_ctrl_attrs[] = { 566 #ifdef CONFIG_SHMEM 567 &thpsize_shmem_enabled_attr.attr, 568 #endif 569 NULL, 570 }; 571 572 static const struct attribute_group file_ctrl_attr_grp = { 573 .attrs = file_ctrl_attrs, 574 }; 575 576 static struct attribute *any_ctrl_attrs[] = { 577 NULL, 578 }; 579 580 static const struct attribute_group any_ctrl_attr_grp = { 581 .attrs = any_ctrl_attrs, 582 }; 583 584 static const struct kobj_type thpsize_ktype = { 585 .release = &thpsize_release, 586 .sysfs_ops = &kobj_sysfs_ops, 587 }; 588 589 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}}; 590 591 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item) 592 { 593 unsigned long sum = 0; 594 int cpu; 595 596 for_each_possible_cpu(cpu) { 597 struct mthp_stat *this = &per_cpu(mthp_stats, cpu); 598 599 sum += this->stats[order][item]; 600 } 601 602 return sum; 603 } 604 605 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \ 606 static ssize_t _name##_show(struct kobject *kobj, \ 607 struct kobj_attribute *attr, char *buf) \ 608 { \ 609 int order = to_thpsize(kobj)->order; \ 610 \ 611 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \ 612 } \ 613 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 614 615 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC); 616 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK); 617 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 618 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT); 619 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN); 620 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK); 621 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 622 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT); 623 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK); 624 #ifdef CONFIG_SHMEM 625 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC); 626 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK); 627 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE); 628 #endif 629 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT); 630 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED); 631 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED); 632 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON); 633 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED); 634 635 static struct attribute *anon_stats_attrs[] = { 636 &anon_fault_alloc_attr.attr, 637 &anon_fault_fallback_attr.attr, 638 &anon_fault_fallback_charge_attr.attr, 639 #ifndef CONFIG_SHMEM 640 &zswpout_attr.attr, 641 &swpin_attr.attr, 642 &swpin_fallback_attr.attr, 643 &swpin_fallback_charge_attr.attr, 644 &swpout_attr.attr, 645 &swpout_fallback_attr.attr, 646 #endif 647 &split_deferred_attr.attr, 648 &nr_anon_attr.attr, 649 &nr_anon_partially_mapped_attr.attr, 650 NULL, 651 }; 652 653 static struct attribute_group anon_stats_attr_grp = { 654 .name = "stats", 655 .attrs = anon_stats_attrs, 656 }; 657 658 static struct attribute *file_stats_attrs[] = { 659 #ifdef CONFIG_SHMEM 660 &shmem_alloc_attr.attr, 661 &shmem_fallback_attr.attr, 662 &shmem_fallback_charge_attr.attr, 663 #endif 664 NULL, 665 }; 666 667 static struct attribute_group file_stats_attr_grp = { 668 .name = "stats", 669 .attrs = file_stats_attrs, 670 }; 671 672 static struct attribute *any_stats_attrs[] = { 673 #ifdef CONFIG_SHMEM 674 &zswpout_attr.attr, 675 &swpin_attr.attr, 676 &swpin_fallback_attr.attr, 677 &swpin_fallback_charge_attr.attr, 678 &swpout_attr.attr, 679 &swpout_fallback_attr.attr, 680 #endif 681 &split_attr.attr, 682 &split_failed_attr.attr, 683 NULL, 684 }; 685 686 static struct attribute_group any_stats_attr_grp = { 687 .name = "stats", 688 .attrs = any_stats_attrs, 689 }; 690 691 static int sysfs_add_group(struct kobject *kobj, 692 const struct attribute_group *grp) 693 { 694 int ret = -ENOENT; 695 696 /* 697 * If the group is named, try to merge first, assuming the subdirectory 698 * was already created. This avoids the warning emitted by 699 * sysfs_create_group() if the directory already exists. 700 */ 701 if (grp->name) 702 ret = sysfs_merge_group(kobj, grp); 703 if (ret) 704 ret = sysfs_create_group(kobj, grp); 705 706 return ret; 707 } 708 709 static struct thpsize *thpsize_create(int order, struct kobject *parent) 710 { 711 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 712 struct thpsize *thpsize; 713 int ret = -ENOMEM; 714 715 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 716 if (!thpsize) 717 goto err; 718 719 thpsize->order = order; 720 721 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 722 "hugepages-%lukB", size); 723 if (ret) { 724 kfree(thpsize); 725 goto err; 726 } 727 728 729 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp); 730 if (ret) 731 goto err_put; 732 733 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp); 734 if (ret) 735 goto err_put; 736 737 if (BIT(order) & THP_ORDERS_ALL_ANON) { 738 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp); 739 if (ret) 740 goto err_put; 741 742 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp); 743 if (ret) 744 goto err_put; 745 } 746 747 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) { 748 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp); 749 if (ret) 750 goto err_put; 751 752 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp); 753 if (ret) 754 goto err_put; 755 } 756 757 return thpsize; 758 err_put: 759 kobject_put(&thpsize->kobj); 760 err: 761 return ERR_PTR(ret); 762 } 763 764 static void thpsize_release(struct kobject *kobj) 765 { 766 kfree(to_thpsize(kobj)); 767 } 768 769 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 770 { 771 int err; 772 struct thpsize *thpsize; 773 unsigned long orders; 774 int order; 775 776 /* 777 * Default to setting PMD-sized THP to inherit the global setting and 778 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 779 * constant so we have to do this here. 780 */ 781 if (!anon_orders_configured) 782 huge_anon_orders_inherit = BIT(PMD_ORDER); 783 784 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 785 if (unlikely(!*hugepage_kobj)) { 786 pr_err("failed to create transparent hugepage kobject\n"); 787 return -ENOMEM; 788 } 789 790 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 791 if (err) { 792 pr_err("failed to register transparent hugepage group\n"); 793 goto delete_obj; 794 } 795 796 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 797 if (err) { 798 pr_err("failed to register transparent hugepage group\n"); 799 goto remove_hp_group; 800 } 801 802 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT; 803 order = highest_order(orders); 804 while (orders) { 805 thpsize = thpsize_create(order, *hugepage_kobj); 806 if (IS_ERR(thpsize)) { 807 pr_err("failed to create thpsize for order %d\n", order); 808 err = PTR_ERR(thpsize); 809 goto remove_all; 810 } 811 list_add(&thpsize->node, &thpsize_list); 812 order = next_order(&orders, order); 813 } 814 815 return 0; 816 817 remove_all: 818 hugepage_exit_sysfs(*hugepage_kobj); 819 return err; 820 remove_hp_group: 821 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 822 delete_obj: 823 kobject_put(*hugepage_kobj); 824 return err; 825 } 826 827 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 828 { 829 struct thpsize *thpsize, *tmp; 830 831 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 832 list_del(&thpsize->node); 833 kobject_put(&thpsize->kobj); 834 } 835 836 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 837 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 838 kobject_put(hugepage_kobj); 839 } 840 #else 841 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 842 { 843 return 0; 844 } 845 846 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 847 { 848 } 849 #endif /* CONFIG_SYSFS */ 850 851 static int __init thp_shrinker_init(void) 852 { 853 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 854 if (!huge_zero_page_shrinker) 855 return -ENOMEM; 856 857 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 858 SHRINKER_MEMCG_AWARE | 859 SHRINKER_NONSLAB, 860 "thp-deferred_split"); 861 if (!deferred_split_shrinker) { 862 shrinker_free(huge_zero_page_shrinker); 863 return -ENOMEM; 864 } 865 866 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 867 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 868 shrinker_register(huge_zero_page_shrinker); 869 870 deferred_split_shrinker->count_objects = deferred_split_count; 871 deferred_split_shrinker->scan_objects = deferred_split_scan; 872 shrinker_register(deferred_split_shrinker); 873 874 return 0; 875 } 876 877 static void __init thp_shrinker_exit(void) 878 { 879 shrinker_free(huge_zero_page_shrinker); 880 shrinker_free(deferred_split_shrinker); 881 } 882 883 static int __init hugepage_init(void) 884 { 885 int err; 886 struct kobject *hugepage_kobj; 887 888 if (!has_transparent_hugepage()) { 889 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 890 return -EINVAL; 891 } 892 893 /* 894 * hugepages can't be allocated by the buddy allocator 895 */ 896 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 897 898 err = hugepage_init_sysfs(&hugepage_kobj); 899 if (err) 900 goto err_sysfs; 901 902 err = khugepaged_init(); 903 if (err) 904 goto err_slab; 905 906 err = thp_shrinker_init(); 907 if (err) 908 goto err_shrinker; 909 910 /* 911 * By default disable transparent hugepages on smaller systems, 912 * where the extra memory used could hurt more than TLB overhead 913 * is likely to save. The admin can still enable it through /sys. 914 */ 915 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 916 transparent_hugepage_flags = 0; 917 return 0; 918 } 919 920 err = start_stop_khugepaged(); 921 if (err) 922 goto err_khugepaged; 923 924 return 0; 925 err_khugepaged: 926 thp_shrinker_exit(); 927 err_shrinker: 928 khugepaged_destroy(); 929 err_slab: 930 hugepage_exit_sysfs(hugepage_kobj); 931 err_sysfs: 932 return err; 933 } 934 subsys_initcall(hugepage_init); 935 936 static int __init setup_transparent_hugepage(char *str) 937 { 938 int ret = 0; 939 if (!str) 940 goto out; 941 if (!strcmp(str, "always")) { 942 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 943 &transparent_hugepage_flags); 944 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 945 &transparent_hugepage_flags); 946 ret = 1; 947 } else if (!strcmp(str, "madvise")) { 948 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 949 &transparent_hugepage_flags); 950 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 951 &transparent_hugepage_flags); 952 ret = 1; 953 } else if (!strcmp(str, "never")) { 954 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 955 &transparent_hugepage_flags); 956 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 957 &transparent_hugepage_flags); 958 ret = 1; 959 } 960 out: 961 if (!ret) 962 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 963 return ret; 964 } 965 __setup("transparent_hugepage=", setup_transparent_hugepage); 966 967 static char str_dup[PAGE_SIZE] __initdata; 968 static int __init setup_thp_anon(char *str) 969 { 970 char *token, *range, *policy, *subtoken; 971 unsigned long always, inherit, madvise; 972 char *start_size, *end_size; 973 int start, end, nr; 974 char *p; 975 976 if (!str || strlen(str) + 1 > PAGE_SIZE) 977 goto err; 978 strscpy(str_dup, str); 979 980 always = huge_anon_orders_always; 981 madvise = huge_anon_orders_madvise; 982 inherit = huge_anon_orders_inherit; 983 p = str_dup; 984 while ((token = strsep(&p, ";")) != NULL) { 985 range = strsep(&token, ":"); 986 policy = token; 987 988 if (!policy) 989 goto err; 990 991 while ((subtoken = strsep(&range, ",")) != NULL) { 992 if (strchr(subtoken, '-')) { 993 start_size = strsep(&subtoken, "-"); 994 end_size = subtoken; 995 996 start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON); 997 end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON); 998 } else { 999 start_size = end_size = subtoken; 1000 start = end = get_order_from_str(subtoken, 1001 THP_ORDERS_ALL_ANON); 1002 } 1003 1004 if (start == -EINVAL) { 1005 pr_err("invalid size %s in thp_anon boot parameter\n", start_size); 1006 goto err; 1007 } 1008 1009 if (end == -EINVAL) { 1010 pr_err("invalid size %s in thp_anon boot parameter\n", end_size); 1011 goto err; 1012 } 1013 1014 if (start < 0 || end < 0 || start > end) 1015 goto err; 1016 1017 nr = end - start + 1; 1018 if (!strcmp(policy, "always")) { 1019 bitmap_set(&always, start, nr); 1020 bitmap_clear(&inherit, start, nr); 1021 bitmap_clear(&madvise, start, nr); 1022 } else if (!strcmp(policy, "madvise")) { 1023 bitmap_set(&madvise, start, nr); 1024 bitmap_clear(&inherit, start, nr); 1025 bitmap_clear(&always, start, nr); 1026 } else if (!strcmp(policy, "inherit")) { 1027 bitmap_set(&inherit, start, nr); 1028 bitmap_clear(&madvise, start, nr); 1029 bitmap_clear(&always, start, nr); 1030 } else if (!strcmp(policy, "never")) { 1031 bitmap_clear(&inherit, start, nr); 1032 bitmap_clear(&madvise, start, nr); 1033 bitmap_clear(&always, start, nr); 1034 } else { 1035 pr_err("invalid policy %s in thp_anon boot parameter\n", policy); 1036 goto err; 1037 } 1038 } 1039 } 1040 1041 huge_anon_orders_always = always; 1042 huge_anon_orders_madvise = madvise; 1043 huge_anon_orders_inherit = inherit; 1044 anon_orders_configured = true; 1045 return 1; 1046 1047 err: 1048 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str); 1049 return 0; 1050 } 1051 __setup("thp_anon=", setup_thp_anon); 1052 1053 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 1054 { 1055 if (likely(vma->vm_flags & VM_WRITE)) 1056 pmd = pmd_mkwrite(pmd, vma); 1057 return pmd; 1058 } 1059 1060 #ifdef CONFIG_MEMCG 1061 static inline 1062 struct deferred_split *get_deferred_split_queue(struct folio *folio) 1063 { 1064 struct mem_cgroup *memcg = folio_memcg(folio); 1065 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 1066 1067 if (memcg) 1068 return &memcg->deferred_split_queue; 1069 else 1070 return &pgdat->deferred_split_queue; 1071 } 1072 #else 1073 static inline 1074 struct deferred_split *get_deferred_split_queue(struct folio *folio) 1075 { 1076 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 1077 1078 return &pgdat->deferred_split_queue; 1079 } 1080 #endif 1081 1082 static inline bool is_transparent_hugepage(const struct folio *folio) 1083 { 1084 if (!folio_test_large(folio)) 1085 return false; 1086 1087 return is_huge_zero_folio(folio) || 1088 folio_test_large_rmappable(folio); 1089 } 1090 1091 static unsigned long __thp_get_unmapped_area(struct file *filp, 1092 unsigned long addr, unsigned long len, 1093 loff_t off, unsigned long flags, unsigned long size, 1094 vm_flags_t vm_flags) 1095 { 1096 loff_t off_end = off + len; 1097 loff_t off_align = round_up(off, size); 1098 unsigned long len_pad, ret, off_sub; 1099 1100 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()) 1101 return 0; 1102 1103 if (off_end <= off_align || (off_end - off_align) < size) 1104 return 0; 1105 1106 len_pad = len + size; 1107 if (len_pad < len || (off + len_pad) < off) 1108 return 0; 1109 1110 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad, 1111 off >> PAGE_SHIFT, flags, vm_flags); 1112 1113 /* 1114 * The failure might be due to length padding. The caller will retry 1115 * without the padding. 1116 */ 1117 if (IS_ERR_VALUE(ret)) 1118 return 0; 1119 1120 /* 1121 * Do not try to align to THP boundary if allocation at the address 1122 * hint succeeds. 1123 */ 1124 if (ret == addr) 1125 return addr; 1126 1127 off_sub = (off - ret) & (size - 1); 1128 1129 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub) 1130 return ret + size; 1131 1132 ret += off_sub; 1133 return ret; 1134 } 1135 1136 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 1137 unsigned long len, unsigned long pgoff, unsigned long flags, 1138 vm_flags_t vm_flags) 1139 { 1140 unsigned long ret; 1141 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 1142 1143 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags); 1144 if (ret) 1145 return ret; 1146 1147 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags, 1148 vm_flags); 1149 } 1150 1151 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 1152 unsigned long len, unsigned long pgoff, unsigned long flags) 1153 { 1154 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0); 1155 } 1156 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 1157 1158 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma, 1159 unsigned long addr) 1160 { 1161 gfp_t gfp = vma_thp_gfp_mask(vma); 1162 const int order = HPAGE_PMD_ORDER; 1163 struct folio *folio; 1164 1165 folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK); 1166 1167 if (unlikely(!folio)) { 1168 count_vm_event(THP_FAULT_FALLBACK); 1169 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 1170 return NULL; 1171 } 1172 1173 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1174 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 1175 folio_put(folio); 1176 count_vm_event(THP_FAULT_FALLBACK); 1177 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 1178 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 1179 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 1180 return NULL; 1181 } 1182 folio_throttle_swaprate(folio, gfp); 1183 1184 /* 1185 * When a folio is not zeroed during allocation (__GFP_ZERO not used) 1186 * or user folios require special handling, folio_zero_user() is used to 1187 * make sure that the page corresponding to the faulting address will be 1188 * hot in the cache after zeroing. 1189 */ 1190 if (user_alloc_needs_zeroing()) 1191 folio_zero_user(folio, addr); 1192 /* 1193 * The memory barrier inside __folio_mark_uptodate makes sure that 1194 * folio_zero_user writes become visible before the set_pmd_at() 1195 * write. 1196 */ 1197 __folio_mark_uptodate(folio); 1198 return folio; 1199 } 1200 1201 static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd, 1202 struct vm_area_struct *vma, unsigned long haddr) 1203 { 1204 pmd_t entry; 1205 1206 entry = folio_mk_pmd(folio, vma->vm_page_prot); 1207 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1208 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE); 1209 folio_add_lru_vma(folio, vma); 1210 set_pmd_at(vma->vm_mm, haddr, pmd, entry); 1211 update_mmu_cache_pmd(vma, haddr, pmd); 1212 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1213 count_vm_event(THP_FAULT_ALLOC); 1214 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC); 1215 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 1216 } 1217 1218 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1219 { 1220 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1221 struct vm_area_struct *vma = vmf->vma; 1222 struct folio *folio; 1223 pgtable_t pgtable; 1224 vm_fault_t ret = 0; 1225 1226 folio = vma_alloc_anon_folio_pmd(vma, vmf->address); 1227 if (unlikely(!folio)) 1228 return VM_FAULT_FALLBACK; 1229 1230 pgtable = pte_alloc_one(vma->vm_mm); 1231 if (unlikely(!pgtable)) { 1232 ret = VM_FAULT_OOM; 1233 goto release; 1234 } 1235 1236 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1237 if (unlikely(!pmd_none(*vmf->pmd))) { 1238 goto unlock_release; 1239 } else { 1240 ret = check_stable_address_space(vma->vm_mm); 1241 if (ret) 1242 goto unlock_release; 1243 1244 /* Deliver the page fault to userland */ 1245 if (userfaultfd_missing(vma)) { 1246 spin_unlock(vmf->ptl); 1247 folio_put(folio); 1248 pte_free(vma->vm_mm, pgtable); 1249 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1250 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1251 return ret; 1252 } 1253 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1254 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr); 1255 mm_inc_nr_ptes(vma->vm_mm); 1256 deferred_split_folio(folio, false); 1257 spin_unlock(vmf->ptl); 1258 } 1259 1260 return 0; 1261 unlock_release: 1262 spin_unlock(vmf->ptl); 1263 release: 1264 if (pgtable) 1265 pte_free(vma->vm_mm, pgtable); 1266 folio_put(folio); 1267 return ret; 1268 1269 } 1270 1271 /* 1272 * always: directly stall for all thp allocations 1273 * defer: wake kswapd and fail if not immediately available 1274 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 1275 * fail if not immediately available 1276 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 1277 * available 1278 * never: never stall for any thp allocation 1279 */ 1280 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 1281 { 1282 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 1283 1284 /* Always do synchronous compaction */ 1285 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 1286 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 1287 1288 /* Kick kcompactd and fail quickly */ 1289 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 1290 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 1291 1292 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 1293 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 1294 return GFP_TRANSHUGE_LIGHT | 1295 (vma_madvised ? __GFP_DIRECT_RECLAIM : 1296 __GFP_KSWAPD_RECLAIM); 1297 1298 /* Only do synchronous compaction if madvised */ 1299 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 1300 return GFP_TRANSHUGE_LIGHT | 1301 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 1302 1303 return GFP_TRANSHUGE_LIGHT; 1304 } 1305 1306 /* Caller must hold page table lock. */ 1307 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm, 1308 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 1309 struct folio *zero_folio) 1310 { 1311 pmd_t entry; 1312 entry = folio_mk_pmd(zero_folio, vma->vm_page_prot); 1313 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1314 set_pmd_at(mm, haddr, pmd, entry); 1315 mm_inc_nr_ptes(mm); 1316 } 1317 1318 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1319 { 1320 struct vm_area_struct *vma = vmf->vma; 1321 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1322 vm_fault_t ret; 1323 1324 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1325 return VM_FAULT_FALLBACK; 1326 ret = vmf_anon_prepare(vmf); 1327 if (ret) 1328 return ret; 1329 khugepaged_enter_vma(vma, vma->vm_flags); 1330 1331 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1332 !mm_forbids_zeropage(vma->vm_mm) && 1333 transparent_hugepage_use_zero_page()) { 1334 pgtable_t pgtable; 1335 struct folio *zero_folio; 1336 vm_fault_t ret; 1337 1338 pgtable = pte_alloc_one(vma->vm_mm); 1339 if (unlikely(!pgtable)) 1340 return VM_FAULT_OOM; 1341 zero_folio = mm_get_huge_zero_folio(vma->vm_mm); 1342 if (unlikely(!zero_folio)) { 1343 pte_free(vma->vm_mm, pgtable); 1344 count_vm_event(THP_FAULT_FALLBACK); 1345 return VM_FAULT_FALLBACK; 1346 } 1347 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1348 ret = 0; 1349 if (pmd_none(*vmf->pmd)) { 1350 ret = check_stable_address_space(vma->vm_mm); 1351 if (ret) { 1352 spin_unlock(vmf->ptl); 1353 pte_free(vma->vm_mm, pgtable); 1354 } else if (userfaultfd_missing(vma)) { 1355 spin_unlock(vmf->ptl); 1356 pte_free(vma->vm_mm, pgtable); 1357 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1358 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1359 } else { 1360 set_huge_zero_folio(pgtable, vma->vm_mm, vma, 1361 haddr, vmf->pmd, zero_folio); 1362 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1363 spin_unlock(vmf->ptl); 1364 } 1365 } else { 1366 spin_unlock(vmf->ptl); 1367 pte_free(vma->vm_mm, pgtable); 1368 } 1369 return ret; 1370 } 1371 1372 return __do_huge_pmd_anonymous_page(vmf); 1373 } 1374 1375 static int insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1376 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1377 pgtable_t pgtable) 1378 { 1379 struct mm_struct *mm = vma->vm_mm; 1380 pmd_t entry; 1381 1382 lockdep_assert_held(pmd_lockptr(mm, pmd)); 1383 1384 if (!pmd_none(*pmd)) { 1385 if (write) { 1386 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1387 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1388 return -EEXIST; 1389 } 1390 entry = pmd_mkyoung(*pmd); 1391 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1392 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1393 update_mmu_cache_pmd(vma, addr, pmd); 1394 } 1395 1396 return -EEXIST; 1397 } 1398 1399 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1400 if (pfn_t_devmap(pfn)) 1401 entry = pmd_mkdevmap(entry); 1402 else 1403 entry = pmd_mkspecial(entry); 1404 if (write) { 1405 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1406 entry = maybe_pmd_mkwrite(entry, vma); 1407 } 1408 1409 if (pgtable) { 1410 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1411 mm_inc_nr_ptes(mm); 1412 } 1413 1414 set_pmd_at(mm, addr, pmd, entry); 1415 update_mmu_cache_pmd(vma, addr, pmd); 1416 return 0; 1417 } 1418 1419 /** 1420 * vmf_insert_pfn_pmd - insert a pmd size pfn 1421 * @vmf: Structure describing the fault 1422 * @pfn: pfn to insert 1423 * @write: whether it's a write fault 1424 * 1425 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1426 * 1427 * Return: vm_fault_t value. 1428 */ 1429 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1430 { 1431 unsigned long addr = vmf->address & PMD_MASK; 1432 struct vm_area_struct *vma = vmf->vma; 1433 pgprot_t pgprot = vma->vm_page_prot; 1434 pgtable_t pgtable = NULL; 1435 spinlock_t *ptl; 1436 int error; 1437 1438 /* 1439 * If we had pmd_special, we could avoid all these restrictions, 1440 * but we need to be consistent with PTEs and architectures that 1441 * can't support a 'special' bit. 1442 */ 1443 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1444 !pfn_t_devmap(pfn)); 1445 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1446 (VM_PFNMAP|VM_MIXEDMAP)); 1447 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1448 1449 if (addr < vma->vm_start || addr >= vma->vm_end) 1450 return VM_FAULT_SIGBUS; 1451 1452 if (arch_needs_pgtable_deposit()) { 1453 pgtable = pte_alloc_one(vma->vm_mm); 1454 if (!pgtable) 1455 return VM_FAULT_OOM; 1456 } 1457 1458 pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot); 1459 1460 ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1461 error = insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, 1462 pgtable); 1463 spin_unlock(ptl); 1464 if (error && pgtable) 1465 pte_free(vma->vm_mm, pgtable); 1466 1467 return VM_FAULT_NOPAGE; 1468 } 1469 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1470 1471 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio, 1472 bool write) 1473 { 1474 struct vm_area_struct *vma = vmf->vma; 1475 unsigned long addr = vmf->address & PMD_MASK; 1476 struct mm_struct *mm = vma->vm_mm; 1477 spinlock_t *ptl; 1478 pgtable_t pgtable = NULL; 1479 int error; 1480 1481 if (addr < vma->vm_start || addr >= vma->vm_end) 1482 return VM_FAULT_SIGBUS; 1483 1484 if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER)) 1485 return VM_FAULT_SIGBUS; 1486 1487 if (arch_needs_pgtable_deposit()) { 1488 pgtable = pte_alloc_one(vma->vm_mm); 1489 if (!pgtable) 1490 return VM_FAULT_OOM; 1491 } 1492 1493 ptl = pmd_lock(mm, vmf->pmd); 1494 if (pmd_none(*vmf->pmd)) { 1495 folio_get(folio); 1496 folio_add_file_rmap_pmd(folio, &folio->page, vma); 1497 add_mm_counter(mm, mm_counter_file(folio), HPAGE_PMD_NR); 1498 } 1499 error = insert_pfn_pmd(vma, addr, vmf->pmd, 1500 pfn_to_pfn_t(folio_pfn(folio)), vma->vm_page_prot, 1501 write, pgtable); 1502 spin_unlock(ptl); 1503 if (error && pgtable) 1504 pte_free(mm, pgtable); 1505 1506 return VM_FAULT_NOPAGE; 1507 } 1508 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd); 1509 1510 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1511 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1512 { 1513 if (likely(vma->vm_flags & VM_WRITE)) 1514 pud = pud_mkwrite(pud); 1515 return pud; 1516 } 1517 1518 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1519 pud_t *pud, pfn_t pfn, bool write) 1520 { 1521 struct mm_struct *mm = vma->vm_mm; 1522 pgprot_t prot = vma->vm_page_prot; 1523 pud_t entry; 1524 1525 if (!pud_none(*pud)) { 1526 if (write) { 1527 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn))) 1528 return; 1529 entry = pud_mkyoung(*pud); 1530 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1531 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1532 update_mmu_cache_pud(vma, addr, pud); 1533 } 1534 return; 1535 } 1536 1537 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1538 if (pfn_t_devmap(pfn)) 1539 entry = pud_mkdevmap(entry); 1540 else 1541 entry = pud_mkspecial(entry); 1542 if (write) { 1543 entry = pud_mkyoung(pud_mkdirty(entry)); 1544 entry = maybe_pud_mkwrite(entry, vma); 1545 } 1546 set_pud_at(mm, addr, pud, entry); 1547 update_mmu_cache_pud(vma, addr, pud); 1548 } 1549 1550 /** 1551 * vmf_insert_pfn_pud - insert a pud size pfn 1552 * @vmf: Structure describing the fault 1553 * @pfn: pfn to insert 1554 * @write: whether it's a write fault 1555 * 1556 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1557 * 1558 * Return: vm_fault_t value. 1559 */ 1560 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1561 { 1562 unsigned long addr = vmf->address & PUD_MASK; 1563 struct vm_area_struct *vma = vmf->vma; 1564 pgprot_t pgprot = vma->vm_page_prot; 1565 spinlock_t *ptl; 1566 1567 /* 1568 * If we had pud_special, we could avoid all these restrictions, 1569 * but we need to be consistent with PTEs and architectures that 1570 * can't support a 'special' bit. 1571 */ 1572 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1573 !pfn_t_devmap(pfn)); 1574 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1575 (VM_PFNMAP|VM_MIXEDMAP)); 1576 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1577 1578 if (addr < vma->vm_start || addr >= vma->vm_end) 1579 return VM_FAULT_SIGBUS; 1580 1581 pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot); 1582 1583 ptl = pud_lock(vma->vm_mm, vmf->pud); 1584 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1585 spin_unlock(ptl); 1586 1587 return VM_FAULT_NOPAGE; 1588 } 1589 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1590 1591 /** 1592 * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry 1593 * @vmf: Structure describing the fault 1594 * @folio: folio to insert 1595 * @write: whether it's a write fault 1596 * 1597 * Return: vm_fault_t value. 1598 */ 1599 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio, 1600 bool write) 1601 { 1602 struct vm_area_struct *vma = vmf->vma; 1603 unsigned long addr = vmf->address & PUD_MASK; 1604 pud_t *pud = vmf->pud; 1605 struct mm_struct *mm = vma->vm_mm; 1606 spinlock_t *ptl; 1607 1608 if (addr < vma->vm_start || addr >= vma->vm_end) 1609 return VM_FAULT_SIGBUS; 1610 1611 if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER)) 1612 return VM_FAULT_SIGBUS; 1613 1614 ptl = pud_lock(mm, pud); 1615 1616 /* 1617 * If there is already an entry present we assume the folio is 1618 * already mapped, hence no need to take another reference. We 1619 * still call insert_pfn_pud() though in case the mapping needs 1620 * upgrading to writeable. 1621 */ 1622 if (pud_none(*vmf->pud)) { 1623 folio_get(folio); 1624 folio_add_file_rmap_pud(folio, &folio->page, vma); 1625 add_mm_counter(mm, mm_counter_file(folio), HPAGE_PUD_NR); 1626 } 1627 insert_pfn_pud(vma, addr, vmf->pud, pfn_to_pfn_t(folio_pfn(folio)), 1628 write); 1629 spin_unlock(ptl); 1630 1631 return VM_FAULT_NOPAGE; 1632 } 1633 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud); 1634 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1635 1636 void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1637 pmd_t *pmd, bool write) 1638 { 1639 pmd_t _pmd; 1640 1641 _pmd = pmd_mkyoung(*pmd); 1642 if (write) 1643 _pmd = pmd_mkdirty(_pmd); 1644 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1645 pmd, _pmd, write)) 1646 update_mmu_cache_pmd(vma, addr, pmd); 1647 } 1648 1649 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1650 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1651 { 1652 unsigned long pfn = pmd_pfn(*pmd); 1653 struct mm_struct *mm = vma->vm_mm; 1654 struct page *page; 1655 int ret; 1656 1657 assert_spin_locked(pmd_lockptr(mm, pmd)); 1658 1659 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1660 return NULL; 1661 1662 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1663 /* pass */; 1664 else 1665 return NULL; 1666 1667 if (flags & FOLL_TOUCH) 1668 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1669 1670 /* 1671 * device mapped pages can only be returned if the 1672 * caller will manage the page reference count. 1673 */ 1674 if (!(flags & (FOLL_GET | FOLL_PIN))) 1675 return ERR_PTR(-EEXIST); 1676 1677 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1678 *pgmap = get_dev_pagemap(pfn, *pgmap); 1679 if (!*pgmap) 1680 return ERR_PTR(-EFAULT); 1681 page = pfn_to_page(pfn); 1682 ret = try_grab_folio(page_folio(page), 1, flags); 1683 if (ret) 1684 page = ERR_PTR(ret); 1685 1686 return page; 1687 } 1688 1689 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1690 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1691 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1692 { 1693 spinlock_t *dst_ptl, *src_ptl; 1694 struct page *src_page; 1695 struct folio *src_folio; 1696 pmd_t pmd; 1697 pgtable_t pgtable = NULL; 1698 int ret = -ENOMEM; 1699 1700 pmd = pmdp_get_lockless(src_pmd); 1701 if (unlikely(pmd_present(pmd) && pmd_special(pmd))) { 1702 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1703 src_ptl = pmd_lockptr(src_mm, src_pmd); 1704 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1705 /* 1706 * No need to recheck the pmd, it can't change with write 1707 * mmap lock held here. 1708 * 1709 * Meanwhile, making sure it's not a CoW VMA with writable 1710 * mapping, otherwise it means either the anon page wrongly 1711 * applied special bit, or we made the PRIVATE mapping be 1712 * able to wrongly write to the backend MMIO. 1713 */ 1714 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd)); 1715 goto set_pmd; 1716 } 1717 1718 /* Skip if can be re-fill on fault */ 1719 if (!vma_is_anonymous(dst_vma)) 1720 return 0; 1721 1722 pgtable = pte_alloc_one(dst_mm); 1723 if (unlikely(!pgtable)) 1724 goto out; 1725 1726 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1727 src_ptl = pmd_lockptr(src_mm, src_pmd); 1728 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1729 1730 ret = -EAGAIN; 1731 pmd = *src_pmd; 1732 1733 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1734 if (unlikely(is_swap_pmd(pmd))) { 1735 swp_entry_t entry = pmd_to_swp_entry(pmd); 1736 1737 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1738 if (!is_readable_migration_entry(entry)) { 1739 entry = make_readable_migration_entry( 1740 swp_offset(entry)); 1741 pmd = swp_entry_to_pmd(entry); 1742 if (pmd_swp_soft_dirty(*src_pmd)) 1743 pmd = pmd_swp_mksoft_dirty(pmd); 1744 if (pmd_swp_uffd_wp(*src_pmd)) 1745 pmd = pmd_swp_mkuffd_wp(pmd); 1746 set_pmd_at(src_mm, addr, src_pmd, pmd); 1747 } 1748 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1749 mm_inc_nr_ptes(dst_mm); 1750 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1751 if (!userfaultfd_wp(dst_vma)) 1752 pmd = pmd_swp_clear_uffd_wp(pmd); 1753 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1754 ret = 0; 1755 goto out_unlock; 1756 } 1757 #endif 1758 1759 if (unlikely(!pmd_trans_huge(pmd))) { 1760 pte_free(dst_mm, pgtable); 1761 goto out_unlock; 1762 } 1763 /* 1764 * When page table lock is held, the huge zero pmd should not be 1765 * under splitting since we don't split the page itself, only pmd to 1766 * a page table. 1767 */ 1768 if (is_huge_zero_pmd(pmd)) { 1769 /* 1770 * mm_get_huge_zero_folio() will never allocate a new 1771 * folio here, since we already have a zero page to 1772 * copy. It just takes a reference. 1773 */ 1774 mm_get_huge_zero_folio(dst_mm); 1775 goto out_zero_page; 1776 } 1777 1778 src_page = pmd_page(pmd); 1779 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1780 src_folio = page_folio(src_page); 1781 1782 folio_get(src_folio); 1783 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) { 1784 /* Page maybe pinned: split and retry the fault on PTEs. */ 1785 folio_put(src_folio); 1786 pte_free(dst_mm, pgtable); 1787 spin_unlock(src_ptl); 1788 spin_unlock(dst_ptl); 1789 __split_huge_pmd(src_vma, src_pmd, addr, false); 1790 return -EAGAIN; 1791 } 1792 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1793 out_zero_page: 1794 mm_inc_nr_ptes(dst_mm); 1795 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1796 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1797 if (!userfaultfd_wp(dst_vma)) 1798 pmd = pmd_clear_uffd_wp(pmd); 1799 pmd = pmd_wrprotect(pmd); 1800 set_pmd: 1801 pmd = pmd_mkold(pmd); 1802 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1803 1804 ret = 0; 1805 out_unlock: 1806 spin_unlock(src_ptl); 1807 spin_unlock(dst_ptl); 1808 out: 1809 return ret; 1810 } 1811 1812 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1813 void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1814 pud_t *pud, bool write) 1815 { 1816 pud_t _pud; 1817 1818 _pud = pud_mkyoung(*pud); 1819 if (write) 1820 _pud = pud_mkdirty(_pud); 1821 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1822 pud, _pud, write)) 1823 update_mmu_cache_pud(vma, addr, pud); 1824 } 1825 1826 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1827 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1828 struct vm_area_struct *vma) 1829 { 1830 spinlock_t *dst_ptl, *src_ptl; 1831 pud_t pud; 1832 int ret; 1833 1834 dst_ptl = pud_lock(dst_mm, dst_pud); 1835 src_ptl = pud_lockptr(src_mm, src_pud); 1836 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1837 1838 ret = -EAGAIN; 1839 pud = *src_pud; 1840 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1841 goto out_unlock; 1842 1843 /* 1844 * TODO: once we support anonymous pages, use 1845 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1846 */ 1847 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) { 1848 pudp_set_wrprotect(src_mm, addr, src_pud); 1849 pud = pud_wrprotect(pud); 1850 } 1851 pud = pud_mkold(pud); 1852 set_pud_at(dst_mm, addr, dst_pud, pud); 1853 1854 ret = 0; 1855 out_unlock: 1856 spin_unlock(src_ptl); 1857 spin_unlock(dst_ptl); 1858 return ret; 1859 } 1860 1861 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1862 { 1863 bool write = vmf->flags & FAULT_FLAG_WRITE; 1864 1865 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1866 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1867 goto unlock; 1868 1869 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1870 unlock: 1871 spin_unlock(vmf->ptl); 1872 } 1873 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1874 1875 void huge_pmd_set_accessed(struct vm_fault *vmf) 1876 { 1877 bool write = vmf->flags & FAULT_FLAG_WRITE; 1878 1879 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1880 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1881 goto unlock; 1882 1883 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1884 1885 unlock: 1886 spin_unlock(vmf->ptl); 1887 } 1888 1889 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf) 1890 { 1891 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1892 struct vm_area_struct *vma = vmf->vma; 1893 struct mmu_notifier_range range; 1894 struct folio *folio; 1895 vm_fault_t ret = 0; 1896 1897 folio = vma_alloc_anon_folio_pmd(vma, vmf->address); 1898 if (unlikely(!folio)) 1899 return VM_FAULT_FALLBACK; 1900 1901 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr, 1902 haddr + HPAGE_PMD_SIZE); 1903 mmu_notifier_invalidate_range_start(&range); 1904 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1905 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) 1906 goto release; 1907 ret = check_stable_address_space(vma->vm_mm); 1908 if (ret) 1909 goto release; 1910 (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd); 1911 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr); 1912 goto unlock; 1913 release: 1914 folio_put(folio); 1915 unlock: 1916 spin_unlock(vmf->ptl); 1917 mmu_notifier_invalidate_range_end(&range); 1918 return ret; 1919 } 1920 1921 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1922 { 1923 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1924 struct vm_area_struct *vma = vmf->vma; 1925 struct folio *folio; 1926 struct page *page; 1927 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1928 pmd_t orig_pmd = vmf->orig_pmd; 1929 1930 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1931 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1932 1933 if (is_huge_zero_pmd(orig_pmd)) { 1934 vm_fault_t ret = do_huge_zero_wp_pmd(vmf); 1935 1936 if (!(ret & VM_FAULT_FALLBACK)) 1937 return ret; 1938 1939 /* Fallback to splitting PMD if THP cannot be allocated */ 1940 goto fallback; 1941 } 1942 1943 spin_lock(vmf->ptl); 1944 1945 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1946 spin_unlock(vmf->ptl); 1947 return 0; 1948 } 1949 1950 page = pmd_page(orig_pmd); 1951 folio = page_folio(page); 1952 VM_BUG_ON_PAGE(!PageHead(page), page); 1953 1954 /* Early check when only holding the PT lock. */ 1955 if (PageAnonExclusive(page)) 1956 goto reuse; 1957 1958 if (!folio_trylock(folio)) { 1959 folio_get(folio); 1960 spin_unlock(vmf->ptl); 1961 folio_lock(folio); 1962 spin_lock(vmf->ptl); 1963 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1964 spin_unlock(vmf->ptl); 1965 folio_unlock(folio); 1966 folio_put(folio); 1967 return 0; 1968 } 1969 folio_put(folio); 1970 } 1971 1972 /* Recheck after temporarily dropping the PT lock. */ 1973 if (PageAnonExclusive(page)) { 1974 folio_unlock(folio); 1975 goto reuse; 1976 } 1977 1978 /* 1979 * See do_wp_page(): we can only reuse the folio exclusively if 1980 * there are no additional references. Note that we always drain 1981 * the LRU cache immediately after adding a THP. 1982 */ 1983 if (folio_ref_count(folio) > 1984 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1985 goto unlock_fallback; 1986 if (folio_test_swapcache(folio)) 1987 folio_free_swap(folio); 1988 if (folio_ref_count(folio) == 1) { 1989 pmd_t entry; 1990 1991 folio_move_anon_rmap(folio, vma); 1992 SetPageAnonExclusive(page); 1993 folio_unlock(folio); 1994 reuse: 1995 if (unlikely(unshare)) { 1996 spin_unlock(vmf->ptl); 1997 return 0; 1998 } 1999 entry = pmd_mkyoung(orig_pmd); 2000 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2001 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 2002 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 2003 spin_unlock(vmf->ptl); 2004 return 0; 2005 } 2006 2007 unlock_fallback: 2008 folio_unlock(folio); 2009 spin_unlock(vmf->ptl); 2010 fallback: 2011 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 2012 return VM_FAULT_FALLBACK; 2013 } 2014 2015 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 2016 unsigned long addr, pmd_t pmd) 2017 { 2018 struct page *page; 2019 2020 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 2021 return false; 2022 2023 /* Don't touch entries that are not even readable (NUMA hinting). */ 2024 if (pmd_protnone(pmd)) 2025 return false; 2026 2027 /* Do we need write faults for softdirty tracking? */ 2028 if (pmd_needs_soft_dirty_wp(vma, pmd)) 2029 return false; 2030 2031 /* Do we need write faults for uffd-wp tracking? */ 2032 if (userfaultfd_huge_pmd_wp(vma, pmd)) 2033 return false; 2034 2035 if (!(vma->vm_flags & VM_SHARED)) { 2036 /* See can_change_pte_writable(). */ 2037 page = vm_normal_page_pmd(vma, addr, pmd); 2038 return page && PageAnon(page) && PageAnonExclusive(page); 2039 } 2040 2041 /* See can_change_pte_writable(). */ 2042 return pmd_dirty(pmd); 2043 } 2044 2045 /* NUMA hinting page fault entry point for trans huge pmds */ 2046 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 2047 { 2048 struct vm_area_struct *vma = vmf->vma; 2049 struct folio *folio; 2050 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 2051 int nid = NUMA_NO_NODE; 2052 int target_nid, last_cpupid; 2053 pmd_t pmd, old_pmd; 2054 bool writable = false; 2055 int flags = 0; 2056 2057 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2058 old_pmd = pmdp_get(vmf->pmd); 2059 2060 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) { 2061 spin_unlock(vmf->ptl); 2062 return 0; 2063 } 2064 2065 pmd = pmd_modify(old_pmd, vma->vm_page_prot); 2066 2067 /* 2068 * Detect now whether the PMD could be writable; this information 2069 * is only valid while holding the PT lock. 2070 */ 2071 writable = pmd_write(pmd); 2072 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 2073 can_change_pmd_writable(vma, vmf->address, pmd)) 2074 writable = true; 2075 2076 folio = vm_normal_folio_pmd(vma, haddr, pmd); 2077 if (!folio) 2078 goto out_map; 2079 2080 nid = folio_nid(folio); 2081 2082 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable, 2083 &last_cpupid); 2084 if (target_nid == NUMA_NO_NODE) 2085 goto out_map; 2086 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 2087 flags |= TNF_MIGRATE_FAIL; 2088 goto out_map; 2089 } 2090 /* The folio is isolated and isolation code holds a folio reference. */ 2091 spin_unlock(vmf->ptl); 2092 writable = false; 2093 2094 if (!migrate_misplaced_folio(folio, target_nid)) { 2095 flags |= TNF_MIGRATED; 2096 nid = target_nid; 2097 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 2098 return 0; 2099 } 2100 2101 flags |= TNF_MIGRATE_FAIL; 2102 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2103 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) { 2104 spin_unlock(vmf->ptl); 2105 return 0; 2106 } 2107 out_map: 2108 /* Restore the PMD */ 2109 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot); 2110 pmd = pmd_mkyoung(pmd); 2111 if (writable) 2112 pmd = pmd_mkwrite(pmd, vma); 2113 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 2114 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 2115 spin_unlock(vmf->ptl); 2116 2117 if (nid != NUMA_NO_NODE) 2118 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 2119 return 0; 2120 } 2121 2122 /* 2123 * Return true if we do MADV_FREE successfully on entire pmd page. 2124 * Otherwise, return false. 2125 */ 2126 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2127 pmd_t *pmd, unsigned long addr, unsigned long next) 2128 { 2129 spinlock_t *ptl; 2130 pmd_t orig_pmd; 2131 struct folio *folio; 2132 struct mm_struct *mm = tlb->mm; 2133 bool ret = false; 2134 2135 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2136 2137 ptl = pmd_trans_huge_lock(pmd, vma); 2138 if (!ptl) 2139 goto out_unlocked; 2140 2141 orig_pmd = *pmd; 2142 if (is_huge_zero_pmd(orig_pmd)) 2143 goto out; 2144 2145 if (unlikely(!pmd_present(orig_pmd))) { 2146 VM_BUG_ON(thp_migration_supported() && 2147 !is_pmd_migration_entry(orig_pmd)); 2148 goto out; 2149 } 2150 2151 folio = pmd_folio(orig_pmd); 2152 /* 2153 * If other processes are mapping this folio, we couldn't discard 2154 * the folio unless they all do MADV_FREE so let's skip the folio. 2155 */ 2156 if (folio_maybe_mapped_shared(folio)) 2157 goto out; 2158 2159 if (!folio_trylock(folio)) 2160 goto out; 2161 2162 /* 2163 * If user want to discard part-pages of THP, split it so MADV_FREE 2164 * will deactivate only them. 2165 */ 2166 if (next - addr != HPAGE_PMD_SIZE) { 2167 folio_get(folio); 2168 spin_unlock(ptl); 2169 split_folio(folio); 2170 folio_unlock(folio); 2171 folio_put(folio); 2172 goto out_unlocked; 2173 } 2174 2175 if (folio_test_dirty(folio)) 2176 folio_clear_dirty(folio); 2177 folio_unlock(folio); 2178 2179 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 2180 pmdp_invalidate(vma, addr, pmd); 2181 orig_pmd = pmd_mkold(orig_pmd); 2182 orig_pmd = pmd_mkclean(orig_pmd); 2183 2184 set_pmd_at(mm, addr, pmd, orig_pmd); 2185 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 2186 } 2187 2188 folio_mark_lazyfree(folio); 2189 ret = true; 2190 out: 2191 spin_unlock(ptl); 2192 out_unlocked: 2193 return ret; 2194 } 2195 2196 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 2197 { 2198 pgtable_t pgtable; 2199 2200 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2201 pte_free(mm, pgtable); 2202 mm_dec_nr_ptes(mm); 2203 } 2204 2205 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2206 pmd_t *pmd, unsigned long addr) 2207 { 2208 pmd_t orig_pmd; 2209 spinlock_t *ptl; 2210 2211 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2212 2213 ptl = __pmd_trans_huge_lock(pmd, vma); 2214 if (!ptl) 2215 return 0; 2216 /* 2217 * For architectures like ppc64 we look at deposited pgtable 2218 * when calling pmdp_huge_get_and_clear. So do the 2219 * pgtable_trans_huge_withdraw after finishing pmdp related 2220 * operations. 2221 */ 2222 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 2223 tlb->fullmm); 2224 arch_check_zapped_pmd(vma, orig_pmd); 2225 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 2226 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) { 2227 if (arch_needs_pgtable_deposit()) 2228 zap_deposited_table(tlb->mm, pmd); 2229 spin_unlock(ptl); 2230 } else if (is_huge_zero_pmd(orig_pmd)) { 2231 if (!vma_is_dax(vma) || arch_needs_pgtable_deposit()) 2232 zap_deposited_table(tlb->mm, pmd); 2233 spin_unlock(ptl); 2234 } else { 2235 struct folio *folio = NULL; 2236 int flush_needed = 1; 2237 2238 if (pmd_present(orig_pmd)) { 2239 struct page *page = pmd_page(orig_pmd); 2240 2241 folio = page_folio(page); 2242 folio_remove_rmap_pmd(folio, page, vma); 2243 WARN_ON_ONCE(folio_mapcount(folio) < 0); 2244 VM_BUG_ON_PAGE(!PageHead(page), page); 2245 } else if (thp_migration_supported()) { 2246 swp_entry_t entry; 2247 2248 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 2249 entry = pmd_to_swp_entry(orig_pmd); 2250 folio = pfn_swap_entry_folio(entry); 2251 flush_needed = 0; 2252 } else 2253 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 2254 2255 if (folio_test_anon(folio)) { 2256 zap_deposited_table(tlb->mm, pmd); 2257 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 2258 } else { 2259 if (arch_needs_pgtable_deposit()) 2260 zap_deposited_table(tlb->mm, pmd); 2261 add_mm_counter(tlb->mm, mm_counter_file(folio), 2262 -HPAGE_PMD_NR); 2263 2264 /* 2265 * Use flush_needed to indicate whether the PMD entry 2266 * is present, instead of checking pmd_present() again. 2267 */ 2268 if (flush_needed && pmd_young(orig_pmd) && 2269 likely(vma_has_recency(vma))) 2270 folio_mark_accessed(folio); 2271 } 2272 2273 spin_unlock(ptl); 2274 if (flush_needed) 2275 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 2276 } 2277 return 1; 2278 } 2279 2280 #ifndef pmd_move_must_withdraw 2281 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 2282 spinlock_t *old_pmd_ptl, 2283 struct vm_area_struct *vma) 2284 { 2285 /* 2286 * With split pmd lock we also need to move preallocated 2287 * PTE page table if new_pmd is on different PMD page table. 2288 * 2289 * We also don't deposit and withdraw tables for file pages. 2290 */ 2291 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 2292 } 2293 #endif 2294 2295 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 2296 { 2297 #ifdef CONFIG_MEM_SOFT_DIRTY 2298 if (unlikely(is_pmd_migration_entry(pmd))) 2299 pmd = pmd_swp_mksoft_dirty(pmd); 2300 else if (pmd_present(pmd)) 2301 pmd = pmd_mksoft_dirty(pmd); 2302 #endif 2303 return pmd; 2304 } 2305 2306 static pmd_t clear_uffd_wp_pmd(pmd_t pmd) 2307 { 2308 if (pmd_present(pmd)) 2309 pmd = pmd_clear_uffd_wp(pmd); 2310 else if (is_swap_pmd(pmd)) 2311 pmd = pmd_swp_clear_uffd_wp(pmd); 2312 2313 return pmd; 2314 } 2315 2316 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 2317 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 2318 { 2319 spinlock_t *old_ptl, *new_ptl; 2320 pmd_t pmd; 2321 struct mm_struct *mm = vma->vm_mm; 2322 bool force_flush = false; 2323 2324 /* 2325 * The destination pmd shouldn't be established, free_pgtables() 2326 * should have released it; but move_page_tables() might have already 2327 * inserted a page table, if racing against shmem/file collapse. 2328 */ 2329 if (!pmd_none(*new_pmd)) { 2330 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 2331 return false; 2332 } 2333 2334 /* 2335 * We don't have to worry about the ordering of src and dst 2336 * ptlocks because exclusive mmap_lock prevents deadlock. 2337 */ 2338 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 2339 if (old_ptl) { 2340 new_ptl = pmd_lockptr(mm, new_pmd); 2341 if (new_ptl != old_ptl) 2342 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 2343 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 2344 if (pmd_present(pmd)) 2345 force_flush = true; 2346 VM_BUG_ON(!pmd_none(*new_pmd)); 2347 2348 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 2349 pgtable_t pgtable; 2350 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 2351 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 2352 } 2353 pmd = move_soft_dirty_pmd(pmd); 2354 if (vma_has_uffd_without_event_remap(vma)) 2355 pmd = clear_uffd_wp_pmd(pmd); 2356 set_pmd_at(mm, new_addr, new_pmd, pmd); 2357 if (force_flush) 2358 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 2359 if (new_ptl != old_ptl) 2360 spin_unlock(new_ptl); 2361 spin_unlock(old_ptl); 2362 return true; 2363 } 2364 return false; 2365 } 2366 2367 /* 2368 * Returns 2369 * - 0 if PMD could not be locked 2370 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 2371 * or if prot_numa but THP migration is not supported 2372 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 2373 */ 2374 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2375 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 2376 unsigned long cp_flags) 2377 { 2378 struct mm_struct *mm = vma->vm_mm; 2379 spinlock_t *ptl; 2380 pmd_t oldpmd, entry; 2381 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 2382 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 2383 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 2384 int ret = 1; 2385 2386 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2387 2388 if (prot_numa && !thp_migration_supported()) 2389 return 1; 2390 2391 ptl = __pmd_trans_huge_lock(pmd, vma); 2392 if (!ptl) 2393 return 0; 2394 2395 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2396 if (is_swap_pmd(*pmd)) { 2397 swp_entry_t entry = pmd_to_swp_entry(*pmd); 2398 struct folio *folio = pfn_swap_entry_folio(entry); 2399 pmd_t newpmd; 2400 2401 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2402 if (is_writable_migration_entry(entry)) { 2403 /* 2404 * A protection check is difficult so 2405 * just be safe and disable write 2406 */ 2407 if (folio_test_anon(folio)) 2408 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2409 else 2410 entry = make_readable_migration_entry(swp_offset(entry)); 2411 newpmd = swp_entry_to_pmd(entry); 2412 if (pmd_swp_soft_dirty(*pmd)) 2413 newpmd = pmd_swp_mksoft_dirty(newpmd); 2414 } else { 2415 newpmd = *pmd; 2416 } 2417 2418 if (uffd_wp) 2419 newpmd = pmd_swp_mkuffd_wp(newpmd); 2420 else if (uffd_wp_resolve) 2421 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2422 if (!pmd_same(*pmd, newpmd)) 2423 set_pmd_at(mm, addr, pmd, newpmd); 2424 goto unlock; 2425 } 2426 #endif 2427 2428 if (prot_numa) { 2429 struct folio *folio; 2430 bool toptier; 2431 /* 2432 * Avoid trapping faults against the zero page. The read-only 2433 * data is likely to be read-cached on the local CPU and 2434 * local/remote hits to the zero page are not interesting. 2435 */ 2436 if (is_huge_zero_pmd(*pmd)) 2437 goto unlock; 2438 2439 if (pmd_protnone(*pmd)) 2440 goto unlock; 2441 2442 folio = pmd_folio(*pmd); 2443 toptier = node_is_toptier(folio_nid(folio)); 2444 /* 2445 * Skip scanning top tier node if normal numa 2446 * balancing is disabled 2447 */ 2448 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2449 toptier) 2450 goto unlock; 2451 2452 if (folio_use_access_time(folio)) 2453 folio_xchg_access_time(folio, 2454 jiffies_to_msecs(jiffies)); 2455 } 2456 /* 2457 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2458 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2459 * which is also under mmap_read_lock(mm): 2460 * 2461 * CPU0: CPU1: 2462 * change_huge_pmd(prot_numa=1) 2463 * pmdp_huge_get_and_clear_notify() 2464 * madvise_dontneed() 2465 * zap_pmd_range() 2466 * pmd_trans_huge(*pmd) == 0 (without ptl) 2467 * // skip the pmd 2468 * set_pmd_at(); 2469 * // pmd is re-established 2470 * 2471 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2472 * which may break userspace. 2473 * 2474 * pmdp_invalidate_ad() is required to make sure we don't miss 2475 * dirty/young flags set by hardware. 2476 */ 2477 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2478 2479 entry = pmd_modify(oldpmd, newprot); 2480 if (uffd_wp) 2481 entry = pmd_mkuffd_wp(entry); 2482 else if (uffd_wp_resolve) 2483 /* 2484 * Leave the write bit to be handled by PF interrupt 2485 * handler, then things like COW could be properly 2486 * handled. 2487 */ 2488 entry = pmd_clear_uffd_wp(entry); 2489 2490 /* See change_pte_range(). */ 2491 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2492 can_change_pmd_writable(vma, addr, entry)) 2493 entry = pmd_mkwrite(entry, vma); 2494 2495 ret = HPAGE_PMD_NR; 2496 set_pmd_at(mm, addr, pmd, entry); 2497 2498 if (huge_pmd_needs_flush(oldpmd, entry)) 2499 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2500 unlock: 2501 spin_unlock(ptl); 2502 return ret; 2503 } 2504 2505 /* 2506 * Returns: 2507 * 2508 * - 0: if pud leaf changed from under us 2509 * - 1: if pud can be skipped 2510 * - HPAGE_PUD_NR: if pud was successfully processed 2511 */ 2512 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2513 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2514 pud_t *pudp, unsigned long addr, pgprot_t newprot, 2515 unsigned long cp_flags) 2516 { 2517 struct mm_struct *mm = vma->vm_mm; 2518 pud_t oldpud, entry; 2519 spinlock_t *ptl; 2520 2521 tlb_change_page_size(tlb, HPAGE_PUD_SIZE); 2522 2523 /* NUMA balancing doesn't apply to dax */ 2524 if (cp_flags & MM_CP_PROT_NUMA) 2525 return 1; 2526 2527 /* 2528 * Huge entries on userfault-wp only works with anonymous, while we 2529 * don't have anonymous PUDs yet. 2530 */ 2531 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL)) 2532 return 1; 2533 2534 ptl = __pud_trans_huge_lock(pudp, vma); 2535 if (!ptl) 2536 return 0; 2537 2538 /* 2539 * Can't clear PUD or it can race with concurrent zapping. See 2540 * change_huge_pmd(). 2541 */ 2542 oldpud = pudp_invalidate(vma, addr, pudp); 2543 entry = pud_modify(oldpud, newprot); 2544 set_pud_at(mm, addr, pudp, entry); 2545 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE); 2546 2547 spin_unlock(ptl); 2548 return HPAGE_PUD_NR; 2549 } 2550 #endif 2551 2552 #ifdef CONFIG_USERFAULTFD 2553 /* 2554 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by 2555 * the caller, but it must return after releasing the page_table_lock. 2556 * Just move the page from src_pmd to dst_pmd if possible. 2557 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2558 * repeated by the caller, or other errors in case of failure. 2559 */ 2560 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2561 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2562 unsigned long dst_addr, unsigned long src_addr) 2563 { 2564 pmd_t _dst_pmd, src_pmdval; 2565 struct page *src_page; 2566 struct folio *src_folio; 2567 struct anon_vma *src_anon_vma; 2568 spinlock_t *src_ptl, *dst_ptl; 2569 pgtable_t src_pgtable; 2570 struct mmu_notifier_range range; 2571 int err = 0; 2572 2573 src_pmdval = *src_pmd; 2574 src_ptl = pmd_lockptr(mm, src_pmd); 2575 2576 lockdep_assert_held(src_ptl); 2577 vma_assert_locked(src_vma); 2578 vma_assert_locked(dst_vma); 2579 2580 /* Sanity checks before the operation */ 2581 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2582 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2583 spin_unlock(src_ptl); 2584 return -EINVAL; 2585 } 2586 2587 if (!pmd_trans_huge(src_pmdval)) { 2588 spin_unlock(src_ptl); 2589 if (is_pmd_migration_entry(src_pmdval)) { 2590 pmd_migration_entry_wait(mm, &src_pmdval); 2591 return -EAGAIN; 2592 } 2593 return -ENOENT; 2594 } 2595 2596 src_page = pmd_page(src_pmdval); 2597 2598 if (!is_huge_zero_pmd(src_pmdval)) { 2599 if (unlikely(!PageAnonExclusive(src_page))) { 2600 spin_unlock(src_ptl); 2601 return -EBUSY; 2602 } 2603 2604 src_folio = page_folio(src_page); 2605 folio_get(src_folio); 2606 } else 2607 src_folio = NULL; 2608 2609 spin_unlock(src_ptl); 2610 2611 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2612 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2613 src_addr + HPAGE_PMD_SIZE); 2614 mmu_notifier_invalidate_range_start(&range); 2615 2616 if (src_folio) { 2617 folio_lock(src_folio); 2618 2619 /* 2620 * split_huge_page walks the anon_vma chain without the page 2621 * lock. Serialize against it with the anon_vma lock, the page 2622 * lock is not enough. 2623 */ 2624 src_anon_vma = folio_get_anon_vma(src_folio); 2625 if (!src_anon_vma) { 2626 err = -EAGAIN; 2627 goto unlock_folio; 2628 } 2629 anon_vma_lock_write(src_anon_vma); 2630 } else 2631 src_anon_vma = NULL; 2632 2633 dst_ptl = pmd_lockptr(mm, dst_pmd); 2634 double_pt_lock(src_ptl, dst_ptl); 2635 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2636 !pmd_same(*dst_pmd, dst_pmdval))) { 2637 err = -EAGAIN; 2638 goto unlock_ptls; 2639 } 2640 if (src_folio) { 2641 if (folio_maybe_dma_pinned(src_folio) || 2642 !PageAnonExclusive(&src_folio->page)) { 2643 err = -EBUSY; 2644 goto unlock_ptls; 2645 } 2646 2647 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2648 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2649 err = -EBUSY; 2650 goto unlock_ptls; 2651 } 2652 2653 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2654 /* Folio got pinned from under us. Put it back and fail the move. */ 2655 if (folio_maybe_dma_pinned(src_folio)) { 2656 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2657 err = -EBUSY; 2658 goto unlock_ptls; 2659 } 2660 2661 folio_move_anon_rmap(src_folio, dst_vma); 2662 src_folio->index = linear_page_index(dst_vma, dst_addr); 2663 2664 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot); 2665 /* Follow mremap() behavior and treat the entry dirty after the move */ 2666 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2667 } else { 2668 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2669 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot); 2670 } 2671 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2672 2673 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2674 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2675 unlock_ptls: 2676 double_pt_unlock(src_ptl, dst_ptl); 2677 if (src_anon_vma) { 2678 anon_vma_unlock_write(src_anon_vma); 2679 put_anon_vma(src_anon_vma); 2680 } 2681 unlock_folio: 2682 /* unblock rmap walks */ 2683 if (src_folio) 2684 folio_unlock(src_folio); 2685 mmu_notifier_invalidate_range_end(&range); 2686 if (src_folio) 2687 folio_put(src_folio); 2688 return err; 2689 } 2690 #endif /* CONFIG_USERFAULTFD */ 2691 2692 /* 2693 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2694 * 2695 * Note that if it returns page table lock pointer, this routine returns without 2696 * unlocking page table lock. So callers must unlock it. 2697 */ 2698 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2699 { 2700 spinlock_t *ptl; 2701 ptl = pmd_lock(vma->vm_mm, pmd); 2702 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2703 pmd_devmap(*pmd))) 2704 return ptl; 2705 spin_unlock(ptl); 2706 return NULL; 2707 } 2708 2709 /* 2710 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2711 * 2712 * Note that if it returns page table lock pointer, this routine returns without 2713 * unlocking page table lock. So callers must unlock it. 2714 */ 2715 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2716 { 2717 spinlock_t *ptl; 2718 2719 ptl = pud_lock(vma->vm_mm, pud); 2720 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2721 return ptl; 2722 spin_unlock(ptl); 2723 return NULL; 2724 } 2725 2726 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2727 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2728 pud_t *pud, unsigned long addr) 2729 { 2730 spinlock_t *ptl; 2731 pud_t orig_pud; 2732 2733 ptl = __pud_trans_huge_lock(pud, vma); 2734 if (!ptl) 2735 return 0; 2736 2737 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2738 arch_check_zapped_pud(vma, orig_pud); 2739 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2740 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) { 2741 spin_unlock(ptl); 2742 /* No zero page support yet */ 2743 } else { 2744 struct page *page = NULL; 2745 struct folio *folio; 2746 2747 /* No support for anonymous PUD pages or migration yet */ 2748 VM_WARN_ON_ONCE(vma_is_anonymous(vma) || 2749 !pud_present(orig_pud)); 2750 2751 page = pud_page(orig_pud); 2752 folio = page_folio(page); 2753 folio_remove_rmap_pud(folio, page, vma); 2754 add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR); 2755 2756 spin_unlock(ptl); 2757 tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE); 2758 } 2759 return 1; 2760 } 2761 2762 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2763 unsigned long haddr) 2764 { 2765 struct folio *folio; 2766 struct page *page; 2767 pud_t old_pud; 2768 2769 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2770 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2771 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2772 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2773 2774 count_vm_event(THP_SPLIT_PUD); 2775 2776 old_pud = pudp_huge_clear_flush(vma, haddr, pud); 2777 2778 if (!vma_is_dax(vma)) 2779 return; 2780 2781 page = pud_page(old_pud); 2782 folio = page_folio(page); 2783 2784 if (!folio_test_dirty(folio) && pud_dirty(old_pud)) 2785 folio_mark_dirty(folio); 2786 if (!folio_test_referenced(folio) && pud_young(old_pud)) 2787 folio_set_referenced(folio); 2788 folio_remove_rmap_pud(folio, page, vma); 2789 folio_put(folio); 2790 add_mm_counter(vma->vm_mm, mm_counter_file(folio), 2791 -HPAGE_PUD_NR); 2792 } 2793 2794 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2795 unsigned long address) 2796 { 2797 spinlock_t *ptl; 2798 struct mmu_notifier_range range; 2799 2800 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2801 address & HPAGE_PUD_MASK, 2802 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2803 mmu_notifier_invalidate_range_start(&range); 2804 ptl = pud_lock(vma->vm_mm, pud); 2805 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2806 goto out; 2807 __split_huge_pud_locked(vma, pud, range.start); 2808 2809 out: 2810 spin_unlock(ptl); 2811 mmu_notifier_invalidate_range_end(&range); 2812 } 2813 #else 2814 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2815 unsigned long address) 2816 { 2817 } 2818 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2819 2820 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2821 unsigned long haddr, pmd_t *pmd) 2822 { 2823 struct mm_struct *mm = vma->vm_mm; 2824 pgtable_t pgtable; 2825 pmd_t _pmd, old_pmd; 2826 unsigned long addr; 2827 pte_t *pte; 2828 int i; 2829 2830 /* 2831 * Leave pmd empty until pte is filled note that it is fine to delay 2832 * notification until mmu_notifier_invalidate_range_end() as we are 2833 * replacing a zero pmd write protected page with a zero pte write 2834 * protected page. 2835 * 2836 * See Documentation/mm/mmu_notifier.rst 2837 */ 2838 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2839 2840 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2841 pmd_populate(mm, &_pmd, pgtable); 2842 2843 pte = pte_offset_map(&_pmd, haddr); 2844 VM_BUG_ON(!pte); 2845 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2846 pte_t entry; 2847 2848 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2849 entry = pte_mkspecial(entry); 2850 if (pmd_uffd_wp(old_pmd)) 2851 entry = pte_mkuffd_wp(entry); 2852 VM_BUG_ON(!pte_none(ptep_get(pte))); 2853 set_pte_at(mm, addr, pte, entry); 2854 pte++; 2855 } 2856 pte_unmap(pte - 1); 2857 smp_wmb(); /* make pte visible before pmd */ 2858 pmd_populate(mm, pmd, pgtable); 2859 } 2860 2861 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2862 unsigned long haddr, bool freeze) 2863 { 2864 struct mm_struct *mm = vma->vm_mm; 2865 struct folio *folio; 2866 struct page *page; 2867 pgtable_t pgtable; 2868 pmd_t old_pmd, _pmd; 2869 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2870 bool anon_exclusive = false, dirty = false; 2871 unsigned long addr; 2872 pte_t *pte; 2873 int i; 2874 2875 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2876 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2877 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2878 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2879 && !pmd_devmap(*pmd)); 2880 2881 count_vm_event(THP_SPLIT_PMD); 2882 2883 if (!vma_is_anonymous(vma)) { 2884 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2885 /* 2886 * We are going to unmap this huge page. So 2887 * just go ahead and zap it 2888 */ 2889 if (arch_needs_pgtable_deposit()) 2890 zap_deposited_table(mm, pmd); 2891 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) 2892 return; 2893 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2894 swp_entry_t entry; 2895 2896 entry = pmd_to_swp_entry(old_pmd); 2897 folio = pfn_swap_entry_folio(entry); 2898 } else if (is_huge_zero_pmd(old_pmd)) { 2899 return; 2900 } else { 2901 page = pmd_page(old_pmd); 2902 folio = page_folio(page); 2903 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2904 folio_mark_dirty(folio); 2905 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2906 folio_set_referenced(folio); 2907 folio_remove_rmap_pmd(folio, page, vma); 2908 folio_put(folio); 2909 } 2910 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2911 return; 2912 } 2913 2914 if (is_huge_zero_pmd(*pmd)) { 2915 /* 2916 * FIXME: Do we want to invalidate secondary mmu by calling 2917 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2918 * inside __split_huge_pmd() ? 2919 * 2920 * We are going from a zero huge page write protected to zero 2921 * small page also write protected so it does not seems useful 2922 * to invalidate secondary mmu at this time. 2923 */ 2924 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2925 } 2926 2927 pmd_migration = is_pmd_migration_entry(*pmd); 2928 if (unlikely(pmd_migration)) { 2929 swp_entry_t entry; 2930 2931 old_pmd = *pmd; 2932 entry = pmd_to_swp_entry(old_pmd); 2933 page = pfn_swap_entry_to_page(entry); 2934 write = is_writable_migration_entry(entry); 2935 if (PageAnon(page)) 2936 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2937 young = is_migration_entry_young(entry); 2938 dirty = is_migration_entry_dirty(entry); 2939 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2940 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2941 } else { 2942 /* 2943 * Up to this point the pmd is present and huge and userland has 2944 * the whole access to the hugepage during the split (which 2945 * happens in place). If we overwrite the pmd with the not-huge 2946 * version pointing to the pte here (which of course we could if 2947 * all CPUs were bug free), userland could trigger a small page 2948 * size TLB miss on the small sized TLB while the hugepage TLB 2949 * entry is still established in the huge TLB. Some CPU doesn't 2950 * like that. See 2951 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2952 * 383 on page 105. Intel should be safe but is also warns that 2953 * it's only safe if the permission and cache attributes of the 2954 * two entries loaded in the two TLB is identical (which should 2955 * be the case here). But it is generally safer to never allow 2956 * small and huge TLB entries for the same virtual address to be 2957 * loaded simultaneously. So instead of doing "pmd_populate(); 2958 * flush_pmd_tlb_range();" we first mark the current pmd 2959 * notpresent (atomically because here the pmd_trans_huge must 2960 * remain set at all times on the pmd until the split is 2961 * complete for this pmd), then we flush the SMP TLB and finally 2962 * we write the non-huge version of the pmd entry with 2963 * pmd_populate. 2964 */ 2965 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2966 page = pmd_page(old_pmd); 2967 folio = page_folio(page); 2968 if (pmd_dirty(old_pmd)) { 2969 dirty = true; 2970 folio_set_dirty(folio); 2971 } 2972 write = pmd_write(old_pmd); 2973 young = pmd_young(old_pmd); 2974 soft_dirty = pmd_soft_dirty(old_pmd); 2975 uffd_wp = pmd_uffd_wp(old_pmd); 2976 2977 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2978 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2979 2980 /* 2981 * Without "freeze", we'll simply split the PMD, propagating the 2982 * PageAnonExclusive() flag for each PTE by setting it for 2983 * each subpage -- no need to (temporarily) clear. 2984 * 2985 * With "freeze" we want to replace mapped pages by 2986 * migration entries right away. This is only possible if we 2987 * managed to clear PageAnonExclusive() -- see 2988 * set_pmd_migration_entry(). 2989 * 2990 * In case we cannot clear PageAnonExclusive(), split the PMD 2991 * only and let try_to_migrate_one() fail later. 2992 * 2993 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2994 */ 2995 anon_exclusive = PageAnonExclusive(page); 2996 if (freeze && anon_exclusive && 2997 folio_try_share_anon_rmap_pmd(folio, page)) 2998 freeze = false; 2999 if (!freeze) { 3000 rmap_t rmap_flags = RMAP_NONE; 3001 3002 folio_ref_add(folio, HPAGE_PMD_NR - 1); 3003 if (anon_exclusive) 3004 rmap_flags |= RMAP_EXCLUSIVE; 3005 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 3006 vma, haddr, rmap_flags); 3007 } 3008 } 3009 3010 /* 3011 * Withdraw the table only after we mark the pmd entry invalid. 3012 * This's critical for some architectures (Power). 3013 */ 3014 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 3015 pmd_populate(mm, &_pmd, pgtable); 3016 3017 pte = pte_offset_map(&_pmd, haddr); 3018 VM_BUG_ON(!pte); 3019 3020 /* 3021 * Note that NUMA hinting access restrictions are not transferred to 3022 * avoid any possibility of altering permissions across VMAs. 3023 */ 3024 if (freeze || pmd_migration) { 3025 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 3026 pte_t entry; 3027 swp_entry_t swp_entry; 3028 3029 if (write) 3030 swp_entry = make_writable_migration_entry( 3031 page_to_pfn(page + i)); 3032 else if (anon_exclusive) 3033 swp_entry = make_readable_exclusive_migration_entry( 3034 page_to_pfn(page + i)); 3035 else 3036 swp_entry = make_readable_migration_entry( 3037 page_to_pfn(page + i)); 3038 if (young) 3039 swp_entry = make_migration_entry_young(swp_entry); 3040 if (dirty) 3041 swp_entry = make_migration_entry_dirty(swp_entry); 3042 entry = swp_entry_to_pte(swp_entry); 3043 if (soft_dirty) 3044 entry = pte_swp_mksoft_dirty(entry); 3045 if (uffd_wp) 3046 entry = pte_swp_mkuffd_wp(entry); 3047 3048 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 3049 set_pte_at(mm, addr, pte + i, entry); 3050 } 3051 } else { 3052 pte_t entry; 3053 3054 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); 3055 if (write) 3056 entry = pte_mkwrite(entry, vma); 3057 if (!young) 3058 entry = pte_mkold(entry); 3059 /* NOTE: this may set soft-dirty too on some archs */ 3060 if (dirty) 3061 entry = pte_mkdirty(entry); 3062 if (soft_dirty) 3063 entry = pte_mksoft_dirty(entry); 3064 if (uffd_wp) 3065 entry = pte_mkuffd_wp(entry); 3066 3067 for (i = 0; i < HPAGE_PMD_NR; i++) 3068 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 3069 3070 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); 3071 } 3072 pte_unmap(pte); 3073 3074 if (!pmd_migration) 3075 folio_remove_rmap_pmd(folio, page, vma); 3076 if (freeze) 3077 put_page(page); 3078 3079 smp_wmb(); /* make pte visible before pmd */ 3080 pmd_populate(mm, pmd, pgtable); 3081 } 3082 3083 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 3084 pmd_t *pmd, bool freeze) 3085 { 3086 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE)); 3087 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 3088 is_pmd_migration_entry(*pmd)) 3089 __split_huge_pmd_locked(vma, pmd, address, freeze); 3090 } 3091 3092 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 3093 unsigned long address, bool freeze) 3094 { 3095 spinlock_t *ptl; 3096 struct mmu_notifier_range range; 3097 3098 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 3099 address & HPAGE_PMD_MASK, 3100 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 3101 mmu_notifier_invalidate_range_start(&range); 3102 ptl = pmd_lock(vma->vm_mm, pmd); 3103 split_huge_pmd_locked(vma, range.start, pmd, freeze); 3104 spin_unlock(ptl); 3105 mmu_notifier_invalidate_range_end(&range); 3106 } 3107 3108 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 3109 bool freeze) 3110 { 3111 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 3112 3113 if (!pmd) 3114 return; 3115 3116 __split_huge_pmd(vma, pmd, address, freeze); 3117 } 3118 3119 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 3120 { 3121 /* 3122 * If the new address isn't hpage aligned and it could previously 3123 * contain an hugepage: check if we need to split an huge pmd. 3124 */ 3125 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 3126 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 3127 ALIGN(address, HPAGE_PMD_SIZE))) 3128 split_huge_pmd_address(vma, address, false); 3129 } 3130 3131 void vma_adjust_trans_huge(struct vm_area_struct *vma, 3132 unsigned long start, 3133 unsigned long end, 3134 struct vm_area_struct *next) 3135 { 3136 /* Check if we need to split start first. */ 3137 split_huge_pmd_if_needed(vma, start); 3138 3139 /* Check if we need to split end next. */ 3140 split_huge_pmd_if_needed(vma, end); 3141 3142 /* If we're incrementing next->vm_start, we might need to split it. */ 3143 if (next) 3144 split_huge_pmd_if_needed(next, end); 3145 } 3146 3147 static void unmap_folio(struct folio *folio) 3148 { 3149 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | 3150 TTU_BATCH_FLUSH; 3151 3152 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3153 3154 if (folio_test_pmd_mappable(folio)) 3155 ttu_flags |= TTU_SPLIT_HUGE_PMD; 3156 3157 /* 3158 * Anon pages need migration entries to preserve them, but file 3159 * pages can simply be left unmapped, then faulted back on demand. 3160 * If that is ever changed (perhaps for mlock), update remap_page(). 3161 */ 3162 if (folio_test_anon(folio)) 3163 try_to_migrate(folio, ttu_flags); 3164 else 3165 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 3166 3167 try_to_unmap_flush(); 3168 } 3169 3170 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma, 3171 unsigned long addr, pmd_t *pmdp, 3172 struct folio *folio) 3173 { 3174 struct mm_struct *mm = vma->vm_mm; 3175 int ref_count, map_count; 3176 pmd_t orig_pmd = *pmdp; 3177 3178 if (pmd_dirty(orig_pmd)) 3179 folio_set_dirty(folio); 3180 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 3181 folio_set_swapbacked(folio); 3182 return false; 3183 } 3184 3185 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp); 3186 3187 /* 3188 * Syncing against concurrent GUP-fast: 3189 * - clear PMD; barrier; read refcount 3190 * - inc refcount; barrier; read PMD 3191 */ 3192 smp_mb(); 3193 3194 ref_count = folio_ref_count(folio); 3195 map_count = folio_mapcount(folio); 3196 3197 /* 3198 * Order reads for folio refcount and dirty flag 3199 * (see comments in __remove_mapping()). 3200 */ 3201 smp_rmb(); 3202 3203 /* 3204 * If the folio or its PMD is redirtied at this point, or if there 3205 * are unexpected references, we will give up to discard this folio 3206 * and remap it. 3207 * 3208 * The only folio refs must be one from isolation plus the rmap(s). 3209 */ 3210 if (pmd_dirty(orig_pmd)) 3211 folio_set_dirty(folio); 3212 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 3213 folio_set_swapbacked(folio); 3214 set_pmd_at(mm, addr, pmdp, orig_pmd); 3215 return false; 3216 } 3217 3218 if (ref_count != map_count + 1) { 3219 set_pmd_at(mm, addr, pmdp, orig_pmd); 3220 return false; 3221 } 3222 3223 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma); 3224 zap_deposited_table(mm, pmdp); 3225 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR); 3226 if (vma->vm_flags & VM_LOCKED) 3227 mlock_drain_local(); 3228 folio_put(folio); 3229 3230 return true; 3231 } 3232 3233 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 3234 pmd_t *pmdp, struct folio *folio) 3235 { 3236 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio); 3237 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 3238 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 3239 VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio); 3240 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE)); 3241 3242 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio); 3243 } 3244 3245 static void remap_page(struct folio *folio, unsigned long nr, int flags) 3246 { 3247 int i = 0; 3248 3249 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 3250 if (!folio_test_anon(folio)) 3251 return; 3252 for (;;) { 3253 remove_migration_ptes(folio, folio, RMP_LOCKED | flags); 3254 i += folio_nr_pages(folio); 3255 if (i >= nr) 3256 break; 3257 folio = folio_next(folio); 3258 } 3259 } 3260 3261 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio, 3262 struct lruvec *lruvec, struct list_head *list) 3263 { 3264 VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio); 3265 lockdep_assert_held(&lruvec->lru_lock); 3266 3267 if (list) { 3268 /* page reclaim is reclaiming a huge page */ 3269 VM_WARN_ON(folio_test_lru(folio)); 3270 folio_get(new_folio); 3271 list_add_tail(&new_folio->lru, list); 3272 } else { 3273 /* head is still on lru (and we have it frozen) */ 3274 VM_WARN_ON(!folio_test_lru(folio)); 3275 if (folio_test_unevictable(folio)) 3276 new_folio->mlock_count = 0; 3277 else 3278 list_add_tail(&new_folio->lru, &folio->lru); 3279 folio_set_lru(new_folio); 3280 } 3281 } 3282 3283 /* Racy check whether the huge page can be split */ 3284 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins) 3285 { 3286 int extra_pins; 3287 3288 /* Additional pins from page cache */ 3289 if (folio_test_anon(folio)) 3290 extra_pins = folio_test_swapcache(folio) ? 3291 folio_nr_pages(folio) : 0; 3292 else 3293 extra_pins = folio_nr_pages(folio); 3294 if (pextra_pins) 3295 *pextra_pins = extra_pins; 3296 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 3297 caller_pins; 3298 } 3299 3300 /* 3301 * It splits @folio into @new_order folios and copies the @folio metadata to 3302 * all the resulting folios. 3303 */ 3304 static void __split_folio_to_order(struct folio *folio, int old_order, 3305 int new_order) 3306 { 3307 long new_nr_pages = 1 << new_order; 3308 long nr_pages = 1 << old_order; 3309 long i; 3310 3311 /* 3312 * Skip the first new_nr_pages, since the new folio from them have all 3313 * the flags from the original folio. 3314 */ 3315 for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) { 3316 struct page *new_head = &folio->page + i; 3317 3318 /* 3319 * Careful: new_folio is not a "real" folio before we cleared PageTail. 3320 * Don't pass it around before clear_compound_head(). 3321 */ 3322 struct folio *new_folio = (struct folio *)new_head; 3323 3324 VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head); 3325 3326 /* 3327 * Clone page flags before unfreezing refcount. 3328 * 3329 * After successful get_page_unless_zero() might follow flags change, 3330 * for example lock_page() which set PG_waiters. 3331 * 3332 * Note that for mapped sub-pages of an anonymous THP, 3333 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 3334 * the migration entry instead from where remap_page() will restore it. 3335 * We can still have PG_anon_exclusive set on effectively unmapped and 3336 * unreferenced sub-pages of an anonymous THP: we can simply drop 3337 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 3338 */ 3339 new_folio->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 3340 new_folio->flags |= (folio->flags & 3341 ((1L << PG_referenced) | 3342 (1L << PG_swapbacked) | 3343 (1L << PG_swapcache) | 3344 (1L << PG_mlocked) | 3345 (1L << PG_uptodate) | 3346 (1L << PG_active) | 3347 (1L << PG_workingset) | 3348 (1L << PG_locked) | 3349 (1L << PG_unevictable) | 3350 #ifdef CONFIG_ARCH_USES_PG_ARCH_2 3351 (1L << PG_arch_2) | 3352 #endif 3353 #ifdef CONFIG_ARCH_USES_PG_ARCH_3 3354 (1L << PG_arch_3) | 3355 #endif 3356 (1L << PG_dirty) | 3357 LRU_GEN_MASK | LRU_REFS_MASK)); 3358 3359 new_folio->mapping = folio->mapping; 3360 new_folio->index = folio->index + i; 3361 3362 /* 3363 * page->private should not be set in tail pages. Fix up and warn once 3364 * if private is unexpectedly set. 3365 */ 3366 if (unlikely(new_folio->private)) { 3367 VM_WARN_ON_ONCE_PAGE(true, new_head); 3368 new_folio->private = NULL; 3369 } 3370 3371 if (folio_test_swapcache(folio)) 3372 new_folio->swap.val = folio->swap.val + i; 3373 3374 /* Page flags must be visible before we make the page non-compound. */ 3375 smp_wmb(); 3376 3377 /* 3378 * Clear PageTail before unfreezing page refcount. 3379 * 3380 * After successful get_page_unless_zero() might follow put_page() 3381 * which needs correct compound_head(). 3382 */ 3383 clear_compound_head(new_head); 3384 if (new_order) { 3385 prep_compound_page(new_head, new_order); 3386 folio_set_large_rmappable(new_folio); 3387 } 3388 3389 if (folio_test_young(folio)) 3390 folio_set_young(new_folio); 3391 if (folio_test_idle(folio)) 3392 folio_set_idle(new_folio); 3393 #ifdef CONFIG_MEMCG 3394 new_folio->memcg_data = folio->memcg_data; 3395 #endif 3396 3397 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 3398 } 3399 3400 if (new_order) 3401 folio_set_order(folio, new_order); 3402 else 3403 ClearPageCompound(&folio->page); 3404 } 3405 3406 /* 3407 * It splits an unmapped @folio to lower order smaller folios in two ways. 3408 * @folio: the to-be-split folio 3409 * @new_order: the smallest order of the after split folios (since buddy 3410 * allocator like split generates folios with orders from @folio's 3411 * order - 1 to new_order). 3412 * @split_at: in buddy allocator like split, the folio containing @split_at 3413 * will be split until its order becomes @new_order. 3414 * @lock_at: the folio containing @lock_at is left locked for caller. 3415 * @list: the after split folios will be added to @list if it is not NULL, 3416 * otherwise to LRU lists. 3417 * @end: the end of the file @folio maps to. -1 if @folio is anonymous memory. 3418 * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller 3419 * @mapping: @folio->mapping 3420 * @uniform_split: if the split is uniform or not (buddy allocator like split) 3421 * 3422 * 3423 * 1. uniform split: the given @folio into multiple @new_order small folios, 3424 * where all small folios have the same order. This is done when 3425 * uniform_split is true. 3426 * 2. buddy allocator like (non-uniform) split: the given @folio is split into 3427 * half and one of the half (containing the given page) is split into half 3428 * until the given @page's order becomes @new_order. This is done when 3429 * uniform_split is false. 3430 * 3431 * The high level flow for these two methods are: 3432 * 1. uniform split: a single __split_folio_to_order() is called to split the 3433 * @folio into @new_order, then we traverse all the resulting folios one by 3434 * one in PFN ascending order and perform stats, unfreeze, adding to list, 3435 * and file mapping index operations. 3436 * 2. non-uniform split: in general, folio_order - @new_order calls to 3437 * __split_folio_to_order() are made in a for loop to split the @folio 3438 * to one lower order at a time. The resulting small folios are processed 3439 * like what is done during the traversal in 1, except the one containing 3440 * @page, which is split in next for loop. 3441 * 3442 * After splitting, the caller's folio reference will be transferred to the 3443 * folio containing @page. The other folios may be freed if they are not mapped. 3444 * 3445 * In terms of locking, after splitting, 3446 * 1. uniform split leaves @page (or the folio contains it) locked; 3447 * 2. buddy allocator like (non-uniform) split leaves @folio locked. 3448 * 3449 * 3450 * For !uniform_split, when -ENOMEM is returned, the original folio might be 3451 * split. The caller needs to check the input folio. 3452 */ 3453 static int __split_unmapped_folio(struct folio *folio, int new_order, 3454 struct page *split_at, struct page *lock_at, 3455 struct list_head *list, pgoff_t end, 3456 struct xa_state *xas, struct address_space *mapping, 3457 bool uniform_split) 3458 { 3459 struct lruvec *lruvec; 3460 struct address_space *swap_cache = NULL; 3461 struct folio *origin_folio = folio; 3462 struct folio *next_folio = folio_next(folio); 3463 struct folio *new_folio; 3464 struct folio *next; 3465 int order = folio_order(folio); 3466 int split_order; 3467 int start_order = uniform_split ? new_order : order - 1; 3468 int nr_dropped = 0; 3469 int ret = 0; 3470 bool stop_split = false; 3471 3472 if (folio_test_swapcache(folio)) { 3473 VM_BUG_ON(mapping); 3474 3475 /* a swapcache folio can only be uniformly split to order-0 */ 3476 if (!uniform_split || new_order != 0) 3477 return -EINVAL; 3478 3479 swap_cache = swap_address_space(folio->swap); 3480 xa_lock(&swap_cache->i_pages); 3481 } 3482 3483 if (folio_test_anon(folio)) 3484 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 3485 3486 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 3487 lruvec = folio_lruvec_lock(folio); 3488 3489 folio_clear_has_hwpoisoned(folio); 3490 3491 /* 3492 * split to new_order one order at a time. For uniform split, 3493 * folio is split to new_order directly. 3494 */ 3495 for (split_order = start_order; 3496 split_order >= new_order && !stop_split; 3497 split_order--) { 3498 int old_order = folio_order(folio); 3499 struct folio *release; 3500 struct folio *end_folio = folio_next(folio); 3501 3502 /* order-1 anonymous folio is not supported */ 3503 if (folio_test_anon(folio) && split_order == 1) 3504 continue; 3505 if (uniform_split && split_order != new_order) 3506 continue; 3507 3508 if (mapping) { 3509 /* 3510 * uniform split has xas_split_alloc() called before 3511 * irq is disabled to allocate enough memory, whereas 3512 * non-uniform split can handle ENOMEM. 3513 */ 3514 if (uniform_split) 3515 xas_split(xas, folio, old_order); 3516 else { 3517 xas_set_order(xas, folio->index, split_order); 3518 xas_try_split(xas, folio, old_order); 3519 if (xas_error(xas)) { 3520 ret = xas_error(xas); 3521 stop_split = true; 3522 goto after_split; 3523 } 3524 } 3525 } 3526 3527 folio_split_memcg_refs(folio, old_order, split_order); 3528 split_page_owner(&folio->page, old_order, split_order); 3529 pgalloc_tag_split(folio, old_order, split_order); 3530 3531 __split_folio_to_order(folio, old_order, split_order); 3532 3533 after_split: 3534 /* 3535 * Iterate through after-split folios and perform related 3536 * operations. But in buddy allocator like split, the folio 3537 * containing the specified page is skipped until its order 3538 * is new_order, since the folio will be worked on in next 3539 * iteration. 3540 */ 3541 for (release = folio; release != end_folio; release = next) { 3542 next = folio_next(release); 3543 /* 3544 * for buddy allocator like split, the folio containing 3545 * page will be split next and should not be released, 3546 * until the folio's order is new_order or stop_split 3547 * is set to true by the above xas_split() failure. 3548 */ 3549 if (release == page_folio(split_at)) { 3550 folio = release; 3551 if (split_order != new_order && !stop_split) 3552 continue; 3553 } 3554 if (folio_test_anon(release)) { 3555 mod_mthp_stat(folio_order(release), 3556 MTHP_STAT_NR_ANON, 1); 3557 } 3558 3559 /* 3560 * origin_folio should be kept frozon until page cache 3561 * entries are updated with all the other after-split 3562 * folios to prevent others seeing stale page cache 3563 * entries. 3564 */ 3565 if (release == origin_folio) 3566 continue; 3567 3568 folio_ref_unfreeze(release, 1 + 3569 ((mapping || swap_cache) ? 3570 folio_nr_pages(release) : 0)); 3571 3572 lru_add_split_folio(origin_folio, release, lruvec, 3573 list); 3574 3575 /* Some pages can be beyond EOF: drop them from cache */ 3576 if (release->index >= end) { 3577 if (shmem_mapping(mapping)) 3578 nr_dropped += folio_nr_pages(release); 3579 else if (folio_test_clear_dirty(release)) 3580 folio_account_cleaned(release, 3581 inode_to_wb(mapping->host)); 3582 __filemap_remove_folio(release, NULL); 3583 folio_put_refs(release, folio_nr_pages(release)); 3584 } else if (mapping) { 3585 __xa_store(&mapping->i_pages, 3586 release->index, release, 0); 3587 } else if (swap_cache) { 3588 __xa_store(&swap_cache->i_pages, 3589 swap_cache_index(release->swap), 3590 release, 0); 3591 } 3592 } 3593 } 3594 3595 /* 3596 * Unfreeze origin_folio only after all page cache entries, which used 3597 * to point to it, have been updated with new folios. Otherwise, 3598 * a parallel folio_try_get() can grab origin_folio and its caller can 3599 * see stale page cache entries. 3600 */ 3601 folio_ref_unfreeze(origin_folio, 1 + 3602 ((mapping || swap_cache) ? folio_nr_pages(origin_folio) : 0)); 3603 3604 unlock_page_lruvec(lruvec); 3605 3606 if (swap_cache) 3607 xa_unlock(&swap_cache->i_pages); 3608 if (mapping) 3609 xa_unlock(&mapping->i_pages); 3610 3611 /* Caller disabled irqs, so they are still disabled here */ 3612 local_irq_enable(); 3613 3614 if (nr_dropped) 3615 shmem_uncharge(mapping->host, nr_dropped); 3616 3617 remap_page(origin_folio, 1 << order, 3618 folio_test_anon(origin_folio) ? 3619 RMP_USE_SHARED_ZEROPAGE : 0); 3620 3621 /* 3622 * At this point, folio should contain the specified page. 3623 * For uniform split, it is left for caller to unlock. 3624 * For buddy allocator like split, the first after-split folio is left 3625 * for caller to unlock. 3626 */ 3627 for (new_folio = origin_folio; new_folio != next_folio; new_folio = next) { 3628 next = folio_next(new_folio); 3629 if (new_folio == page_folio(lock_at)) 3630 continue; 3631 3632 folio_unlock(new_folio); 3633 /* 3634 * Subpages may be freed if there wasn't any mapping 3635 * like if add_to_swap() is running on a lru page that 3636 * had its mapping zapped. And freeing these pages 3637 * requires taking the lru_lock so we do the put_page 3638 * of the tail pages after the split is complete. 3639 */ 3640 free_folio_and_swap_cache(new_folio); 3641 } 3642 return ret; 3643 } 3644 3645 bool non_uniform_split_supported(struct folio *folio, unsigned int new_order, 3646 bool warns) 3647 { 3648 if (folio_test_anon(folio)) { 3649 /* order-1 is not supported for anonymous THP. */ 3650 VM_WARN_ONCE(warns && new_order == 1, 3651 "Cannot split to order-1 folio"); 3652 return new_order != 1; 3653 } else if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 3654 !mapping_large_folio_support(folio->mapping)) { 3655 /* 3656 * No split if the file system does not support large folio. 3657 * Note that we might still have THPs in such mappings due to 3658 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping 3659 * does not actually support large folios properly. 3660 */ 3661 VM_WARN_ONCE(warns, 3662 "Cannot split file folio to non-0 order"); 3663 return false; 3664 } 3665 3666 /* Only swapping a whole PMD-mapped folio is supported */ 3667 if (folio_test_swapcache(folio)) { 3668 VM_WARN_ONCE(warns, 3669 "Cannot split swapcache folio to non-0 order"); 3670 return false; 3671 } 3672 3673 return true; 3674 } 3675 3676 /* See comments in non_uniform_split_supported() */ 3677 bool uniform_split_supported(struct folio *folio, unsigned int new_order, 3678 bool warns) 3679 { 3680 if (folio_test_anon(folio)) { 3681 VM_WARN_ONCE(warns && new_order == 1, 3682 "Cannot split to order-1 folio"); 3683 return new_order != 1; 3684 } else if (new_order) { 3685 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 3686 !mapping_large_folio_support(folio->mapping)) { 3687 VM_WARN_ONCE(warns, 3688 "Cannot split file folio to non-0 order"); 3689 return false; 3690 } 3691 } 3692 3693 if (new_order && folio_test_swapcache(folio)) { 3694 VM_WARN_ONCE(warns, 3695 "Cannot split swapcache folio to non-0 order"); 3696 return false; 3697 } 3698 3699 return true; 3700 } 3701 3702 /* 3703 * __folio_split: split a folio at @split_at to a @new_order folio 3704 * @folio: folio to split 3705 * @new_order: the order of the new folio 3706 * @split_at: a page within the new folio 3707 * @lock_at: a page within @folio to be left locked to caller 3708 * @list: after-split folios will be put on it if non NULL 3709 * @uniform_split: perform uniform split or not (non-uniform split) 3710 * 3711 * It calls __split_unmapped_folio() to perform uniform and non-uniform split. 3712 * It is in charge of checking whether the split is supported or not and 3713 * preparing @folio for __split_unmapped_folio(). 3714 * 3715 * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be 3716 * split but not to @new_order, the caller needs to check) 3717 */ 3718 static int __folio_split(struct folio *folio, unsigned int new_order, 3719 struct page *split_at, struct page *lock_at, 3720 struct list_head *list, bool uniform_split) 3721 { 3722 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3723 XA_STATE(xas, &folio->mapping->i_pages, folio->index); 3724 bool is_anon = folio_test_anon(folio); 3725 struct address_space *mapping = NULL; 3726 struct anon_vma *anon_vma = NULL; 3727 int order = folio_order(folio); 3728 int extra_pins, ret; 3729 pgoff_t end; 3730 bool is_hzp; 3731 3732 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3733 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3734 3735 if (folio != page_folio(split_at) || folio != page_folio(lock_at)) 3736 return -EINVAL; 3737 3738 if (new_order >= folio_order(folio)) 3739 return -EINVAL; 3740 3741 if (uniform_split && !uniform_split_supported(folio, new_order, true)) 3742 return -EINVAL; 3743 3744 if (!uniform_split && 3745 !non_uniform_split_supported(folio, new_order, true)) 3746 return -EINVAL; 3747 3748 is_hzp = is_huge_zero_folio(folio); 3749 if (is_hzp) { 3750 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 3751 return -EBUSY; 3752 } 3753 3754 if (folio_test_writeback(folio)) 3755 return -EBUSY; 3756 3757 if (is_anon) { 3758 /* 3759 * The caller does not necessarily hold an mmap_lock that would 3760 * prevent the anon_vma disappearing so we first we take a 3761 * reference to it and then lock the anon_vma for write. This 3762 * is similar to folio_lock_anon_vma_read except the write lock 3763 * is taken to serialise against parallel split or collapse 3764 * operations. 3765 */ 3766 anon_vma = folio_get_anon_vma(folio); 3767 if (!anon_vma) { 3768 ret = -EBUSY; 3769 goto out; 3770 } 3771 end = -1; 3772 mapping = NULL; 3773 anon_vma_lock_write(anon_vma); 3774 } else { 3775 unsigned int min_order; 3776 gfp_t gfp; 3777 3778 mapping = folio->mapping; 3779 3780 /* Truncated ? */ 3781 /* 3782 * TODO: add support for large shmem folio in swap cache. 3783 * When shmem is in swap cache, mapping is NULL and 3784 * folio_test_swapcache() is true. 3785 */ 3786 if (!mapping) { 3787 ret = -EBUSY; 3788 goto out; 3789 } 3790 3791 min_order = mapping_min_folio_order(folio->mapping); 3792 if (new_order < min_order) { 3793 VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u", 3794 min_order); 3795 ret = -EINVAL; 3796 goto out; 3797 } 3798 3799 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3800 GFP_RECLAIM_MASK); 3801 3802 if (!filemap_release_folio(folio, gfp)) { 3803 ret = -EBUSY; 3804 goto out; 3805 } 3806 3807 if (uniform_split) { 3808 xas_set_order(&xas, folio->index, new_order); 3809 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3810 if (xas_error(&xas)) { 3811 ret = xas_error(&xas); 3812 goto out; 3813 } 3814 } 3815 3816 anon_vma = NULL; 3817 i_mmap_lock_read(mapping); 3818 3819 /* 3820 *__split_unmapped_folio() may need to trim off pages beyond 3821 * EOF: but on 32-bit, i_size_read() takes an irq-unsafe 3822 * seqlock, which cannot be nested inside the page tree lock. 3823 * So note end now: i_size itself may be changed at any moment, 3824 * but folio lock is good enough to serialize the trimming. 3825 */ 3826 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3827 if (shmem_mapping(mapping)) 3828 end = shmem_fallocend(mapping->host, end); 3829 } 3830 3831 /* 3832 * Racy check if we can split the page, before unmap_folio() will 3833 * split PMDs 3834 */ 3835 if (!can_split_folio(folio, 1, &extra_pins)) { 3836 ret = -EAGAIN; 3837 goto out_unlock; 3838 } 3839 3840 unmap_folio(folio); 3841 3842 /* block interrupt reentry in xa_lock and spinlock */ 3843 local_irq_disable(); 3844 if (mapping) { 3845 /* 3846 * Check if the folio is present in page cache. 3847 * We assume all tail are present too, if folio is there. 3848 */ 3849 xas_lock(&xas); 3850 xas_reset(&xas); 3851 if (xas_load(&xas) != folio) 3852 goto fail; 3853 } 3854 3855 /* Prevent deferred_split_scan() touching ->_refcount */ 3856 spin_lock(&ds_queue->split_queue_lock); 3857 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3858 if (folio_order(folio) > 1 && 3859 !list_empty(&folio->_deferred_list)) { 3860 ds_queue->split_queue_len--; 3861 if (folio_test_partially_mapped(folio)) { 3862 folio_clear_partially_mapped(folio); 3863 mod_mthp_stat(folio_order(folio), 3864 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 3865 } 3866 /* 3867 * Reinitialize page_deferred_list after removing the 3868 * page from the split_queue, otherwise a subsequent 3869 * split will see list corruption when checking the 3870 * page_deferred_list. 3871 */ 3872 list_del_init(&folio->_deferred_list); 3873 } 3874 spin_unlock(&ds_queue->split_queue_lock); 3875 if (mapping) { 3876 int nr = folio_nr_pages(folio); 3877 3878 if (folio_test_pmd_mappable(folio) && 3879 new_order < HPAGE_PMD_ORDER) { 3880 if (folio_test_swapbacked(folio)) { 3881 __lruvec_stat_mod_folio(folio, 3882 NR_SHMEM_THPS, -nr); 3883 } else { 3884 __lruvec_stat_mod_folio(folio, 3885 NR_FILE_THPS, -nr); 3886 filemap_nr_thps_dec(mapping); 3887 } 3888 } 3889 } 3890 3891 ret = __split_unmapped_folio(folio, new_order, 3892 split_at, lock_at, list, end, &xas, mapping, 3893 uniform_split); 3894 } else { 3895 spin_unlock(&ds_queue->split_queue_lock); 3896 fail: 3897 if (mapping) 3898 xas_unlock(&xas); 3899 local_irq_enable(); 3900 remap_page(folio, folio_nr_pages(folio), 0); 3901 ret = -EAGAIN; 3902 } 3903 3904 out_unlock: 3905 if (anon_vma) { 3906 anon_vma_unlock_write(anon_vma); 3907 put_anon_vma(anon_vma); 3908 } 3909 if (mapping) 3910 i_mmap_unlock_read(mapping); 3911 out: 3912 xas_destroy(&xas); 3913 if (order == HPAGE_PMD_ORDER) 3914 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3915 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED); 3916 return ret; 3917 } 3918 3919 /* 3920 * This function splits a large folio into smaller folios of order @new_order. 3921 * @page can point to any page of the large folio to split. The split operation 3922 * does not change the position of @page. 3923 * 3924 * Prerequisites: 3925 * 3926 * 1) The caller must hold a reference on the @page's owning folio, also known 3927 * as the large folio. 3928 * 3929 * 2) The large folio must be locked. 3930 * 3931 * 3) The folio must not be pinned. Any unexpected folio references, including 3932 * GUP pins, will result in the folio not getting split; instead, the caller 3933 * will receive an -EAGAIN. 3934 * 3935 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not 3936 * supported for non-file-backed folios, because folio->_deferred_list, which 3937 * is used by partially mapped folios, is stored in subpage 2, but an order-1 3938 * folio only has subpages 0 and 1. File-backed order-1 folios are supported, 3939 * since they do not use _deferred_list. 3940 * 3941 * After splitting, the caller's folio reference will be transferred to @page, 3942 * resulting in a raised refcount of @page after this call. The other pages may 3943 * be freed if they are not mapped. 3944 * 3945 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 3946 * 3947 * Pages in @new_order will inherit the mapping, flags, and so on from the 3948 * huge page. 3949 * 3950 * Returns 0 if the huge page was split successfully. 3951 * 3952 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if 3953 * the folio was concurrently removed from the page cache. 3954 * 3955 * Returns -EBUSY when trying to split the huge zeropage, if the folio is 3956 * under writeback, if fs-specific folio metadata cannot currently be 3957 * released, or if some unexpected race happened (e.g., anon VMA disappeared, 3958 * truncation). 3959 * 3960 * Callers should ensure that the order respects the address space mapping 3961 * min-order if one is set for non-anonymous folios. 3962 * 3963 * Returns -EINVAL when trying to split to an order that is incompatible 3964 * with the folio. Splitting to order 0 is compatible with all folios. 3965 */ 3966 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 3967 unsigned int new_order) 3968 { 3969 struct folio *folio = page_folio(page); 3970 3971 return __folio_split(folio, new_order, &folio->page, page, list, true); 3972 } 3973 3974 /* 3975 * folio_split: split a folio at @split_at to a @new_order folio 3976 * @folio: folio to split 3977 * @new_order: the order of the new folio 3978 * @split_at: a page within the new folio 3979 * 3980 * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be 3981 * split but not to @new_order, the caller needs to check) 3982 * 3983 * It has the same prerequisites and returns as 3984 * split_huge_page_to_list_to_order(). 3985 * 3986 * Split a folio at @split_at to a new_order folio, leave the 3987 * remaining subpages of the original folio as large as possible. For example, 3988 * in the case of splitting an order-9 folio at its third order-3 subpages to 3989 * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio. 3990 * After the split, there will be a group of folios with different orders and 3991 * the new folio containing @split_at is marked in bracket: 3992 * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8]. 3993 * 3994 * After split, folio is left locked for caller. 3995 */ 3996 int folio_split(struct folio *folio, unsigned int new_order, 3997 struct page *split_at, struct list_head *list) 3998 { 3999 return __folio_split(folio, new_order, split_at, &folio->page, list, 4000 false); 4001 } 4002 4003 int min_order_for_split(struct folio *folio) 4004 { 4005 if (folio_test_anon(folio)) 4006 return 0; 4007 4008 if (!folio->mapping) { 4009 if (folio_test_pmd_mappable(folio)) 4010 count_vm_event(THP_SPLIT_PAGE_FAILED); 4011 return -EBUSY; 4012 } 4013 4014 return mapping_min_folio_order(folio->mapping); 4015 } 4016 4017 int split_folio_to_list(struct folio *folio, struct list_head *list) 4018 { 4019 int ret = min_order_for_split(folio); 4020 4021 if (ret < 0) 4022 return ret; 4023 4024 return split_huge_page_to_list_to_order(&folio->page, list, ret); 4025 } 4026 4027 /* 4028 * __folio_unqueue_deferred_split() is not to be called directly: 4029 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h 4030 * limits its calls to those folios which may have a _deferred_list for 4031 * queueing THP splits, and that list is (racily observed to be) non-empty. 4032 * 4033 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is 4034 * zero: because even when split_queue_lock is held, a non-empty _deferred_list 4035 * might be in use on deferred_split_scan()'s unlocked on-stack list. 4036 * 4037 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is 4038 * therefore important to unqueue deferred split before changing folio memcg. 4039 */ 4040 bool __folio_unqueue_deferred_split(struct folio *folio) 4041 { 4042 struct deferred_split *ds_queue; 4043 unsigned long flags; 4044 bool unqueued = false; 4045 4046 WARN_ON_ONCE(folio_ref_count(folio)); 4047 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio)); 4048 4049 ds_queue = get_deferred_split_queue(folio); 4050 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 4051 if (!list_empty(&folio->_deferred_list)) { 4052 ds_queue->split_queue_len--; 4053 if (folio_test_partially_mapped(folio)) { 4054 folio_clear_partially_mapped(folio); 4055 mod_mthp_stat(folio_order(folio), 4056 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 4057 } 4058 list_del_init(&folio->_deferred_list); 4059 unqueued = true; 4060 } 4061 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 4062 4063 return unqueued; /* useful for debug warnings */ 4064 } 4065 4066 /* partially_mapped=false won't clear PG_partially_mapped folio flag */ 4067 void deferred_split_folio(struct folio *folio, bool partially_mapped) 4068 { 4069 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 4070 #ifdef CONFIG_MEMCG 4071 struct mem_cgroup *memcg = folio_memcg(folio); 4072 #endif 4073 unsigned long flags; 4074 4075 /* 4076 * Order 1 folios have no space for a deferred list, but we also 4077 * won't waste much memory by not adding them to the deferred list. 4078 */ 4079 if (folio_order(folio) <= 1) 4080 return; 4081 4082 if (!partially_mapped && !split_underused_thp) 4083 return; 4084 4085 /* 4086 * Exclude swapcache: originally to avoid a corrupt deferred split 4087 * queue. Nowadays that is fully prevented by memcg1_swapout(); 4088 * but if page reclaim is already handling the same folio, it is 4089 * unnecessary to handle it again in the shrinker, so excluding 4090 * swapcache here may still be a useful optimization. 4091 */ 4092 if (folio_test_swapcache(folio)) 4093 return; 4094 4095 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 4096 if (partially_mapped) { 4097 if (!folio_test_partially_mapped(folio)) { 4098 folio_set_partially_mapped(folio); 4099 if (folio_test_pmd_mappable(folio)) 4100 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 4101 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED); 4102 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1); 4103 4104 } 4105 } else { 4106 /* partially mapped folios cannot become non-partially mapped */ 4107 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio); 4108 } 4109 if (list_empty(&folio->_deferred_list)) { 4110 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 4111 ds_queue->split_queue_len++; 4112 #ifdef CONFIG_MEMCG 4113 if (memcg) 4114 set_shrinker_bit(memcg, folio_nid(folio), 4115 deferred_split_shrinker->id); 4116 #endif 4117 } 4118 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 4119 } 4120 4121 static unsigned long deferred_split_count(struct shrinker *shrink, 4122 struct shrink_control *sc) 4123 { 4124 struct pglist_data *pgdata = NODE_DATA(sc->nid); 4125 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 4126 4127 #ifdef CONFIG_MEMCG 4128 if (sc->memcg) 4129 ds_queue = &sc->memcg->deferred_split_queue; 4130 #endif 4131 return READ_ONCE(ds_queue->split_queue_len); 4132 } 4133 4134 static bool thp_underused(struct folio *folio) 4135 { 4136 int num_zero_pages = 0, num_filled_pages = 0; 4137 void *kaddr; 4138 int i; 4139 4140 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1) 4141 return false; 4142 4143 for (i = 0; i < folio_nr_pages(folio); i++) { 4144 kaddr = kmap_local_folio(folio, i * PAGE_SIZE); 4145 if (!memchr_inv(kaddr, 0, PAGE_SIZE)) { 4146 num_zero_pages++; 4147 if (num_zero_pages > khugepaged_max_ptes_none) { 4148 kunmap_local(kaddr); 4149 return true; 4150 } 4151 } else { 4152 /* 4153 * Another path for early exit once the number 4154 * of non-zero filled pages exceeds threshold. 4155 */ 4156 num_filled_pages++; 4157 if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) { 4158 kunmap_local(kaddr); 4159 return false; 4160 } 4161 } 4162 kunmap_local(kaddr); 4163 } 4164 return false; 4165 } 4166 4167 static unsigned long deferred_split_scan(struct shrinker *shrink, 4168 struct shrink_control *sc) 4169 { 4170 struct pglist_data *pgdata = NODE_DATA(sc->nid); 4171 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 4172 unsigned long flags; 4173 LIST_HEAD(list); 4174 struct folio *folio, *next, *prev = NULL; 4175 int split = 0, removed = 0; 4176 4177 #ifdef CONFIG_MEMCG 4178 if (sc->memcg) 4179 ds_queue = &sc->memcg->deferred_split_queue; 4180 #endif 4181 4182 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 4183 /* Take pin on all head pages to avoid freeing them under us */ 4184 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 4185 _deferred_list) { 4186 if (folio_try_get(folio)) { 4187 list_move(&folio->_deferred_list, &list); 4188 } else { 4189 /* We lost race with folio_put() */ 4190 if (folio_test_partially_mapped(folio)) { 4191 folio_clear_partially_mapped(folio); 4192 mod_mthp_stat(folio_order(folio), 4193 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 4194 } 4195 list_del_init(&folio->_deferred_list); 4196 ds_queue->split_queue_len--; 4197 } 4198 if (!--sc->nr_to_scan) 4199 break; 4200 } 4201 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 4202 4203 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 4204 bool did_split = false; 4205 bool underused = false; 4206 4207 if (!folio_test_partially_mapped(folio)) { 4208 underused = thp_underused(folio); 4209 if (!underused) 4210 goto next; 4211 } 4212 if (!folio_trylock(folio)) 4213 goto next; 4214 if (!split_folio(folio)) { 4215 did_split = true; 4216 if (underused) 4217 count_vm_event(THP_UNDERUSED_SPLIT_PAGE); 4218 split++; 4219 } 4220 folio_unlock(folio); 4221 next: 4222 /* 4223 * split_folio() removes folio from list on success. 4224 * Only add back to the queue if folio is partially mapped. 4225 * If thp_underused returns false, or if split_folio fails 4226 * in the case it was underused, then consider it used and 4227 * don't add it back to split_queue. 4228 */ 4229 if (did_split) { 4230 ; /* folio already removed from list */ 4231 } else if (!folio_test_partially_mapped(folio)) { 4232 list_del_init(&folio->_deferred_list); 4233 removed++; 4234 } else { 4235 /* 4236 * That unlocked list_del_init() above would be unsafe, 4237 * unless its folio is separated from any earlier folios 4238 * left on the list (which may be concurrently unqueued) 4239 * by one safe folio with refcount still raised. 4240 */ 4241 swap(folio, prev); 4242 } 4243 if (folio) 4244 folio_put(folio); 4245 } 4246 4247 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 4248 list_splice_tail(&list, &ds_queue->split_queue); 4249 ds_queue->split_queue_len -= removed; 4250 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 4251 4252 if (prev) 4253 folio_put(prev); 4254 4255 /* 4256 * Stop shrinker if we didn't split any page, but the queue is empty. 4257 * This can happen if pages were freed under us. 4258 */ 4259 if (!split && list_empty(&ds_queue->split_queue)) 4260 return SHRINK_STOP; 4261 return split; 4262 } 4263 4264 #ifdef CONFIG_DEBUG_FS 4265 static void split_huge_pages_all(void) 4266 { 4267 struct zone *zone; 4268 struct page *page; 4269 struct folio *folio; 4270 unsigned long pfn, max_zone_pfn; 4271 unsigned long total = 0, split = 0; 4272 4273 pr_debug("Split all THPs\n"); 4274 for_each_zone(zone) { 4275 if (!managed_zone(zone)) 4276 continue; 4277 max_zone_pfn = zone_end_pfn(zone); 4278 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 4279 int nr_pages; 4280 4281 page = pfn_to_online_page(pfn); 4282 if (!page || PageTail(page)) 4283 continue; 4284 folio = page_folio(page); 4285 if (!folio_try_get(folio)) 4286 continue; 4287 4288 if (unlikely(page_folio(page) != folio)) 4289 goto next; 4290 4291 if (zone != folio_zone(folio)) 4292 goto next; 4293 4294 if (!folio_test_large(folio) 4295 || folio_test_hugetlb(folio) 4296 || !folio_test_lru(folio)) 4297 goto next; 4298 4299 total++; 4300 folio_lock(folio); 4301 nr_pages = folio_nr_pages(folio); 4302 if (!split_folio(folio)) 4303 split++; 4304 pfn += nr_pages - 1; 4305 folio_unlock(folio); 4306 next: 4307 folio_put(folio); 4308 cond_resched(); 4309 } 4310 } 4311 4312 pr_debug("%lu of %lu THP split\n", split, total); 4313 } 4314 4315 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 4316 { 4317 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 4318 is_vm_hugetlb_page(vma); 4319 } 4320 4321 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 4322 unsigned long vaddr_end, unsigned int new_order, 4323 long in_folio_offset) 4324 { 4325 int ret = 0; 4326 struct task_struct *task; 4327 struct mm_struct *mm; 4328 unsigned long total = 0, split = 0; 4329 unsigned long addr; 4330 4331 vaddr_start &= PAGE_MASK; 4332 vaddr_end &= PAGE_MASK; 4333 4334 task = find_get_task_by_vpid(pid); 4335 if (!task) { 4336 ret = -ESRCH; 4337 goto out; 4338 } 4339 4340 /* Find the mm_struct */ 4341 mm = get_task_mm(task); 4342 put_task_struct(task); 4343 4344 if (!mm) { 4345 ret = -EINVAL; 4346 goto out; 4347 } 4348 4349 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 4350 pid, vaddr_start, vaddr_end); 4351 4352 mmap_read_lock(mm); 4353 /* 4354 * always increase addr by PAGE_SIZE, since we could have a PTE page 4355 * table filled with PTE-mapped THPs, each of which is distinct. 4356 */ 4357 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 4358 struct vm_area_struct *vma = vma_lookup(mm, addr); 4359 struct folio_walk fw; 4360 struct folio *folio; 4361 struct address_space *mapping; 4362 unsigned int target_order = new_order; 4363 4364 if (!vma) 4365 break; 4366 4367 /* skip special VMA and hugetlb VMA */ 4368 if (vma_not_suitable_for_thp_split(vma)) { 4369 addr = vma->vm_end; 4370 continue; 4371 } 4372 4373 folio = folio_walk_start(&fw, vma, addr, 0); 4374 if (!folio) 4375 continue; 4376 4377 if (!is_transparent_hugepage(folio)) 4378 goto next; 4379 4380 if (!folio_test_anon(folio)) { 4381 mapping = folio->mapping; 4382 target_order = max(new_order, 4383 mapping_min_folio_order(mapping)); 4384 } 4385 4386 if (target_order >= folio_order(folio)) 4387 goto next; 4388 4389 total++; 4390 /* 4391 * For folios with private, split_huge_page_to_list_to_order() 4392 * will try to drop it before split and then check if the folio 4393 * can be split or not. So skip the check here. 4394 */ 4395 if (!folio_test_private(folio) && 4396 !can_split_folio(folio, 0, NULL)) 4397 goto next; 4398 4399 if (!folio_trylock(folio)) 4400 goto next; 4401 folio_get(folio); 4402 folio_walk_end(&fw, vma); 4403 4404 if (!folio_test_anon(folio) && folio->mapping != mapping) 4405 goto unlock; 4406 4407 if (in_folio_offset < 0 || 4408 in_folio_offset >= folio_nr_pages(folio)) { 4409 if (!split_folio_to_order(folio, target_order)) 4410 split++; 4411 } else { 4412 struct page *split_at = folio_page(folio, 4413 in_folio_offset); 4414 if (!folio_split(folio, target_order, split_at, NULL)) 4415 split++; 4416 } 4417 4418 unlock: 4419 4420 folio_unlock(folio); 4421 folio_put(folio); 4422 4423 cond_resched(); 4424 continue; 4425 next: 4426 folio_walk_end(&fw, vma); 4427 cond_resched(); 4428 } 4429 mmap_read_unlock(mm); 4430 mmput(mm); 4431 4432 pr_debug("%lu of %lu THP split\n", split, total); 4433 4434 out: 4435 return ret; 4436 } 4437 4438 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 4439 pgoff_t off_end, unsigned int new_order, 4440 long in_folio_offset) 4441 { 4442 struct filename *file; 4443 struct file *candidate; 4444 struct address_space *mapping; 4445 int ret = -EINVAL; 4446 pgoff_t index; 4447 int nr_pages = 1; 4448 unsigned long total = 0, split = 0; 4449 unsigned int min_order; 4450 unsigned int target_order; 4451 4452 file = getname_kernel(file_path); 4453 if (IS_ERR(file)) 4454 return ret; 4455 4456 candidate = file_open_name(file, O_RDONLY, 0); 4457 if (IS_ERR(candidate)) 4458 goto out; 4459 4460 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 4461 file_path, off_start, off_end); 4462 4463 mapping = candidate->f_mapping; 4464 min_order = mapping_min_folio_order(mapping); 4465 target_order = max(new_order, min_order); 4466 4467 for (index = off_start; index < off_end; index += nr_pages) { 4468 struct folio *folio = filemap_get_folio(mapping, index); 4469 4470 nr_pages = 1; 4471 if (IS_ERR(folio)) 4472 continue; 4473 4474 if (!folio_test_large(folio)) 4475 goto next; 4476 4477 total++; 4478 nr_pages = folio_nr_pages(folio); 4479 4480 if (target_order >= folio_order(folio)) 4481 goto next; 4482 4483 if (!folio_trylock(folio)) 4484 goto next; 4485 4486 if (folio->mapping != mapping) 4487 goto unlock; 4488 4489 if (in_folio_offset < 0 || in_folio_offset >= nr_pages) { 4490 if (!split_folio_to_order(folio, target_order)) 4491 split++; 4492 } else { 4493 struct page *split_at = folio_page(folio, 4494 in_folio_offset); 4495 if (!folio_split(folio, target_order, split_at, NULL)) 4496 split++; 4497 } 4498 4499 unlock: 4500 folio_unlock(folio); 4501 next: 4502 folio_put(folio); 4503 cond_resched(); 4504 } 4505 4506 filp_close(candidate, NULL); 4507 ret = 0; 4508 4509 pr_debug("%lu of %lu file-backed THP split\n", split, total); 4510 out: 4511 putname(file); 4512 return ret; 4513 } 4514 4515 #define MAX_INPUT_BUF_SZ 255 4516 4517 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 4518 size_t count, loff_t *ppops) 4519 { 4520 static DEFINE_MUTEX(split_debug_mutex); 4521 ssize_t ret; 4522 /* 4523 * hold pid, start_vaddr, end_vaddr, new_order or 4524 * file_path, off_start, off_end, new_order 4525 */ 4526 char input_buf[MAX_INPUT_BUF_SZ]; 4527 int pid; 4528 unsigned long vaddr_start, vaddr_end; 4529 unsigned int new_order = 0; 4530 long in_folio_offset = -1; 4531 4532 ret = mutex_lock_interruptible(&split_debug_mutex); 4533 if (ret) 4534 return ret; 4535 4536 ret = -EFAULT; 4537 4538 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 4539 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 4540 goto out; 4541 4542 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 4543 4544 if (input_buf[0] == '/') { 4545 char *tok; 4546 char *tok_buf = input_buf; 4547 char file_path[MAX_INPUT_BUF_SZ]; 4548 pgoff_t off_start = 0, off_end = 0; 4549 size_t input_len = strlen(input_buf); 4550 4551 tok = strsep(&tok_buf, ","); 4552 if (tok && tok_buf) { 4553 strscpy(file_path, tok); 4554 } else { 4555 ret = -EINVAL; 4556 goto out; 4557 } 4558 4559 ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end, 4560 &new_order, &in_folio_offset); 4561 if (ret != 2 && ret != 3 && ret != 4) { 4562 ret = -EINVAL; 4563 goto out; 4564 } 4565 ret = split_huge_pages_in_file(file_path, off_start, off_end, 4566 new_order, in_folio_offset); 4567 if (!ret) 4568 ret = input_len; 4569 4570 goto out; 4571 } 4572 4573 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start, 4574 &vaddr_end, &new_order, &in_folio_offset); 4575 if (ret == 1 && pid == 1) { 4576 split_huge_pages_all(); 4577 ret = strlen(input_buf); 4578 goto out; 4579 } else if (ret != 3 && ret != 4 && ret != 5) { 4580 ret = -EINVAL; 4581 goto out; 4582 } 4583 4584 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order, 4585 in_folio_offset); 4586 if (!ret) 4587 ret = strlen(input_buf); 4588 out: 4589 mutex_unlock(&split_debug_mutex); 4590 return ret; 4591 4592 } 4593 4594 static const struct file_operations split_huge_pages_fops = { 4595 .owner = THIS_MODULE, 4596 .write = split_huge_pages_write, 4597 }; 4598 4599 static int __init split_huge_pages_debugfs(void) 4600 { 4601 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 4602 &split_huge_pages_fops); 4603 return 0; 4604 } 4605 late_initcall(split_huge_pages_debugfs); 4606 #endif 4607 4608 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 4609 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 4610 struct page *page) 4611 { 4612 struct folio *folio = page_folio(page); 4613 struct vm_area_struct *vma = pvmw->vma; 4614 struct mm_struct *mm = vma->vm_mm; 4615 unsigned long address = pvmw->address; 4616 bool anon_exclusive; 4617 pmd_t pmdval; 4618 swp_entry_t entry; 4619 pmd_t pmdswp; 4620 4621 if (!(pvmw->pmd && !pvmw->pte)) 4622 return 0; 4623 4624 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 4625 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 4626 4627 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 4628 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 4629 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 4630 set_pmd_at(mm, address, pvmw->pmd, pmdval); 4631 return -EBUSY; 4632 } 4633 4634 if (pmd_dirty(pmdval)) 4635 folio_mark_dirty(folio); 4636 if (pmd_write(pmdval)) 4637 entry = make_writable_migration_entry(page_to_pfn(page)); 4638 else if (anon_exclusive) 4639 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 4640 else 4641 entry = make_readable_migration_entry(page_to_pfn(page)); 4642 if (pmd_young(pmdval)) 4643 entry = make_migration_entry_young(entry); 4644 if (pmd_dirty(pmdval)) 4645 entry = make_migration_entry_dirty(entry); 4646 pmdswp = swp_entry_to_pmd(entry); 4647 if (pmd_soft_dirty(pmdval)) 4648 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 4649 if (pmd_uffd_wp(pmdval)) 4650 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 4651 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 4652 folio_remove_rmap_pmd(folio, page, vma); 4653 folio_put(folio); 4654 trace_set_migration_pmd(address, pmd_val(pmdswp)); 4655 4656 return 0; 4657 } 4658 4659 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 4660 { 4661 struct folio *folio = page_folio(new); 4662 struct vm_area_struct *vma = pvmw->vma; 4663 struct mm_struct *mm = vma->vm_mm; 4664 unsigned long address = pvmw->address; 4665 unsigned long haddr = address & HPAGE_PMD_MASK; 4666 pmd_t pmde; 4667 swp_entry_t entry; 4668 4669 if (!(pvmw->pmd && !pvmw->pte)) 4670 return; 4671 4672 entry = pmd_to_swp_entry(*pvmw->pmd); 4673 folio_get(folio); 4674 pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot)); 4675 if (pmd_swp_soft_dirty(*pvmw->pmd)) 4676 pmde = pmd_mksoft_dirty(pmde); 4677 if (is_writable_migration_entry(entry)) 4678 pmde = pmd_mkwrite(pmde, vma); 4679 if (pmd_swp_uffd_wp(*pvmw->pmd)) 4680 pmde = pmd_mkuffd_wp(pmde); 4681 if (!is_migration_entry_young(entry)) 4682 pmde = pmd_mkold(pmde); 4683 /* NOTE: this may contain setting soft-dirty on some archs */ 4684 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 4685 pmde = pmd_mkdirty(pmde); 4686 4687 if (folio_test_anon(folio)) { 4688 rmap_t rmap_flags = RMAP_NONE; 4689 4690 if (!is_readable_migration_entry(entry)) 4691 rmap_flags |= RMAP_EXCLUSIVE; 4692 4693 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 4694 } else { 4695 folio_add_file_rmap_pmd(folio, new, vma); 4696 } 4697 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 4698 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 4699 4700 /* No need to invalidate - it was non-present before */ 4701 update_mmu_cache_pmd(vma, address, pvmw->pmd); 4702 trace_remove_migration_pmd(address, pmd_val(pmde)); 4703 } 4704 #endif 4705