1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause 2 /* 3 * Copyright (c) Meta Platforms, Inc. and affiliates. 4 * All rights reserved. 5 * 6 * This source code is licensed under both the BSD-style license (found in the 7 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 8 * in the COPYING file in the root directory of this source tree). 9 * You may select, at your option, one of the above-listed licenses. 10 */ 11 12 #include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */ 13 #include "zstd_fast.h" 14 15 static 16 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR 17 void ZSTD_fillHashTableForCDict(ZSTD_MatchState_t* ms, 18 const void* const end, 19 ZSTD_dictTableLoadMethod_e dtlm) 20 { 21 const ZSTD_compressionParameters* const cParams = &ms->cParams; 22 U32* const hashTable = ms->hashTable; 23 U32 const hBits = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS; 24 U32 const mls = cParams->minMatch; 25 const BYTE* const base = ms->window.base; 26 const BYTE* ip = base + ms->nextToUpdate; 27 const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; 28 const U32 fastHashFillStep = 3; 29 30 /* Currently, we always use ZSTD_dtlm_full for filling CDict tables. 31 * Feel free to remove this assert if there's a good reason! */ 32 assert(dtlm == ZSTD_dtlm_full); 33 34 /* Always insert every fastHashFillStep position into the hash table. 35 * Insert the other positions if their hash entry is empty. 36 */ 37 for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) { 38 U32 const curr = (U32)(ip - base); 39 { size_t const hashAndTag = ZSTD_hashPtr(ip, hBits, mls); 40 ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr); } 41 42 if (dtlm == ZSTD_dtlm_fast) continue; 43 /* Only load extra positions for ZSTD_dtlm_full */ 44 { U32 p; 45 for (p = 1; p < fastHashFillStep; ++p) { 46 size_t const hashAndTag = ZSTD_hashPtr(ip + p, hBits, mls); 47 if (hashTable[hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) { /* not yet filled */ 48 ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr + p); 49 } } } } 50 } 51 52 static 53 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR 54 void ZSTD_fillHashTableForCCtx(ZSTD_MatchState_t* ms, 55 const void* const end, 56 ZSTD_dictTableLoadMethod_e dtlm) 57 { 58 const ZSTD_compressionParameters* const cParams = &ms->cParams; 59 U32* const hashTable = ms->hashTable; 60 U32 const hBits = cParams->hashLog; 61 U32 const mls = cParams->minMatch; 62 const BYTE* const base = ms->window.base; 63 const BYTE* ip = base + ms->nextToUpdate; 64 const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; 65 const U32 fastHashFillStep = 3; 66 67 /* Currently, we always use ZSTD_dtlm_fast for filling CCtx tables. 68 * Feel free to remove this assert if there's a good reason! */ 69 assert(dtlm == ZSTD_dtlm_fast); 70 71 /* Always insert every fastHashFillStep position into the hash table. 72 * Insert the other positions if their hash entry is empty. 73 */ 74 for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) { 75 U32 const curr = (U32)(ip - base); 76 size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls); 77 hashTable[hash0] = curr; 78 if (dtlm == ZSTD_dtlm_fast) continue; 79 /* Only load extra positions for ZSTD_dtlm_full */ 80 { U32 p; 81 for (p = 1; p < fastHashFillStep; ++p) { 82 size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls); 83 if (hashTable[hash] == 0) { /* not yet filled */ 84 hashTable[hash] = curr + p; 85 } } } } 86 } 87 88 void ZSTD_fillHashTable(ZSTD_MatchState_t* ms, 89 const void* const end, 90 ZSTD_dictTableLoadMethod_e dtlm, 91 ZSTD_tableFillPurpose_e tfp) 92 { 93 if (tfp == ZSTD_tfp_forCDict) { 94 ZSTD_fillHashTableForCDict(ms, end, dtlm); 95 } else { 96 ZSTD_fillHashTableForCCtx(ms, end, dtlm); 97 } 98 } 99 100 101 typedef int (*ZSTD_match4Found) (const BYTE* currentPtr, const BYTE* matchAddress, U32 matchIdx, U32 idxLowLimit); 102 103 static int 104 ZSTD_match4Found_cmov(const BYTE* currentPtr, const BYTE* matchAddress, U32 matchIdx, U32 idxLowLimit) 105 { 106 /* Array of ~random data, should have low probability of matching data. 107 * Load from here if the index is invalid. 108 * Used to avoid unpredictable branches. */ 109 static const BYTE dummy[] = {0x12,0x34,0x56,0x78}; 110 111 /* currentIdx >= lowLimit is a (somewhat) unpredictable branch. 112 * However expression below compiles into conditional move. 113 */ 114 const BYTE* mvalAddr = ZSTD_selectAddr(matchIdx, idxLowLimit, matchAddress, dummy); 115 /* Note: this used to be written as : return test1 && test2; 116 * Unfortunately, once inlined, these tests become branches, 117 * in which case it becomes critical that they are executed in the right order (test1 then test2). 118 * So we have to write these tests in a specific manner to ensure their ordering. 119 */ 120 if (MEM_read32(currentPtr) != MEM_read32(mvalAddr)) return 0; 121 /* force ordering of these tests, which matters once the function is inlined, as they become branches */ 122 __asm__(""); 123 return matchIdx >= idxLowLimit; 124 } 125 126 static int 127 ZSTD_match4Found_branch(const BYTE* currentPtr, const BYTE* matchAddress, U32 matchIdx, U32 idxLowLimit) 128 { 129 /* using a branch instead of a cmov, 130 * because it's faster in scenarios where matchIdx >= idxLowLimit is generally true, 131 * aka almost all candidates are within range */ 132 U32 mval; 133 if (matchIdx >= idxLowLimit) { 134 mval = MEM_read32(matchAddress); 135 } else { 136 mval = MEM_read32(currentPtr) ^ 1; /* guaranteed to not match. */ 137 } 138 139 return (MEM_read32(currentPtr) == mval); 140 } 141 142 143 /* 144 * If you squint hard enough (and ignore repcodes), the search operation at any 145 * given position is broken into 4 stages: 146 * 147 * 1. Hash (map position to hash value via input read) 148 * 2. Lookup (map hash val to index via hashtable read) 149 * 3. Load (map index to value at that position via input read) 150 * 4. Compare 151 * 152 * Each of these steps involves a memory read at an address which is computed 153 * from the previous step. This means these steps must be sequenced and their 154 * latencies are cumulative. 155 * 156 * Rather than do 1->2->3->4 sequentially for a single position before moving 157 * onto the next, this implementation interleaves these operations across the 158 * next few positions: 159 * 160 * R = Repcode Read & Compare 161 * H = Hash 162 * T = Table Lookup 163 * M = Match Read & Compare 164 * 165 * Pos | Time --> 166 * ----+------------------- 167 * N | ... M 168 * N+1 | ... TM 169 * N+2 | R H T M 170 * N+3 | H TM 171 * N+4 | R H T M 172 * N+5 | H ... 173 * N+6 | R ... 174 * 175 * This is very much analogous to the pipelining of execution in a CPU. And just 176 * like a CPU, we have to dump the pipeline when we find a match (i.e., take a 177 * branch). 178 * 179 * When this happens, we throw away our current state, and do the following prep 180 * to re-enter the loop: 181 * 182 * Pos | Time --> 183 * ----+------------------- 184 * N | H T 185 * N+1 | H 186 * 187 * This is also the work we do at the beginning to enter the loop initially. 188 */ 189 FORCE_INLINE_TEMPLATE 190 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR 191 size_t ZSTD_compressBlock_fast_noDict_generic( 192 ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], 193 void const* src, size_t srcSize, 194 U32 const mls, int useCmov) 195 { 196 const ZSTD_compressionParameters* const cParams = &ms->cParams; 197 U32* const hashTable = ms->hashTable; 198 U32 const hlog = cParams->hashLog; 199 size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1; /* min 2 */ 200 const BYTE* const base = ms->window.base; 201 const BYTE* const istart = (const BYTE*)src; 202 const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); 203 const U32 prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog); 204 const BYTE* const prefixStart = base + prefixStartIndex; 205 const BYTE* const iend = istart + srcSize; 206 const BYTE* const ilimit = iend - HASH_READ_SIZE; 207 208 const BYTE* anchor = istart; 209 const BYTE* ip0 = istart; 210 const BYTE* ip1; 211 const BYTE* ip2; 212 const BYTE* ip3; 213 U32 current0; 214 215 U32 rep_offset1 = rep[0]; 216 U32 rep_offset2 = rep[1]; 217 U32 offsetSaved1 = 0, offsetSaved2 = 0; 218 219 size_t hash0; /* hash for ip0 */ 220 size_t hash1; /* hash for ip1 */ 221 U32 matchIdx; /* match idx for ip0 */ 222 223 U32 offcode; 224 const BYTE* match0; 225 size_t mLength; 226 227 /* ip0 and ip1 are always adjacent. The targetLength skipping and 228 * uncompressibility acceleration is applied to every other position, 229 * matching the behavior of #1562. step therefore represents the gap 230 * between pairs of positions, from ip0 to ip2 or ip1 to ip3. */ 231 size_t step; 232 const BYTE* nextStep; 233 const size_t kStepIncr = (1 << (kSearchStrength - 1)); 234 const ZSTD_match4Found matchFound = useCmov ? ZSTD_match4Found_cmov : ZSTD_match4Found_branch; 235 236 DEBUGLOG(5, "ZSTD_compressBlock_fast_generic"); 237 ip0 += (ip0 == prefixStart); 238 { U32 const curr = (U32)(ip0 - base); 239 U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog); 240 U32 const maxRep = curr - windowLow; 241 if (rep_offset2 > maxRep) offsetSaved2 = rep_offset2, rep_offset2 = 0; 242 if (rep_offset1 > maxRep) offsetSaved1 = rep_offset1, rep_offset1 = 0; 243 } 244 245 /* start each op */ 246 _start: /* Requires: ip0 */ 247 248 step = stepSize; 249 nextStep = ip0 + kStepIncr; 250 251 /* calculate positions, ip0 - anchor == 0, so we skip step calc */ 252 ip1 = ip0 + 1; 253 ip2 = ip0 + step; 254 ip3 = ip2 + 1; 255 256 if (ip3 >= ilimit) { 257 goto _cleanup; 258 } 259 260 hash0 = ZSTD_hashPtr(ip0, hlog, mls); 261 hash1 = ZSTD_hashPtr(ip1, hlog, mls); 262 263 matchIdx = hashTable[hash0]; 264 265 do { 266 /* load repcode match for ip[2]*/ 267 const U32 rval = MEM_read32(ip2 - rep_offset1); 268 269 /* write back hash table entry */ 270 current0 = (U32)(ip0 - base); 271 hashTable[hash0] = current0; 272 273 /* check repcode at ip[2] */ 274 if ((MEM_read32(ip2) == rval) & (rep_offset1 > 0)) { 275 ip0 = ip2; 276 match0 = ip0 - rep_offset1; 277 mLength = ip0[-1] == match0[-1]; 278 ip0 -= mLength; 279 match0 -= mLength; 280 offcode = REPCODE1_TO_OFFBASE; 281 mLength += 4; 282 283 /* Write next hash table entry: it's already calculated. 284 * This write is known to be safe because ip1 is before the 285 * repcode (ip2). */ 286 hashTable[hash1] = (U32)(ip1 - base); 287 288 goto _match; 289 } 290 291 if (matchFound(ip0, base + matchIdx, matchIdx, prefixStartIndex)) { 292 /* Write next hash table entry (it's already calculated). 293 * This write is known to be safe because the ip1 == ip0 + 1, 294 * so searching will resume after ip1 */ 295 hashTable[hash1] = (U32)(ip1 - base); 296 297 goto _offset; 298 } 299 300 /* lookup ip[1] */ 301 matchIdx = hashTable[hash1]; 302 303 /* hash ip[2] */ 304 hash0 = hash1; 305 hash1 = ZSTD_hashPtr(ip2, hlog, mls); 306 307 /* advance to next positions */ 308 ip0 = ip1; 309 ip1 = ip2; 310 ip2 = ip3; 311 312 /* write back hash table entry */ 313 current0 = (U32)(ip0 - base); 314 hashTable[hash0] = current0; 315 316 if (matchFound(ip0, base + matchIdx, matchIdx, prefixStartIndex)) { 317 /* Write next hash table entry, since it's already calculated */ 318 if (step <= 4) { 319 /* Avoid writing an index if it's >= position where search will resume. 320 * The minimum possible match has length 4, so search can resume at ip0 + 4. 321 */ 322 hashTable[hash1] = (U32)(ip1 - base); 323 } 324 goto _offset; 325 } 326 327 /* lookup ip[1] */ 328 matchIdx = hashTable[hash1]; 329 330 /* hash ip[2] */ 331 hash0 = hash1; 332 hash1 = ZSTD_hashPtr(ip2, hlog, mls); 333 334 /* advance to next positions */ 335 ip0 = ip1; 336 ip1 = ip2; 337 ip2 = ip0 + step; 338 ip3 = ip1 + step; 339 340 /* calculate step */ 341 if (ip2 >= nextStep) { 342 step++; 343 PREFETCH_L1(ip1 + 64); 344 PREFETCH_L1(ip1 + 128); 345 nextStep += kStepIncr; 346 } 347 } while (ip3 < ilimit); 348 349 _cleanup: 350 /* Note that there are probably still a couple positions one could search. 351 * However, it seems to be a meaningful performance hit to try to search 352 * them. So let's not. */ 353 354 /* When the repcodes are outside of the prefix, we set them to zero before the loop. 355 * When the offsets are still zero, we need to restore them after the block to have a correct 356 * repcode history. If only one offset was invalid, it is easy. The tricky case is when both 357 * offsets were invalid. We need to figure out which offset to refill with. 358 * - If both offsets are zero they are in the same order. 359 * - If both offsets are non-zero, we won't restore the offsets from `offsetSaved[12]`. 360 * - If only one is zero, we need to decide which offset to restore. 361 * - If rep_offset1 is non-zero, then rep_offset2 must be offsetSaved1. 362 * - It is impossible for rep_offset2 to be non-zero. 363 * 364 * So if rep_offset1 started invalid (offsetSaved1 != 0) and became valid (rep_offset1 != 0), then 365 * set rep[0] = rep_offset1 and rep[1] = offsetSaved1. 366 */ 367 offsetSaved2 = ((offsetSaved1 != 0) && (rep_offset1 != 0)) ? offsetSaved1 : offsetSaved2; 368 369 /* save reps for next block */ 370 rep[0] = rep_offset1 ? rep_offset1 : offsetSaved1; 371 rep[1] = rep_offset2 ? rep_offset2 : offsetSaved2; 372 373 /* Return the last literals size */ 374 return (size_t)(iend - anchor); 375 376 _offset: /* Requires: ip0, idx */ 377 378 /* Compute the offset code. */ 379 match0 = base + matchIdx; 380 rep_offset2 = rep_offset1; 381 rep_offset1 = (U32)(ip0-match0); 382 offcode = OFFSET_TO_OFFBASE(rep_offset1); 383 mLength = 4; 384 385 /* Count the backwards match length. */ 386 while (((ip0>anchor) & (match0>prefixStart)) && (ip0[-1] == match0[-1])) { 387 ip0--; 388 match0--; 389 mLength++; 390 } 391 392 _match: /* Requires: ip0, match0, offcode */ 393 394 /* Count the forward length. */ 395 mLength += ZSTD_count(ip0 + mLength, match0 + mLength, iend); 396 397 ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength); 398 399 ip0 += mLength; 400 anchor = ip0; 401 402 /* Fill table and check for immediate repcode. */ 403 if (ip0 <= ilimit) { 404 /* Fill Table */ 405 assert(base+current0+2 > istart); /* check base overflow */ 406 hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */ 407 hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); 408 409 if (rep_offset2 > 0) { /* rep_offset2==0 means rep_offset2 is invalidated */ 410 while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - rep_offset2)) ) { 411 /* store sequence */ 412 size_t const rLength = ZSTD_count(ip0+4, ip0+4-rep_offset2, iend) + 4; 413 { U32 const tmpOff = rep_offset2; rep_offset2 = rep_offset1; rep_offset1 = tmpOff; } /* swap rep_offset2 <=> rep_offset1 */ 414 hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base); 415 ip0 += rLength; 416 ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, REPCODE1_TO_OFFBASE, rLength); 417 anchor = ip0; 418 continue; /* faster when present (confirmed on gcc-8) ... (?) */ 419 } } } 420 421 goto _start; 422 } 423 424 #define ZSTD_GEN_FAST_FN(dictMode, mml, cmov) \ 425 static size_t ZSTD_compressBlock_fast_##dictMode##_##mml##_##cmov( \ 426 ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \ 427 void const* src, size_t srcSize) \ 428 { \ 429 return ZSTD_compressBlock_fast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mml, cmov); \ 430 } 431 432 ZSTD_GEN_FAST_FN(noDict, 4, 1) 433 ZSTD_GEN_FAST_FN(noDict, 5, 1) 434 ZSTD_GEN_FAST_FN(noDict, 6, 1) 435 ZSTD_GEN_FAST_FN(noDict, 7, 1) 436 437 ZSTD_GEN_FAST_FN(noDict, 4, 0) 438 ZSTD_GEN_FAST_FN(noDict, 5, 0) 439 ZSTD_GEN_FAST_FN(noDict, 6, 0) 440 ZSTD_GEN_FAST_FN(noDict, 7, 0) 441 442 size_t ZSTD_compressBlock_fast( 443 ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], 444 void const* src, size_t srcSize) 445 { 446 U32 const mml = ms->cParams.minMatch; 447 /* use cmov when "candidate in range" branch is likely unpredictable */ 448 int const useCmov = ms->cParams.windowLog < 19; 449 assert(ms->dictMatchState == NULL); 450 if (useCmov) { 451 switch(mml) 452 { 453 default: /* includes case 3 */ 454 case 4 : 455 return ZSTD_compressBlock_fast_noDict_4_1(ms, seqStore, rep, src, srcSize); 456 case 5 : 457 return ZSTD_compressBlock_fast_noDict_5_1(ms, seqStore, rep, src, srcSize); 458 case 6 : 459 return ZSTD_compressBlock_fast_noDict_6_1(ms, seqStore, rep, src, srcSize); 460 case 7 : 461 return ZSTD_compressBlock_fast_noDict_7_1(ms, seqStore, rep, src, srcSize); 462 } 463 } else { 464 /* use a branch instead */ 465 switch(mml) 466 { 467 default: /* includes case 3 */ 468 case 4 : 469 return ZSTD_compressBlock_fast_noDict_4_0(ms, seqStore, rep, src, srcSize); 470 case 5 : 471 return ZSTD_compressBlock_fast_noDict_5_0(ms, seqStore, rep, src, srcSize); 472 case 6 : 473 return ZSTD_compressBlock_fast_noDict_6_0(ms, seqStore, rep, src, srcSize); 474 case 7 : 475 return ZSTD_compressBlock_fast_noDict_7_0(ms, seqStore, rep, src, srcSize); 476 } 477 } 478 } 479 480 FORCE_INLINE_TEMPLATE 481 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR 482 size_t ZSTD_compressBlock_fast_dictMatchState_generic( 483 ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], 484 void const* src, size_t srcSize, U32 const mls, U32 const hasStep) 485 { 486 const ZSTD_compressionParameters* const cParams = &ms->cParams; 487 U32* const hashTable = ms->hashTable; 488 U32 const hlog = cParams->hashLog; 489 /* support stepSize of 0 */ 490 U32 const stepSize = cParams->targetLength + !(cParams->targetLength); 491 const BYTE* const base = ms->window.base; 492 const BYTE* const istart = (const BYTE*)src; 493 const BYTE* ip0 = istart; 494 const BYTE* ip1 = ip0 + stepSize; /* we assert below that stepSize >= 1 */ 495 const BYTE* anchor = istart; 496 const U32 prefixStartIndex = ms->window.dictLimit; 497 const BYTE* const prefixStart = base + prefixStartIndex; 498 const BYTE* const iend = istart + srcSize; 499 const BYTE* const ilimit = iend - HASH_READ_SIZE; 500 U32 offset_1=rep[0], offset_2=rep[1]; 501 502 const ZSTD_MatchState_t* const dms = ms->dictMatchState; 503 const ZSTD_compressionParameters* const dictCParams = &dms->cParams ; 504 const U32* const dictHashTable = dms->hashTable; 505 const U32 dictStartIndex = dms->window.dictLimit; 506 const BYTE* const dictBase = dms->window.base; 507 const BYTE* const dictStart = dictBase + dictStartIndex; 508 const BYTE* const dictEnd = dms->window.nextSrc; 509 const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase); 510 const U32 dictAndPrefixLength = (U32)(istart - prefixStart + dictEnd - dictStart); 511 const U32 dictHBits = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS; 512 513 /* if a dictionary is still attached, it necessarily means that 514 * it is within window size. So we just check it. */ 515 const U32 maxDistance = 1U << cParams->windowLog; 516 const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); 517 assert(endIndex - prefixStartIndex <= maxDistance); 518 (void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */ 519 520 (void)hasStep; /* not currently specialized on whether it's accelerated */ 521 522 /* ensure there will be no underflow 523 * when translating a dict index into a local index */ 524 assert(prefixStartIndex >= (U32)(dictEnd - dictBase)); 525 526 if (ms->prefetchCDictTables) { 527 size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32); 528 PREFETCH_AREA(dictHashTable, hashTableBytes); 529 } 530 531 /* init */ 532 DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic"); 533 ip0 += (dictAndPrefixLength == 0); 534 /* dictMatchState repCode checks don't currently handle repCode == 0 535 * disabling. */ 536 assert(offset_1 <= dictAndPrefixLength); 537 assert(offset_2 <= dictAndPrefixLength); 538 539 /* Outer search loop */ 540 assert(stepSize >= 1); 541 while (ip1 <= ilimit) { /* repcode check at (ip0 + 1) is safe because ip0 < ip1 */ 542 size_t mLength; 543 size_t hash0 = ZSTD_hashPtr(ip0, hlog, mls); 544 545 size_t const dictHashAndTag0 = ZSTD_hashPtr(ip0, dictHBits, mls); 546 U32 dictMatchIndexAndTag = dictHashTable[dictHashAndTag0 >> ZSTD_SHORT_CACHE_TAG_BITS]; 547 int dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag0); 548 549 U32 matchIndex = hashTable[hash0]; 550 U32 curr = (U32)(ip0 - base); 551 size_t step = stepSize; 552 const size_t kStepIncr = 1 << kSearchStrength; 553 const BYTE* nextStep = ip0 + kStepIncr; 554 555 /* Inner search loop */ 556 while (1) { 557 const BYTE* match = base + matchIndex; 558 const U32 repIndex = curr + 1 - offset_1; 559 const BYTE* repMatch = (repIndex < prefixStartIndex) ? 560 dictBase + (repIndex - dictIndexDelta) : 561 base + repIndex; 562 const size_t hash1 = ZSTD_hashPtr(ip1, hlog, mls); 563 size_t const dictHashAndTag1 = ZSTD_hashPtr(ip1, dictHBits, mls); 564 hashTable[hash0] = curr; /* update hash table */ 565 566 if ((ZSTD_index_overlap_check(prefixStartIndex, repIndex)) 567 && (MEM_read32(repMatch) == MEM_read32(ip0 + 1))) { 568 const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend; 569 mLength = ZSTD_count_2segments(ip0 + 1 + 4, repMatch + 4, iend, repMatchEnd, prefixStart) + 4; 570 ip0++; 571 ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength); 572 break; 573 } 574 575 if (dictTagsMatch) { 576 /* Found a possible dict match */ 577 const U32 dictMatchIndex = dictMatchIndexAndTag >> ZSTD_SHORT_CACHE_TAG_BITS; 578 const BYTE* dictMatch = dictBase + dictMatchIndex; 579 if (dictMatchIndex > dictStartIndex && 580 MEM_read32(dictMatch) == MEM_read32(ip0)) { 581 /* To replicate extDict parse behavior, we only use dict matches when the normal matchIndex is invalid */ 582 if (matchIndex <= prefixStartIndex) { 583 U32 const offset = (U32) (curr - dictMatchIndex - dictIndexDelta); 584 mLength = ZSTD_count_2segments(ip0 + 4, dictMatch + 4, iend, dictEnd, prefixStart) + 4; 585 while (((ip0 > anchor) & (dictMatch > dictStart)) 586 && (ip0[-1] == dictMatch[-1])) { 587 ip0--; 588 dictMatch--; 589 mLength++; 590 } /* catch up */ 591 offset_2 = offset_1; 592 offset_1 = offset; 593 ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); 594 break; 595 } 596 } 597 } 598 599 if (ZSTD_match4Found_cmov(ip0, match, matchIndex, prefixStartIndex)) { 600 /* found a regular match of size >= 4 */ 601 U32 const offset = (U32) (ip0 - match); 602 mLength = ZSTD_count(ip0 + 4, match + 4, iend) + 4; 603 while (((ip0 > anchor) & (match > prefixStart)) 604 && (ip0[-1] == match[-1])) { 605 ip0--; 606 match--; 607 mLength++; 608 } /* catch up */ 609 offset_2 = offset_1; 610 offset_1 = offset; 611 ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength); 612 break; 613 } 614 615 /* Prepare for next iteration */ 616 dictMatchIndexAndTag = dictHashTable[dictHashAndTag1 >> ZSTD_SHORT_CACHE_TAG_BITS]; 617 dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag1); 618 matchIndex = hashTable[hash1]; 619 620 if (ip1 >= nextStep) { 621 step++; 622 nextStep += kStepIncr; 623 } 624 ip0 = ip1; 625 ip1 = ip1 + step; 626 if (ip1 > ilimit) goto _cleanup; 627 628 curr = (U32)(ip0 - base); 629 hash0 = hash1; 630 } /* end inner search loop */ 631 632 /* match found */ 633 assert(mLength); 634 ip0 += mLength; 635 anchor = ip0; 636 637 if (ip0 <= ilimit) { 638 /* Fill Table */ 639 assert(base+curr+2 > istart); /* check base overflow */ 640 hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2; /* here because curr+2 could be > iend-8 */ 641 hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); 642 643 /* check immediate repcode */ 644 while (ip0 <= ilimit) { 645 U32 const current2 = (U32)(ip0-base); 646 U32 const repIndex2 = current2 - offset_2; 647 const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? 648 dictBase - dictIndexDelta + repIndex2 : 649 base + repIndex2; 650 if ( (ZSTD_index_overlap_check(prefixStartIndex, repIndex2)) 651 && (MEM_read32(repMatch2) == MEM_read32(ip0))) { 652 const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; 653 size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; 654 U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ 655 ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2); 656 hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = current2; 657 ip0 += repLength2; 658 anchor = ip0; 659 continue; 660 } 661 break; 662 } 663 } 664 665 /* Prepare for next iteration */ 666 assert(ip0 == anchor); 667 ip1 = ip0 + stepSize; 668 } 669 670 _cleanup: 671 /* save reps for next block */ 672 rep[0] = offset_1; 673 rep[1] = offset_2; 674 675 /* Return the last literals size */ 676 return (size_t)(iend - anchor); 677 } 678 679 680 ZSTD_GEN_FAST_FN(dictMatchState, 4, 0) 681 ZSTD_GEN_FAST_FN(dictMatchState, 5, 0) 682 ZSTD_GEN_FAST_FN(dictMatchState, 6, 0) 683 ZSTD_GEN_FAST_FN(dictMatchState, 7, 0) 684 685 size_t ZSTD_compressBlock_fast_dictMatchState( 686 ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], 687 void const* src, size_t srcSize) 688 { 689 U32 const mls = ms->cParams.minMatch; 690 assert(ms->dictMatchState != NULL); 691 switch(mls) 692 { 693 default: /* includes case 3 */ 694 case 4 : 695 return ZSTD_compressBlock_fast_dictMatchState_4_0(ms, seqStore, rep, src, srcSize); 696 case 5 : 697 return ZSTD_compressBlock_fast_dictMatchState_5_0(ms, seqStore, rep, src, srcSize); 698 case 6 : 699 return ZSTD_compressBlock_fast_dictMatchState_6_0(ms, seqStore, rep, src, srcSize); 700 case 7 : 701 return ZSTD_compressBlock_fast_dictMatchState_7_0(ms, seqStore, rep, src, srcSize); 702 } 703 } 704 705 706 static 707 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR 708 size_t ZSTD_compressBlock_fast_extDict_generic( 709 ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], 710 void const* src, size_t srcSize, U32 const mls, U32 const hasStep) 711 { 712 const ZSTD_compressionParameters* const cParams = &ms->cParams; 713 U32* const hashTable = ms->hashTable; 714 U32 const hlog = cParams->hashLog; 715 /* support stepSize of 0 */ 716 size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1; 717 const BYTE* const base = ms->window.base; 718 const BYTE* const dictBase = ms->window.dictBase; 719 const BYTE* const istart = (const BYTE*)src; 720 const BYTE* anchor = istart; 721 const U32 endIndex = (U32)((size_t)(istart - base) + srcSize); 722 const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog); 723 const U32 dictStartIndex = lowLimit; 724 const BYTE* const dictStart = dictBase + dictStartIndex; 725 const U32 dictLimit = ms->window.dictLimit; 726 const U32 prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit; 727 const BYTE* const prefixStart = base + prefixStartIndex; 728 const BYTE* const dictEnd = dictBase + prefixStartIndex; 729 const BYTE* const iend = istart + srcSize; 730 const BYTE* const ilimit = iend - 8; 731 U32 offset_1=rep[0], offset_2=rep[1]; 732 U32 offsetSaved1 = 0, offsetSaved2 = 0; 733 734 const BYTE* ip0 = istart; 735 const BYTE* ip1; 736 const BYTE* ip2; 737 const BYTE* ip3; 738 U32 current0; 739 740 741 size_t hash0; /* hash for ip0 */ 742 size_t hash1; /* hash for ip1 */ 743 U32 idx; /* match idx for ip0 */ 744 const BYTE* idxBase; /* base pointer for idx */ 745 746 U32 offcode; 747 const BYTE* match0; 748 size_t mLength; 749 const BYTE* matchEnd = 0; /* initialize to avoid warning, assert != 0 later */ 750 751 size_t step; 752 const BYTE* nextStep; 753 const size_t kStepIncr = (1 << (kSearchStrength - 1)); 754 755 (void)hasStep; /* not currently specialized on whether it's accelerated */ 756 757 DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)", offset_1); 758 759 /* switch to "regular" variant if extDict is invalidated due to maxDistance */ 760 if (prefixStartIndex == dictStartIndex) 761 return ZSTD_compressBlock_fast(ms, seqStore, rep, src, srcSize); 762 763 { U32 const curr = (U32)(ip0 - base); 764 U32 const maxRep = curr - dictStartIndex; 765 if (offset_2 >= maxRep) offsetSaved2 = offset_2, offset_2 = 0; 766 if (offset_1 >= maxRep) offsetSaved1 = offset_1, offset_1 = 0; 767 } 768 769 /* start each op */ 770 _start: /* Requires: ip0 */ 771 772 step = stepSize; 773 nextStep = ip0 + kStepIncr; 774 775 /* calculate positions, ip0 - anchor == 0, so we skip step calc */ 776 ip1 = ip0 + 1; 777 ip2 = ip0 + step; 778 ip3 = ip2 + 1; 779 780 if (ip3 >= ilimit) { 781 goto _cleanup; 782 } 783 784 hash0 = ZSTD_hashPtr(ip0, hlog, mls); 785 hash1 = ZSTD_hashPtr(ip1, hlog, mls); 786 787 idx = hashTable[hash0]; 788 idxBase = idx < prefixStartIndex ? dictBase : base; 789 790 do { 791 { /* load repcode match for ip[2] */ 792 U32 const current2 = (U32)(ip2 - base); 793 U32 const repIndex = current2 - offset_1; 794 const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base; 795 U32 rval; 796 if ( ((U32)(prefixStartIndex - repIndex) >= 4) /* intentional underflow */ 797 & (offset_1 > 0) ) { 798 rval = MEM_read32(repBase + repIndex); 799 } else { 800 rval = MEM_read32(ip2) ^ 1; /* guaranteed to not match. */ 801 } 802 803 /* write back hash table entry */ 804 current0 = (U32)(ip0 - base); 805 hashTable[hash0] = current0; 806 807 /* check repcode at ip[2] */ 808 if (MEM_read32(ip2) == rval) { 809 ip0 = ip2; 810 match0 = repBase + repIndex; 811 matchEnd = repIndex < prefixStartIndex ? dictEnd : iend; 812 assert((match0 != prefixStart) & (match0 != dictStart)); 813 mLength = ip0[-1] == match0[-1]; 814 ip0 -= mLength; 815 match0 -= mLength; 816 offcode = REPCODE1_TO_OFFBASE; 817 mLength += 4; 818 goto _match; 819 } } 820 821 { /* load match for ip[0] */ 822 U32 const mval = idx >= dictStartIndex ? 823 MEM_read32(idxBase + idx) : 824 MEM_read32(ip0) ^ 1; /* guaranteed not to match */ 825 826 /* check match at ip[0] */ 827 if (MEM_read32(ip0) == mval) { 828 /* found a match! */ 829 goto _offset; 830 } } 831 832 /* lookup ip[1] */ 833 idx = hashTable[hash1]; 834 idxBase = idx < prefixStartIndex ? dictBase : base; 835 836 /* hash ip[2] */ 837 hash0 = hash1; 838 hash1 = ZSTD_hashPtr(ip2, hlog, mls); 839 840 /* advance to next positions */ 841 ip0 = ip1; 842 ip1 = ip2; 843 ip2 = ip3; 844 845 /* write back hash table entry */ 846 current0 = (U32)(ip0 - base); 847 hashTable[hash0] = current0; 848 849 { /* load match for ip[0] */ 850 U32 const mval = idx >= dictStartIndex ? 851 MEM_read32(idxBase + idx) : 852 MEM_read32(ip0) ^ 1; /* guaranteed not to match */ 853 854 /* check match at ip[0] */ 855 if (MEM_read32(ip0) == mval) { 856 /* found a match! */ 857 goto _offset; 858 } } 859 860 /* lookup ip[1] */ 861 idx = hashTable[hash1]; 862 idxBase = idx < prefixStartIndex ? dictBase : base; 863 864 /* hash ip[2] */ 865 hash0 = hash1; 866 hash1 = ZSTD_hashPtr(ip2, hlog, mls); 867 868 /* advance to next positions */ 869 ip0 = ip1; 870 ip1 = ip2; 871 ip2 = ip0 + step; 872 ip3 = ip1 + step; 873 874 /* calculate step */ 875 if (ip2 >= nextStep) { 876 step++; 877 PREFETCH_L1(ip1 + 64); 878 PREFETCH_L1(ip1 + 128); 879 nextStep += kStepIncr; 880 } 881 } while (ip3 < ilimit); 882 883 _cleanup: 884 /* Note that there are probably still a couple positions we could search. 885 * However, it seems to be a meaningful performance hit to try to search 886 * them. So let's not. */ 887 888 /* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0), 889 * rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */ 890 offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2; 891 892 /* save reps for next block */ 893 rep[0] = offset_1 ? offset_1 : offsetSaved1; 894 rep[1] = offset_2 ? offset_2 : offsetSaved2; 895 896 /* Return the last literals size */ 897 return (size_t)(iend - anchor); 898 899 _offset: /* Requires: ip0, idx, idxBase */ 900 901 /* Compute the offset code. */ 902 { U32 const offset = current0 - idx; 903 const BYTE* const lowMatchPtr = idx < prefixStartIndex ? dictStart : prefixStart; 904 matchEnd = idx < prefixStartIndex ? dictEnd : iend; 905 match0 = idxBase + idx; 906 offset_2 = offset_1; 907 offset_1 = offset; 908 offcode = OFFSET_TO_OFFBASE(offset); 909 mLength = 4; 910 911 /* Count the backwards match length. */ 912 while (((ip0>anchor) & (match0>lowMatchPtr)) && (ip0[-1] == match0[-1])) { 913 ip0--; 914 match0--; 915 mLength++; 916 } } 917 918 _match: /* Requires: ip0, match0, offcode, matchEnd */ 919 920 /* Count the forward length. */ 921 assert(matchEnd != 0); 922 mLength += ZSTD_count_2segments(ip0 + mLength, match0 + mLength, iend, matchEnd, prefixStart); 923 924 ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength); 925 926 ip0 += mLength; 927 anchor = ip0; 928 929 /* write next hash table entry */ 930 if (ip1 < ip0) { 931 hashTable[hash1] = (U32)(ip1 - base); 932 } 933 934 /* Fill table and check for immediate repcode. */ 935 if (ip0 <= ilimit) { 936 /* Fill Table */ 937 assert(base+current0+2 > istart); /* check base overflow */ 938 hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */ 939 hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); 940 941 while (ip0 <= ilimit) { 942 U32 const repIndex2 = (U32)(ip0-base) - offset_2; 943 const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2; 944 if ( ((ZSTD_index_overlap_check(prefixStartIndex, repIndex2)) & (offset_2 > 0)) 945 && (MEM_read32(repMatch2) == MEM_read32(ip0)) ) { 946 const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; 947 size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; 948 { U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */ 949 ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, REPCODE1_TO_OFFBASE, repLength2); 950 hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base); 951 ip0 += repLength2; 952 anchor = ip0; 953 continue; 954 } 955 break; 956 } } 957 958 goto _start; 959 } 960 961 ZSTD_GEN_FAST_FN(extDict, 4, 0) 962 ZSTD_GEN_FAST_FN(extDict, 5, 0) 963 ZSTD_GEN_FAST_FN(extDict, 6, 0) 964 ZSTD_GEN_FAST_FN(extDict, 7, 0) 965 966 size_t ZSTD_compressBlock_fast_extDict( 967 ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], 968 void const* src, size_t srcSize) 969 { 970 U32 const mls = ms->cParams.minMatch; 971 assert(ms->dictMatchState == NULL); 972 switch(mls) 973 { 974 default: /* includes case 3 */ 975 case 4 : 976 return ZSTD_compressBlock_fast_extDict_4_0(ms, seqStore, rep, src, srcSize); 977 case 5 : 978 return ZSTD_compressBlock_fast_extDict_5_0(ms, seqStore, rep, src, srcSize); 979 case 6 : 980 return ZSTD_compressBlock_fast_extDict_6_0(ms, seqStore, rep, src, srcSize); 981 case 7 : 982 return ZSTD_compressBlock_fast_extDict_7_0(ms, seqStore, rep, src, srcSize); 983 } 984 } 985