1 /* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause */ 2 /* 3 * Copyright (c) Meta Platforms, Inc. and affiliates. 4 * All rights reserved. 5 * 6 * This source code is licensed under both the BSD-style license (found in the 7 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 8 * in the COPYING file in the root directory of this source tree). 9 * You may select, at your option, one of the above-listed licenses. 10 */ 11 12 #ifndef ZSTD_CWKSP_H 13 #define ZSTD_CWKSP_H 14 15 /*-************************************* 16 * Dependencies 17 ***************************************/ 18 #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */ 19 #include "../common/zstd_internal.h" 20 #include "../common/portability_macros.h" 21 #include "../common/compiler.h" /* ZS2_isPower2 */ 22 23 /*-************************************* 24 * Constants 25 ***************************************/ 26 27 /* Since the workspace is effectively its own little malloc implementation / 28 * arena, when we run under ASAN, we should similarly insert redzones between 29 * each internal element of the workspace, so ASAN will catch overruns that 30 * reach outside an object but that stay inside the workspace. 31 * 32 * This defines the size of that redzone. 33 */ 34 #ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE 35 #define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128 36 #endif 37 38 39 /* Set our tables and aligneds to align by 64 bytes */ 40 #define ZSTD_CWKSP_ALIGNMENT_BYTES 64 41 42 /*-************************************* 43 * Structures 44 ***************************************/ 45 typedef enum { 46 ZSTD_cwksp_alloc_objects, 47 ZSTD_cwksp_alloc_aligned_init_once, 48 ZSTD_cwksp_alloc_aligned, 49 ZSTD_cwksp_alloc_buffers 50 } ZSTD_cwksp_alloc_phase_e; 51 52 /* 53 * Used to describe whether the workspace is statically allocated (and will not 54 * necessarily ever be freed), or if it's dynamically allocated and we can 55 * expect a well-formed caller to free this. 56 */ 57 typedef enum { 58 ZSTD_cwksp_dynamic_alloc, 59 ZSTD_cwksp_static_alloc 60 } ZSTD_cwksp_static_alloc_e; 61 62 /* 63 * Zstd fits all its internal datastructures into a single continuous buffer, 64 * so that it only needs to perform a single OS allocation (or so that a buffer 65 * can be provided to it and it can perform no allocations at all). This buffer 66 * is called the workspace. 67 * 68 * Several optimizations complicate that process of allocating memory ranges 69 * from this workspace for each internal datastructure: 70 * 71 * - These different internal datastructures have different setup requirements: 72 * 73 * - The static objects need to be cleared once and can then be trivially 74 * reused for each compression. 75 * 76 * - Various buffers don't need to be initialized at all--they are always 77 * written into before they're read. 78 * 79 * - The matchstate tables have a unique requirement that they don't need 80 * their memory to be totally cleared, but they do need the memory to have 81 * some bound, i.e., a guarantee that all values in the memory they've been 82 * allocated is less than some maximum value (which is the starting value 83 * for the indices that they will then use for compression). When this 84 * guarantee is provided to them, they can use the memory without any setup 85 * work. When it can't, they have to clear the area. 86 * 87 * - These buffers also have different alignment requirements. 88 * 89 * - We would like to reuse the objects in the workspace for multiple 90 * compressions without having to perform any expensive reallocation or 91 * reinitialization work. 92 * 93 * - We would like to be able to efficiently reuse the workspace across 94 * multiple compressions **even when the compression parameters change** and 95 * we need to resize some of the objects (where possible). 96 * 97 * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp 98 * abstraction was created. It works as follows: 99 * 100 * Workspace Layout: 101 * 102 * [ ... workspace ... ] 103 * [objects][tables ->] free space [<- buffers][<- aligned][<- init once] 104 * 105 * The various objects that live in the workspace are divided into the 106 * following categories, and are allocated separately: 107 * 108 * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict, 109 * so that literally everything fits in a single buffer. Note: if present, 110 * this must be the first object in the workspace, since ZSTD_customFree{CCtx, 111 * CDict}() rely on a pointer comparison to see whether one or two frees are 112 * required. 113 * 114 * - Fixed size objects: these are fixed-size, fixed-count objects that are 115 * nonetheless "dynamically" allocated in the workspace so that we can 116 * control how they're initialized separately from the broader ZSTD_CCtx. 117 * Examples: 118 * - Entropy Workspace 119 * - 2 x ZSTD_compressedBlockState_t 120 * - CDict dictionary contents 121 * 122 * - Tables: these are any of several different datastructures (hash tables, 123 * chain tables, binary trees) that all respect a common format: they are 124 * uint32_t arrays, all of whose values are between 0 and (nextSrc - base). 125 * Their sizes depend on the cparams. These tables are 64-byte aligned. 126 * 127 * - Init once: these buffers require to be initialized at least once before 128 * use. They should be used when we want to skip memory initialization 129 * while not triggering memory checkers (like Valgrind) when reading from 130 * from this memory without writing to it first. 131 * These buffers should be used carefully as they might contain data 132 * from previous compressions. 133 * Buffers are aligned to 64 bytes. 134 * 135 * - Aligned: these buffers don't require any initialization before they're 136 * used. The user of the buffer should make sure they write into a buffer 137 * location before reading from it. 138 * Buffers are aligned to 64 bytes. 139 * 140 * - Buffers: these buffers are used for various purposes that don't require 141 * any alignment or initialization before they're used. This means they can 142 * be moved around at no cost for a new compression. 143 * 144 * Allocating Memory: 145 * 146 * The various types of objects must be allocated in order, so they can be 147 * correctly packed into the workspace buffer. That order is: 148 * 149 * 1. Objects 150 * 2. Init once / Tables 151 * 3. Aligned / Tables 152 * 4. Buffers / Tables 153 * 154 * Attempts to reserve objects of different types out of order will fail. 155 */ 156 typedef struct { 157 void* workspace; 158 void* workspaceEnd; 159 160 void* objectEnd; 161 void* tableEnd; 162 void* tableValidEnd; 163 void* allocStart; 164 void* initOnceStart; 165 166 BYTE allocFailed; 167 int workspaceOversizedDuration; 168 ZSTD_cwksp_alloc_phase_e phase; 169 ZSTD_cwksp_static_alloc_e isStatic; 170 } ZSTD_cwksp; 171 172 /*-************************************* 173 * Functions 174 ***************************************/ 175 176 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws); 177 MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws); 178 179 MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) { 180 (void)ws; 181 assert(ws->workspace <= ws->objectEnd); 182 assert(ws->objectEnd <= ws->tableEnd); 183 assert(ws->objectEnd <= ws->tableValidEnd); 184 assert(ws->tableEnd <= ws->allocStart); 185 assert(ws->tableValidEnd <= ws->allocStart); 186 assert(ws->allocStart <= ws->workspaceEnd); 187 assert(ws->initOnceStart <= ZSTD_cwksp_initialAllocStart(ws)); 188 assert(ws->workspace <= ws->initOnceStart); 189 } 190 191 /* 192 * Align must be a power of 2. 193 */ 194 MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t align) { 195 size_t const mask = align - 1; 196 assert(ZSTD_isPower2(align)); 197 return (size + mask) & ~mask; 198 } 199 200 /* 201 * Use this to determine how much space in the workspace we will consume to 202 * allocate this object. (Normally it should be exactly the size of the object, 203 * but under special conditions, like ASAN, where we pad each object, it might 204 * be larger.) 205 * 206 * Since tables aren't currently redzoned, you don't need to call through this 207 * to figure out how much space you need for the matchState tables. Everything 208 * else is though. 209 * 210 * Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned64_alloc_size(). 211 */ 212 MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) { 213 if (size == 0) 214 return 0; 215 return size; 216 } 217 218 MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size, size_t alignment) { 219 return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, alignment)); 220 } 221 222 /* 223 * Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes. 224 * Used to determine the number of bytes required for a given "aligned". 225 */ 226 MEM_STATIC size_t ZSTD_cwksp_aligned64_alloc_size(size_t size) { 227 return ZSTD_cwksp_aligned_alloc_size(size, ZSTD_CWKSP_ALIGNMENT_BYTES); 228 } 229 230 /* 231 * Returns the amount of additional space the cwksp must allocate 232 * for internal purposes (currently only alignment). 233 */ 234 MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) { 235 /* For alignment, the wksp will always allocate an additional 2*ZSTD_CWKSP_ALIGNMENT_BYTES 236 * bytes to align the beginning of tables section and end of buffers; 237 */ 238 size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES * 2; 239 return slackSpace; 240 } 241 242 243 /* 244 * Return the number of additional bytes required to align a pointer to the given number of bytes. 245 * alignBytes must be a power of two. 246 */ 247 MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) { 248 size_t const alignBytesMask = alignBytes - 1; 249 size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask; 250 assert(ZSTD_isPower2(alignBytes)); 251 assert(bytes < alignBytes); 252 return bytes; 253 } 254 255 /* 256 * Returns the initial value for allocStart which is used to determine the position from 257 * which we can allocate from the end of the workspace. 258 */ 259 MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws) 260 { 261 char* endPtr = (char*)ws->workspaceEnd; 262 assert(ZSTD_isPower2(ZSTD_CWKSP_ALIGNMENT_BYTES)); 263 endPtr = endPtr - ((size_t)endPtr % ZSTD_CWKSP_ALIGNMENT_BYTES); 264 return (void*)endPtr; 265 } 266 267 /* 268 * Internal function. Do not use directly. 269 * Reserves the given number of bytes within the aligned/buffer segment of the wksp, 270 * which counts from the end of the wksp (as opposed to the object/table segment). 271 * 272 * Returns a pointer to the beginning of that space. 273 */ 274 MEM_STATIC void* 275 ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes) 276 { 277 void* const alloc = (BYTE*)ws->allocStart - bytes; 278 void* const bottom = ws->tableEnd; 279 DEBUGLOG(5, "cwksp: reserving [0x%p]:%zd bytes; %zd bytes remaining", 280 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes); 281 ZSTD_cwksp_assert_internal_consistency(ws); 282 assert(alloc >= bottom); 283 if (alloc < bottom) { 284 DEBUGLOG(4, "cwksp: alloc failed!"); 285 ws->allocFailed = 1; 286 return NULL; 287 } 288 /* the area is reserved from the end of wksp. 289 * If it overlaps with tableValidEnd, it voids guarantees on values' range */ 290 if (alloc < ws->tableValidEnd) { 291 ws->tableValidEnd = alloc; 292 } 293 ws->allocStart = alloc; 294 return alloc; 295 } 296 297 /* 298 * Moves the cwksp to the next phase, and does any necessary allocations. 299 * cwksp initialization must necessarily go through each phase in order. 300 * Returns a 0 on success, or zstd error 301 */ 302 MEM_STATIC size_t 303 ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase) 304 { 305 assert(phase >= ws->phase); 306 if (phase > ws->phase) { 307 /* Going from allocating objects to allocating initOnce / tables */ 308 if (ws->phase < ZSTD_cwksp_alloc_aligned_init_once && 309 phase >= ZSTD_cwksp_alloc_aligned_init_once) { 310 ws->tableValidEnd = ws->objectEnd; 311 ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws); 312 313 { /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */ 314 void *const alloc = ws->objectEnd; 315 size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES); 316 void *const objectEnd = (BYTE *) alloc + bytesToAlign; 317 DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign); 318 RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation, 319 "table phase - alignment initial allocation failed!"); 320 ws->objectEnd = objectEnd; 321 ws->tableEnd = objectEnd; /* table area starts being empty */ 322 if (ws->tableValidEnd < ws->tableEnd) { 323 ws->tableValidEnd = ws->tableEnd; 324 } 325 } 326 } 327 ws->phase = phase; 328 ZSTD_cwksp_assert_internal_consistency(ws); 329 } 330 return 0; 331 } 332 333 /* 334 * Returns whether this object/buffer/etc was allocated in this workspace. 335 */ 336 MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr) 337 { 338 return (ptr != NULL) && (ws->workspace <= ptr) && (ptr < ws->workspaceEnd); 339 } 340 341 /* 342 * Internal function. Do not use directly. 343 */ 344 MEM_STATIC void* 345 ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase) 346 { 347 void* alloc; 348 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) { 349 return NULL; 350 } 351 352 353 alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes); 354 355 356 return alloc; 357 } 358 359 /* 360 * Reserves and returns unaligned memory. 361 */ 362 MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes) 363 { 364 return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers); 365 } 366 367 /* 368 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes). 369 * This memory has been initialized at least once in the past. 370 * This doesn't mean it has been initialized this time, and it might contain data from previous 371 * operations. 372 * The main usage is for algorithms that might need read access into uninitialized memory. 373 * The algorithm must maintain safety under these conditions and must make sure it doesn't 374 * leak any of the past data (directly or in side channels). 375 */ 376 MEM_STATIC void* ZSTD_cwksp_reserve_aligned_init_once(ZSTD_cwksp* ws, size_t bytes) 377 { 378 size_t const alignedBytes = ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES); 379 void* ptr = ZSTD_cwksp_reserve_internal(ws, alignedBytes, ZSTD_cwksp_alloc_aligned_init_once); 380 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0); 381 if(ptr && ptr < ws->initOnceStart) { 382 /* We assume the memory following the current allocation is either: 383 * 1. Not usable as initOnce memory (end of workspace) 384 * 2. Another initOnce buffer that has been allocated before (and so was previously memset) 385 * 3. An ASAN redzone, in which case we don't want to write on it 386 * For these reasons it should be fine to not explicitly zero every byte up to ws->initOnceStart. 387 * Note that we assume here that MSAN and ASAN cannot run in the same time. */ 388 ZSTD_memset(ptr, 0, MIN((size_t)((U8*)ws->initOnceStart - (U8*)ptr), alignedBytes)); 389 ws->initOnceStart = ptr; 390 } 391 return ptr; 392 } 393 394 /* 395 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes). 396 */ 397 MEM_STATIC void* ZSTD_cwksp_reserve_aligned64(ZSTD_cwksp* ws, size_t bytes) 398 { 399 void* const ptr = ZSTD_cwksp_reserve_internal(ws, 400 ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES), 401 ZSTD_cwksp_alloc_aligned); 402 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0); 403 return ptr; 404 } 405 406 /* 407 * Aligned on 64 bytes. These buffers have the special property that 408 * their values remain constrained, allowing us to reuse them without 409 * memset()-ing them. 410 */ 411 MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes) 412 { 413 const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned_init_once; 414 void* alloc; 415 void* end; 416 void* top; 417 418 /* We can only start allocating tables after we are done reserving space for objects at the 419 * start of the workspace */ 420 if(ws->phase < phase) { 421 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) { 422 return NULL; 423 } 424 } 425 alloc = ws->tableEnd; 426 end = (BYTE *)alloc + bytes; 427 top = ws->allocStart; 428 429 DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining", 430 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes); 431 assert((bytes & (sizeof(U32)-1)) == 0); 432 ZSTD_cwksp_assert_internal_consistency(ws); 433 assert(end <= top); 434 if (end > top) { 435 DEBUGLOG(4, "cwksp: table alloc failed!"); 436 ws->allocFailed = 1; 437 return NULL; 438 } 439 ws->tableEnd = end; 440 441 442 assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0); 443 assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0); 444 return alloc; 445 } 446 447 /* 448 * Aligned on sizeof(void*). 449 * Note : should happen only once, at workspace first initialization 450 */ 451 MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) 452 { 453 size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*)); 454 void* alloc = ws->objectEnd; 455 void* end = (BYTE*)alloc + roundedBytes; 456 457 458 DEBUGLOG(4, 459 "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining", 460 alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes); 461 assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0); 462 assert(bytes % ZSTD_ALIGNOF(void*) == 0); 463 ZSTD_cwksp_assert_internal_consistency(ws); 464 /* we must be in the first phase, no advance is possible */ 465 if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) { 466 DEBUGLOG(3, "cwksp: object alloc failed!"); 467 ws->allocFailed = 1; 468 return NULL; 469 } 470 ws->objectEnd = end; 471 ws->tableEnd = end; 472 ws->tableValidEnd = end; 473 474 475 return alloc; 476 } 477 /* 478 * with alignment control 479 * Note : should happen only once, at workspace first initialization 480 */ 481 MEM_STATIC void* ZSTD_cwksp_reserve_object_aligned(ZSTD_cwksp* ws, size_t byteSize, size_t alignment) 482 { 483 size_t const mask = alignment - 1; 484 size_t const surplus = (alignment > sizeof(void*)) ? alignment - sizeof(void*) : 0; 485 void* const start = ZSTD_cwksp_reserve_object(ws, byteSize + surplus); 486 if (start == NULL) return NULL; 487 if (surplus == 0) return start; 488 assert(ZSTD_isPower2(alignment)); 489 return (void*)(((size_t)start + surplus) & ~mask); 490 } 491 492 MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws) 493 { 494 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty"); 495 496 497 assert(ws->tableValidEnd >= ws->objectEnd); 498 assert(ws->tableValidEnd <= ws->allocStart); 499 ws->tableValidEnd = ws->objectEnd; 500 ZSTD_cwksp_assert_internal_consistency(ws); 501 } 502 503 MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) { 504 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean"); 505 assert(ws->tableValidEnd >= ws->objectEnd); 506 assert(ws->tableValidEnd <= ws->allocStart); 507 if (ws->tableValidEnd < ws->tableEnd) { 508 ws->tableValidEnd = ws->tableEnd; 509 } 510 ZSTD_cwksp_assert_internal_consistency(ws); 511 } 512 513 /* 514 * Zero the part of the allocated tables not already marked clean. 515 */ 516 MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) { 517 DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables"); 518 assert(ws->tableValidEnd >= ws->objectEnd); 519 assert(ws->tableValidEnd <= ws->allocStart); 520 if (ws->tableValidEnd < ws->tableEnd) { 521 ZSTD_memset(ws->tableValidEnd, 0, (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd)); 522 } 523 ZSTD_cwksp_mark_tables_clean(ws); 524 } 525 526 /* 527 * Invalidates table allocations. 528 * All other allocations remain valid. 529 */ 530 MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) 531 { 532 DEBUGLOG(4, "cwksp: clearing tables!"); 533 534 535 ws->tableEnd = ws->objectEnd; 536 ZSTD_cwksp_assert_internal_consistency(ws); 537 } 538 539 /* 540 * Invalidates all buffer, aligned, and table allocations. 541 * Object allocations remain valid. 542 */ 543 MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) { 544 DEBUGLOG(4, "cwksp: clearing!"); 545 546 547 548 ws->tableEnd = ws->objectEnd; 549 ws->allocStart = ZSTD_cwksp_initialAllocStart(ws); 550 ws->allocFailed = 0; 551 if (ws->phase > ZSTD_cwksp_alloc_aligned_init_once) { 552 ws->phase = ZSTD_cwksp_alloc_aligned_init_once; 553 } 554 ZSTD_cwksp_assert_internal_consistency(ws); 555 } 556 557 MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) { 558 return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace); 559 } 560 561 MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) { 562 return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace) 563 + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart); 564 } 565 566 /* 567 * The provided workspace takes ownership of the buffer [start, start+size). 568 * Any existing values in the workspace are ignored (the previously managed 569 * buffer, if present, must be separately freed). 570 */ 571 MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) { 572 DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size); 573 assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */ 574 ws->workspace = start; 575 ws->workspaceEnd = (BYTE*)start + size; 576 ws->objectEnd = ws->workspace; 577 ws->tableValidEnd = ws->objectEnd; 578 ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws); 579 ws->phase = ZSTD_cwksp_alloc_objects; 580 ws->isStatic = isStatic; 581 ZSTD_cwksp_clear(ws); 582 ws->workspaceOversizedDuration = 0; 583 ZSTD_cwksp_assert_internal_consistency(ws); 584 } 585 586 MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) { 587 void* workspace = ZSTD_customMalloc(size, customMem); 588 DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size); 589 RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!"); 590 ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc); 591 return 0; 592 } 593 594 MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) { 595 void *ptr = ws->workspace; 596 DEBUGLOG(4, "cwksp: freeing workspace"); 597 ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp)); 598 ZSTD_customFree(ptr, customMem); 599 } 600 601 /* 602 * Moves the management of a workspace from one cwksp to another. The src cwksp 603 * is left in an invalid state (src must be re-init()'ed before it's used again). 604 */ 605 MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) { 606 *dst = *src; 607 ZSTD_memset(src, 0, sizeof(ZSTD_cwksp)); 608 } 609 610 MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) { 611 return ws->allocFailed; 612 } 613 614 /*-************************************* 615 * Functions Checking Free Space 616 ***************************************/ 617 618 /* ZSTD_alignmentSpaceWithinBounds() : 619 * Returns if the estimated space needed for a wksp is within an acceptable limit of the 620 * actual amount of space used. 621 */ 622 MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp *const ws, size_t const estimatedSpace) { 623 /* We have an alignment space between objects and tables between tables and buffers, so we can have up to twice 624 * the alignment bytes difference between estimation and actual usage */ 625 return (estimatedSpace - ZSTD_cwksp_slack_space_required()) <= ZSTD_cwksp_used(ws) && 626 ZSTD_cwksp_used(ws) <= estimatedSpace; 627 } 628 629 630 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) { 631 return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd); 632 } 633 634 MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) { 635 return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace; 636 } 637 638 MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) { 639 return ZSTD_cwksp_check_available( 640 ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR); 641 } 642 643 MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) { 644 return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace) 645 && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION; 646 } 647 648 MEM_STATIC void ZSTD_cwksp_bump_oversized_duration( 649 ZSTD_cwksp* ws, size_t additionalNeededSpace) { 650 if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) { 651 ws->workspaceOversizedDuration++; 652 } else { 653 ws->workspaceOversizedDuration = 0; 654 } 655 } 656 657 #endif /* ZSTD_CWKSP_H */ 658