1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 #include <asm/setup.h>
35 
36 #include "trace.h"
37 
38 /*
39  * The "absolute" timestamp in the buffer is only 59 bits.
40  * If a clock has the 5 MSBs set, it needs to be saved and
41  * reinserted.
42  */
43 #define TS_MSB		(0xf8ULL << 56)
44 #define ABS_TS_MASK	(~TS_MSB)
45 
46 static void update_pages_handler(struct work_struct *work);
47 
48 #define RING_BUFFER_META_MAGIC	0xBADFEED
49 
50 struct ring_buffer_meta {
51 	int		magic;
52 	int		struct_sizes;
53 	unsigned long	total_size;
54 	unsigned long	buffers_offset;
55 };
56 
57 struct ring_buffer_cpu_meta {
58 	unsigned long	first_buffer;
59 	unsigned long	head_buffer;
60 	unsigned long	commit_buffer;
61 	__u32		subbuf_size;
62 	__u32		nr_subbufs;
63 	int		buffers[];
64 };
65 
66 /*
67  * The ring buffer header is special. We must manually up keep it.
68  */
69 int ring_buffer_print_entry_header(struct trace_seq *s)
70 {
71 	trace_seq_puts(s, "# compressed entry header\n");
72 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
73 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
74 	trace_seq_puts(s, "\tarray       :   32 bits\n");
75 	trace_seq_putc(s, '\n');
76 	trace_seq_printf(s, "\tpadding     : type == %d\n",
77 			 RINGBUF_TYPE_PADDING);
78 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
79 			 RINGBUF_TYPE_TIME_EXTEND);
80 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
81 			 RINGBUF_TYPE_TIME_STAMP);
82 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
83 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
84 
85 	return !trace_seq_has_overflowed(s);
86 }
87 
88 /*
89  * The ring buffer is made up of a list of pages. A separate list of pages is
90  * allocated for each CPU. A writer may only write to a buffer that is
91  * associated with the CPU it is currently executing on.  A reader may read
92  * from any per cpu buffer.
93  *
94  * The reader is special. For each per cpu buffer, the reader has its own
95  * reader page. When a reader has read the entire reader page, this reader
96  * page is swapped with another page in the ring buffer.
97  *
98  * Now, as long as the writer is off the reader page, the reader can do what
99  * ever it wants with that page. The writer will never write to that page
100  * again (as long as it is out of the ring buffer).
101  *
102  * Here's some silly ASCII art.
103  *
104  *   +------+
105  *   |reader|          RING BUFFER
106  *   |page  |
107  *   +------+        +---+   +---+   +---+
108  *                   |   |-->|   |-->|   |
109  *                   +---+   +---+   +---+
110  *                     ^               |
111  *                     |               |
112  *                     +---------------+
113  *
114  *
115  *   +------+
116  *   |reader|          RING BUFFER
117  *   |page  |------------------v
118  *   +------+        +---+   +---+   +---+
119  *                   |   |-->|   |-->|   |
120  *                   +---+   +---+   +---+
121  *                     ^               |
122  *                     |               |
123  *                     +---------------+
124  *
125  *
126  *   +------+
127  *   |reader|          RING BUFFER
128  *   |page  |------------------v
129  *   +------+        +---+   +---+   +---+
130  *      ^            |   |-->|   |-->|   |
131  *      |            +---+   +---+   +---+
132  *      |                              |
133  *      |                              |
134  *      +------------------------------+
135  *
136  *
137  *   +------+
138  *   |buffer|          RING BUFFER
139  *   |page  |------------------v
140  *   +------+        +---+   +---+   +---+
141  *      ^            |   |   |   |-->|   |
142  *      |   New      +---+   +---+   +---+
143  *      |  Reader------^               |
144  *      |   page                       |
145  *      +------------------------------+
146  *
147  *
148  * After we make this swap, the reader can hand this page off to the splice
149  * code and be done with it. It can even allocate a new page if it needs to
150  * and swap that into the ring buffer.
151  *
152  * We will be using cmpxchg soon to make all this lockless.
153  *
154  */
155 
156 /* Used for individual buffers (after the counter) */
157 #define RB_BUFFER_OFF		(1 << 20)
158 
159 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160 
161 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
162 #define RB_ALIGNMENT		4U
163 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
164 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
165 
166 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
167 # define RB_FORCE_8BYTE_ALIGNMENT	0
168 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
169 #else
170 # define RB_FORCE_8BYTE_ALIGNMENT	1
171 # define RB_ARCH_ALIGNMENT		8U
172 #endif
173 
174 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
175 
176 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
177 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
178 
179 enum {
180 	RB_LEN_TIME_EXTEND = 8,
181 	RB_LEN_TIME_STAMP =  8,
182 };
183 
184 #define skip_time_extend(event) \
185 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
186 
187 #define extended_time(event) \
188 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
189 
190 static inline bool rb_null_event(struct ring_buffer_event *event)
191 {
192 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
193 }
194 
195 static void rb_event_set_padding(struct ring_buffer_event *event)
196 {
197 	/* padding has a NULL time_delta */
198 	event->type_len = RINGBUF_TYPE_PADDING;
199 	event->time_delta = 0;
200 }
201 
202 static unsigned
203 rb_event_data_length(struct ring_buffer_event *event)
204 {
205 	unsigned length;
206 
207 	if (event->type_len)
208 		length = event->type_len * RB_ALIGNMENT;
209 	else
210 		length = event->array[0];
211 	return length + RB_EVNT_HDR_SIZE;
212 }
213 
214 /*
215  * Return the length of the given event. Will return
216  * the length of the time extend if the event is a
217  * time extend.
218  */
219 static inline unsigned
220 rb_event_length(struct ring_buffer_event *event)
221 {
222 	switch (event->type_len) {
223 	case RINGBUF_TYPE_PADDING:
224 		if (rb_null_event(event))
225 			/* undefined */
226 			return -1;
227 		return  event->array[0] + RB_EVNT_HDR_SIZE;
228 
229 	case RINGBUF_TYPE_TIME_EXTEND:
230 		return RB_LEN_TIME_EXTEND;
231 
232 	case RINGBUF_TYPE_TIME_STAMP:
233 		return RB_LEN_TIME_STAMP;
234 
235 	case RINGBUF_TYPE_DATA:
236 		return rb_event_data_length(event);
237 	default:
238 		WARN_ON_ONCE(1);
239 	}
240 	/* not hit */
241 	return 0;
242 }
243 
244 /*
245  * Return total length of time extend and data,
246  *   or just the event length for all other events.
247  */
248 static inline unsigned
249 rb_event_ts_length(struct ring_buffer_event *event)
250 {
251 	unsigned len = 0;
252 
253 	if (extended_time(event)) {
254 		/* time extends include the data event after it */
255 		len = RB_LEN_TIME_EXTEND;
256 		event = skip_time_extend(event);
257 	}
258 	return len + rb_event_length(event);
259 }
260 
261 /**
262  * ring_buffer_event_length - return the length of the event
263  * @event: the event to get the length of
264  *
265  * Returns the size of the data load of a data event.
266  * If the event is something other than a data event, it
267  * returns the size of the event itself. With the exception
268  * of a TIME EXTEND, where it still returns the size of the
269  * data load of the data event after it.
270  */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 	unsigned length;
274 
275 	if (extended_time(event))
276 		event = skip_time_extend(event);
277 
278 	length = rb_event_length(event);
279 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280 		return length;
281 	length -= RB_EVNT_HDR_SIZE;
282 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283                 length -= sizeof(event->array[0]);
284 	return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287 
288 /* inline for ring buffer fast paths */
289 static __always_inline void *
290 rb_event_data(struct ring_buffer_event *event)
291 {
292 	if (extended_time(event))
293 		event = skip_time_extend(event);
294 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
295 	/* If length is in len field, then array[0] has the data */
296 	if (event->type_len)
297 		return (void *)&event->array[0];
298 	/* Otherwise length is in array[0] and array[1] has the data */
299 	return (void *)&event->array[1];
300 }
301 
302 /**
303  * ring_buffer_event_data - return the data of the event
304  * @event: the event to get the data from
305  */
306 void *ring_buffer_event_data(struct ring_buffer_event *event)
307 {
308 	return rb_event_data(event);
309 }
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
311 
312 #define for_each_buffer_cpu(buffer, cpu)		\
313 	for_each_cpu(cpu, buffer->cpumask)
314 
315 #define for_each_online_buffer_cpu(buffer, cpu)		\
316 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
317 
318 #define TS_SHIFT	27
319 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST	(~TS_MASK)
321 
322 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
323 {
324 	u64 ts;
325 
326 	ts = event->array[0];
327 	ts <<= TS_SHIFT;
328 	ts += event->time_delta;
329 
330 	return ts;
331 }
332 
333 /* Flag when events were overwritten */
334 #define RB_MISSED_EVENTS	(1 << 31)
335 /* Missed count stored at end */
336 #define RB_MISSED_STORED	(1 << 30)
337 
338 #define RB_MISSED_MASK		(3 << 30)
339 
340 struct buffer_data_page {
341 	u64		 time_stamp;	/* page time stamp */
342 	local_t		 commit;	/* write committed index */
343 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
344 };
345 
346 struct buffer_data_read_page {
347 	unsigned		order;	/* order of the page */
348 	struct buffer_data_page	*data;	/* actual data, stored in this page */
349 };
350 
351 /*
352  * Note, the buffer_page list must be first. The buffer pages
353  * are allocated in cache lines, which means that each buffer
354  * page will be at the beginning of a cache line, and thus
355  * the least significant bits will be zero. We use this to
356  * add flags in the list struct pointers, to make the ring buffer
357  * lockless.
358  */
359 struct buffer_page {
360 	struct list_head list;		/* list of buffer pages */
361 	local_t		 write;		/* index for next write */
362 	unsigned	 read;		/* index for next read */
363 	local_t		 entries;	/* entries on this page */
364 	unsigned long	 real_end;	/* real end of data */
365 	unsigned	 order;		/* order of the page */
366 	u32		 id:30;		/* ID for external mapping */
367 	u32		 range:1;	/* Mapped via a range */
368 	struct buffer_data_page *page;	/* Actual data page */
369 };
370 
371 /*
372  * The buffer page counters, write and entries, must be reset
373  * atomically when crossing page boundaries. To synchronize this
374  * update, two counters are inserted into the number. One is
375  * the actual counter for the write position or count on the page.
376  *
377  * The other is a counter of updaters. Before an update happens
378  * the update partition of the counter is incremented. This will
379  * allow the updater to update the counter atomically.
380  *
381  * The counter is 20 bits, and the state data is 12.
382  */
383 #define RB_WRITE_MASK		0xfffff
384 #define RB_WRITE_INTCNT		(1 << 20)
385 
386 static void rb_init_page(struct buffer_data_page *bpage)
387 {
388 	local_set(&bpage->commit, 0);
389 }
390 
391 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
392 {
393 	return local_read(&bpage->page->commit);
394 }
395 
396 static void free_buffer_page(struct buffer_page *bpage)
397 {
398 	/* Range pages are not to be freed */
399 	if (!bpage->range)
400 		free_pages((unsigned long)bpage->page, bpage->order);
401 	kfree(bpage);
402 }
403 
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline bool test_time_stamp(u64 delta)
408 {
409 	return !!(delta & TS_DELTA_TEST);
410 }
411 
412 struct rb_irq_work {
413 	struct irq_work			work;
414 	wait_queue_head_t		waiters;
415 	wait_queue_head_t		full_waiters;
416 	atomic_t			seq;
417 	bool				waiters_pending;
418 	bool				full_waiters_pending;
419 	bool				wakeup_full;
420 };
421 
422 /*
423  * Structure to hold event state and handle nested events.
424  */
425 struct rb_event_info {
426 	u64			ts;
427 	u64			delta;
428 	u64			before;
429 	u64			after;
430 	unsigned long		length;
431 	struct buffer_page	*tail_page;
432 	int			add_timestamp;
433 };
434 
435 /*
436  * Used for the add_timestamp
437  *  NONE
438  *  EXTEND - wants a time extend
439  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
440  *  FORCE - force a full time stamp.
441  */
442 enum {
443 	RB_ADD_STAMP_NONE		= 0,
444 	RB_ADD_STAMP_EXTEND		= BIT(1),
445 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
446 	RB_ADD_STAMP_FORCE		= BIT(3)
447 };
448 /*
449  * Used for which event context the event is in.
450  *  TRANSITION = 0
451  *  NMI     = 1
452  *  IRQ     = 2
453  *  SOFTIRQ = 3
454  *  NORMAL  = 4
455  *
456  * See trace_recursive_lock() comment below for more details.
457  */
458 enum {
459 	RB_CTX_TRANSITION,
460 	RB_CTX_NMI,
461 	RB_CTX_IRQ,
462 	RB_CTX_SOFTIRQ,
463 	RB_CTX_NORMAL,
464 	RB_CTX_MAX
465 };
466 
467 struct rb_time_struct {
468 	local64_t	time;
469 };
470 typedef struct rb_time_struct rb_time_t;
471 
472 #define MAX_NEST	5
473 
474 /*
475  * head_page == tail_page && head == tail then buffer is empty.
476  */
477 struct ring_buffer_per_cpu {
478 	int				cpu;
479 	atomic_t			record_disabled;
480 	atomic_t			resize_disabled;
481 	struct trace_buffer	*buffer;
482 	raw_spinlock_t			reader_lock;	/* serialize readers */
483 	arch_spinlock_t			lock;
484 	struct lock_class_key		lock_key;
485 	struct buffer_data_page		*free_page;
486 	unsigned long			nr_pages;
487 	unsigned int			current_context;
488 	struct list_head		*pages;
489 	/* pages generation counter, incremented when the list changes */
490 	unsigned long			cnt;
491 	struct buffer_page		*head_page;	/* read from head */
492 	struct buffer_page		*tail_page;	/* write to tail */
493 	struct buffer_page		*commit_page;	/* committed pages */
494 	struct buffer_page		*reader_page;
495 	unsigned long			lost_events;
496 	unsigned long			last_overrun;
497 	unsigned long			nest;
498 	local_t				entries_bytes;
499 	local_t				entries;
500 	local_t				overrun;
501 	local_t				commit_overrun;
502 	local_t				dropped_events;
503 	local_t				committing;
504 	local_t				commits;
505 	local_t				pages_touched;
506 	local_t				pages_lost;
507 	local_t				pages_read;
508 	long				last_pages_touch;
509 	size_t				shortest_full;
510 	unsigned long			read;
511 	unsigned long			read_bytes;
512 	rb_time_t			write_stamp;
513 	rb_time_t			before_stamp;
514 	u64				event_stamp[MAX_NEST];
515 	u64				read_stamp;
516 	/* pages removed since last reset */
517 	unsigned long			pages_removed;
518 
519 	unsigned int			mapped;
520 	unsigned int			user_mapped;	/* user space mapping */
521 	struct mutex			mapping_lock;
522 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
523 	struct trace_buffer_meta	*meta_page;
524 	struct ring_buffer_cpu_meta	*ring_meta;
525 
526 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
527 	long				nr_pages_to_update;
528 	struct list_head		new_pages; /* new pages to add */
529 	struct work_struct		update_pages_work;
530 	struct completion		update_done;
531 
532 	struct rb_irq_work		irq_work;
533 };
534 
535 struct trace_buffer {
536 	unsigned			flags;
537 	int				cpus;
538 	atomic_t			record_disabled;
539 	atomic_t			resizing;
540 	cpumask_var_t			cpumask;
541 
542 	struct lock_class_key		*reader_lock_key;
543 
544 	struct mutex			mutex;
545 
546 	struct ring_buffer_per_cpu	**buffers;
547 
548 	struct hlist_node		node;
549 	u64				(*clock)(void);
550 
551 	struct rb_irq_work		irq_work;
552 	bool				time_stamp_abs;
553 
554 	unsigned long			range_addr_start;
555 	unsigned long			range_addr_end;
556 
557 	struct ring_buffer_meta		*meta;
558 
559 	unsigned int			subbuf_size;
560 	unsigned int			subbuf_order;
561 	unsigned int			max_data_size;
562 };
563 
564 struct ring_buffer_iter {
565 	struct ring_buffer_per_cpu	*cpu_buffer;
566 	unsigned long			head;
567 	unsigned long			next_event;
568 	struct buffer_page		*head_page;
569 	struct buffer_page		*cache_reader_page;
570 	unsigned long			cache_read;
571 	unsigned long			cache_pages_removed;
572 	u64				read_stamp;
573 	u64				page_stamp;
574 	struct ring_buffer_event	*event;
575 	size_t				event_size;
576 	int				missed_events;
577 };
578 
579 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
580 {
581 	struct buffer_data_page field;
582 
583 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
584 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
585 			 (unsigned int)sizeof(field.time_stamp),
586 			 (unsigned int)is_signed_type(u64));
587 
588 	trace_seq_printf(s, "\tfield: local_t commit;\t"
589 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
590 			 (unsigned int)offsetof(typeof(field), commit),
591 			 (unsigned int)sizeof(field.commit),
592 			 (unsigned int)is_signed_type(long));
593 
594 	trace_seq_printf(s, "\tfield: int overwrite;\t"
595 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
596 			 (unsigned int)offsetof(typeof(field), commit),
597 			 1,
598 			 (unsigned int)is_signed_type(long));
599 
600 	trace_seq_printf(s, "\tfield: char data;\t"
601 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
602 			 (unsigned int)offsetof(typeof(field), data),
603 			 (unsigned int)buffer->subbuf_size,
604 			 (unsigned int)is_signed_type(char));
605 
606 	return !trace_seq_has_overflowed(s);
607 }
608 
609 static inline void rb_time_read(rb_time_t *t, u64 *ret)
610 {
611 	*ret = local64_read(&t->time);
612 }
613 static void rb_time_set(rb_time_t *t, u64 val)
614 {
615 	local64_set(&t->time, val);
616 }
617 
618 /*
619  * Enable this to make sure that the event passed to
620  * ring_buffer_event_time_stamp() is not committed and also
621  * is on the buffer that it passed in.
622  */
623 //#define RB_VERIFY_EVENT
624 #ifdef RB_VERIFY_EVENT
625 static struct list_head *rb_list_head(struct list_head *list);
626 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
627 			 void *event)
628 {
629 	struct buffer_page *page = cpu_buffer->commit_page;
630 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
631 	struct list_head *next;
632 	long commit, write;
633 	unsigned long addr = (unsigned long)event;
634 	bool done = false;
635 	int stop = 0;
636 
637 	/* Make sure the event exists and is not committed yet */
638 	do {
639 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
640 			done = true;
641 		commit = local_read(&page->page->commit);
642 		write = local_read(&page->write);
643 		if (addr >= (unsigned long)&page->page->data[commit] &&
644 		    addr < (unsigned long)&page->page->data[write])
645 			return;
646 
647 		next = rb_list_head(page->list.next);
648 		page = list_entry(next, struct buffer_page, list);
649 	} while (!done);
650 	WARN_ON_ONCE(1);
651 }
652 #else
653 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
654 			 void *event)
655 {
656 }
657 #endif
658 
659 /*
660  * The absolute time stamp drops the 5 MSBs and some clocks may
661  * require them. The rb_fix_abs_ts() will take a previous full
662  * time stamp, and add the 5 MSB of that time stamp on to the
663  * saved absolute time stamp. Then they are compared in case of
664  * the unlikely event that the latest time stamp incremented
665  * the 5 MSB.
666  */
667 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
668 {
669 	if (save_ts & TS_MSB) {
670 		abs |= save_ts & TS_MSB;
671 		/* Check for overflow */
672 		if (unlikely(abs < save_ts))
673 			abs += 1ULL << 59;
674 	}
675 	return abs;
676 }
677 
678 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
679 
680 /**
681  * ring_buffer_event_time_stamp - return the event's current time stamp
682  * @buffer: The buffer that the event is on
683  * @event: the event to get the time stamp of
684  *
685  * Note, this must be called after @event is reserved, and before it is
686  * committed to the ring buffer. And must be called from the same
687  * context where the event was reserved (normal, softirq, irq, etc).
688  *
689  * Returns the time stamp associated with the current event.
690  * If the event has an extended time stamp, then that is used as
691  * the time stamp to return.
692  * In the highly unlikely case that the event was nested more than
693  * the max nesting, then the write_stamp of the buffer is returned,
694  * otherwise  current time is returned, but that really neither of
695  * the last two cases should ever happen.
696  */
697 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
698 				 struct ring_buffer_event *event)
699 {
700 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
701 	unsigned int nest;
702 	u64 ts;
703 
704 	/* If the event includes an absolute time, then just use that */
705 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
706 		ts = rb_event_time_stamp(event);
707 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
708 	}
709 
710 	nest = local_read(&cpu_buffer->committing);
711 	verify_event(cpu_buffer, event);
712 	if (WARN_ON_ONCE(!nest))
713 		goto fail;
714 
715 	/* Read the current saved nesting level time stamp */
716 	if (likely(--nest < MAX_NEST))
717 		return cpu_buffer->event_stamp[nest];
718 
719 	/* Shouldn't happen, warn if it does */
720 	WARN_ONCE(1, "nest (%d) greater than max", nest);
721 
722  fail:
723 	rb_time_read(&cpu_buffer->write_stamp, &ts);
724 
725 	return ts;
726 }
727 
728 /**
729  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
730  * @buffer: The ring_buffer to get the number of pages from
731  * @cpu: The cpu of the ring_buffer to get the number of pages from
732  *
733  * Returns the number of pages that have content in the ring buffer.
734  */
735 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
736 {
737 	size_t read;
738 	size_t lost;
739 	size_t cnt;
740 
741 	read = local_read(&buffer->buffers[cpu]->pages_read);
742 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
743 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
744 
745 	if (WARN_ON_ONCE(cnt < lost))
746 		return 0;
747 
748 	cnt -= lost;
749 
750 	/* The reader can read an empty page, but not more than that */
751 	if (cnt < read) {
752 		WARN_ON_ONCE(read > cnt + 1);
753 		return 0;
754 	}
755 
756 	return cnt - read;
757 }
758 
759 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
760 {
761 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
762 	size_t nr_pages;
763 	size_t dirty;
764 
765 	nr_pages = cpu_buffer->nr_pages;
766 	if (!nr_pages || !full)
767 		return true;
768 
769 	/*
770 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
771 	 * that the writer is on is not counted as dirty.
772 	 * This is needed if "buffer_percent" is set to 100.
773 	 */
774 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
775 
776 	return (dirty * 100) >= (full * nr_pages);
777 }
778 
779 /*
780  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
781  *
782  * Schedules a delayed work to wake up any task that is blocked on the
783  * ring buffer waiters queue.
784  */
785 static void rb_wake_up_waiters(struct irq_work *work)
786 {
787 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
788 
789 	/* For waiters waiting for the first wake up */
790 	(void)atomic_fetch_inc_release(&rbwork->seq);
791 
792 	wake_up_all(&rbwork->waiters);
793 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
794 		/* Only cpu_buffer sets the above flags */
795 		struct ring_buffer_per_cpu *cpu_buffer =
796 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
797 
798 		/* Called from interrupt context */
799 		raw_spin_lock(&cpu_buffer->reader_lock);
800 		rbwork->wakeup_full = false;
801 		rbwork->full_waiters_pending = false;
802 
803 		/* Waking up all waiters, they will reset the shortest full */
804 		cpu_buffer->shortest_full = 0;
805 		raw_spin_unlock(&cpu_buffer->reader_lock);
806 
807 		wake_up_all(&rbwork->full_waiters);
808 	}
809 }
810 
811 /**
812  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
813  * @buffer: The ring buffer to wake waiters on
814  * @cpu: The CPU buffer to wake waiters on
815  *
816  * In the case of a file that represents a ring buffer is closing,
817  * it is prudent to wake up any waiters that are on this.
818  */
819 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
820 {
821 	struct ring_buffer_per_cpu *cpu_buffer;
822 	struct rb_irq_work *rbwork;
823 
824 	if (!buffer)
825 		return;
826 
827 	if (cpu == RING_BUFFER_ALL_CPUS) {
828 
829 		/* Wake up individual ones too. One level recursion */
830 		for_each_buffer_cpu(buffer, cpu)
831 			ring_buffer_wake_waiters(buffer, cpu);
832 
833 		rbwork = &buffer->irq_work;
834 	} else {
835 		if (WARN_ON_ONCE(!buffer->buffers))
836 			return;
837 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
838 			return;
839 
840 		cpu_buffer = buffer->buffers[cpu];
841 		/* The CPU buffer may not have been initialized yet */
842 		if (!cpu_buffer)
843 			return;
844 		rbwork = &cpu_buffer->irq_work;
845 	}
846 
847 	/* This can be called in any context */
848 	irq_work_queue(&rbwork->work);
849 }
850 
851 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
852 {
853 	struct ring_buffer_per_cpu *cpu_buffer;
854 	bool ret = false;
855 
856 	/* Reads of all CPUs always waits for any data */
857 	if (cpu == RING_BUFFER_ALL_CPUS)
858 		return !ring_buffer_empty(buffer);
859 
860 	cpu_buffer = buffer->buffers[cpu];
861 
862 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
863 		unsigned long flags;
864 		bool pagebusy;
865 
866 		if (!full)
867 			return true;
868 
869 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
870 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
871 		ret = !pagebusy && full_hit(buffer, cpu, full);
872 
873 		if (!ret && (!cpu_buffer->shortest_full ||
874 			     cpu_buffer->shortest_full > full)) {
875 		    cpu_buffer->shortest_full = full;
876 		}
877 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
878 	}
879 	return ret;
880 }
881 
882 static inline bool
883 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
884 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
885 {
886 	if (rb_watermark_hit(buffer, cpu, full))
887 		return true;
888 
889 	if (cond(data))
890 		return true;
891 
892 	/*
893 	 * The events can happen in critical sections where
894 	 * checking a work queue can cause deadlocks.
895 	 * After adding a task to the queue, this flag is set
896 	 * only to notify events to try to wake up the queue
897 	 * using irq_work.
898 	 *
899 	 * We don't clear it even if the buffer is no longer
900 	 * empty. The flag only causes the next event to run
901 	 * irq_work to do the work queue wake up. The worse
902 	 * that can happen if we race with !trace_empty() is that
903 	 * an event will cause an irq_work to try to wake up
904 	 * an empty queue.
905 	 *
906 	 * There's no reason to protect this flag either, as
907 	 * the work queue and irq_work logic will do the necessary
908 	 * synchronization for the wake ups. The only thing
909 	 * that is necessary is that the wake up happens after
910 	 * a task has been queued. It's OK for spurious wake ups.
911 	 */
912 	if (full)
913 		rbwork->full_waiters_pending = true;
914 	else
915 		rbwork->waiters_pending = true;
916 
917 	return false;
918 }
919 
920 struct rb_wait_data {
921 	struct rb_irq_work		*irq_work;
922 	int				seq;
923 };
924 
925 /*
926  * The default wait condition for ring_buffer_wait() is to just to exit the
927  * wait loop the first time it is woken up.
928  */
929 static bool rb_wait_once(void *data)
930 {
931 	struct rb_wait_data *rdata = data;
932 	struct rb_irq_work *rbwork = rdata->irq_work;
933 
934 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
935 }
936 
937 /**
938  * ring_buffer_wait - wait for input to the ring buffer
939  * @buffer: buffer to wait on
940  * @cpu: the cpu buffer to wait on
941  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
942  * @cond: condition function to break out of wait (NULL to run once)
943  * @data: the data to pass to @cond.
944  *
945  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
946  * as data is added to any of the @buffer's cpu buffers. Otherwise
947  * it will wait for data to be added to a specific cpu buffer.
948  */
949 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
950 		     ring_buffer_cond_fn cond, void *data)
951 {
952 	struct ring_buffer_per_cpu *cpu_buffer;
953 	struct wait_queue_head *waitq;
954 	struct rb_irq_work *rbwork;
955 	struct rb_wait_data rdata;
956 	int ret = 0;
957 
958 	/*
959 	 * Depending on what the caller is waiting for, either any
960 	 * data in any cpu buffer, or a specific buffer, put the
961 	 * caller on the appropriate wait queue.
962 	 */
963 	if (cpu == RING_BUFFER_ALL_CPUS) {
964 		rbwork = &buffer->irq_work;
965 		/* Full only makes sense on per cpu reads */
966 		full = 0;
967 	} else {
968 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
969 			return -ENODEV;
970 		cpu_buffer = buffer->buffers[cpu];
971 		rbwork = &cpu_buffer->irq_work;
972 	}
973 
974 	if (full)
975 		waitq = &rbwork->full_waiters;
976 	else
977 		waitq = &rbwork->waiters;
978 
979 	/* Set up to exit loop as soon as it is woken */
980 	if (!cond) {
981 		cond = rb_wait_once;
982 		rdata.irq_work = rbwork;
983 		rdata.seq = atomic_read_acquire(&rbwork->seq);
984 		data = &rdata;
985 	}
986 
987 	ret = wait_event_interruptible((*waitq),
988 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
989 
990 	return ret;
991 }
992 
993 /**
994  * ring_buffer_poll_wait - poll on buffer input
995  * @buffer: buffer to wait on
996  * @cpu: the cpu buffer to wait on
997  * @filp: the file descriptor
998  * @poll_table: The poll descriptor
999  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1000  *
1001  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1002  * as data is added to any of the @buffer's cpu buffers. Otherwise
1003  * it will wait for data to be added to a specific cpu buffer.
1004  *
1005  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1006  * zero otherwise.
1007  */
1008 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1009 			  struct file *filp, poll_table *poll_table, int full)
1010 {
1011 	struct ring_buffer_per_cpu *cpu_buffer;
1012 	struct rb_irq_work *rbwork;
1013 
1014 	if (cpu == RING_BUFFER_ALL_CPUS) {
1015 		rbwork = &buffer->irq_work;
1016 		full = 0;
1017 	} else {
1018 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1019 			return EPOLLERR;
1020 
1021 		cpu_buffer = buffer->buffers[cpu];
1022 		rbwork = &cpu_buffer->irq_work;
1023 	}
1024 
1025 	if (full) {
1026 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1027 
1028 		if (rb_watermark_hit(buffer, cpu, full))
1029 			return EPOLLIN | EPOLLRDNORM;
1030 		/*
1031 		 * Only allow full_waiters_pending update to be seen after
1032 		 * the shortest_full is set (in rb_watermark_hit). If the
1033 		 * writer sees the full_waiters_pending flag set, it will
1034 		 * compare the amount in the ring buffer to shortest_full.
1035 		 * If the amount in the ring buffer is greater than the
1036 		 * shortest_full percent, it will call the irq_work handler
1037 		 * to wake up this list. The irq_handler will reset shortest_full
1038 		 * back to zero. That's done under the reader_lock, but
1039 		 * the below smp_mb() makes sure that the update to
1040 		 * full_waiters_pending doesn't leak up into the above.
1041 		 */
1042 		smp_mb();
1043 		rbwork->full_waiters_pending = true;
1044 		return 0;
1045 	}
1046 
1047 	poll_wait(filp, &rbwork->waiters, poll_table);
1048 	rbwork->waiters_pending = true;
1049 
1050 	/*
1051 	 * There's a tight race between setting the waiters_pending and
1052 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1053 	 * is set, the next event will wake the task up, but we can get stuck
1054 	 * if there's only a single event in.
1055 	 *
1056 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1057 	 * but adding a memory barrier to all events will cause too much of a
1058 	 * performance hit in the fast path.  We only need a memory barrier when
1059 	 * the buffer goes from empty to having content.  But as this race is
1060 	 * extremely small, and it's not a problem if another event comes in, we
1061 	 * will fix it later.
1062 	 */
1063 	smp_mb();
1064 
1065 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1066 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1067 		return EPOLLIN | EPOLLRDNORM;
1068 	return 0;
1069 }
1070 
1071 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1072 #define RB_WARN_ON(b, cond)						\
1073 	({								\
1074 		int _____ret = unlikely(cond);				\
1075 		if (_____ret) {						\
1076 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1077 				struct ring_buffer_per_cpu *__b =	\
1078 					(void *)b;			\
1079 				atomic_inc(&__b->buffer->record_disabled); \
1080 			} else						\
1081 				atomic_inc(&b->record_disabled);	\
1082 			WARN_ON(1);					\
1083 		}							\
1084 		_____ret;						\
1085 	})
1086 
1087 /* Up this if you want to test the TIME_EXTENTS and normalization */
1088 #define DEBUG_SHIFT 0
1089 
1090 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1091 {
1092 	u64 ts;
1093 
1094 	/* Skip retpolines :-( */
1095 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1096 		ts = trace_clock_local();
1097 	else
1098 		ts = buffer->clock();
1099 
1100 	/* shift to debug/test normalization and TIME_EXTENTS */
1101 	return ts << DEBUG_SHIFT;
1102 }
1103 
1104 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1105 {
1106 	u64 time;
1107 
1108 	preempt_disable_notrace();
1109 	time = rb_time_stamp(buffer);
1110 	preempt_enable_notrace();
1111 
1112 	return time;
1113 }
1114 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1115 
1116 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1117 				      int cpu, u64 *ts)
1118 {
1119 	/* Just stupid testing the normalize function and deltas */
1120 	*ts >>= DEBUG_SHIFT;
1121 }
1122 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1123 
1124 /*
1125  * Making the ring buffer lockless makes things tricky.
1126  * Although writes only happen on the CPU that they are on,
1127  * and they only need to worry about interrupts. Reads can
1128  * happen on any CPU.
1129  *
1130  * The reader page is always off the ring buffer, but when the
1131  * reader finishes with a page, it needs to swap its page with
1132  * a new one from the buffer. The reader needs to take from
1133  * the head (writes go to the tail). But if a writer is in overwrite
1134  * mode and wraps, it must push the head page forward.
1135  *
1136  * Here lies the problem.
1137  *
1138  * The reader must be careful to replace only the head page, and
1139  * not another one. As described at the top of the file in the
1140  * ASCII art, the reader sets its old page to point to the next
1141  * page after head. It then sets the page after head to point to
1142  * the old reader page. But if the writer moves the head page
1143  * during this operation, the reader could end up with the tail.
1144  *
1145  * We use cmpxchg to help prevent this race. We also do something
1146  * special with the page before head. We set the LSB to 1.
1147  *
1148  * When the writer must push the page forward, it will clear the
1149  * bit that points to the head page, move the head, and then set
1150  * the bit that points to the new head page.
1151  *
1152  * We also don't want an interrupt coming in and moving the head
1153  * page on another writer. Thus we use the second LSB to catch
1154  * that too. Thus:
1155  *
1156  * head->list->prev->next        bit 1          bit 0
1157  *                              -------        -------
1158  * Normal page                     0              0
1159  * Points to head page             0              1
1160  * New head page                   1              0
1161  *
1162  * Note we can not trust the prev pointer of the head page, because:
1163  *
1164  * +----+       +-----+        +-----+
1165  * |    |------>|  T  |---X--->|  N  |
1166  * |    |<------|     |        |     |
1167  * +----+       +-----+        +-----+
1168  *   ^                           ^ |
1169  *   |          +-----+          | |
1170  *   +----------|  R  |----------+ |
1171  *              |     |<-----------+
1172  *              +-----+
1173  *
1174  * Key:  ---X-->  HEAD flag set in pointer
1175  *         T      Tail page
1176  *         R      Reader page
1177  *         N      Next page
1178  *
1179  * (see __rb_reserve_next() to see where this happens)
1180  *
1181  *  What the above shows is that the reader just swapped out
1182  *  the reader page with a page in the buffer, but before it
1183  *  could make the new header point back to the new page added
1184  *  it was preempted by a writer. The writer moved forward onto
1185  *  the new page added by the reader and is about to move forward
1186  *  again.
1187  *
1188  *  You can see, it is legitimate for the previous pointer of
1189  *  the head (or any page) not to point back to itself. But only
1190  *  temporarily.
1191  */
1192 
1193 #define RB_PAGE_NORMAL		0UL
1194 #define RB_PAGE_HEAD		1UL
1195 #define RB_PAGE_UPDATE		2UL
1196 
1197 
1198 #define RB_FLAG_MASK		3UL
1199 
1200 /* PAGE_MOVED is not part of the mask */
1201 #define RB_PAGE_MOVED		4UL
1202 
1203 /*
1204  * rb_list_head - remove any bit
1205  */
1206 static struct list_head *rb_list_head(struct list_head *list)
1207 {
1208 	unsigned long val = (unsigned long)list;
1209 
1210 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1211 }
1212 
1213 /*
1214  * rb_is_head_page - test if the given page is the head page
1215  *
1216  * Because the reader may move the head_page pointer, we can
1217  * not trust what the head page is (it may be pointing to
1218  * the reader page). But if the next page is a header page,
1219  * its flags will be non zero.
1220  */
1221 static inline int
1222 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1223 {
1224 	unsigned long val;
1225 
1226 	val = (unsigned long)list->next;
1227 
1228 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1229 		return RB_PAGE_MOVED;
1230 
1231 	return val & RB_FLAG_MASK;
1232 }
1233 
1234 /*
1235  * rb_is_reader_page
1236  *
1237  * The unique thing about the reader page, is that, if the
1238  * writer is ever on it, the previous pointer never points
1239  * back to the reader page.
1240  */
1241 static bool rb_is_reader_page(struct buffer_page *page)
1242 {
1243 	struct list_head *list = page->list.prev;
1244 
1245 	return rb_list_head(list->next) != &page->list;
1246 }
1247 
1248 /*
1249  * rb_set_list_to_head - set a list_head to be pointing to head.
1250  */
1251 static void rb_set_list_to_head(struct list_head *list)
1252 {
1253 	unsigned long *ptr;
1254 
1255 	ptr = (unsigned long *)&list->next;
1256 	*ptr |= RB_PAGE_HEAD;
1257 	*ptr &= ~RB_PAGE_UPDATE;
1258 }
1259 
1260 /*
1261  * rb_head_page_activate - sets up head page
1262  */
1263 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1264 {
1265 	struct buffer_page *head;
1266 
1267 	head = cpu_buffer->head_page;
1268 	if (!head)
1269 		return;
1270 
1271 	/*
1272 	 * Set the previous list pointer to have the HEAD flag.
1273 	 */
1274 	rb_set_list_to_head(head->list.prev);
1275 
1276 	if (cpu_buffer->ring_meta) {
1277 		struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1278 		meta->head_buffer = (unsigned long)head->page;
1279 	}
1280 }
1281 
1282 static void rb_list_head_clear(struct list_head *list)
1283 {
1284 	unsigned long *ptr = (unsigned long *)&list->next;
1285 
1286 	*ptr &= ~RB_FLAG_MASK;
1287 }
1288 
1289 /*
1290  * rb_head_page_deactivate - clears head page ptr (for free list)
1291  */
1292 static void
1293 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1294 {
1295 	struct list_head *hd;
1296 
1297 	/* Go through the whole list and clear any pointers found. */
1298 	rb_list_head_clear(cpu_buffer->pages);
1299 
1300 	list_for_each(hd, cpu_buffer->pages)
1301 		rb_list_head_clear(hd);
1302 }
1303 
1304 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1305 			    struct buffer_page *head,
1306 			    struct buffer_page *prev,
1307 			    int old_flag, int new_flag)
1308 {
1309 	struct list_head *list;
1310 	unsigned long val = (unsigned long)&head->list;
1311 	unsigned long ret;
1312 
1313 	list = &prev->list;
1314 
1315 	val &= ~RB_FLAG_MASK;
1316 
1317 	ret = cmpxchg((unsigned long *)&list->next,
1318 		      val | old_flag, val | new_flag);
1319 
1320 	/* check if the reader took the page */
1321 	if ((ret & ~RB_FLAG_MASK) != val)
1322 		return RB_PAGE_MOVED;
1323 
1324 	return ret & RB_FLAG_MASK;
1325 }
1326 
1327 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1328 				   struct buffer_page *head,
1329 				   struct buffer_page *prev,
1330 				   int old_flag)
1331 {
1332 	return rb_head_page_set(cpu_buffer, head, prev,
1333 				old_flag, RB_PAGE_UPDATE);
1334 }
1335 
1336 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1337 				 struct buffer_page *head,
1338 				 struct buffer_page *prev,
1339 				 int old_flag)
1340 {
1341 	return rb_head_page_set(cpu_buffer, head, prev,
1342 				old_flag, RB_PAGE_HEAD);
1343 }
1344 
1345 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1346 				   struct buffer_page *head,
1347 				   struct buffer_page *prev,
1348 				   int old_flag)
1349 {
1350 	return rb_head_page_set(cpu_buffer, head, prev,
1351 				old_flag, RB_PAGE_NORMAL);
1352 }
1353 
1354 static inline void rb_inc_page(struct buffer_page **bpage)
1355 {
1356 	struct list_head *p = rb_list_head((*bpage)->list.next);
1357 
1358 	*bpage = list_entry(p, struct buffer_page, list);
1359 }
1360 
1361 static struct buffer_page *
1362 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1363 {
1364 	struct buffer_page *head;
1365 	struct buffer_page *page;
1366 	struct list_head *list;
1367 	int i;
1368 
1369 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1370 		return NULL;
1371 
1372 	/* sanity check */
1373 	list = cpu_buffer->pages;
1374 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1375 		return NULL;
1376 
1377 	page = head = cpu_buffer->head_page;
1378 	/*
1379 	 * It is possible that the writer moves the header behind
1380 	 * where we started, and we miss in one loop.
1381 	 * A second loop should grab the header, but we'll do
1382 	 * three loops just because I'm paranoid.
1383 	 */
1384 	for (i = 0; i < 3; i++) {
1385 		do {
1386 			if (rb_is_head_page(page, page->list.prev)) {
1387 				cpu_buffer->head_page = page;
1388 				return page;
1389 			}
1390 			rb_inc_page(&page);
1391 		} while (page != head);
1392 	}
1393 
1394 	RB_WARN_ON(cpu_buffer, 1);
1395 
1396 	return NULL;
1397 }
1398 
1399 static bool rb_head_page_replace(struct buffer_page *old,
1400 				struct buffer_page *new)
1401 {
1402 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1403 	unsigned long val;
1404 
1405 	val = *ptr & ~RB_FLAG_MASK;
1406 	val |= RB_PAGE_HEAD;
1407 
1408 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1409 }
1410 
1411 /*
1412  * rb_tail_page_update - move the tail page forward
1413  */
1414 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1415 			       struct buffer_page *tail_page,
1416 			       struct buffer_page *next_page)
1417 {
1418 	unsigned long old_entries;
1419 	unsigned long old_write;
1420 
1421 	/*
1422 	 * The tail page now needs to be moved forward.
1423 	 *
1424 	 * We need to reset the tail page, but without messing
1425 	 * with possible erasing of data brought in by interrupts
1426 	 * that have moved the tail page and are currently on it.
1427 	 *
1428 	 * We add a counter to the write field to denote this.
1429 	 */
1430 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1431 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1432 
1433 	/*
1434 	 * Just make sure we have seen our old_write and synchronize
1435 	 * with any interrupts that come in.
1436 	 */
1437 	barrier();
1438 
1439 	/*
1440 	 * If the tail page is still the same as what we think
1441 	 * it is, then it is up to us to update the tail
1442 	 * pointer.
1443 	 */
1444 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1445 		/* Zero the write counter */
1446 		unsigned long val = old_write & ~RB_WRITE_MASK;
1447 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1448 
1449 		/*
1450 		 * This will only succeed if an interrupt did
1451 		 * not come in and change it. In which case, we
1452 		 * do not want to modify it.
1453 		 *
1454 		 * We add (void) to let the compiler know that we do not care
1455 		 * about the return value of these functions. We use the
1456 		 * cmpxchg to only update if an interrupt did not already
1457 		 * do it for us. If the cmpxchg fails, we don't care.
1458 		 */
1459 		(void)local_cmpxchg(&next_page->write, old_write, val);
1460 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1461 
1462 		/*
1463 		 * No need to worry about races with clearing out the commit.
1464 		 * it only can increment when a commit takes place. But that
1465 		 * only happens in the outer most nested commit.
1466 		 */
1467 		local_set(&next_page->page->commit, 0);
1468 
1469 		/* Either we update tail_page or an interrupt does */
1470 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1471 			local_inc(&cpu_buffer->pages_touched);
1472 	}
1473 }
1474 
1475 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1476 			  struct buffer_page *bpage)
1477 {
1478 	unsigned long val = (unsigned long)bpage;
1479 
1480 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1481 }
1482 
1483 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1484 			   struct list_head *list)
1485 {
1486 	if (RB_WARN_ON(cpu_buffer,
1487 		       rb_list_head(rb_list_head(list->next)->prev) != list))
1488 		return false;
1489 
1490 	if (RB_WARN_ON(cpu_buffer,
1491 		       rb_list_head(rb_list_head(list->prev)->next) != list))
1492 		return false;
1493 
1494 	return true;
1495 }
1496 
1497 /**
1498  * rb_check_pages - integrity check of buffer pages
1499  * @cpu_buffer: CPU buffer with pages to test
1500  *
1501  * As a safety measure we check to make sure the data pages have not
1502  * been corrupted.
1503  */
1504 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1505 {
1506 	struct list_head *head, *tmp;
1507 	unsigned long buffer_cnt;
1508 	unsigned long flags;
1509 	int nr_loops = 0;
1510 
1511 	/*
1512 	 * Walk the linked list underpinning the ring buffer and validate all
1513 	 * its next and prev links.
1514 	 *
1515 	 * The check acquires the reader_lock to avoid concurrent processing
1516 	 * with code that could be modifying the list. However, the lock cannot
1517 	 * be held for the entire duration of the walk, as this would make the
1518 	 * time when interrupts are disabled non-deterministic, dependent on the
1519 	 * ring buffer size. Therefore, the code releases and re-acquires the
1520 	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1521 	 * is then used to detect if the list was modified while the lock was
1522 	 * not held, in which case the check needs to be restarted.
1523 	 *
1524 	 * The code attempts to perform the check at most three times before
1525 	 * giving up. This is acceptable because this is only a self-validation
1526 	 * to detect problems early on. In practice, the list modification
1527 	 * operations are fairly spaced, and so this check typically succeeds at
1528 	 * most on the second try.
1529 	 */
1530 again:
1531 	if (++nr_loops > 3)
1532 		return;
1533 
1534 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1535 	head = rb_list_head(cpu_buffer->pages);
1536 	if (!rb_check_links(cpu_buffer, head))
1537 		goto out_locked;
1538 	buffer_cnt = cpu_buffer->cnt;
1539 	tmp = head;
1540 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1541 
1542 	while (true) {
1543 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1544 
1545 		if (buffer_cnt != cpu_buffer->cnt) {
1546 			/* The list was updated, try again. */
1547 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1548 			goto again;
1549 		}
1550 
1551 		tmp = rb_list_head(tmp->next);
1552 		if (tmp == head)
1553 			/* The iteration circled back, all is done. */
1554 			goto out_locked;
1555 
1556 		if (!rb_check_links(cpu_buffer, tmp))
1557 			goto out_locked;
1558 
1559 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1560 	}
1561 
1562 out_locked:
1563 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1564 }
1565 
1566 /*
1567  * Take an address, add the meta data size as well as the array of
1568  * array subbuffer indexes, then align it to a subbuffer size.
1569  *
1570  * This is used to help find the next per cpu subbuffer within a mapped range.
1571  */
1572 static unsigned long
1573 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1574 {
1575 	addr += sizeof(struct ring_buffer_cpu_meta) +
1576 		sizeof(int) * nr_subbufs;
1577 	return ALIGN(addr, subbuf_size);
1578 }
1579 
1580 /*
1581  * Return the ring_buffer_meta for a given @cpu.
1582  */
1583 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1584 {
1585 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1586 	struct ring_buffer_cpu_meta *meta;
1587 	struct ring_buffer_meta *bmeta;
1588 	unsigned long ptr;
1589 	int nr_subbufs;
1590 
1591 	bmeta = buffer->meta;
1592 	if (!bmeta)
1593 		return NULL;
1594 
1595 	ptr = (unsigned long)bmeta + bmeta->buffers_offset;
1596 	meta = (struct ring_buffer_cpu_meta *)ptr;
1597 
1598 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1599 	if (!nr_pages) {
1600 		nr_subbufs = meta->nr_subbufs;
1601 	} else {
1602 		/* Include the reader page */
1603 		nr_subbufs = nr_pages + 1;
1604 	}
1605 
1606 	/*
1607 	 * The first chunk may not be subbuffer aligned, where as
1608 	 * the rest of the chunks are.
1609 	 */
1610 	if (cpu) {
1611 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1612 		ptr += subbuf_size * nr_subbufs;
1613 
1614 		/* We can use multiplication to find chunks greater than 1 */
1615 		if (cpu > 1) {
1616 			unsigned long size;
1617 			unsigned long p;
1618 
1619 			/* Save the beginning of this CPU chunk */
1620 			p = ptr;
1621 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1622 			ptr += subbuf_size * nr_subbufs;
1623 
1624 			/* Now all chunks after this are the same size */
1625 			size = ptr - p;
1626 			ptr += size * (cpu - 2);
1627 		}
1628 	}
1629 	return (void *)ptr;
1630 }
1631 
1632 /* Return the start of subbufs given the meta pointer */
1633 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta)
1634 {
1635 	int subbuf_size = meta->subbuf_size;
1636 	unsigned long ptr;
1637 
1638 	ptr = (unsigned long)meta;
1639 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1640 
1641 	return (void *)ptr;
1642 }
1643 
1644 /*
1645  * Return a specific sub-buffer for a given @cpu defined by @idx.
1646  */
1647 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1648 {
1649 	struct ring_buffer_cpu_meta *meta;
1650 	unsigned long ptr;
1651 	int subbuf_size;
1652 
1653 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1654 	if (!meta)
1655 		return NULL;
1656 
1657 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1658 		return NULL;
1659 
1660 	subbuf_size = meta->subbuf_size;
1661 
1662 	/* Map this buffer to the order that's in meta->buffers[] */
1663 	idx = meta->buffers[idx];
1664 
1665 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1666 
1667 	ptr += subbuf_size * idx;
1668 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1669 		return NULL;
1670 
1671 	return (void *)ptr;
1672 }
1673 
1674 /*
1675  * See if the existing memory contains a valid meta section.
1676  * if so, use that, otherwise initialize it.
1677  */
1678 static bool rb_meta_init(struct trace_buffer *buffer, int scratch_size)
1679 {
1680 	unsigned long ptr = buffer->range_addr_start;
1681 	struct ring_buffer_meta *bmeta;
1682 	unsigned long total_size;
1683 	int struct_sizes;
1684 
1685 	bmeta = (struct ring_buffer_meta *)ptr;
1686 	buffer->meta = bmeta;
1687 
1688 	total_size = buffer->range_addr_end - buffer->range_addr_start;
1689 
1690 	struct_sizes = sizeof(struct ring_buffer_cpu_meta);
1691 	struct_sizes |= sizeof(*bmeta) << 16;
1692 
1693 	/* The first buffer will start word size after the meta page */
1694 	ptr += sizeof(*bmeta);
1695 	ptr = ALIGN(ptr, sizeof(long));
1696 	ptr += scratch_size;
1697 
1698 	if (bmeta->magic != RING_BUFFER_META_MAGIC) {
1699 		pr_info("Ring buffer boot meta mismatch of magic\n");
1700 		goto init;
1701 	}
1702 
1703 	if (bmeta->struct_sizes != struct_sizes) {
1704 		pr_info("Ring buffer boot meta mismatch of struct size\n");
1705 		goto init;
1706 	}
1707 
1708 	if (bmeta->total_size != total_size) {
1709 		pr_info("Ring buffer boot meta mismatch of total size\n");
1710 		goto init;
1711 	}
1712 
1713 	if (bmeta->buffers_offset > bmeta->total_size) {
1714 		pr_info("Ring buffer boot meta mismatch of offset outside of total size\n");
1715 		goto init;
1716 	}
1717 
1718 	if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) {
1719 		pr_info("Ring buffer boot meta mismatch of first buffer offset\n");
1720 		goto init;
1721 	}
1722 
1723 	return true;
1724 
1725  init:
1726 	bmeta->magic = RING_BUFFER_META_MAGIC;
1727 	bmeta->struct_sizes = struct_sizes;
1728 	bmeta->total_size = total_size;
1729 	bmeta->buffers_offset = (void *)ptr - (void *)bmeta;
1730 
1731 	/* Zero out the scatch pad */
1732 	memset((void *)bmeta + sizeof(*bmeta), 0, bmeta->buffers_offset - sizeof(*bmeta));
1733 
1734 	return false;
1735 }
1736 
1737 /*
1738  * See if the existing memory contains valid ring buffer data.
1739  * As the previous kernel must be the same as this kernel, all
1740  * the calculations (size of buffers and number of buffers)
1741  * must be the same.
1742  */
1743 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu,
1744 			      struct trace_buffer *buffer, int nr_pages,
1745 			      unsigned long *subbuf_mask)
1746 {
1747 	int subbuf_size = PAGE_SIZE;
1748 	struct buffer_data_page *subbuf;
1749 	unsigned long buffers_start;
1750 	unsigned long buffers_end;
1751 	int i;
1752 
1753 	if (!subbuf_mask)
1754 		return false;
1755 
1756 	buffers_start = meta->first_buffer;
1757 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1758 
1759 	/* Is the head and commit buffers within the range of buffers? */
1760 	if (meta->head_buffer < buffers_start ||
1761 	    meta->head_buffer >= buffers_end) {
1762 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1763 		return false;
1764 	}
1765 
1766 	if (meta->commit_buffer < buffers_start ||
1767 	    meta->commit_buffer >= buffers_end) {
1768 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1769 		return false;
1770 	}
1771 
1772 	subbuf = rb_subbufs_from_meta(meta);
1773 
1774 	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1775 
1776 	/* Is the meta buffers and the subbufs themselves have correct data? */
1777 	for (i = 0; i < meta->nr_subbufs; i++) {
1778 		if (meta->buffers[i] < 0 ||
1779 		    meta->buffers[i] >= meta->nr_subbufs) {
1780 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1781 			return false;
1782 		}
1783 
1784 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1785 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1786 			return false;
1787 		}
1788 
1789 		if (test_bit(meta->buffers[i], subbuf_mask)) {
1790 			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1791 			return false;
1792 		}
1793 
1794 		set_bit(meta->buffers[i], subbuf_mask);
1795 		subbuf = (void *)subbuf + subbuf_size;
1796 	}
1797 
1798 	return true;
1799 }
1800 
1801 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf);
1802 
1803 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1804 			       unsigned long long *timestamp, u64 *delta_ptr)
1805 {
1806 	struct ring_buffer_event *event;
1807 	u64 ts, delta;
1808 	int events = 0;
1809 	int e;
1810 
1811 	*delta_ptr = 0;
1812 	*timestamp = 0;
1813 
1814 	ts = dpage->time_stamp;
1815 
1816 	for (e = 0; e < tail; e += rb_event_length(event)) {
1817 
1818 		event = (struct ring_buffer_event *)(dpage->data + e);
1819 
1820 		switch (event->type_len) {
1821 
1822 		case RINGBUF_TYPE_TIME_EXTEND:
1823 			delta = rb_event_time_stamp(event);
1824 			ts += delta;
1825 			break;
1826 
1827 		case RINGBUF_TYPE_TIME_STAMP:
1828 			delta = rb_event_time_stamp(event);
1829 			delta = rb_fix_abs_ts(delta, ts);
1830 			if (delta < ts) {
1831 				*delta_ptr = delta;
1832 				*timestamp = ts;
1833 				return -1;
1834 			}
1835 			ts = delta;
1836 			break;
1837 
1838 		case RINGBUF_TYPE_PADDING:
1839 			if (event->time_delta == 1)
1840 				break;
1841 			fallthrough;
1842 		case RINGBUF_TYPE_DATA:
1843 			events++;
1844 			ts += event->time_delta;
1845 			break;
1846 
1847 		default:
1848 			return -1;
1849 		}
1850 	}
1851 	*timestamp = ts;
1852 	return events;
1853 }
1854 
1855 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1856 {
1857 	unsigned long long ts;
1858 	u64 delta;
1859 	int tail;
1860 
1861 	tail = local_read(&dpage->commit);
1862 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1863 }
1864 
1865 /* If the meta data has been validated, now validate the events */
1866 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1867 {
1868 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1869 	struct buffer_page *head_page;
1870 	unsigned long entry_bytes = 0;
1871 	unsigned long entries = 0;
1872 	int ret;
1873 	int i;
1874 
1875 	if (!meta || !meta->head_buffer)
1876 		return;
1877 
1878 	/* Do the reader page first */
1879 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1880 	if (ret < 0) {
1881 		pr_info("Ring buffer reader page is invalid\n");
1882 		goto invalid;
1883 	}
1884 	entries += ret;
1885 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1886 	local_set(&cpu_buffer->reader_page->entries, ret);
1887 
1888 	head_page = cpu_buffer->head_page;
1889 
1890 	/* If the commit_buffer is the reader page, update the commit page */
1891 	if (meta->commit_buffer == (unsigned long)cpu_buffer->reader_page->page) {
1892 		cpu_buffer->commit_page = cpu_buffer->reader_page;
1893 		/* Nothing more to do, the only page is the reader page */
1894 		goto done;
1895 	}
1896 
1897 	/* Iterate until finding the commit page */
1898 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1899 
1900 		/* Reader page has already been done */
1901 		if (head_page == cpu_buffer->reader_page)
1902 			continue;
1903 
1904 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1905 		if (ret < 0) {
1906 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1907 				cpu_buffer->cpu);
1908 			goto invalid;
1909 		}
1910 
1911 		/* If the buffer has content, update pages_touched */
1912 		if (ret)
1913 			local_inc(&cpu_buffer->pages_touched);
1914 
1915 		entries += ret;
1916 		entry_bytes += local_read(&head_page->page->commit);
1917 		local_set(&cpu_buffer->head_page->entries, ret);
1918 
1919 		if (head_page == cpu_buffer->commit_page)
1920 			break;
1921 	}
1922 
1923 	if (head_page != cpu_buffer->commit_page) {
1924 		pr_info("Ring buffer meta [%d] commit page not found\n",
1925 			cpu_buffer->cpu);
1926 		goto invalid;
1927 	}
1928  done:
1929 	local_set(&cpu_buffer->entries, entries);
1930 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1931 
1932 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1933 	return;
1934 
1935  invalid:
1936 	/* The content of the buffers are invalid, reset the meta data */
1937 	meta->head_buffer = 0;
1938 	meta->commit_buffer = 0;
1939 
1940 	/* Reset the reader page */
1941 	local_set(&cpu_buffer->reader_page->entries, 0);
1942 	local_set(&cpu_buffer->reader_page->page->commit, 0);
1943 
1944 	/* Reset all the subbuffers */
1945 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1946 		local_set(&head_page->entries, 0);
1947 		local_set(&head_page->page->commit, 0);
1948 	}
1949 }
1950 
1951 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages, int scratch_size)
1952 {
1953 	struct ring_buffer_cpu_meta *meta;
1954 	unsigned long *subbuf_mask;
1955 	unsigned long delta;
1956 	void *subbuf;
1957 	bool valid = false;
1958 	int cpu;
1959 	int i;
1960 
1961 	/* Create a mask to test the subbuf array */
1962 	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1963 	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1964 
1965 	if (rb_meta_init(buffer, scratch_size))
1966 		valid = true;
1967 
1968 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1969 		void *next_meta;
1970 
1971 		meta = rb_range_meta(buffer, nr_pages, cpu);
1972 
1973 		if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1974 			/* Make the mappings match the current address */
1975 			subbuf = rb_subbufs_from_meta(meta);
1976 			delta = (unsigned long)subbuf - meta->first_buffer;
1977 			meta->first_buffer += delta;
1978 			meta->head_buffer += delta;
1979 			meta->commit_buffer += delta;
1980 			continue;
1981 		}
1982 
1983 		if (cpu < nr_cpu_ids - 1)
1984 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1985 		else
1986 			next_meta = (void *)buffer->range_addr_end;
1987 
1988 		memset(meta, 0, next_meta - (void *)meta);
1989 
1990 		meta->nr_subbufs = nr_pages + 1;
1991 		meta->subbuf_size = PAGE_SIZE;
1992 
1993 		subbuf = rb_subbufs_from_meta(meta);
1994 
1995 		meta->first_buffer = (unsigned long)subbuf;
1996 
1997 		/*
1998 		 * The buffers[] array holds the order of the sub-buffers
1999 		 * that are after the meta data. The sub-buffers may
2000 		 * be swapped out when read and inserted into a different
2001 		 * location of the ring buffer. Although their addresses
2002 		 * remain the same, the buffers[] array contains the
2003 		 * index into the sub-buffers holding their actual order.
2004 		 */
2005 		for (i = 0; i < meta->nr_subbufs; i++) {
2006 			meta->buffers[i] = i;
2007 			rb_init_page(subbuf);
2008 			subbuf += meta->subbuf_size;
2009 		}
2010 	}
2011 	bitmap_free(subbuf_mask);
2012 }
2013 
2014 static void *rbm_start(struct seq_file *m, loff_t *pos)
2015 {
2016 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2017 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2018 	unsigned long val;
2019 
2020 	if (!meta)
2021 		return NULL;
2022 
2023 	if (*pos > meta->nr_subbufs)
2024 		return NULL;
2025 
2026 	val = *pos;
2027 	val++;
2028 
2029 	return (void *)val;
2030 }
2031 
2032 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
2033 {
2034 	(*pos)++;
2035 
2036 	return rbm_start(m, pos);
2037 }
2038 
2039 static int rbm_show(struct seq_file *m, void *v)
2040 {
2041 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2042 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2043 	unsigned long val = (unsigned long)v;
2044 
2045 	if (val == 1) {
2046 		seq_printf(m, "head_buffer:   %d\n",
2047 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2048 		seq_printf(m, "commit_buffer: %d\n",
2049 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2050 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2051 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2052 		return 0;
2053 	}
2054 
2055 	val -= 2;
2056 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2057 
2058 	return 0;
2059 }
2060 
2061 static void rbm_stop(struct seq_file *m, void *p)
2062 {
2063 }
2064 
2065 static const struct seq_operations rb_meta_seq_ops = {
2066 	.start		= rbm_start,
2067 	.next		= rbm_next,
2068 	.show		= rbm_show,
2069 	.stop		= rbm_stop,
2070 };
2071 
2072 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2073 {
2074 	struct seq_file *m;
2075 	int ret;
2076 
2077 	ret = seq_open(file, &rb_meta_seq_ops);
2078 	if (ret)
2079 		return ret;
2080 
2081 	m = file->private_data;
2082 	m->private = buffer->buffers[cpu];
2083 
2084 	return 0;
2085 }
2086 
2087 /* Map the buffer_pages to the previous head and commit pages */
2088 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2089 				  struct buffer_page *bpage)
2090 {
2091 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2092 
2093 	if (meta->head_buffer == (unsigned long)bpage->page)
2094 		cpu_buffer->head_page = bpage;
2095 
2096 	if (meta->commit_buffer == (unsigned long)bpage->page) {
2097 		cpu_buffer->commit_page = bpage;
2098 		cpu_buffer->tail_page = bpage;
2099 	}
2100 }
2101 
2102 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2103 		long nr_pages, struct list_head *pages)
2104 {
2105 	struct trace_buffer *buffer = cpu_buffer->buffer;
2106 	struct ring_buffer_cpu_meta *meta = NULL;
2107 	struct buffer_page *bpage, *tmp;
2108 	bool user_thread = current->mm != NULL;
2109 	gfp_t mflags;
2110 	long i;
2111 
2112 	/*
2113 	 * Check if the available memory is there first.
2114 	 * Note, si_mem_available() only gives us a rough estimate of available
2115 	 * memory. It may not be accurate. But we don't care, we just want
2116 	 * to prevent doing any allocation when it is obvious that it is
2117 	 * not going to succeed.
2118 	 */
2119 	i = si_mem_available();
2120 	if (i < nr_pages)
2121 		return -ENOMEM;
2122 
2123 	/*
2124 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2125 	 * gracefully without invoking oom-killer and the system is not
2126 	 * destabilized.
2127 	 */
2128 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2129 
2130 	/*
2131 	 * If a user thread allocates too much, and si_mem_available()
2132 	 * reports there's enough memory, even though there is not.
2133 	 * Make sure the OOM killer kills this thread. This can happen
2134 	 * even with RETRY_MAYFAIL because another task may be doing
2135 	 * an allocation after this task has taken all memory.
2136 	 * This is the task the OOM killer needs to take out during this
2137 	 * loop, even if it was triggered by an allocation somewhere else.
2138 	 */
2139 	if (user_thread)
2140 		set_current_oom_origin();
2141 
2142 	if (buffer->range_addr_start)
2143 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2144 
2145 	for (i = 0; i < nr_pages; i++) {
2146 		struct page *page;
2147 
2148 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2149 				    mflags, cpu_to_node(cpu_buffer->cpu));
2150 		if (!bpage)
2151 			goto free_pages;
2152 
2153 		rb_check_bpage(cpu_buffer, bpage);
2154 
2155 		/*
2156 		 * Append the pages as for mapped buffers we want to keep
2157 		 * the order
2158 		 */
2159 		list_add_tail(&bpage->list, pages);
2160 
2161 		if (meta) {
2162 			/* A range was given. Use that for the buffer page */
2163 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2164 			if (!bpage->page)
2165 				goto free_pages;
2166 			/* If this is valid from a previous boot */
2167 			if (meta->head_buffer)
2168 				rb_meta_buffer_update(cpu_buffer, bpage);
2169 			bpage->range = 1;
2170 			bpage->id = i + 1;
2171 		} else {
2172 			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2173 						mflags | __GFP_COMP | __GFP_ZERO,
2174 						cpu_buffer->buffer->subbuf_order);
2175 			if (!page)
2176 				goto free_pages;
2177 			bpage->page = page_address(page);
2178 			rb_init_page(bpage->page);
2179 		}
2180 		bpage->order = cpu_buffer->buffer->subbuf_order;
2181 
2182 		if (user_thread && fatal_signal_pending(current))
2183 			goto free_pages;
2184 	}
2185 	if (user_thread)
2186 		clear_current_oom_origin();
2187 
2188 	return 0;
2189 
2190 free_pages:
2191 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2192 		list_del_init(&bpage->list);
2193 		free_buffer_page(bpage);
2194 	}
2195 	if (user_thread)
2196 		clear_current_oom_origin();
2197 
2198 	return -ENOMEM;
2199 }
2200 
2201 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2202 			     unsigned long nr_pages)
2203 {
2204 	LIST_HEAD(pages);
2205 
2206 	WARN_ON(!nr_pages);
2207 
2208 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2209 		return -ENOMEM;
2210 
2211 	/*
2212 	 * The ring buffer page list is a circular list that does not
2213 	 * start and end with a list head. All page list items point to
2214 	 * other pages.
2215 	 */
2216 	cpu_buffer->pages = pages.next;
2217 	list_del(&pages);
2218 
2219 	cpu_buffer->nr_pages = nr_pages;
2220 
2221 	rb_check_pages(cpu_buffer);
2222 
2223 	return 0;
2224 }
2225 
2226 static struct ring_buffer_per_cpu *
2227 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2228 {
2229 	struct ring_buffer_per_cpu *cpu_buffer __free(kfree) = NULL;
2230 	struct ring_buffer_cpu_meta *meta;
2231 	struct buffer_page *bpage;
2232 	struct page *page;
2233 	int ret;
2234 
2235 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2236 				  GFP_KERNEL, cpu_to_node(cpu));
2237 	if (!cpu_buffer)
2238 		return NULL;
2239 
2240 	cpu_buffer->cpu = cpu;
2241 	cpu_buffer->buffer = buffer;
2242 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2243 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2244 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2245 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2246 	init_completion(&cpu_buffer->update_done);
2247 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2248 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2249 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2250 	mutex_init(&cpu_buffer->mapping_lock);
2251 
2252 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2253 			    GFP_KERNEL, cpu_to_node(cpu));
2254 	if (!bpage)
2255 		return NULL;
2256 
2257 	rb_check_bpage(cpu_buffer, bpage);
2258 
2259 	cpu_buffer->reader_page = bpage;
2260 
2261 	if (buffer->range_addr_start) {
2262 		/*
2263 		 * Range mapped buffers have the same restrictions as memory
2264 		 * mapped ones do.
2265 		 */
2266 		cpu_buffer->mapped = 1;
2267 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2268 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2269 		if (!bpage->page)
2270 			goto fail_free_reader;
2271 		if (cpu_buffer->ring_meta->head_buffer)
2272 			rb_meta_buffer_update(cpu_buffer, bpage);
2273 		bpage->range = 1;
2274 	} else {
2275 		page = alloc_pages_node(cpu_to_node(cpu),
2276 					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2277 					cpu_buffer->buffer->subbuf_order);
2278 		if (!page)
2279 			goto fail_free_reader;
2280 		bpage->page = page_address(page);
2281 		rb_init_page(bpage->page);
2282 	}
2283 
2284 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2285 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2286 
2287 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2288 	if (ret < 0)
2289 		goto fail_free_reader;
2290 
2291 	rb_meta_validate_events(cpu_buffer);
2292 
2293 	/* If the boot meta was valid then this has already been updated */
2294 	meta = cpu_buffer->ring_meta;
2295 	if (!meta || !meta->head_buffer ||
2296 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2297 		if (meta && meta->head_buffer &&
2298 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2299 			pr_warn("Ring buffer meta buffers not all mapped\n");
2300 			if (!cpu_buffer->head_page)
2301 				pr_warn("   Missing head_page\n");
2302 			if (!cpu_buffer->commit_page)
2303 				pr_warn("   Missing commit_page\n");
2304 			if (!cpu_buffer->tail_page)
2305 				pr_warn("   Missing tail_page\n");
2306 		}
2307 
2308 		cpu_buffer->head_page
2309 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2310 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2311 
2312 		rb_head_page_activate(cpu_buffer);
2313 
2314 		if (cpu_buffer->ring_meta)
2315 			meta->commit_buffer = meta->head_buffer;
2316 	} else {
2317 		/* The valid meta buffer still needs to activate the head page */
2318 		rb_head_page_activate(cpu_buffer);
2319 	}
2320 
2321 	return_ptr(cpu_buffer);
2322 
2323  fail_free_reader:
2324 	free_buffer_page(cpu_buffer->reader_page);
2325 
2326 	return NULL;
2327 }
2328 
2329 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2330 {
2331 	struct list_head *head = cpu_buffer->pages;
2332 	struct buffer_page *bpage, *tmp;
2333 
2334 	irq_work_sync(&cpu_buffer->irq_work.work);
2335 
2336 	free_buffer_page(cpu_buffer->reader_page);
2337 
2338 	if (head) {
2339 		rb_head_page_deactivate(cpu_buffer);
2340 
2341 		list_for_each_entry_safe(bpage, tmp, head, list) {
2342 			list_del_init(&bpage->list);
2343 			free_buffer_page(bpage);
2344 		}
2345 		bpage = list_entry(head, struct buffer_page, list);
2346 		free_buffer_page(bpage);
2347 	}
2348 
2349 	free_page((unsigned long)cpu_buffer->free_page);
2350 
2351 	kfree(cpu_buffer);
2352 }
2353 
2354 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2355 					 int order, unsigned long start,
2356 					 unsigned long end,
2357 					 unsigned long scratch_size,
2358 					 struct lock_class_key *key)
2359 {
2360 	struct trace_buffer *buffer __free(kfree) = NULL;
2361 	long nr_pages;
2362 	int subbuf_size;
2363 	int bsize;
2364 	int cpu;
2365 	int ret;
2366 
2367 	/* keep it in its own cache line */
2368 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2369 			 GFP_KERNEL);
2370 	if (!buffer)
2371 		return NULL;
2372 
2373 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2374 		return NULL;
2375 
2376 	buffer->subbuf_order = order;
2377 	subbuf_size = (PAGE_SIZE << order);
2378 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2379 
2380 	/* Max payload is buffer page size - header (8bytes) */
2381 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2382 
2383 	buffer->flags = flags;
2384 	buffer->clock = trace_clock_local;
2385 	buffer->reader_lock_key = key;
2386 
2387 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2388 	init_waitqueue_head(&buffer->irq_work.waiters);
2389 
2390 	buffer->cpus = nr_cpu_ids;
2391 
2392 	bsize = sizeof(void *) * nr_cpu_ids;
2393 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2394 				  GFP_KERNEL);
2395 	if (!buffer->buffers)
2396 		goto fail_free_cpumask;
2397 
2398 	/* If start/end are specified, then that overrides size */
2399 	if (start && end) {
2400 		unsigned long buffers_start;
2401 		unsigned long ptr;
2402 		int n;
2403 
2404 		/* Make sure that start is word aligned */
2405 		start = ALIGN(start, sizeof(long));
2406 
2407 		/* scratch_size needs to be aligned too */
2408 		scratch_size = ALIGN(scratch_size, sizeof(long));
2409 
2410 		/* Subtract the buffer meta data and word aligned */
2411 		buffers_start = start + sizeof(struct ring_buffer_cpu_meta);
2412 		buffers_start = ALIGN(buffers_start, sizeof(long));
2413 		buffers_start += scratch_size;
2414 
2415 		/* Calculate the size for the per CPU data */
2416 		size = end - buffers_start;
2417 		size = size / nr_cpu_ids;
2418 
2419 		/*
2420 		 * The number of sub-buffers (nr_pages) is determined by the
2421 		 * total size allocated minus the meta data size.
2422 		 * Then that is divided by the number of per CPU buffers
2423 		 * needed, plus account for the integer array index that
2424 		 * will be appended to the meta data.
2425 		 */
2426 		nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) /
2427 			(subbuf_size + sizeof(int));
2428 		/* Need at least two pages plus the reader page */
2429 		if (nr_pages < 3)
2430 			goto fail_free_buffers;
2431 
2432  again:
2433 		/* Make sure that the size fits aligned */
2434 		for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) {
2435 			ptr += sizeof(struct ring_buffer_cpu_meta) +
2436 				sizeof(int) * nr_pages;
2437 			ptr = ALIGN(ptr, subbuf_size);
2438 			ptr += subbuf_size * nr_pages;
2439 		}
2440 		if (ptr > end) {
2441 			if (nr_pages <= 3)
2442 				goto fail_free_buffers;
2443 			nr_pages--;
2444 			goto again;
2445 		}
2446 
2447 		/* nr_pages should not count the reader page */
2448 		nr_pages--;
2449 		buffer->range_addr_start = start;
2450 		buffer->range_addr_end = end;
2451 
2452 		rb_range_meta_init(buffer, nr_pages, scratch_size);
2453 	} else {
2454 
2455 		/* need at least two pages */
2456 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2457 		if (nr_pages < 2)
2458 			nr_pages = 2;
2459 	}
2460 
2461 	cpu = raw_smp_processor_id();
2462 	cpumask_set_cpu(cpu, buffer->cpumask);
2463 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2464 	if (!buffer->buffers[cpu])
2465 		goto fail_free_buffers;
2466 
2467 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2468 	if (ret < 0)
2469 		goto fail_free_buffers;
2470 
2471 	mutex_init(&buffer->mutex);
2472 
2473 	return_ptr(buffer);
2474 
2475  fail_free_buffers:
2476 	for_each_buffer_cpu(buffer, cpu) {
2477 		if (buffer->buffers[cpu])
2478 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2479 	}
2480 	kfree(buffer->buffers);
2481 
2482  fail_free_cpumask:
2483 	free_cpumask_var(buffer->cpumask);
2484 
2485 	return NULL;
2486 }
2487 
2488 /**
2489  * __ring_buffer_alloc - allocate a new ring_buffer
2490  * @size: the size in bytes per cpu that is needed.
2491  * @flags: attributes to set for the ring buffer.
2492  * @key: ring buffer reader_lock_key.
2493  *
2494  * Currently the only flag that is available is the RB_FL_OVERWRITE
2495  * flag. This flag means that the buffer will overwrite old data
2496  * when the buffer wraps. If this flag is not set, the buffer will
2497  * drop data when the tail hits the head.
2498  */
2499 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2500 					struct lock_class_key *key)
2501 {
2502 	/* Default buffer page size - one system page */
2503 	return alloc_buffer(size, flags, 0, 0, 0, 0, key);
2504 
2505 }
2506 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2507 
2508 /**
2509  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2510  * @size: the size in bytes per cpu that is needed.
2511  * @flags: attributes to set for the ring buffer.
2512  * @order: sub-buffer order
2513  * @start: start of allocated range
2514  * @range_size: size of allocated range
2515  * @scratch_size: size of scratch area (for preallocated memory buffers)
2516  * @key: ring buffer reader_lock_key.
2517  *
2518  * Currently the only flag that is available is the RB_FL_OVERWRITE
2519  * flag. This flag means that the buffer will overwrite old data
2520  * when the buffer wraps. If this flag is not set, the buffer will
2521  * drop data when the tail hits the head.
2522  */
2523 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2524 					       int order, unsigned long start,
2525 					       unsigned long range_size,
2526 					       unsigned long scratch_size,
2527 					       struct lock_class_key *key)
2528 {
2529 	return alloc_buffer(size, flags, order, start, start + range_size,
2530 			    scratch_size, key);
2531 }
2532 
2533 void *ring_buffer_meta_scratch(struct trace_buffer *buffer, unsigned int *size)
2534 {
2535 	struct ring_buffer_meta *meta;
2536 	void *ptr;
2537 
2538 	if (!buffer || !buffer->meta)
2539 		return NULL;
2540 
2541 	meta = buffer->meta;
2542 
2543 	ptr = (void *)ALIGN((unsigned long)meta + sizeof(*meta), sizeof(long));
2544 
2545 	if (size)
2546 		*size = (void *)meta + meta->buffers_offset - ptr;
2547 
2548 	return ptr;
2549 }
2550 
2551 /**
2552  * ring_buffer_free - free a ring buffer.
2553  * @buffer: the buffer to free.
2554  */
2555 void
2556 ring_buffer_free(struct trace_buffer *buffer)
2557 {
2558 	int cpu;
2559 
2560 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2561 
2562 	irq_work_sync(&buffer->irq_work.work);
2563 
2564 	for_each_buffer_cpu(buffer, cpu)
2565 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2566 
2567 	kfree(buffer->buffers);
2568 	free_cpumask_var(buffer->cpumask);
2569 
2570 	kfree(buffer);
2571 }
2572 EXPORT_SYMBOL_GPL(ring_buffer_free);
2573 
2574 void ring_buffer_set_clock(struct trace_buffer *buffer,
2575 			   u64 (*clock)(void))
2576 {
2577 	buffer->clock = clock;
2578 }
2579 
2580 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2581 {
2582 	buffer->time_stamp_abs = abs;
2583 }
2584 
2585 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2586 {
2587 	return buffer->time_stamp_abs;
2588 }
2589 
2590 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2591 {
2592 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2593 }
2594 
2595 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2596 {
2597 	return local_read(&bpage->write) & RB_WRITE_MASK;
2598 }
2599 
2600 static bool
2601 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2602 {
2603 	struct list_head *tail_page, *to_remove, *next_page;
2604 	struct buffer_page *to_remove_page, *tmp_iter_page;
2605 	struct buffer_page *last_page, *first_page;
2606 	unsigned long nr_removed;
2607 	unsigned long head_bit;
2608 	int page_entries;
2609 
2610 	head_bit = 0;
2611 
2612 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2613 	atomic_inc(&cpu_buffer->record_disabled);
2614 	/*
2615 	 * We don't race with the readers since we have acquired the reader
2616 	 * lock. We also don't race with writers after disabling recording.
2617 	 * This makes it easy to figure out the first and the last page to be
2618 	 * removed from the list. We unlink all the pages in between including
2619 	 * the first and last pages. This is done in a busy loop so that we
2620 	 * lose the least number of traces.
2621 	 * The pages are freed after we restart recording and unlock readers.
2622 	 */
2623 	tail_page = &cpu_buffer->tail_page->list;
2624 
2625 	/*
2626 	 * tail page might be on reader page, we remove the next page
2627 	 * from the ring buffer
2628 	 */
2629 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2630 		tail_page = rb_list_head(tail_page->next);
2631 	to_remove = tail_page;
2632 
2633 	/* start of pages to remove */
2634 	first_page = list_entry(rb_list_head(to_remove->next),
2635 				struct buffer_page, list);
2636 
2637 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2638 		to_remove = rb_list_head(to_remove)->next;
2639 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2640 	}
2641 	/* Read iterators need to reset themselves when some pages removed */
2642 	cpu_buffer->pages_removed += nr_removed;
2643 
2644 	next_page = rb_list_head(to_remove)->next;
2645 
2646 	/*
2647 	 * Now we remove all pages between tail_page and next_page.
2648 	 * Make sure that we have head_bit value preserved for the
2649 	 * next page
2650 	 */
2651 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2652 						head_bit);
2653 	next_page = rb_list_head(next_page);
2654 	next_page->prev = tail_page;
2655 
2656 	/* make sure pages points to a valid page in the ring buffer */
2657 	cpu_buffer->pages = next_page;
2658 	cpu_buffer->cnt++;
2659 
2660 	/* update head page */
2661 	if (head_bit)
2662 		cpu_buffer->head_page = list_entry(next_page,
2663 						struct buffer_page, list);
2664 
2665 	/* pages are removed, resume tracing and then free the pages */
2666 	atomic_dec(&cpu_buffer->record_disabled);
2667 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2668 
2669 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2670 
2671 	/* last buffer page to remove */
2672 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2673 				list);
2674 	tmp_iter_page = first_page;
2675 
2676 	do {
2677 		cond_resched();
2678 
2679 		to_remove_page = tmp_iter_page;
2680 		rb_inc_page(&tmp_iter_page);
2681 
2682 		/* update the counters */
2683 		page_entries = rb_page_entries(to_remove_page);
2684 		if (page_entries) {
2685 			/*
2686 			 * If something was added to this page, it was full
2687 			 * since it is not the tail page. So we deduct the
2688 			 * bytes consumed in ring buffer from here.
2689 			 * Increment overrun to account for the lost events.
2690 			 */
2691 			local_add(page_entries, &cpu_buffer->overrun);
2692 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2693 			local_inc(&cpu_buffer->pages_lost);
2694 		}
2695 
2696 		/*
2697 		 * We have already removed references to this list item, just
2698 		 * free up the buffer_page and its page
2699 		 */
2700 		free_buffer_page(to_remove_page);
2701 		nr_removed--;
2702 
2703 	} while (to_remove_page != last_page);
2704 
2705 	RB_WARN_ON(cpu_buffer, nr_removed);
2706 
2707 	return nr_removed == 0;
2708 }
2709 
2710 static bool
2711 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2712 {
2713 	struct list_head *pages = &cpu_buffer->new_pages;
2714 	unsigned long flags;
2715 	bool success;
2716 	int retries;
2717 
2718 	/* Can be called at early boot up, where interrupts must not been enabled */
2719 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2720 	/*
2721 	 * We are holding the reader lock, so the reader page won't be swapped
2722 	 * in the ring buffer. Now we are racing with the writer trying to
2723 	 * move head page and the tail page.
2724 	 * We are going to adapt the reader page update process where:
2725 	 * 1. We first splice the start and end of list of new pages between
2726 	 *    the head page and its previous page.
2727 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2728 	 *    start of new pages list.
2729 	 * 3. Finally, we update the head->prev to the end of new list.
2730 	 *
2731 	 * We will try this process 10 times, to make sure that we don't keep
2732 	 * spinning.
2733 	 */
2734 	retries = 10;
2735 	success = false;
2736 	while (retries--) {
2737 		struct list_head *head_page, *prev_page;
2738 		struct list_head *last_page, *first_page;
2739 		struct list_head *head_page_with_bit;
2740 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2741 
2742 		if (!hpage)
2743 			break;
2744 		head_page = &hpage->list;
2745 		prev_page = head_page->prev;
2746 
2747 		first_page = pages->next;
2748 		last_page  = pages->prev;
2749 
2750 		head_page_with_bit = (struct list_head *)
2751 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2752 
2753 		last_page->next = head_page_with_bit;
2754 		first_page->prev = prev_page;
2755 
2756 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2757 		if (try_cmpxchg(&prev_page->next,
2758 				&head_page_with_bit, first_page)) {
2759 			/*
2760 			 * yay, we replaced the page pointer to our new list,
2761 			 * now, we just have to update to head page's prev
2762 			 * pointer to point to end of list
2763 			 */
2764 			head_page->prev = last_page;
2765 			cpu_buffer->cnt++;
2766 			success = true;
2767 			break;
2768 		}
2769 	}
2770 
2771 	if (success)
2772 		INIT_LIST_HEAD(pages);
2773 	/*
2774 	 * If we weren't successful in adding in new pages, warn and stop
2775 	 * tracing
2776 	 */
2777 	RB_WARN_ON(cpu_buffer, !success);
2778 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2779 
2780 	/* free pages if they weren't inserted */
2781 	if (!success) {
2782 		struct buffer_page *bpage, *tmp;
2783 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2784 					 list) {
2785 			list_del_init(&bpage->list);
2786 			free_buffer_page(bpage);
2787 		}
2788 	}
2789 	return success;
2790 }
2791 
2792 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2793 {
2794 	bool success;
2795 
2796 	if (cpu_buffer->nr_pages_to_update > 0)
2797 		success = rb_insert_pages(cpu_buffer);
2798 	else
2799 		success = rb_remove_pages(cpu_buffer,
2800 					-cpu_buffer->nr_pages_to_update);
2801 
2802 	if (success)
2803 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2804 }
2805 
2806 static void update_pages_handler(struct work_struct *work)
2807 {
2808 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2809 			struct ring_buffer_per_cpu, update_pages_work);
2810 	rb_update_pages(cpu_buffer);
2811 	complete(&cpu_buffer->update_done);
2812 }
2813 
2814 /**
2815  * ring_buffer_resize - resize the ring buffer
2816  * @buffer: the buffer to resize.
2817  * @size: the new size.
2818  * @cpu_id: the cpu buffer to resize
2819  *
2820  * Minimum size is 2 * buffer->subbuf_size.
2821  *
2822  * Returns 0 on success and < 0 on failure.
2823  */
2824 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2825 			int cpu_id)
2826 {
2827 	struct ring_buffer_per_cpu *cpu_buffer;
2828 	unsigned long nr_pages;
2829 	int cpu, err;
2830 
2831 	/*
2832 	 * Always succeed at resizing a non-existent buffer:
2833 	 */
2834 	if (!buffer)
2835 		return 0;
2836 
2837 	/* Make sure the requested buffer exists */
2838 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2839 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2840 		return 0;
2841 
2842 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2843 
2844 	/* we need a minimum of two pages */
2845 	if (nr_pages < 2)
2846 		nr_pages = 2;
2847 
2848 	/*
2849 	 * Keep CPUs from coming online while resizing to synchronize
2850 	 * with new per CPU buffers being created.
2851 	 */
2852 	guard(cpus_read_lock)();
2853 
2854 	/* prevent another thread from changing buffer sizes */
2855 	mutex_lock(&buffer->mutex);
2856 	atomic_inc(&buffer->resizing);
2857 
2858 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2859 		/*
2860 		 * Don't succeed if resizing is disabled, as a reader might be
2861 		 * manipulating the ring buffer and is expecting a sane state while
2862 		 * this is true.
2863 		 */
2864 		for_each_buffer_cpu(buffer, cpu) {
2865 			cpu_buffer = buffer->buffers[cpu];
2866 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2867 				err = -EBUSY;
2868 				goto out_err_unlock;
2869 			}
2870 		}
2871 
2872 		/* calculate the pages to update */
2873 		for_each_buffer_cpu(buffer, cpu) {
2874 			cpu_buffer = buffer->buffers[cpu];
2875 
2876 			cpu_buffer->nr_pages_to_update = nr_pages -
2877 							cpu_buffer->nr_pages;
2878 			/*
2879 			 * nothing more to do for removing pages or no update
2880 			 */
2881 			if (cpu_buffer->nr_pages_to_update <= 0)
2882 				continue;
2883 			/*
2884 			 * to add pages, make sure all new pages can be
2885 			 * allocated without receiving ENOMEM
2886 			 */
2887 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2888 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2889 						&cpu_buffer->new_pages)) {
2890 				/* not enough memory for new pages */
2891 				err = -ENOMEM;
2892 				goto out_err;
2893 			}
2894 
2895 			cond_resched();
2896 		}
2897 
2898 		/*
2899 		 * Fire off all the required work handlers
2900 		 * We can't schedule on offline CPUs, but it's not necessary
2901 		 * since we can change their buffer sizes without any race.
2902 		 */
2903 		for_each_buffer_cpu(buffer, cpu) {
2904 			cpu_buffer = buffer->buffers[cpu];
2905 			if (!cpu_buffer->nr_pages_to_update)
2906 				continue;
2907 
2908 			/* Can't run something on an offline CPU. */
2909 			if (!cpu_online(cpu)) {
2910 				rb_update_pages(cpu_buffer);
2911 				cpu_buffer->nr_pages_to_update = 0;
2912 			} else {
2913 				/* Run directly if possible. */
2914 				migrate_disable();
2915 				if (cpu != smp_processor_id()) {
2916 					migrate_enable();
2917 					schedule_work_on(cpu,
2918 							 &cpu_buffer->update_pages_work);
2919 				} else {
2920 					update_pages_handler(&cpu_buffer->update_pages_work);
2921 					migrate_enable();
2922 				}
2923 			}
2924 		}
2925 
2926 		/* wait for all the updates to complete */
2927 		for_each_buffer_cpu(buffer, cpu) {
2928 			cpu_buffer = buffer->buffers[cpu];
2929 			if (!cpu_buffer->nr_pages_to_update)
2930 				continue;
2931 
2932 			if (cpu_online(cpu))
2933 				wait_for_completion(&cpu_buffer->update_done);
2934 			cpu_buffer->nr_pages_to_update = 0;
2935 		}
2936 
2937 	} else {
2938 		cpu_buffer = buffer->buffers[cpu_id];
2939 
2940 		if (nr_pages == cpu_buffer->nr_pages)
2941 			goto out;
2942 
2943 		/*
2944 		 * Don't succeed if resizing is disabled, as a reader might be
2945 		 * manipulating the ring buffer and is expecting a sane state while
2946 		 * this is true.
2947 		 */
2948 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2949 			err = -EBUSY;
2950 			goto out_err_unlock;
2951 		}
2952 
2953 		cpu_buffer->nr_pages_to_update = nr_pages -
2954 						cpu_buffer->nr_pages;
2955 
2956 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2957 		if (cpu_buffer->nr_pages_to_update > 0 &&
2958 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2959 					    &cpu_buffer->new_pages)) {
2960 			err = -ENOMEM;
2961 			goto out_err;
2962 		}
2963 
2964 		/* Can't run something on an offline CPU. */
2965 		if (!cpu_online(cpu_id))
2966 			rb_update_pages(cpu_buffer);
2967 		else {
2968 			/* Run directly if possible. */
2969 			migrate_disable();
2970 			if (cpu_id == smp_processor_id()) {
2971 				rb_update_pages(cpu_buffer);
2972 				migrate_enable();
2973 			} else {
2974 				migrate_enable();
2975 				schedule_work_on(cpu_id,
2976 						 &cpu_buffer->update_pages_work);
2977 				wait_for_completion(&cpu_buffer->update_done);
2978 			}
2979 		}
2980 
2981 		cpu_buffer->nr_pages_to_update = 0;
2982 	}
2983 
2984  out:
2985 	/*
2986 	 * The ring buffer resize can happen with the ring buffer
2987 	 * enabled, so that the update disturbs the tracing as little
2988 	 * as possible. But if the buffer is disabled, we do not need
2989 	 * to worry about that, and we can take the time to verify
2990 	 * that the buffer is not corrupt.
2991 	 */
2992 	if (atomic_read(&buffer->record_disabled)) {
2993 		atomic_inc(&buffer->record_disabled);
2994 		/*
2995 		 * Even though the buffer was disabled, we must make sure
2996 		 * that it is truly disabled before calling rb_check_pages.
2997 		 * There could have been a race between checking
2998 		 * record_disable and incrementing it.
2999 		 */
3000 		synchronize_rcu();
3001 		for_each_buffer_cpu(buffer, cpu) {
3002 			cpu_buffer = buffer->buffers[cpu];
3003 			rb_check_pages(cpu_buffer);
3004 		}
3005 		atomic_dec(&buffer->record_disabled);
3006 	}
3007 
3008 	atomic_dec(&buffer->resizing);
3009 	mutex_unlock(&buffer->mutex);
3010 	return 0;
3011 
3012  out_err:
3013 	for_each_buffer_cpu(buffer, cpu) {
3014 		struct buffer_page *bpage, *tmp;
3015 
3016 		cpu_buffer = buffer->buffers[cpu];
3017 		cpu_buffer->nr_pages_to_update = 0;
3018 
3019 		if (list_empty(&cpu_buffer->new_pages))
3020 			continue;
3021 
3022 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
3023 					list) {
3024 			list_del_init(&bpage->list);
3025 			free_buffer_page(bpage);
3026 		}
3027 	}
3028  out_err_unlock:
3029 	atomic_dec(&buffer->resizing);
3030 	mutex_unlock(&buffer->mutex);
3031 	return err;
3032 }
3033 EXPORT_SYMBOL_GPL(ring_buffer_resize);
3034 
3035 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
3036 {
3037 	mutex_lock(&buffer->mutex);
3038 	if (val)
3039 		buffer->flags |= RB_FL_OVERWRITE;
3040 	else
3041 		buffer->flags &= ~RB_FL_OVERWRITE;
3042 	mutex_unlock(&buffer->mutex);
3043 }
3044 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
3045 
3046 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
3047 {
3048 	return bpage->page->data + index;
3049 }
3050 
3051 static __always_inline struct ring_buffer_event *
3052 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3053 {
3054 	return __rb_page_index(cpu_buffer->reader_page,
3055 			       cpu_buffer->reader_page->read);
3056 }
3057 
3058 static struct ring_buffer_event *
3059 rb_iter_head_event(struct ring_buffer_iter *iter)
3060 {
3061 	struct ring_buffer_event *event;
3062 	struct buffer_page *iter_head_page = iter->head_page;
3063 	unsigned long commit;
3064 	unsigned length;
3065 
3066 	if (iter->head != iter->next_event)
3067 		return iter->event;
3068 
3069 	/*
3070 	 * When the writer goes across pages, it issues a cmpxchg which
3071 	 * is a mb(), which will synchronize with the rmb here.
3072 	 * (see rb_tail_page_update() and __rb_reserve_next())
3073 	 */
3074 	commit = rb_page_commit(iter_head_page);
3075 	smp_rmb();
3076 
3077 	/* An event needs to be at least 8 bytes in size */
3078 	if (iter->head > commit - 8)
3079 		goto reset;
3080 
3081 	event = __rb_page_index(iter_head_page, iter->head);
3082 	length = rb_event_length(event);
3083 
3084 	/*
3085 	 * READ_ONCE() doesn't work on functions and we don't want the
3086 	 * compiler doing any crazy optimizations with length.
3087 	 */
3088 	barrier();
3089 
3090 	if ((iter->head + length) > commit || length > iter->event_size)
3091 		/* Writer corrupted the read? */
3092 		goto reset;
3093 
3094 	memcpy(iter->event, event, length);
3095 	/*
3096 	 * If the page stamp is still the same after this rmb() then the
3097 	 * event was safely copied without the writer entering the page.
3098 	 */
3099 	smp_rmb();
3100 
3101 	/* Make sure the page didn't change since we read this */
3102 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3103 	    commit > rb_page_commit(iter_head_page))
3104 		goto reset;
3105 
3106 	iter->next_event = iter->head + length;
3107 	return iter->event;
3108  reset:
3109 	/* Reset to the beginning */
3110 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3111 	iter->head = 0;
3112 	iter->next_event = 0;
3113 	iter->missed_events = 1;
3114 	return NULL;
3115 }
3116 
3117 /* Size is determined by what has been committed */
3118 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3119 {
3120 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3121 }
3122 
3123 static __always_inline unsigned
3124 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3125 {
3126 	return rb_page_commit(cpu_buffer->commit_page);
3127 }
3128 
3129 static __always_inline unsigned
3130 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3131 {
3132 	unsigned long addr = (unsigned long)event;
3133 
3134 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3135 
3136 	return addr - BUF_PAGE_HDR_SIZE;
3137 }
3138 
3139 static void rb_inc_iter(struct ring_buffer_iter *iter)
3140 {
3141 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3142 
3143 	/*
3144 	 * The iterator could be on the reader page (it starts there).
3145 	 * But the head could have moved, since the reader was
3146 	 * found. Check for this case and assign the iterator
3147 	 * to the head page instead of next.
3148 	 */
3149 	if (iter->head_page == cpu_buffer->reader_page)
3150 		iter->head_page = rb_set_head_page(cpu_buffer);
3151 	else
3152 		rb_inc_page(&iter->head_page);
3153 
3154 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3155 	iter->head = 0;
3156 	iter->next_event = 0;
3157 }
3158 
3159 /* Return the index into the sub-buffers for a given sub-buffer */
3160 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf)
3161 {
3162 	void *subbuf_array;
3163 
3164 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3165 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3166 	return (subbuf - subbuf_array) / meta->subbuf_size;
3167 }
3168 
3169 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3170 				struct buffer_page *next_page)
3171 {
3172 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3173 	unsigned long old_head = (unsigned long)next_page->page;
3174 	unsigned long new_head;
3175 
3176 	rb_inc_page(&next_page);
3177 	new_head = (unsigned long)next_page->page;
3178 
3179 	/*
3180 	 * Only move it forward once, if something else came in and
3181 	 * moved it forward, then we don't want to touch it.
3182 	 */
3183 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3184 }
3185 
3186 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3187 				  struct buffer_page *reader)
3188 {
3189 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3190 	void *old_reader = cpu_buffer->reader_page->page;
3191 	void *new_reader = reader->page;
3192 	int id;
3193 
3194 	id = reader->id;
3195 	cpu_buffer->reader_page->id = id;
3196 	reader->id = 0;
3197 
3198 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3199 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3200 
3201 	/* The head pointer is the one after the reader */
3202 	rb_update_meta_head(cpu_buffer, reader);
3203 }
3204 
3205 /*
3206  * rb_handle_head_page - writer hit the head page
3207  *
3208  * Returns: +1 to retry page
3209  *           0 to continue
3210  *          -1 on error
3211  */
3212 static int
3213 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3214 		    struct buffer_page *tail_page,
3215 		    struct buffer_page *next_page)
3216 {
3217 	struct buffer_page *new_head;
3218 	int entries;
3219 	int type;
3220 	int ret;
3221 
3222 	entries = rb_page_entries(next_page);
3223 
3224 	/*
3225 	 * The hard part is here. We need to move the head
3226 	 * forward, and protect against both readers on
3227 	 * other CPUs and writers coming in via interrupts.
3228 	 */
3229 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3230 				       RB_PAGE_HEAD);
3231 
3232 	/*
3233 	 * type can be one of four:
3234 	 *  NORMAL - an interrupt already moved it for us
3235 	 *  HEAD   - we are the first to get here.
3236 	 *  UPDATE - we are the interrupt interrupting
3237 	 *           a current move.
3238 	 *  MOVED  - a reader on another CPU moved the next
3239 	 *           pointer to its reader page. Give up
3240 	 *           and try again.
3241 	 */
3242 
3243 	switch (type) {
3244 	case RB_PAGE_HEAD:
3245 		/*
3246 		 * We changed the head to UPDATE, thus
3247 		 * it is our responsibility to update
3248 		 * the counters.
3249 		 */
3250 		local_add(entries, &cpu_buffer->overrun);
3251 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3252 		local_inc(&cpu_buffer->pages_lost);
3253 
3254 		if (cpu_buffer->ring_meta)
3255 			rb_update_meta_head(cpu_buffer, next_page);
3256 		/*
3257 		 * The entries will be zeroed out when we move the
3258 		 * tail page.
3259 		 */
3260 
3261 		/* still more to do */
3262 		break;
3263 
3264 	case RB_PAGE_UPDATE:
3265 		/*
3266 		 * This is an interrupt that interrupt the
3267 		 * previous update. Still more to do.
3268 		 */
3269 		break;
3270 	case RB_PAGE_NORMAL:
3271 		/*
3272 		 * An interrupt came in before the update
3273 		 * and processed this for us.
3274 		 * Nothing left to do.
3275 		 */
3276 		return 1;
3277 	case RB_PAGE_MOVED:
3278 		/*
3279 		 * The reader is on another CPU and just did
3280 		 * a swap with our next_page.
3281 		 * Try again.
3282 		 */
3283 		return 1;
3284 	default:
3285 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3286 		return -1;
3287 	}
3288 
3289 	/*
3290 	 * Now that we are here, the old head pointer is
3291 	 * set to UPDATE. This will keep the reader from
3292 	 * swapping the head page with the reader page.
3293 	 * The reader (on another CPU) will spin till
3294 	 * we are finished.
3295 	 *
3296 	 * We just need to protect against interrupts
3297 	 * doing the job. We will set the next pointer
3298 	 * to HEAD. After that, we set the old pointer
3299 	 * to NORMAL, but only if it was HEAD before.
3300 	 * otherwise we are an interrupt, and only
3301 	 * want the outer most commit to reset it.
3302 	 */
3303 	new_head = next_page;
3304 	rb_inc_page(&new_head);
3305 
3306 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3307 				    RB_PAGE_NORMAL);
3308 
3309 	/*
3310 	 * Valid returns are:
3311 	 *  HEAD   - an interrupt came in and already set it.
3312 	 *  NORMAL - One of two things:
3313 	 *            1) We really set it.
3314 	 *            2) A bunch of interrupts came in and moved
3315 	 *               the page forward again.
3316 	 */
3317 	switch (ret) {
3318 	case RB_PAGE_HEAD:
3319 	case RB_PAGE_NORMAL:
3320 		/* OK */
3321 		break;
3322 	default:
3323 		RB_WARN_ON(cpu_buffer, 1);
3324 		return -1;
3325 	}
3326 
3327 	/*
3328 	 * It is possible that an interrupt came in,
3329 	 * set the head up, then more interrupts came in
3330 	 * and moved it again. When we get back here,
3331 	 * the page would have been set to NORMAL but we
3332 	 * just set it back to HEAD.
3333 	 *
3334 	 * How do you detect this? Well, if that happened
3335 	 * the tail page would have moved.
3336 	 */
3337 	if (ret == RB_PAGE_NORMAL) {
3338 		struct buffer_page *buffer_tail_page;
3339 
3340 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3341 		/*
3342 		 * If the tail had moved passed next, then we need
3343 		 * to reset the pointer.
3344 		 */
3345 		if (buffer_tail_page != tail_page &&
3346 		    buffer_tail_page != next_page)
3347 			rb_head_page_set_normal(cpu_buffer, new_head,
3348 						next_page,
3349 						RB_PAGE_HEAD);
3350 	}
3351 
3352 	/*
3353 	 * If this was the outer most commit (the one that
3354 	 * changed the original pointer from HEAD to UPDATE),
3355 	 * then it is up to us to reset it to NORMAL.
3356 	 */
3357 	if (type == RB_PAGE_HEAD) {
3358 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3359 					      tail_page,
3360 					      RB_PAGE_UPDATE);
3361 		if (RB_WARN_ON(cpu_buffer,
3362 			       ret != RB_PAGE_UPDATE))
3363 			return -1;
3364 	}
3365 
3366 	return 0;
3367 }
3368 
3369 static inline void
3370 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3371 	      unsigned long tail, struct rb_event_info *info)
3372 {
3373 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3374 	struct buffer_page *tail_page = info->tail_page;
3375 	struct ring_buffer_event *event;
3376 	unsigned long length = info->length;
3377 
3378 	/*
3379 	 * Only the event that crossed the page boundary
3380 	 * must fill the old tail_page with padding.
3381 	 */
3382 	if (tail >= bsize) {
3383 		/*
3384 		 * If the page was filled, then we still need
3385 		 * to update the real_end. Reset it to zero
3386 		 * and the reader will ignore it.
3387 		 */
3388 		if (tail == bsize)
3389 			tail_page->real_end = 0;
3390 
3391 		local_sub(length, &tail_page->write);
3392 		return;
3393 	}
3394 
3395 	event = __rb_page_index(tail_page, tail);
3396 
3397 	/*
3398 	 * Save the original length to the meta data.
3399 	 * This will be used by the reader to add lost event
3400 	 * counter.
3401 	 */
3402 	tail_page->real_end = tail;
3403 
3404 	/*
3405 	 * If this event is bigger than the minimum size, then
3406 	 * we need to be careful that we don't subtract the
3407 	 * write counter enough to allow another writer to slip
3408 	 * in on this page.
3409 	 * We put in a discarded commit instead, to make sure
3410 	 * that this space is not used again, and this space will
3411 	 * not be accounted into 'entries_bytes'.
3412 	 *
3413 	 * If we are less than the minimum size, we don't need to
3414 	 * worry about it.
3415 	 */
3416 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3417 		/* No room for any events */
3418 
3419 		/* Mark the rest of the page with padding */
3420 		rb_event_set_padding(event);
3421 
3422 		/* Make sure the padding is visible before the write update */
3423 		smp_wmb();
3424 
3425 		/* Set the write back to the previous setting */
3426 		local_sub(length, &tail_page->write);
3427 		return;
3428 	}
3429 
3430 	/* Put in a discarded event */
3431 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3432 	event->type_len = RINGBUF_TYPE_PADDING;
3433 	/* time delta must be non zero */
3434 	event->time_delta = 1;
3435 
3436 	/* account for padding bytes */
3437 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3438 
3439 	/* Make sure the padding is visible before the tail_page->write update */
3440 	smp_wmb();
3441 
3442 	/* Set write to end of buffer */
3443 	length = (tail + length) - bsize;
3444 	local_sub(length, &tail_page->write);
3445 }
3446 
3447 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3448 
3449 /*
3450  * This is the slow path, force gcc not to inline it.
3451  */
3452 static noinline struct ring_buffer_event *
3453 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3454 	     unsigned long tail, struct rb_event_info *info)
3455 {
3456 	struct buffer_page *tail_page = info->tail_page;
3457 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3458 	struct trace_buffer *buffer = cpu_buffer->buffer;
3459 	struct buffer_page *next_page;
3460 	int ret;
3461 
3462 	next_page = tail_page;
3463 
3464 	rb_inc_page(&next_page);
3465 
3466 	/*
3467 	 * If for some reason, we had an interrupt storm that made
3468 	 * it all the way around the buffer, bail, and warn
3469 	 * about it.
3470 	 */
3471 	if (unlikely(next_page == commit_page)) {
3472 		local_inc(&cpu_buffer->commit_overrun);
3473 		goto out_reset;
3474 	}
3475 
3476 	/*
3477 	 * This is where the fun begins!
3478 	 *
3479 	 * We are fighting against races between a reader that
3480 	 * could be on another CPU trying to swap its reader
3481 	 * page with the buffer head.
3482 	 *
3483 	 * We are also fighting against interrupts coming in and
3484 	 * moving the head or tail on us as well.
3485 	 *
3486 	 * If the next page is the head page then we have filled
3487 	 * the buffer, unless the commit page is still on the
3488 	 * reader page.
3489 	 */
3490 	if (rb_is_head_page(next_page, &tail_page->list)) {
3491 
3492 		/*
3493 		 * If the commit is not on the reader page, then
3494 		 * move the header page.
3495 		 */
3496 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3497 			/*
3498 			 * If we are not in overwrite mode,
3499 			 * this is easy, just stop here.
3500 			 */
3501 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3502 				local_inc(&cpu_buffer->dropped_events);
3503 				goto out_reset;
3504 			}
3505 
3506 			ret = rb_handle_head_page(cpu_buffer,
3507 						  tail_page,
3508 						  next_page);
3509 			if (ret < 0)
3510 				goto out_reset;
3511 			if (ret)
3512 				goto out_again;
3513 		} else {
3514 			/*
3515 			 * We need to be careful here too. The
3516 			 * commit page could still be on the reader
3517 			 * page. We could have a small buffer, and
3518 			 * have filled up the buffer with events
3519 			 * from interrupts and such, and wrapped.
3520 			 *
3521 			 * Note, if the tail page is also on the
3522 			 * reader_page, we let it move out.
3523 			 */
3524 			if (unlikely((cpu_buffer->commit_page !=
3525 				      cpu_buffer->tail_page) &&
3526 				     (cpu_buffer->commit_page ==
3527 				      cpu_buffer->reader_page))) {
3528 				local_inc(&cpu_buffer->commit_overrun);
3529 				goto out_reset;
3530 			}
3531 		}
3532 	}
3533 
3534 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3535 
3536  out_again:
3537 
3538 	rb_reset_tail(cpu_buffer, tail, info);
3539 
3540 	/* Commit what we have for now. */
3541 	rb_end_commit(cpu_buffer);
3542 	/* rb_end_commit() decs committing */
3543 	local_inc(&cpu_buffer->committing);
3544 
3545 	/* fail and let the caller try again */
3546 	return ERR_PTR(-EAGAIN);
3547 
3548  out_reset:
3549 	/* reset write */
3550 	rb_reset_tail(cpu_buffer, tail, info);
3551 
3552 	return NULL;
3553 }
3554 
3555 /* Slow path */
3556 static struct ring_buffer_event *
3557 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3558 		  struct ring_buffer_event *event, u64 delta, bool abs)
3559 {
3560 	if (abs)
3561 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3562 	else
3563 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3564 
3565 	/* Not the first event on the page, or not delta? */
3566 	if (abs || rb_event_index(cpu_buffer, event)) {
3567 		event->time_delta = delta & TS_MASK;
3568 		event->array[0] = delta >> TS_SHIFT;
3569 	} else {
3570 		/* nope, just zero it */
3571 		event->time_delta = 0;
3572 		event->array[0] = 0;
3573 	}
3574 
3575 	return skip_time_extend(event);
3576 }
3577 
3578 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3579 static inline bool sched_clock_stable(void)
3580 {
3581 	return true;
3582 }
3583 #endif
3584 
3585 static void
3586 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3587 		   struct rb_event_info *info)
3588 {
3589 	u64 write_stamp;
3590 
3591 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3592 		  (unsigned long long)info->delta,
3593 		  (unsigned long long)info->ts,
3594 		  (unsigned long long)info->before,
3595 		  (unsigned long long)info->after,
3596 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3597 		  sched_clock_stable() ? "" :
3598 		  "If you just came from a suspend/resume,\n"
3599 		  "please switch to the trace global clock:\n"
3600 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3601 		  "or add trace_clock=global to the kernel command line\n");
3602 }
3603 
3604 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3605 				      struct ring_buffer_event **event,
3606 				      struct rb_event_info *info,
3607 				      u64 *delta,
3608 				      unsigned int *length)
3609 {
3610 	bool abs = info->add_timestamp &
3611 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3612 
3613 	if (unlikely(info->delta > (1ULL << 59))) {
3614 		/*
3615 		 * Some timers can use more than 59 bits, and when a timestamp
3616 		 * is added to the buffer, it will lose those bits.
3617 		 */
3618 		if (abs && (info->ts & TS_MSB)) {
3619 			info->delta &= ABS_TS_MASK;
3620 
3621 		/* did the clock go backwards */
3622 		} else if (info->before == info->after && info->before > info->ts) {
3623 			/* not interrupted */
3624 			static int once;
3625 
3626 			/*
3627 			 * This is possible with a recalibrating of the TSC.
3628 			 * Do not produce a call stack, but just report it.
3629 			 */
3630 			if (!once) {
3631 				once++;
3632 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3633 					info->before, info->ts);
3634 			}
3635 		} else
3636 			rb_check_timestamp(cpu_buffer, info);
3637 		if (!abs)
3638 			info->delta = 0;
3639 	}
3640 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3641 	*length -= RB_LEN_TIME_EXTEND;
3642 	*delta = 0;
3643 }
3644 
3645 /**
3646  * rb_update_event - update event type and data
3647  * @cpu_buffer: The per cpu buffer of the @event
3648  * @event: the event to update
3649  * @info: The info to update the @event with (contains length and delta)
3650  *
3651  * Update the type and data fields of the @event. The length
3652  * is the actual size that is written to the ring buffer,
3653  * and with this, we can determine what to place into the
3654  * data field.
3655  */
3656 static void
3657 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3658 		struct ring_buffer_event *event,
3659 		struct rb_event_info *info)
3660 {
3661 	unsigned length = info->length;
3662 	u64 delta = info->delta;
3663 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3664 
3665 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3666 		cpu_buffer->event_stamp[nest] = info->ts;
3667 
3668 	/*
3669 	 * If we need to add a timestamp, then we
3670 	 * add it to the start of the reserved space.
3671 	 */
3672 	if (unlikely(info->add_timestamp))
3673 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3674 
3675 	event->time_delta = delta;
3676 	length -= RB_EVNT_HDR_SIZE;
3677 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3678 		event->type_len = 0;
3679 		event->array[0] = length;
3680 	} else
3681 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3682 }
3683 
3684 static unsigned rb_calculate_event_length(unsigned length)
3685 {
3686 	struct ring_buffer_event event; /* Used only for sizeof array */
3687 
3688 	/* zero length can cause confusions */
3689 	if (!length)
3690 		length++;
3691 
3692 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3693 		length += sizeof(event.array[0]);
3694 
3695 	length += RB_EVNT_HDR_SIZE;
3696 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3697 
3698 	/*
3699 	 * In case the time delta is larger than the 27 bits for it
3700 	 * in the header, we need to add a timestamp. If another
3701 	 * event comes in when trying to discard this one to increase
3702 	 * the length, then the timestamp will be added in the allocated
3703 	 * space of this event. If length is bigger than the size needed
3704 	 * for the TIME_EXTEND, then padding has to be used. The events
3705 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3706 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3707 	 * As length is a multiple of 4, we only need to worry if it
3708 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3709 	 */
3710 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3711 		length += RB_ALIGNMENT;
3712 
3713 	return length;
3714 }
3715 
3716 static inline bool
3717 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3718 		  struct ring_buffer_event *event)
3719 {
3720 	unsigned long new_index, old_index;
3721 	struct buffer_page *bpage;
3722 	unsigned long addr;
3723 
3724 	new_index = rb_event_index(cpu_buffer, event);
3725 	old_index = new_index + rb_event_ts_length(event);
3726 	addr = (unsigned long)event;
3727 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3728 
3729 	bpage = READ_ONCE(cpu_buffer->tail_page);
3730 
3731 	/*
3732 	 * Make sure the tail_page is still the same and
3733 	 * the next write location is the end of this event
3734 	 */
3735 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3736 		unsigned long write_mask =
3737 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3738 		unsigned long event_length = rb_event_length(event);
3739 
3740 		/*
3741 		 * For the before_stamp to be different than the write_stamp
3742 		 * to make sure that the next event adds an absolute
3743 		 * value and does not rely on the saved write stamp, which
3744 		 * is now going to be bogus.
3745 		 *
3746 		 * By setting the before_stamp to zero, the next event
3747 		 * is not going to use the write_stamp and will instead
3748 		 * create an absolute timestamp. This means there's no
3749 		 * reason to update the wirte_stamp!
3750 		 */
3751 		rb_time_set(&cpu_buffer->before_stamp, 0);
3752 
3753 		/*
3754 		 * If an event were to come in now, it would see that the
3755 		 * write_stamp and the before_stamp are different, and assume
3756 		 * that this event just added itself before updating
3757 		 * the write stamp. The interrupting event will fix the
3758 		 * write stamp for us, and use an absolute timestamp.
3759 		 */
3760 
3761 		/*
3762 		 * This is on the tail page. It is possible that
3763 		 * a write could come in and move the tail page
3764 		 * and write to the next page. That is fine
3765 		 * because we just shorten what is on this page.
3766 		 */
3767 		old_index += write_mask;
3768 		new_index += write_mask;
3769 
3770 		/* caution: old_index gets updated on cmpxchg failure */
3771 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3772 			/* update counters */
3773 			local_sub(event_length, &cpu_buffer->entries_bytes);
3774 			return true;
3775 		}
3776 	}
3777 
3778 	/* could not discard */
3779 	return false;
3780 }
3781 
3782 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3783 {
3784 	local_inc(&cpu_buffer->committing);
3785 	local_inc(&cpu_buffer->commits);
3786 }
3787 
3788 static __always_inline void
3789 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3790 {
3791 	unsigned long max_count;
3792 
3793 	/*
3794 	 * We only race with interrupts and NMIs on this CPU.
3795 	 * If we own the commit event, then we can commit
3796 	 * all others that interrupted us, since the interruptions
3797 	 * are in stack format (they finish before they come
3798 	 * back to us). This allows us to do a simple loop to
3799 	 * assign the commit to the tail.
3800 	 */
3801  again:
3802 	max_count = cpu_buffer->nr_pages * 100;
3803 
3804 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3805 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3806 			return;
3807 		if (RB_WARN_ON(cpu_buffer,
3808 			       rb_is_reader_page(cpu_buffer->tail_page)))
3809 			return;
3810 		/*
3811 		 * No need for a memory barrier here, as the update
3812 		 * of the tail_page did it for this page.
3813 		 */
3814 		local_set(&cpu_buffer->commit_page->page->commit,
3815 			  rb_page_write(cpu_buffer->commit_page));
3816 		rb_inc_page(&cpu_buffer->commit_page);
3817 		if (cpu_buffer->ring_meta) {
3818 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3819 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3820 		}
3821 		/* add barrier to keep gcc from optimizing too much */
3822 		barrier();
3823 	}
3824 	while (rb_commit_index(cpu_buffer) !=
3825 	       rb_page_write(cpu_buffer->commit_page)) {
3826 
3827 		/* Make sure the readers see the content of what is committed. */
3828 		smp_wmb();
3829 		local_set(&cpu_buffer->commit_page->page->commit,
3830 			  rb_page_write(cpu_buffer->commit_page));
3831 		RB_WARN_ON(cpu_buffer,
3832 			   local_read(&cpu_buffer->commit_page->page->commit) &
3833 			   ~RB_WRITE_MASK);
3834 		barrier();
3835 	}
3836 
3837 	/* again, keep gcc from optimizing */
3838 	barrier();
3839 
3840 	/*
3841 	 * If an interrupt came in just after the first while loop
3842 	 * and pushed the tail page forward, we will be left with
3843 	 * a dangling commit that will never go forward.
3844 	 */
3845 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3846 		goto again;
3847 }
3848 
3849 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3850 {
3851 	unsigned long commits;
3852 
3853 	if (RB_WARN_ON(cpu_buffer,
3854 		       !local_read(&cpu_buffer->committing)))
3855 		return;
3856 
3857  again:
3858 	commits = local_read(&cpu_buffer->commits);
3859 	/* synchronize with interrupts */
3860 	barrier();
3861 	if (local_read(&cpu_buffer->committing) == 1)
3862 		rb_set_commit_to_write(cpu_buffer);
3863 
3864 	local_dec(&cpu_buffer->committing);
3865 
3866 	/* synchronize with interrupts */
3867 	barrier();
3868 
3869 	/*
3870 	 * Need to account for interrupts coming in between the
3871 	 * updating of the commit page and the clearing of the
3872 	 * committing counter.
3873 	 */
3874 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3875 	    !local_read(&cpu_buffer->committing)) {
3876 		local_inc(&cpu_buffer->committing);
3877 		goto again;
3878 	}
3879 }
3880 
3881 static inline void rb_event_discard(struct ring_buffer_event *event)
3882 {
3883 	if (extended_time(event))
3884 		event = skip_time_extend(event);
3885 
3886 	/* array[0] holds the actual length for the discarded event */
3887 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3888 	event->type_len = RINGBUF_TYPE_PADDING;
3889 	/* time delta must be non zero */
3890 	if (!event->time_delta)
3891 		event->time_delta = 1;
3892 }
3893 
3894 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3895 {
3896 	local_inc(&cpu_buffer->entries);
3897 	rb_end_commit(cpu_buffer);
3898 }
3899 
3900 static __always_inline void
3901 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3902 {
3903 	if (buffer->irq_work.waiters_pending) {
3904 		buffer->irq_work.waiters_pending = false;
3905 		/* irq_work_queue() supplies it's own memory barriers */
3906 		irq_work_queue(&buffer->irq_work.work);
3907 	}
3908 
3909 	if (cpu_buffer->irq_work.waiters_pending) {
3910 		cpu_buffer->irq_work.waiters_pending = false;
3911 		/* irq_work_queue() supplies it's own memory barriers */
3912 		irq_work_queue(&cpu_buffer->irq_work.work);
3913 	}
3914 
3915 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3916 		return;
3917 
3918 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3919 		return;
3920 
3921 	if (!cpu_buffer->irq_work.full_waiters_pending)
3922 		return;
3923 
3924 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3925 
3926 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3927 		return;
3928 
3929 	cpu_buffer->irq_work.wakeup_full = true;
3930 	cpu_buffer->irq_work.full_waiters_pending = false;
3931 	/* irq_work_queue() supplies it's own memory barriers */
3932 	irq_work_queue(&cpu_buffer->irq_work.work);
3933 }
3934 
3935 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3936 # define do_ring_buffer_record_recursion()	\
3937 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3938 #else
3939 # define do_ring_buffer_record_recursion() do { } while (0)
3940 #endif
3941 
3942 /*
3943  * The lock and unlock are done within a preempt disable section.
3944  * The current_context per_cpu variable can only be modified
3945  * by the current task between lock and unlock. But it can
3946  * be modified more than once via an interrupt. To pass this
3947  * information from the lock to the unlock without having to
3948  * access the 'in_interrupt()' functions again (which do show
3949  * a bit of overhead in something as critical as function tracing,
3950  * we use a bitmask trick.
3951  *
3952  *  bit 1 =  NMI context
3953  *  bit 2 =  IRQ context
3954  *  bit 3 =  SoftIRQ context
3955  *  bit 4 =  normal context.
3956  *
3957  * This works because this is the order of contexts that can
3958  * preempt other contexts. A SoftIRQ never preempts an IRQ
3959  * context.
3960  *
3961  * When the context is determined, the corresponding bit is
3962  * checked and set (if it was set, then a recursion of that context
3963  * happened).
3964  *
3965  * On unlock, we need to clear this bit. To do so, just subtract
3966  * 1 from the current_context and AND it to itself.
3967  *
3968  * (binary)
3969  *  101 - 1 = 100
3970  *  101 & 100 = 100 (clearing bit zero)
3971  *
3972  *  1010 - 1 = 1001
3973  *  1010 & 1001 = 1000 (clearing bit 1)
3974  *
3975  * The least significant bit can be cleared this way, and it
3976  * just so happens that it is the same bit corresponding to
3977  * the current context.
3978  *
3979  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3980  * is set when a recursion is detected at the current context, and if
3981  * the TRANSITION bit is already set, it will fail the recursion.
3982  * This is needed because there's a lag between the changing of
3983  * interrupt context and updating the preempt count. In this case,
3984  * a false positive will be found. To handle this, one extra recursion
3985  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3986  * bit is already set, then it is considered a recursion and the function
3987  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3988  *
3989  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3990  * to be cleared. Even if it wasn't the context that set it. That is,
3991  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3992  * is called before preempt_count() is updated, since the check will
3993  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3994  * NMI then comes in, it will set the NMI bit, but when the NMI code
3995  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3996  * and leave the NMI bit set. But this is fine, because the interrupt
3997  * code that set the TRANSITION bit will then clear the NMI bit when it
3998  * calls trace_recursive_unlock(). If another NMI comes in, it will
3999  * set the TRANSITION bit and continue.
4000  *
4001  * Note: The TRANSITION bit only handles a single transition between context.
4002  */
4003 
4004 static __always_inline bool
4005 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
4006 {
4007 	unsigned int val = cpu_buffer->current_context;
4008 	int bit = interrupt_context_level();
4009 
4010 	bit = RB_CTX_NORMAL - bit;
4011 
4012 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
4013 		/*
4014 		 * It is possible that this was called by transitioning
4015 		 * between interrupt context, and preempt_count() has not
4016 		 * been updated yet. In this case, use the TRANSITION bit.
4017 		 */
4018 		bit = RB_CTX_TRANSITION;
4019 		if (val & (1 << (bit + cpu_buffer->nest))) {
4020 			do_ring_buffer_record_recursion();
4021 			return true;
4022 		}
4023 	}
4024 
4025 	val |= (1 << (bit + cpu_buffer->nest));
4026 	cpu_buffer->current_context = val;
4027 
4028 	return false;
4029 }
4030 
4031 static __always_inline void
4032 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
4033 {
4034 	cpu_buffer->current_context &=
4035 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
4036 }
4037 
4038 /* The recursive locking above uses 5 bits */
4039 #define NESTED_BITS 5
4040 
4041 /**
4042  * ring_buffer_nest_start - Allow to trace while nested
4043  * @buffer: The ring buffer to modify
4044  *
4045  * The ring buffer has a safety mechanism to prevent recursion.
4046  * But there may be a case where a trace needs to be done while
4047  * tracing something else. In this case, calling this function
4048  * will allow this function to nest within a currently active
4049  * ring_buffer_lock_reserve().
4050  *
4051  * Call this function before calling another ring_buffer_lock_reserve() and
4052  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4053  */
4054 void ring_buffer_nest_start(struct trace_buffer *buffer)
4055 {
4056 	struct ring_buffer_per_cpu *cpu_buffer;
4057 	int cpu;
4058 
4059 	/* Enabled by ring_buffer_nest_end() */
4060 	preempt_disable_notrace();
4061 	cpu = raw_smp_processor_id();
4062 	cpu_buffer = buffer->buffers[cpu];
4063 	/* This is the shift value for the above recursive locking */
4064 	cpu_buffer->nest += NESTED_BITS;
4065 }
4066 
4067 /**
4068  * ring_buffer_nest_end - Allow to trace while nested
4069  * @buffer: The ring buffer to modify
4070  *
4071  * Must be called after ring_buffer_nest_start() and after the
4072  * ring_buffer_unlock_commit().
4073  */
4074 void ring_buffer_nest_end(struct trace_buffer *buffer)
4075 {
4076 	struct ring_buffer_per_cpu *cpu_buffer;
4077 	int cpu;
4078 
4079 	/* disabled by ring_buffer_nest_start() */
4080 	cpu = raw_smp_processor_id();
4081 	cpu_buffer = buffer->buffers[cpu];
4082 	/* This is the shift value for the above recursive locking */
4083 	cpu_buffer->nest -= NESTED_BITS;
4084 	preempt_enable_notrace();
4085 }
4086 
4087 /**
4088  * ring_buffer_unlock_commit - commit a reserved
4089  * @buffer: The buffer to commit to
4090  *
4091  * This commits the data to the ring buffer, and releases any locks held.
4092  *
4093  * Must be paired with ring_buffer_lock_reserve.
4094  */
4095 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4096 {
4097 	struct ring_buffer_per_cpu *cpu_buffer;
4098 	int cpu = raw_smp_processor_id();
4099 
4100 	cpu_buffer = buffer->buffers[cpu];
4101 
4102 	rb_commit(cpu_buffer);
4103 
4104 	rb_wakeups(buffer, cpu_buffer);
4105 
4106 	trace_recursive_unlock(cpu_buffer);
4107 
4108 	preempt_enable_notrace();
4109 
4110 	return 0;
4111 }
4112 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4113 
4114 /* Special value to validate all deltas on a page. */
4115 #define CHECK_FULL_PAGE		1L
4116 
4117 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4118 
4119 static const char *show_irq_str(int bits)
4120 {
4121 	const char *type[] = {
4122 		".",	// 0
4123 		"s",	// 1
4124 		"h",	// 2
4125 		"Hs",	// 3
4126 		"n",	// 4
4127 		"Ns",	// 5
4128 		"Nh",	// 6
4129 		"NHs",	// 7
4130 	};
4131 
4132 	return type[bits];
4133 }
4134 
4135 /* Assume this is a trace event */
4136 static const char *show_flags(struct ring_buffer_event *event)
4137 {
4138 	struct trace_entry *entry;
4139 	int bits = 0;
4140 
4141 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4142 		return "X";
4143 
4144 	entry = ring_buffer_event_data(event);
4145 
4146 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4147 		bits |= 1;
4148 
4149 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4150 		bits |= 2;
4151 
4152 	if (entry->flags & TRACE_FLAG_NMI)
4153 		bits |= 4;
4154 
4155 	return show_irq_str(bits);
4156 }
4157 
4158 static const char *show_irq(struct ring_buffer_event *event)
4159 {
4160 	struct trace_entry *entry;
4161 
4162 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4163 		return "";
4164 
4165 	entry = ring_buffer_event_data(event);
4166 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4167 		return "d";
4168 	return "";
4169 }
4170 
4171 static const char *show_interrupt_level(void)
4172 {
4173 	unsigned long pc = preempt_count();
4174 	unsigned char level = 0;
4175 
4176 	if (pc & SOFTIRQ_OFFSET)
4177 		level |= 1;
4178 
4179 	if (pc & HARDIRQ_MASK)
4180 		level |= 2;
4181 
4182 	if (pc & NMI_MASK)
4183 		level |= 4;
4184 
4185 	return show_irq_str(level);
4186 }
4187 
4188 static void dump_buffer_page(struct buffer_data_page *bpage,
4189 			     struct rb_event_info *info,
4190 			     unsigned long tail)
4191 {
4192 	struct ring_buffer_event *event;
4193 	u64 ts, delta;
4194 	int e;
4195 
4196 	ts = bpage->time_stamp;
4197 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4198 
4199 	for (e = 0; e < tail; e += rb_event_length(event)) {
4200 
4201 		event = (struct ring_buffer_event *)(bpage->data + e);
4202 
4203 		switch (event->type_len) {
4204 
4205 		case RINGBUF_TYPE_TIME_EXTEND:
4206 			delta = rb_event_time_stamp(event);
4207 			ts += delta;
4208 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4209 				e, ts, delta);
4210 			break;
4211 
4212 		case RINGBUF_TYPE_TIME_STAMP:
4213 			delta = rb_event_time_stamp(event);
4214 			ts = rb_fix_abs_ts(delta, ts);
4215 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4216 				e, ts, delta);
4217 			break;
4218 
4219 		case RINGBUF_TYPE_PADDING:
4220 			ts += event->time_delta;
4221 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4222 				e, ts, event->time_delta);
4223 			break;
4224 
4225 		case RINGBUF_TYPE_DATA:
4226 			ts += event->time_delta;
4227 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4228 				e, ts, event->time_delta,
4229 				show_flags(event), show_irq(event));
4230 			break;
4231 
4232 		default:
4233 			break;
4234 		}
4235 	}
4236 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4237 }
4238 
4239 static DEFINE_PER_CPU(atomic_t, checking);
4240 static atomic_t ts_dump;
4241 
4242 #define buffer_warn_return(fmt, ...)					\
4243 	do {								\
4244 		/* If another report is happening, ignore this one */	\
4245 		if (atomic_inc_return(&ts_dump) != 1) {			\
4246 			atomic_dec(&ts_dump);				\
4247 			goto out;					\
4248 		}							\
4249 		atomic_inc(&cpu_buffer->record_disabled);		\
4250 		pr_warn(fmt, ##__VA_ARGS__);				\
4251 		dump_buffer_page(bpage, info, tail);			\
4252 		atomic_dec(&ts_dump);					\
4253 		/* There's some cases in boot up that this can happen */ \
4254 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4255 			/* Do not re-enable checking */			\
4256 			return;						\
4257 	} while (0)
4258 
4259 /*
4260  * Check if the current event time stamp matches the deltas on
4261  * the buffer page.
4262  */
4263 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4264 			 struct rb_event_info *info,
4265 			 unsigned long tail)
4266 {
4267 	struct buffer_data_page *bpage;
4268 	u64 ts, delta;
4269 	bool full = false;
4270 	int ret;
4271 
4272 	bpage = info->tail_page->page;
4273 
4274 	if (tail == CHECK_FULL_PAGE) {
4275 		full = true;
4276 		tail = local_read(&bpage->commit);
4277 	} else if (info->add_timestamp &
4278 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4279 		/* Ignore events with absolute time stamps */
4280 		return;
4281 	}
4282 
4283 	/*
4284 	 * Do not check the first event (skip possible extends too).
4285 	 * Also do not check if previous events have not been committed.
4286 	 */
4287 	if (tail <= 8 || tail > local_read(&bpage->commit))
4288 		return;
4289 
4290 	/*
4291 	 * If this interrupted another event,
4292 	 */
4293 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4294 		goto out;
4295 
4296 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4297 	if (ret < 0) {
4298 		if (delta < ts) {
4299 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4300 					   cpu_buffer->cpu, ts, delta);
4301 			goto out;
4302 		}
4303 	}
4304 	if ((full && ts > info->ts) ||
4305 	    (!full && ts + info->delta != info->ts)) {
4306 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4307 				   cpu_buffer->cpu,
4308 				   ts + info->delta, info->ts, info->delta,
4309 				   info->before, info->after,
4310 				   full ? " (full)" : "", show_interrupt_level());
4311 	}
4312 out:
4313 	atomic_dec(this_cpu_ptr(&checking));
4314 }
4315 #else
4316 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4317 			 struct rb_event_info *info,
4318 			 unsigned long tail)
4319 {
4320 }
4321 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4322 
4323 static struct ring_buffer_event *
4324 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4325 		  struct rb_event_info *info)
4326 {
4327 	struct ring_buffer_event *event;
4328 	struct buffer_page *tail_page;
4329 	unsigned long tail, write, w;
4330 
4331 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4332 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4333 
4334  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4335 	barrier();
4336 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4337 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4338 	barrier();
4339 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4340 
4341 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4342 		info->delta = info->ts;
4343 	} else {
4344 		/*
4345 		 * If interrupting an event time update, we may need an
4346 		 * absolute timestamp.
4347 		 * Don't bother if this is the start of a new page (w == 0).
4348 		 */
4349 		if (!w) {
4350 			/* Use the sub-buffer timestamp */
4351 			info->delta = 0;
4352 		} else if (unlikely(info->before != info->after)) {
4353 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4354 			info->length += RB_LEN_TIME_EXTEND;
4355 		} else {
4356 			info->delta = info->ts - info->after;
4357 			if (unlikely(test_time_stamp(info->delta))) {
4358 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4359 				info->length += RB_LEN_TIME_EXTEND;
4360 			}
4361 		}
4362 	}
4363 
4364  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4365 
4366  /*C*/	write = local_add_return(info->length, &tail_page->write);
4367 
4368 	/* set write to only the index of the write */
4369 	write &= RB_WRITE_MASK;
4370 
4371 	tail = write - info->length;
4372 
4373 	/* See if we shot pass the end of this buffer page */
4374 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4375 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4376 		return rb_move_tail(cpu_buffer, tail, info);
4377 	}
4378 
4379 	if (likely(tail == w)) {
4380 		/* Nothing interrupted us between A and C */
4381  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4382 		/*
4383 		 * If something came in between C and D, the write stamp
4384 		 * may now not be in sync. But that's fine as the before_stamp
4385 		 * will be different and then next event will just be forced
4386 		 * to use an absolute timestamp.
4387 		 */
4388 		if (likely(!(info->add_timestamp &
4389 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4390 			/* This did not interrupt any time update */
4391 			info->delta = info->ts - info->after;
4392 		else
4393 			/* Just use full timestamp for interrupting event */
4394 			info->delta = info->ts;
4395 		check_buffer(cpu_buffer, info, tail);
4396 	} else {
4397 		u64 ts;
4398 		/* SLOW PATH - Interrupted between A and C */
4399 
4400 		/* Save the old before_stamp */
4401 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4402 
4403 		/*
4404 		 * Read a new timestamp and update the before_stamp to make
4405 		 * the next event after this one force using an absolute
4406 		 * timestamp. This is in case an interrupt were to come in
4407 		 * between E and F.
4408 		 */
4409 		ts = rb_time_stamp(cpu_buffer->buffer);
4410 		rb_time_set(&cpu_buffer->before_stamp, ts);
4411 
4412 		barrier();
4413  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4414 		barrier();
4415  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4416 		    info->after == info->before && info->after < ts) {
4417 			/*
4418 			 * Nothing came after this event between C and F, it is
4419 			 * safe to use info->after for the delta as it
4420 			 * matched info->before and is still valid.
4421 			 */
4422 			info->delta = ts - info->after;
4423 		} else {
4424 			/*
4425 			 * Interrupted between C and F:
4426 			 * Lost the previous events time stamp. Just set the
4427 			 * delta to zero, and this will be the same time as
4428 			 * the event this event interrupted. And the events that
4429 			 * came after this will still be correct (as they would
4430 			 * have built their delta on the previous event.
4431 			 */
4432 			info->delta = 0;
4433 		}
4434 		info->ts = ts;
4435 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4436 	}
4437 
4438 	/*
4439 	 * If this is the first commit on the page, then it has the same
4440 	 * timestamp as the page itself.
4441 	 */
4442 	if (unlikely(!tail && !(info->add_timestamp &
4443 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4444 		info->delta = 0;
4445 
4446 	/* We reserved something on the buffer */
4447 
4448 	event = __rb_page_index(tail_page, tail);
4449 	rb_update_event(cpu_buffer, event, info);
4450 
4451 	local_inc(&tail_page->entries);
4452 
4453 	/*
4454 	 * If this is the first commit on the page, then update
4455 	 * its timestamp.
4456 	 */
4457 	if (unlikely(!tail))
4458 		tail_page->page->time_stamp = info->ts;
4459 
4460 	/* account for these added bytes */
4461 	local_add(info->length, &cpu_buffer->entries_bytes);
4462 
4463 	return event;
4464 }
4465 
4466 static __always_inline struct ring_buffer_event *
4467 rb_reserve_next_event(struct trace_buffer *buffer,
4468 		      struct ring_buffer_per_cpu *cpu_buffer,
4469 		      unsigned long length)
4470 {
4471 	struct ring_buffer_event *event;
4472 	struct rb_event_info info;
4473 	int nr_loops = 0;
4474 	int add_ts_default;
4475 
4476 	/*
4477 	 * ring buffer does cmpxchg as well as atomic64 operations
4478 	 * (which some archs use locking for atomic64), make sure this
4479 	 * is safe in NMI context
4480 	 */
4481 	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4482 	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4483 	    (unlikely(in_nmi()))) {
4484 		return NULL;
4485 	}
4486 
4487 	rb_start_commit(cpu_buffer);
4488 	/* The commit page can not change after this */
4489 
4490 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4491 	/*
4492 	 * Due to the ability to swap a cpu buffer from a buffer
4493 	 * it is possible it was swapped before we committed.
4494 	 * (committing stops a swap). We check for it here and
4495 	 * if it happened, we have to fail the write.
4496 	 */
4497 	barrier();
4498 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4499 		local_dec(&cpu_buffer->committing);
4500 		local_dec(&cpu_buffer->commits);
4501 		return NULL;
4502 	}
4503 #endif
4504 
4505 	info.length = rb_calculate_event_length(length);
4506 
4507 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4508 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4509 		info.length += RB_LEN_TIME_EXTEND;
4510 		if (info.length > cpu_buffer->buffer->max_data_size)
4511 			goto out_fail;
4512 	} else {
4513 		add_ts_default = RB_ADD_STAMP_NONE;
4514 	}
4515 
4516  again:
4517 	info.add_timestamp = add_ts_default;
4518 	info.delta = 0;
4519 
4520 	/*
4521 	 * We allow for interrupts to reenter here and do a trace.
4522 	 * If one does, it will cause this original code to loop
4523 	 * back here. Even with heavy interrupts happening, this
4524 	 * should only happen a few times in a row. If this happens
4525 	 * 1000 times in a row, there must be either an interrupt
4526 	 * storm or we have something buggy.
4527 	 * Bail!
4528 	 */
4529 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4530 		goto out_fail;
4531 
4532 	event = __rb_reserve_next(cpu_buffer, &info);
4533 
4534 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4535 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4536 			info.length -= RB_LEN_TIME_EXTEND;
4537 		goto again;
4538 	}
4539 
4540 	if (likely(event))
4541 		return event;
4542  out_fail:
4543 	rb_end_commit(cpu_buffer);
4544 	return NULL;
4545 }
4546 
4547 /**
4548  * ring_buffer_lock_reserve - reserve a part of the buffer
4549  * @buffer: the ring buffer to reserve from
4550  * @length: the length of the data to reserve (excluding event header)
4551  *
4552  * Returns a reserved event on the ring buffer to copy directly to.
4553  * The user of this interface will need to get the body to write into
4554  * and can use the ring_buffer_event_data() interface.
4555  *
4556  * The length is the length of the data needed, not the event length
4557  * which also includes the event header.
4558  *
4559  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4560  * If NULL is returned, then nothing has been allocated or locked.
4561  */
4562 struct ring_buffer_event *
4563 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4564 {
4565 	struct ring_buffer_per_cpu *cpu_buffer;
4566 	struct ring_buffer_event *event;
4567 	int cpu;
4568 
4569 	/* If we are tracing schedule, we don't want to recurse */
4570 	preempt_disable_notrace();
4571 
4572 	if (unlikely(atomic_read(&buffer->record_disabled)))
4573 		goto out;
4574 
4575 	cpu = raw_smp_processor_id();
4576 
4577 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4578 		goto out;
4579 
4580 	cpu_buffer = buffer->buffers[cpu];
4581 
4582 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4583 		goto out;
4584 
4585 	if (unlikely(length > buffer->max_data_size))
4586 		goto out;
4587 
4588 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4589 		goto out;
4590 
4591 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4592 	if (!event)
4593 		goto out_unlock;
4594 
4595 	return event;
4596 
4597  out_unlock:
4598 	trace_recursive_unlock(cpu_buffer);
4599  out:
4600 	preempt_enable_notrace();
4601 	return NULL;
4602 }
4603 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4604 
4605 /*
4606  * Decrement the entries to the page that an event is on.
4607  * The event does not even need to exist, only the pointer
4608  * to the page it is on. This may only be called before the commit
4609  * takes place.
4610  */
4611 static inline void
4612 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4613 		   struct ring_buffer_event *event)
4614 {
4615 	unsigned long addr = (unsigned long)event;
4616 	struct buffer_page *bpage = cpu_buffer->commit_page;
4617 	struct buffer_page *start;
4618 
4619 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4620 
4621 	/* Do the likely case first */
4622 	if (likely(bpage->page == (void *)addr)) {
4623 		local_dec(&bpage->entries);
4624 		return;
4625 	}
4626 
4627 	/*
4628 	 * Because the commit page may be on the reader page we
4629 	 * start with the next page and check the end loop there.
4630 	 */
4631 	rb_inc_page(&bpage);
4632 	start = bpage;
4633 	do {
4634 		if (bpage->page == (void *)addr) {
4635 			local_dec(&bpage->entries);
4636 			return;
4637 		}
4638 		rb_inc_page(&bpage);
4639 	} while (bpage != start);
4640 
4641 	/* commit not part of this buffer?? */
4642 	RB_WARN_ON(cpu_buffer, 1);
4643 }
4644 
4645 /**
4646  * ring_buffer_discard_commit - discard an event that has not been committed
4647  * @buffer: the ring buffer
4648  * @event: non committed event to discard
4649  *
4650  * Sometimes an event that is in the ring buffer needs to be ignored.
4651  * This function lets the user discard an event in the ring buffer
4652  * and then that event will not be read later.
4653  *
4654  * This function only works if it is called before the item has been
4655  * committed. It will try to free the event from the ring buffer
4656  * if another event has not been added behind it.
4657  *
4658  * If another event has been added behind it, it will set the event
4659  * up as discarded, and perform the commit.
4660  *
4661  * If this function is called, do not call ring_buffer_unlock_commit on
4662  * the event.
4663  */
4664 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4665 				struct ring_buffer_event *event)
4666 {
4667 	struct ring_buffer_per_cpu *cpu_buffer;
4668 	int cpu;
4669 
4670 	/* The event is discarded regardless */
4671 	rb_event_discard(event);
4672 
4673 	cpu = smp_processor_id();
4674 	cpu_buffer = buffer->buffers[cpu];
4675 
4676 	/*
4677 	 * This must only be called if the event has not been
4678 	 * committed yet. Thus we can assume that preemption
4679 	 * is still disabled.
4680 	 */
4681 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4682 
4683 	rb_decrement_entry(cpu_buffer, event);
4684 	rb_try_to_discard(cpu_buffer, event);
4685 	rb_end_commit(cpu_buffer);
4686 
4687 	trace_recursive_unlock(cpu_buffer);
4688 
4689 	preempt_enable_notrace();
4690 
4691 }
4692 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4693 
4694 /**
4695  * ring_buffer_write - write data to the buffer without reserving
4696  * @buffer: The ring buffer to write to.
4697  * @length: The length of the data being written (excluding the event header)
4698  * @data: The data to write to the buffer.
4699  *
4700  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4701  * one function. If you already have the data to write to the buffer, it
4702  * may be easier to simply call this function.
4703  *
4704  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4705  * and not the length of the event which would hold the header.
4706  */
4707 int ring_buffer_write(struct trace_buffer *buffer,
4708 		      unsigned long length,
4709 		      void *data)
4710 {
4711 	struct ring_buffer_per_cpu *cpu_buffer;
4712 	struct ring_buffer_event *event;
4713 	void *body;
4714 	int ret = -EBUSY;
4715 	int cpu;
4716 
4717 	preempt_disable_notrace();
4718 
4719 	if (atomic_read(&buffer->record_disabled))
4720 		goto out;
4721 
4722 	cpu = raw_smp_processor_id();
4723 
4724 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4725 		goto out;
4726 
4727 	cpu_buffer = buffer->buffers[cpu];
4728 
4729 	if (atomic_read(&cpu_buffer->record_disabled))
4730 		goto out;
4731 
4732 	if (length > buffer->max_data_size)
4733 		goto out;
4734 
4735 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4736 		goto out;
4737 
4738 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4739 	if (!event)
4740 		goto out_unlock;
4741 
4742 	body = rb_event_data(event);
4743 
4744 	memcpy(body, data, length);
4745 
4746 	rb_commit(cpu_buffer);
4747 
4748 	rb_wakeups(buffer, cpu_buffer);
4749 
4750 	ret = 0;
4751 
4752  out_unlock:
4753 	trace_recursive_unlock(cpu_buffer);
4754 
4755  out:
4756 	preempt_enable_notrace();
4757 
4758 	return ret;
4759 }
4760 EXPORT_SYMBOL_GPL(ring_buffer_write);
4761 
4762 /*
4763  * The total entries in the ring buffer is the running counter
4764  * of entries entered into the ring buffer, minus the sum of
4765  * the entries read from the ring buffer and the number of
4766  * entries that were overwritten.
4767  */
4768 static inline unsigned long
4769 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4770 {
4771 	return local_read(&cpu_buffer->entries) -
4772 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4773 }
4774 
4775 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4776 {
4777 	return !rb_num_of_entries(cpu_buffer);
4778 }
4779 
4780 /**
4781  * ring_buffer_record_disable - stop all writes into the buffer
4782  * @buffer: The ring buffer to stop writes to.
4783  *
4784  * This prevents all writes to the buffer. Any attempt to write
4785  * to the buffer after this will fail and return NULL.
4786  *
4787  * The caller should call synchronize_rcu() after this.
4788  */
4789 void ring_buffer_record_disable(struct trace_buffer *buffer)
4790 {
4791 	atomic_inc(&buffer->record_disabled);
4792 }
4793 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4794 
4795 /**
4796  * ring_buffer_record_enable - enable writes to the buffer
4797  * @buffer: The ring buffer to enable writes
4798  *
4799  * Note, multiple disables will need the same number of enables
4800  * to truly enable the writing (much like preempt_disable).
4801  */
4802 void ring_buffer_record_enable(struct trace_buffer *buffer)
4803 {
4804 	atomic_dec(&buffer->record_disabled);
4805 }
4806 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4807 
4808 /**
4809  * ring_buffer_record_off - stop all writes into the buffer
4810  * @buffer: The ring buffer to stop writes to.
4811  *
4812  * This prevents all writes to the buffer. Any attempt to write
4813  * to the buffer after this will fail and return NULL.
4814  *
4815  * This is different than ring_buffer_record_disable() as
4816  * it works like an on/off switch, where as the disable() version
4817  * must be paired with a enable().
4818  */
4819 void ring_buffer_record_off(struct trace_buffer *buffer)
4820 {
4821 	unsigned int rd;
4822 	unsigned int new_rd;
4823 
4824 	rd = atomic_read(&buffer->record_disabled);
4825 	do {
4826 		new_rd = rd | RB_BUFFER_OFF;
4827 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4828 }
4829 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4830 
4831 /**
4832  * ring_buffer_record_on - restart writes into the buffer
4833  * @buffer: The ring buffer to start writes to.
4834  *
4835  * This enables all writes to the buffer that was disabled by
4836  * ring_buffer_record_off().
4837  *
4838  * This is different than ring_buffer_record_enable() as
4839  * it works like an on/off switch, where as the enable() version
4840  * must be paired with a disable().
4841  */
4842 void ring_buffer_record_on(struct trace_buffer *buffer)
4843 {
4844 	unsigned int rd;
4845 	unsigned int new_rd;
4846 
4847 	rd = atomic_read(&buffer->record_disabled);
4848 	do {
4849 		new_rd = rd & ~RB_BUFFER_OFF;
4850 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4851 }
4852 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4853 
4854 /**
4855  * ring_buffer_record_is_on - return true if the ring buffer can write
4856  * @buffer: The ring buffer to see if write is enabled
4857  *
4858  * Returns true if the ring buffer is in a state that it accepts writes.
4859  */
4860 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4861 {
4862 	return !atomic_read(&buffer->record_disabled);
4863 }
4864 
4865 /**
4866  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4867  * @buffer: The ring buffer to see if write is set enabled
4868  *
4869  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4870  * Note that this does NOT mean it is in a writable state.
4871  *
4872  * It may return true when the ring buffer has been disabled by
4873  * ring_buffer_record_disable(), as that is a temporary disabling of
4874  * the ring buffer.
4875  */
4876 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4877 {
4878 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4879 }
4880 
4881 /**
4882  * ring_buffer_record_is_on_cpu - return true if the ring buffer can write
4883  * @buffer: The ring buffer to see if write is enabled
4884  * @cpu: The CPU to test if the ring buffer can write too
4885  *
4886  * Returns true if the ring buffer is in a state that it accepts writes
4887  *   for a particular CPU.
4888  */
4889 bool ring_buffer_record_is_on_cpu(struct trace_buffer *buffer, int cpu)
4890 {
4891 	struct ring_buffer_per_cpu *cpu_buffer;
4892 
4893 	cpu_buffer = buffer->buffers[cpu];
4894 
4895 	return ring_buffer_record_is_set_on(buffer) &&
4896 		!atomic_read(&cpu_buffer->record_disabled);
4897 }
4898 
4899 /**
4900  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4901  * @buffer: The ring buffer to stop writes to.
4902  * @cpu: The CPU buffer to stop
4903  *
4904  * This prevents all writes to the buffer. Any attempt to write
4905  * to the buffer after this will fail and return NULL.
4906  *
4907  * The caller should call synchronize_rcu() after this.
4908  */
4909 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4910 {
4911 	struct ring_buffer_per_cpu *cpu_buffer;
4912 
4913 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4914 		return;
4915 
4916 	cpu_buffer = buffer->buffers[cpu];
4917 	atomic_inc(&cpu_buffer->record_disabled);
4918 }
4919 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4920 
4921 /**
4922  * ring_buffer_record_enable_cpu - enable writes to the buffer
4923  * @buffer: The ring buffer to enable writes
4924  * @cpu: The CPU to enable.
4925  *
4926  * Note, multiple disables will need the same number of enables
4927  * to truly enable the writing (much like preempt_disable).
4928  */
4929 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4930 {
4931 	struct ring_buffer_per_cpu *cpu_buffer;
4932 
4933 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4934 		return;
4935 
4936 	cpu_buffer = buffer->buffers[cpu];
4937 	atomic_dec(&cpu_buffer->record_disabled);
4938 }
4939 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4940 
4941 /**
4942  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4943  * @buffer: The ring buffer
4944  * @cpu: The per CPU buffer to read from.
4945  */
4946 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4947 {
4948 	unsigned long flags;
4949 	struct ring_buffer_per_cpu *cpu_buffer;
4950 	struct buffer_page *bpage;
4951 	u64 ret = 0;
4952 
4953 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4954 		return 0;
4955 
4956 	cpu_buffer = buffer->buffers[cpu];
4957 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4958 	/*
4959 	 * if the tail is on reader_page, oldest time stamp is on the reader
4960 	 * page
4961 	 */
4962 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4963 		bpage = cpu_buffer->reader_page;
4964 	else
4965 		bpage = rb_set_head_page(cpu_buffer);
4966 	if (bpage)
4967 		ret = bpage->page->time_stamp;
4968 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4969 
4970 	return ret;
4971 }
4972 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4973 
4974 /**
4975  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4976  * @buffer: The ring buffer
4977  * @cpu: The per CPU buffer to read from.
4978  */
4979 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4980 {
4981 	struct ring_buffer_per_cpu *cpu_buffer;
4982 	unsigned long ret;
4983 
4984 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4985 		return 0;
4986 
4987 	cpu_buffer = buffer->buffers[cpu];
4988 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4989 
4990 	return ret;
4991 }
4992 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4993 
4994 /**
4995  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4996  * @buffer: The ring buffer
4997  * @cpu: The per CPU buffer to get the entries from.
4998  */
4999 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
5000 {
5001 	struct ring_buffer_per_cpu *cpu_buffer;
5002 
5003 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5004 		return 0;
5005 
5006 	cpu_buffer = buffer->buffers[cpu];
5007 
5008 	return rb_num_of_entries(cpu_buffer);
5009 }
5010 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
5011 
5012 /**
5013  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
5014  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
5015  * @buffer: The ring buffer
5016  * @cpu: The per CPU buffer to get the number of overruns from
5017  */
5018 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
5019 {
5020 	struct ring_buffer_per_cpu *cpu_buffer;
5021 	unsigned long ret;
5022 
5023 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5024 		return 0;
5025 
5026 	cpu_buffer = buffer->buffers[cpu];
5027 	ret = local_read(&cpu_buffer->overrun);
5028 
5029 	return ret;
5030 }
5031 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
5032 
5033 /**
5034  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
5035  * commits failing due to the buffer wrapping around while there are uncommitted
5036  * events, such as during an interrupt storm.
5037  * @buffer: The ring buffer
5038  * @cpu: The per CPU buffer to get the number of overruns from
5039  */
5040 unsigned long
5041 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5042 {
5043 	struct ring_buffer_per_cpu *cpu_buffer;
5044 	unsigned long ret;
5045 
5046 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5047 		return 0;
5048 
5049 	cpu_buffer = buffer->buffers[cpu];
5050 	ret = local_read(&cpu_buffer->commit_overrun);
5051 
5052 	return ret;
5053 }
5054 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5055 
5056 /**
5057  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5058  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5059  * @buffer: The ring buffer
5060  * @cpu: The per CPU buffer to get the number of overruns from
5061  */
5062 unsigned long
5063 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5064 {
5065 	struct ring_buffer_per_cpu *cpu_buffer;
5066 	unsigned long ret;
5067 
5068 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5069 		return 0;
5070 
5071 	cpu_buffer = buffer->buffers[cpu];
5072 	ret = local_read(&cpu_buffer->dropped_events);
5073 
5074 	return ret;
5075 }
5076 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5077 
5078 /**
5079  * ring_buffer_read_events_cpu - get the number of events successfully read
5080  * @buffer: The ring buffer
5081  * @cpu: The per CPU buffer to get the number of events read
5082  */
5083 unsigned long
5084 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5085 {
5086 	struct ring_buffer_per_cpu *cpu_buffer;
5087 
5088 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5089 		return 0;
5090 
5091 	cpu_buffer = buffer->buffers[cpu];
5092 	return cpu_buffer->read;
5093 }
5094 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5095 
5096 /**
5097  * ring_buffer_entries - get the number of entries in a buffer
5098  * @buffer: The ring buffer
5099  *
5100  * Returns the total number of entries in the ring buffer
5101  * (all CPU entries)
5102  */
5103 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5104 {
5105 	struct ring_buffer_per_cpu *cpu_buffer;
5106 	unsigned long entries = 0;
5107 	int cpu;
5108 
5109 	/* if you care about this being correct, lock the buffer */
5110 	for_each_buffer_cpu(buffer, cpu) {
5111 		cpu_buffer = buffer->buffers[cpu];
5112 		entries += rb_num_of_entries(cpu_buffer);
5113 	}
5114 
5115 	return entries;
5116 }
5117 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5118 
5119 /**
5120  * ring_buffer_overruns - get the number of overruns in buffer
5121  * @buffer: The ring buffer
5122  *
5123  * Returns the total number of overruns in the ring buffer
5124  * (all CPU entries)
5125  */
5126 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5127 {
5128 	struct ring_buffer_per_cpu *cpu_buffer;
5129 	unsigned long overruns = 0;
5130 	int cpu;
5131 
5132 	/* if you care about this being correct, lock the buffer */
5133 	for_each_buffer_cpu(buffer, cpu) {
5134 		cpu_buffer = buffer->buffers[cpu];
5135 		overruns += local_read(&cpu_buffer->overrun);
5136 	}
5137 
5138 	return overruns;
5139 }
5140 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5141 
5142 static void rb_iter_reset(struct ring_buffer_iter *iter)
5143 {
5144 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5145 
5146 	/* Iterator usage is expected to have record disabled */
5147 	iter->head_page = cpu_buffer->reader_page;
5148 	iter->head = cpu_buffer->reader_page->read;
5149 	iter->next_event = iter->head;
5150 
5151 	iter->cache_reader_page = iter->head_page;
5152 	iter->cache_read = cpu_buffer->read;
5153 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5154 
5155 	if (iter->head) {
5156 		iter->read_stamp = cpu_buffer->read_stamp;
5157 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5158 	} else {
5159 		iter->read_stamp = iter->head_page->page->time_stamp;
5160 		iter->page_stamp = iter->read_stamp;
5161 	}
5162 }
5163 
5164 /**
5165  * ring_buffer_iter_reset - reset an iterator
5166  * @iter: The iterator to reset
5167  *
5168  * Resets the iterator, so that it will start from the beginning
5169  * again.
5170  */
5171 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5172 {
5173 	struct ring_buffer_per_cpu *cpu_buffer;
5174 	unsigned long flags;
5175 
5176 	if (!iter)
5177 		return;
5178 
5179 	cpu_buffer = iter->cpu_buffer;
5180 
5181 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5182 	rb_iter_reset(iter);
5183 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5184 }
5185 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5186 
5187 /**
5188  * ring_buffer_iter_empty - check if an iterator has no more to read
5189  * @iter: The iterator to check
5190  */
5191 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5192 {
5193 	struct ring_buffer_per_cpu *cpu_buffer;
5194 	struct buffer_page *reader;
5195 	struct buffer_page *head_page;
5196 	struct buffer_page *commit_page;
5197 	struct buffer_page *curr_commit_page;
5198 	unsigned commit;
5199 	u64 curr_commit_ts;
5200 	u64 commit_ts;
5201 
5202 	cpu_buffer = iter->cpu_buffer;
5203 	reader = cpu_buffer->reader_page;
5204 	head_page = cpu_buffer->head_page;
5205 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5206 	commit_ts = commit_page->page->time_stamp;
5207 
5208 	/*
5209 	 * When the writer goes across pages, it issues a cmpxchg which
5210 	 * is a mb(), which will synchronize with the rmb here.
5211 	 * (see rb_tail_page_update())
5212 	 */
5213 	smp_rmb();
5214 	commit = rb_page_commit(commit_page);
5215 	/* We want to make sure that the commit page doesn't change */
5216 	smp_rmb();
5217 
5218 	/* Make sure commit page didn't change */
5219 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5220 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5221 
5222 	/* If the commit page changed, then there's more data */
5223 	if (curr_commit_page != commit_page ||
5224 	    curr_commit_ts != commit_ts)
5225 		return 0;
5226 
5227 	/* Still racy, as it may return a false positive, but that's OK */
5228 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5229 		(iter->head_page == reader && commit_page == head_page &&
5230 		 head_page->read == commit &&
5231 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5232 }
5233 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5234 
5235 static void
5236 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5237 		     struct ring_buffer_event *event)
5238 {
5239 	u64 delta;
5240 
5241 	switch (event->type_len) {
5242 	case RINGBUF_TYPE_PADDING:
5243 		return;
5244 
5245 	case RINGBUF_TYPE_TIME_EXTEND:
5246 		delta = rb_event_time_stamp(event);
5247 		cpu_buffer->read_stamp += delta;
5248 		return;
5249 
5250 	case RINGBUF_TYPE_TIME_STAMP:
5251 		delta = rb_event_time_stamp(event);
5252 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5253 		cpu_buffer->read_stamp = delta;
5254 		return;
5255 
5256 	case RINGBUF_TYPE_DATA:
5257 		cpu_buffer->read_stamp += event->time_delta;
5258 		return;
5259 
5260 	default:
5261 		RB_WARN_ON(cpu_buffer, 1);
5262 	}
5263 }
5264 
5265 static void
5266 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5267 			  struct ring_buffer_event *event)
5268 {
5269 	u64 delta;
5270 
5271 	switch (event->type_len) {
5272 	case RINGBUF_TYPE_PADDING:
5273 		return;
5274 
5275 	case RINGBUF_TYPE_TIME_EXTEND:
5276 		delta = rb_event_time_stamp(event);
5277 		iter->read_stamp += delta;
5278 		return;
5279 
5280 	case RINGBUF_TYPE_TIME_STAMP:
5281 		delta = rb_event_time_stamp(event);
5282 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5283 		iter->read_stamp = delta;
5284 		return;
5285 
5286 	case RINGBUF_TYPE_DATA:
5287 		iter->read_stamp += event->time_delta;
5288 		return;
5289 
5290 	default:
5291 		RB_WARN_ON(iter->cpu_buffer, 1);
5292 	}
5293 }
5294 
5295 static struct buffer_page *
5296 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5297 {
5298 	struct buffer_page *reader = NULL;
5299 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5300 	unsigned long overwrite;
5301 	unsigned long flags;
5302 	int nr_loops = 0;
5303 	bool ret;
5304 
5305 	local_irq_save(flags);
5306 	arch_spin_lock(&cpu_buffer->lock);
5307 
5308  again:
5309 	/*
5310 	 * This should normally only loop twice. But because the
5311 	 * start of the reader inserts an empty page, it causes
5312 	 * a case where we will loop three times. There should be no
5313 	 * reason to loop four times (that I know of).
5314 	 */
5315 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5316 		reader = NULL;
5317 		goto out;
5318 	}
5319 
5320 	reader = cpu_buffer->reader_page;
5321 
5322 	/* If there's more to read, return this page */
5323 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5324 		goto out;
5325 
5326 	/* Never should we have an index greater than the size */
5327 	if (RB_WARN_ON(cpu_buffer,
5328 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5329 		goto out;
5330 
5331 	/* check if we caught up to the tail */
5332 	reader = NULL;
5333 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5334 		goto out;
5335 
5336 	/* Don't bother swapping if the ring buffer is empty */
5337 	if (rb_num_of_entries(cpu_buffer) == 0)
5338 		goto out;
5339 
5340 	/*
5341 	 * Reset the reader page to size zero.
5342 	 */
5343 	local_set(&cpu_buffer->reader_page->write, 0);
5344 	local_set(&cpu_buffer->reader_page->entries, 0);
5345 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5346 	cpu_buffer->reader_page->real_end = 0;
5347 
5348  spin:
5349 	/*
5350 	 * Splice the empty reader page into the list around the head.
5351 	 */
5352 	reader = rb_set_head_page(cpu_buffer);
5353 	if (!reader)
5354 		goto out;
5355 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5356 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5357 
5358 	/*
5359 	 * cpu_buffer->pages just needs to point to the buffer, it
5360 	 *  has no specific buffer page to point to. Lets move it out
5361 	 *  of our way so we don't accidentally swap it.
5362 	 */
5363 	cpu_buffer->pages = reader->list.prev;
5364 
5365 	/* The reader page will be pointing to the new head */
5366 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5367 
5368 	/*
5369 	 * We want to make sure we read the overruns after we set up our
5370 	 * pointers to the next object. The writer side does a
5371 	 * cmpxchg to cross pages which acts as the mb on the writer
5372 	 * side. Note, the reader will constantly fail the swap
5373 	 * while the writer is updating the pointers, so this
5374 	 * guarantees that the overwrite recorded here is the one we
5375 	 * want to compare with the last_overrun.
5376 	 */
5377 	smp_mb();
5378 	overwrite = local_read(&(cpu_buffer->overrun));
5379 
5380 	/*
5381 	 * Here's the tricky part.
5382 	 *
5383 	 * We need to move the pointer past the header page.
5384 	 * But we can only do that if a writer is not currently
5385 	 * moving it. The page before the header page has the
5386 	 * flag bit '1' set if it is pointing to the page we want.
5387 	 * but if the writer is in the process of moving it
5388 	 * then it will be '2' or already moved '0'.
5389 	 */
5390 
5391 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5392 
5393 	/*
5394 	 * If we did not convert it, then we must try again.
5395 	 */
5396 	if (!ret)
5397 		goto spin;
5398 
5399 	if (cpu_buffer->ring_meta)
5400 		rb_update_meta_reader(cpu_buffer, reader);
5401 
5402 	/*
5403 	 * Yay! We succeeded in replacing the page.
5404 	 *
5405 	 * Now make the new head point back to the reader page.
5406 	 */
5407 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5408 	rb_inc_page(&cpu_buffer->head_page);
5409 
5410 	cpu_buffer->cnt++;
5411 	local_inc(&cpu_buffer->pages_read);
5412 
5413 	/* Finally update the reader page to the new head */
5414 	cpu_buffer->reader_page = reader;
5415 	cpu_buffer->reader_page->read = 0;
5416 
5417 	if (overwrite != cpu_buffer->last_overrun) {
5418 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5419 		cpu_buffer->last_overrun = overwrite;
5420 	}
5421 
5422 	goto again;
5423 
5424  out:
5425 	/* Update the read_stamp on the first event */
5426 	if (reader && reader->read == 0)
5427 		cpu_buffer->read_stamp = reader->page->time_stamp;
5428 
5429 	arch_spin_unlock(&cpu_buffer->lock);
5430 	local_irq_restore(flags);
5431 
5432 	/*
5433 	 * The writer has preempt disable, wait for it. But not forever
5434 	 * Although, 1 second is pretty much "forever"
5435 	 */
5436 #define USECS_WAIT	1000000
5437         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5438 		/* If the write is past the end of page, a writer is still updating it */
5439 		if (likely(!reader || rb_page_write(reader) <= bsize))
5440 			break;
5441 
5442 		udelay(1);
5443 
5444 		/* Get the latest version of the reader write value */
5445 		smp_rmb();
5446 	}
5447 
5448 	/* The writer is not moving forward? Something is wrong */
5449 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5450 		reader = NULL;
5451 
5452 	/*
5453 	 * Make sure we see any padding after the write update
5454 	 * (see rb_reset_tail()).
5455 	 *
5456 	 * In addition, a writer may be writing on the reader page
5457 	 * if the page has not been fully filled, so the read barrier
5458 	 * is also needed to make sure we see the content of what is
5459 	 * committed by the writer (see rb_set_commit_to_write()).
5460 	 */
5461 	smp_rmb();
5462 
5463 
5464 	return reader;
5465 }
5466 
5467 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5468 {
5469 	struct ring_buffer_event *event;
5470 	struct buffer_page *reader;
5471 	unsigned length;
5472 
5473 	reader = rb_get_reader_page(cpu_buffer);
5474 
5475 	/* This function should not be called when buffer is empty */
5476 	if (RB_WARN_ON(cpu_buffer, !reader))
5477 		return;
5478 
5479 	event = rb_reader_event(cpu_buffer);
5480 
5481 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5482 		cpu_buffer->read++;
5483 
5484 	rb_update_read_stamp(cpu_buffer, event);
5485 
5486 	length = rb_event_length(event);
5487 	cpu_buffer->reader_page->read += length;
5488 	cpu_buffer->read_bytes += length;
5489 }
5490 
5491 static void rb_advance_iter(struct ring_buffer_iter *iter)
5492 {
5493 	struct ring_buffer_per_cpu *cpu_buffer;
5494 
5495 	cpu_buffer = iter->cpu_buffer;
5496 
5497 	/* If head == next_event then we need to jump to the next event */
5498 	if (iter->head == iter->next_event) {
5499 		/* If the event gets overwritten again, there's nothing to do */
5500 		if (rb_iter_head_event(iter) == NULL)
5501 			return;
5502 	}
5503 
5504 	iter->head = iter->next_event;
5505 
5506 	/*
5507 	 * Check if we are at the end of the buffer.
5508 	 */
5509 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5510 		/* discarded commits can make the page empty */
5511 		if (iter->head_page == cpu_buffer->commit_page)
5512 			return;
5513 		rb_inc_iter(iter);
5514 		return;
5515 	}
5516 
5517 	rb_update_iter_read_stamp(iter, iter->event);
5518 }
5519 
5520 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5521 {
5522 	return cpu_buffer->lost_events;
5523 }
5524 
5525 static struct ring_buffer_event *
5526 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5527 	       unsigned long *lost_events)
5528 {
5529 	struct ring_buffer_event *event;
5530 	struct buffer_page *reader;
5531 	int nr_loops = 0;
5532 
5533 	if (ts)
5534 		*ts = 0;
5535  again:
5536 	/*
5537 	 * We repeat when a time extend is encountered.
5538 	 * Since the time extend is always attached to a data event,
5539 	 * we should never loop more than once.
5540 	 * (We never hit the following condition more than twice).
5541 	 */
5542 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5543 		return NULL;
5544 
5545 	reader = rb_get_reader_page(cpu_buffer);
5546 	if (!reader)
5547 		return NULL;
5548 
5549 	event = rb_reader_event(cpu_buffer);
5550 
5551 	switch (event->type_len) {
5552 	case RINGBUF_TYPE_PADDING:
5553 		if (rb_null_event(event))
5554 			RB_WARN_ON(cpu_buffer, 1);
5555 		/*
5556 		 * Because the writer could be discarding every
5557 		 * event it creates (which would probably be bad)
5558 		 * if we were to go back to "again" then we may never
5559 		 * catch up, and will trigger the warn on, or lock
5560 		 * the box. Return the padding, and we will release
5561 		 * the current locks, and try again.
5562 		 */
5563 		return event;
5564 
5565 	case RINGBUF_TYPE_TIME_EXTEND:
5566 		/* Internal data, OK to advance */
5567 		rb_advance_reader(cpu_buffer);
5568 		goto again;
5569 
5570 	case RINGBUF_TYPE_TIME_STAMP:
5571 		if (ts) {
5572 			*ts = rb_event_time_stamp(event);
5573 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5574 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5575 							 cpu_buffer->cpu, ts);
5576 		}
5577 		/* Internal data, OK to advance */
5578 		rb_advance_reader(cpu_buffer);
5579 		goto again;
5580 
5581 	case RINGBUF_TYPE_DATA:
5582 		if (ts && !(*ts)) {
5583 			*ts = cpu_buffer->read_stamp + event->time_delta;
5584 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5585 							 cpu_buffer->cpu, ts);
5586 		}
5587 		if (lost_events)
5588 			*lost_events = rb_lost_events(cpu_buffer);
5589 		return event;
5590 
5591 	default:
5592 		RB_WARN_ON(cpu_buffer, 1);
5593 	}
5594 
5595 	return NULL;
5596 }
5597 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5598 
5599 static struct ring_buffer_event *
5600 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5601 {
5602 	struct trace_buffer *buffer;
5603 	struct ring_buffer_per_cpu *cpu_buffer;
5604 	struct ring_buffer_event *event;
5605 	int nr_loops = 0;
5606 
5607 	if (ts)
5608 		*ts = 0;
5609 
5610 	cpu_buffer = iter->cpu_buffer;
5611 	buffer = cpu_buffer->buffer;
5612 
5613 	/*
5614 	 * Check if someone performed a consuming read to the buffer
5615 	 * or removed some pages from the buffer. In these cases,
5616 	 * iterator was invalidated and we need to reset it.
5617 	 */
5618 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5619 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5620 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5621 		rb_iter_reset(iter);
5622 
5623  again:
5624 	if (ring_buffer_iter_empty(iter))
5625 		return NULL;
5626 
5627 	/*
5628 	 * As the writer can mess with what the iterator is trying
5629 	 * to read, just give up if we fail to get an event after
5630 	 * three tries. The iterator is not as reliable when reading
5631 	 * the ring buffer with an active write as the consumer is.
5632 	 * Do not warn if the three failures is reached.
5633 	 */
5634 	if (++nr_loops > 3)
5635 		return NULL;
5636 
5637 	if (rb_per_cpu_empty(cpu_buffer))
5638 		return NULL;
5639 
5640 	if (iter->head >= rb_page_size(iter->head_page)) {
5641 		rb_inc_iter(iter);
5642 		goto again;
5643 	}
5644 
5645 	event = rb_iter_head_event(iter);
5646 	if (!event)
5647 		goto again;
5648 
5649 	switch (event->type_len) {
5650 	case RINGBUF_TYPE_PADDING:
5651 		if (rb_null_event(event)) {
5652 			rb_inc_iter(iter);
5653 			goto again;
5654 		}
5655 		rb_advance_iter(iter);
5656 		return event;
5657 
5658 	case RINGBUF_TYPE_TIME_EXTEND:
5659 		/* Internal data, OK to advance */
5660 		rb_advance_iter(iter);
5661 		goto again;
5662 
5663 	case RINGBUF_TYPE_TIME_STAMP:
5664 		if (ts) {
5665 			*ts = rb_event_time_stamp(event);
5666 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5667 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5668 							 cpu_buffer->cpu, ts);
5669 		}
5670 		/* Internal data, OK to advance */
5671 		rb_advance_iter(iter);
5672 		goto again;
5673 
5674 	case RINGBUF_TYPE_DATA:
5675 		if (ts && !(*ts)) {
5676 			*ts = iter->read_stamp + event->time_delta;
5677 			ring_buffer_normalize_time_stamp(buffer,
5678 							 cpu_buffer->cpu, ts);
5679 		}
5680 		return event;
5681 
5682 	default:
5683 		RB_WARN_ON(cpu_buffer, 1);
5684 	}
5685 
5686 	return NULL;
5687 }
5688 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5689 
5690 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5691 {
5692 	if (likely(!in_nmi())) {
5693 		raw_spin_lock(&cpu_buffer->reader_lock);
5694 		return true;
5695 	}
5696 
5697 	/*
5698 	 * If an NMI die dumps out the content of the ring buffer
5699 	 * trylock must be used to prevent a deadlock if the NMI
5700 	 * preempted a task that holds the ring buffer locks. If
5701 	 * we get the lock then all is fine, if not, then continue
5702 	 * to do the read, but this can corrupt the ring buffer,
5703 	 * so it must be permanently disabled from future writes.
5704 	 * Reading from NMI is a oneshot deal.
5705 	 */
5706 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5707 		return true;
5708 
5709 	/* Continue without locking, but disable the ring buffer */
5710 	atomic_inc(&cpu_buffer->record_disabled);
5711 	return false;
5712 }
5713 
5714 static inline void
5715 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5716 {
5717 	if (likely(locked))
5718 		raw_spin_unlock(&cpu_buffer->reader_lock);
5719 }
5720 
5721 /**
5722  * ring_buffer_peek - peek at the next event to be read
5723  * @buffer: The ring buffer to read
5724  * @cpu: The cpu to peak at
5725  * @ts: The timestamp counter of this event.
5726  * @lost_events: a variable to store if events were lost (may be NULL)
5727  *
5728  * This will return the event that will be read next, but does
5729  * not consume the data.
5730  */
5731 struct ring_buffer_event *
5732 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5733 		 unsigned long *lost_events)
5734 {
5735 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5736 	struct ring_buffer_event *event;
5737 	unsigned long flags;
5738 	bool dolock;
5739 
5740 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5741 		return NULL;
5742 
5743  again:
5744 	local_irq_save(flags);
5745 	dolock = rb_reader_lock(cpu_buffer);
5746 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5747 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5748 		rb_advance_reader(cpu_buffer);
5749 	rb_reader_unlock(cpu_buffer, dolock);
5750 	local_irq_restore(flags);
5751 
5752 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5753 		goto again;
5754 
5755 	return event;
5756 }
5757 
5758 /** ring_buffer_iter_dropped - report if there are dropped events
5759  * @iter: The ring buffer iterator
5760  *
5761  * Returns true if there was dropped events since the last peek.
5762  */
5763 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5764 {
5765 	bool ret = iter->missed_events != 0;
5766 
5767 	iter->missed_events = 0;
5768 	return ret;
5769 }
5770 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5771 
5772 /**
5773  * ring_buffer_iter_peek - peek at the next event to be read
5774  * @iter: The ring buffer iterator
5775  * @ts: The timestamp counter of this event.
5776  *
5777  * This will return the event that will be read next, but does
5778  * not increment the iterator.
5779  */
5780 struct ring_buffer_event *
5781 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5782 {
5783 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5784 	struct ring_buffer_event *event;
5785 	unsigned long flags;
5786 
5787  again:
5788 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5789 	event = rb_iter_peek(iter, ts);
5790 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5791 
5792 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5793 		goto again;
5794 
5795 	return event;
5796 }
5797 
5798 /**
5799  * ring_buffer_consume - return an event and consume it
5800  * @buffer: The ring buffer to get the next event from
5801  * @cpu: the cpu to read the buffer from
5802  * @ts: a variable to store the timestamp (may be NULL)
5803  * @lost_events: a variable to store if events were lost (may be NULL)
5804  *
5805  * Returns the next event in the ring buffer, and that event is consumed.
5806  * Meaning, that sequential reads will keep returning a different event,
5807  * and eventually empty the ring buffer if the producer is slower.
5808  */
5809 struct ring_buffer_event *
5810 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5811 		    unsigned long *lost_events)
5812 {
5813 	struct ring_buffer_per_cpu *cpu_buffer;
5814 	struct ring_buffer_event *event = NULL;
5815 	unsigned long flags;
5816 	bool dolock;
5817 
5818  again:
5819 	/* might be called in atomic */
5820 	preempt_disable();
5821 
5822 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5823 		goto out;
5824 
5825 	cpu_buffer = buffer->buffers[cpu];
5826 	local_irq_save(flags);
5827 	dolock = rb_reader_lock(cpu_buffer);
5828 
5829 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5830 	if (event) {
5831 		cpu_buffer->lost_events = 0;
5832 		rb_advance_reader(cpu_buffer);
5833 	}
5834 
5835 	rb_reader_unlock(cpu_buffer, dolock);
5836 	local_irq_restore(flags);
5837 
5838  out:
5839 	preempt_enable();
5840 
5841 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5842 		goto again;
5843 
5844 	return event;
5845 }
5846 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5847 
5848 /**
5849  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5850  * @buffer: The ring buffer to read from
5851  * @cpu: The cpu buffer to iterate over
5852  * @flags: gfp flags to use for memory allocation
5853  *
5854  * This performs the initial preparations necessary to iterate
5855  * through the buffer.  Memory is allocated, buffer resizing
5856  * is disabled, and the iterator pointer is returned to the caller.
5857  *
5858  * After a sequence of ring_buffer_read_prepare calls, the user is
5859  * expected to make at least one call to ring_buffer_read_prepare_sync.
5860  * Afterwards, ring_buffer_read_start is invoked to get things going
5861  * for real.
5862  *
5863  * This overall must be paired with ring_buffer_read_finish.
5864  */
5865 struct ring_buffer_iter *
5866 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5867 {
5868 	struct ring_buffer_per_cpu *cpu_buffer;
5869 	struct ring_buffer_iter *iter;
5870 
5871 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5872 		return NULL;
5873 
5874 	iter = kzalloc(sizeof(*iter), flags);
5875 	if (!iter)
5876 		return NULL;
5877 
5878 	/* Holds the entire event: data and meta data */
5879 	iter->event_size = buffer->subbuf_size;
5880 	iter->event = kmalloc(iter->event_size, flags);
5881 	if (!iter->event) {
5882 		kfree(iter);
5883 		return NULL;
5884 	}
5885 
5886 	cpu_buffer = buffer->buffers[cpu];
5887 
5888 	iter->cpu_buffer = cpu_buffer;
5889 
5890 	atomic_inc(&cpu_buffer->resize_disabled);
5891 
5892 	return iter;
5893 }
5894 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5895 
5896 /**
5897  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5898  *
5899  * All previously invoked ring_buffer_read_prepare calls to prepare
5900  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5901  * calls on those iterators are allowed.
5902  */
5903 void
5904 ring_buffer_read_prepare_sync(void)
5905 {
5906 	synchronize_rcu();
5907 }
5908 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5909 
5910 /**
5911  * ring_buffer_read_start - start a non consuming read of the buffer
5912  * @iter: The iterator returned by ring_buffer_read_prepare
5913  *
5914  * This finalizes the startup of an iteration through the buffer.
5915  * The iterator comes from a call to ring_buffer_read_prepare and
5916  * an intervening ring_buffer_read_prepare_sync must have been
5917  * performed.
5918  *
5919  * Must be paired with ring_buffer_read_finish.
5920  */
5921 void
5922 ring_buffer_read_start(struct ring_buffer_iter *iter)
5923 {
5924 	struct ring_buffer_per_cpu *cpu_buffer;
5925 	unsigned long flags;
5926 
5927 	if (!iter)
5928 		return;
5929 
5930 	cpu_buffer = iter->cpu_buffer;
5931 
5932 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5933 	arch_spin_lock(&cpu_buffer->lock);
5934 	rb_iter_reset(iter);
5935 	arch_spin_unlock(&cpu_buffer->lock);
5936 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5937 }
5938 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5939 
5940 /**
5941  * ring_buffer_read_finish - finish reading the iterator of the buffer
5942  * @iter: The iterator retrieved by ring_buffer_start
5943  *
5944  * This re-enables resizing of the buffer, and frees the iterator.
5945  */
5946 void
5947 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5948 {
5949 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5950 
5951 	/* Use this opportunity to check the integrity of the ring buffer. */
5952 	rb_check_pages(cpu_buffer);
5953 
5954 	atomic_dec(&cpu_buffer->resize_disabled);
5955 	kfree(iter->event);
5956 	kfree(iter);
5957 }
5958 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5959 
5960 /**
5961  * ring_buffer_iter_advance - advance the iterator to the next location
5962  * @iter: The ring buffer iterator
5963  *
5964  * Move the location of the iterator such that the next read will
5965  * be the next location of the iterator.
5966  */
5967 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5968 {
5969 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5970 	unsigned long flags;
5971 
5972 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5973 
5974 	rb_advance_iter(iter);
5975 
5976 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5977 }
5978 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5979 
5980 /**
5981  * ring_buffer_size - return the size of the ring buffer (in bytes)
5982  * @buffer: The ring buffer.
5983  * @cpu: The CPU to get ring buffer size from.
5984  */
5985 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5986 {
5987 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5988 		return 0;
5989 
5990 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5991 }
5992 EXPORT_SYMBOL_GPL(ring_buffer_size);
5993 
5994 /**
5995  * ring_buffer_max_event_size - return the max data size of an event
5996  * @buffer: The ring buffer.
5997  *
5998  * Returns the maximum size an event can be.
5999  */
6000 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
6001 {
6002 	/* If abs timestamp is requested, events have a timestamp too */
6003 	if (ring_buffer_time_stamp_abs(buffer))
6004 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
6005 	return buffer->max_data_size;
6006 }
6007 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
6008 
6009 static void rb_clear_buffer_page(struct buffer_page *page)
6010 {
6011 	local_set(&page->write, 0);
6012 	local_set(&page->entries, 0);
6013 	rb_init_page(page->page);
6014 	page->read = 0;
6015 }
6016 
6017 /*
6018  * When the buffer is memory mapped to user space, each sub buffer
6019  * has a unique id that is used by the meta data to tell the user
6020  * where the current reader page is.
6021  *
6022  * For a normal allocated ring buffer, the id is saved in the buffer page
6023  * id field, and updated via this function.
6024  *
6025  * But for a fixed memory mapped buffer, the id is already assigned for
6026  * fixed memory ording in the memory layout and can not be used. Instead
6027  * the index of where the page lies in the memory layout is used.
6028  *
6029  * For the normal pages, set the buffer page id with the passed in @id
6030  * value and return that.
6031  *
6032  * For fixed memory mapped pages, get the page index in the memory layout
6033  * and return that as the id.
6034  */
6035 static int rb_page_id(struct ring_buffer_per_cpu *cpu_buffer,
6036 		      struct buffer_page *bpage, int id)
6037 {
6038 	/*
6039 	 * For boot buffers, the id is the index,
6040 	 * otherwise, set the buffer page with this id
6041 	 */
6042 	if (cpu_buffer->ring_meta)
6043 		id = rb_meta_subbuf_idx(cpu_buffer->ring_meta, bpage->page);
6044 	else
6045 		bpage->id = id;
6046 
6047 	return id;
6048 }
6049 
6050 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6051 {
6052 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6053 
6054 	if (!meta)
6055 		return;
6056 
6057 	meta->reader.read = cpu_buffer->reader_page->read;
6058 	meta->reader.id = rb_page_id(cpu_buffer, cpu_buffer->reader_page,
6059 				     cpu_buffer->reader_page->id);
6060 
6061 	meta->reader.lost_events = cpu_buffer->lost_events;
6062 
6063 	meta->entries = local_read(&cpu_buffer->entries);
6064 	meta->overrun = local_read(&cpu_buffer->overrun);
6065 	meta->read = cpu_buffer->read;
6066 
6067 	/* Some archs do not have data cache coherency between kernel and user-space */
6068 	flush_kernel_vmap_range(cpu_buffer->meta_page, PAGE_SIZE);
6069 }
6070 
6071 static void
6072 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6073 {
6074 	struct buffer_page *page;
6075 
6076 	rb_head_page_deactivate(cpu_buffer);
6077 
6078 	cpu_buffer->head_page
6079 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
6080 	rb_clear_buffer_page(cpu_buffer->head_page);
6081 	list_for_each_entry(page, cpu_buffer->pages, list) {
6082 		rb_clear_buffer_page(page);
6083 	}
6084 
6085 	cpu_buffer->tail_page = cpu_buffer->head_page;
6086 	cpu_buffer->commit_page = cpu_buffer->head_page;
6087 
6088 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6089 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
6090 	rb_clear_buffer_page(cpu_buffer->reader_page);
6091 
6092 	local_set(&cpu_buffer->entries_bytes, 0);
6093 	local_set(&cpu_buffer->overrun, 0);
6094 	local_set(&cpu_buffer->commit_overrun, 0);
6095 	local_set(&cpu_buffer->dropped_events, 0);
6096 	local_set(&cpu_buffer->entries, 0);
6097 	local_set(&cpu_buffer->committing, 0);
6098 	local_set(&cpu_buffer->commits, 0);
6099 	local_set(&cpu_buffer->pages_touched, 0);
6100 	local_set(&cpu_buffer->pages_lost, 0);
6101 	local_set(&cpu_buffer->pages_read, 0);
6102 	cpu_buffer->last_pages_touch = 0;
6103 	cpu_buffer->shortest_full = 0;
6104 	cpu_buffer->read = 0;
6105 	cpu_buffer->read_bytes = 0;
6106 
6107 	rb_time_set(&cpu_buffer->write_stamp, 0);
6108 	rb_time_set(&cpu_buffer->before_stamp, 0);
6109 
6110 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6111 
6112 	cpu_buffer->lost_events = 0;
6113 	cpu_buffer->last_overrun = 0;
6114 
6115 	rb_head_page_activate(cpu_buffer);
6116 	cpu_buffer->pages_removed = 0;
6117 
6118 	if (cpu_buffer->mapped) {
6119 		rb_update_meta_page(cpu_buffer);
6120 		if (cpu_buffer->ring_meta) {
6121 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
6122 			meta->commit_buffer = meta->head_buffer;
6123 		}
6124 	}
6125 }
6126 
6127 /* Must have disabled the cpu buffer then done a synchronize_rcu */
6128 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6129 {
6130 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6131 
6132 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6133 		return;
6134 
6135 	arch_spin_lock(&cpu_buffer->lock);
6136 
6137 	rb_reset_cpu(cpu_buffer);
6138 
6139 	arch_spin_unlock(&cpu_buffer->lock);
6140 }
6141 
6142 /**
6143  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6144  * @buffer: The ring buffer to reset a per cpu buffer of
6145  * @cpu: The CPU buffer to be reset
6146  */
6147 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6148 {
6149 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6150 
6151 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6152 		return;
6153 
6154 	/* prevent another thread from changing buffer sizes */
6155 	mutex_lock(&buffer->mutex);
6156 
6157 	atomic_inc(&cpu_buffer->resize_disabled);
6158 	atomic_inc(&cpu_buffer->record_disabled);
6159 
6160 	/* Make sure all commits have finished */
6161 	synchronize_rcu();
6162 
6163 	reset_disabled_cpu_buffer(cpu_buffer);
6164 
6165 	atomic_dec(&cpu_buffer->record_disabled);
6166 	atomic_dec(&cpu_buffer->resize_disabled);
6167 
6168 	mutex_unlock(&buffer->mutex);
6169 }
6170 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6171 
6172 /* Flag to ensure proper resetting of atomic variables */
6173 #define RESET_BIT	(1 << 30)
6174 
6175 /**
6176  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6177  * @buffer: The ring buffer to reset a per cpu buffer of
6178  */
6179 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6180 {
6181 	struct ring_buffer_per_cpu *cpu_buffer;
6182 	int cpu;
6183 
6184 	/* prevent another thread from changing buffer sizes */
6185 	mutex_lock(&buffer->mutex);
6186 
6187 	for_each_online_buffer_cpu(buffer, cpu) {
6188 		cpu_buffer = buffer->buffers[cpu];
6189 
6190 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6191 		atomic_inc(&cpu_buffer->record_disabled);
6192 	}
6193 
6194 	/* Make sure all commits have finished */
6195 	synchronize_rcu();
6196 
6197 	for_each_buffer_cpu(buffer, cpu) {
6198 		cpu_buffer = buffer->buffers[cpu];
6199 
6200 		/*
6201 		 * If a CPU came online during the synchronize_rcu(), then
6202 		 * ignore it.
6203 		 */
6204 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6205 			continue;
6206 
6207 		reset_disabled_cpu_buffer(cpu_buffer);
6208 
6209 		atomic_dec(&cpu_buffer->record_disabled);
6210 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6211 	}
6212 
6213 	mutex_unlock(&buffer->mutex);
6214 }
6215 
6216 /**
6217  * ring_buffer_reset - reset a ring buffer
6218  * @buffer: The ring buffer to reset all cpu buffers
6219  */
6220 void ring_buffer_reset(struct trace_buffer *buffer)
6221 {
6222 	struct ring_buffer_per_cpu *cpu_buffer;
6223 	int cpu;
6224 
6225 	/* prevent another thread from changing buffer sizes */
6226 	mutex_lock(&buffer->mutex);
6227 
6228 	for_each_buffer_cpu(buffer, cpu) {
6229 		cpu_buffer = buffer->buffers[cpu];
6230 
6231 		atomic_inc(&cpu_buffer->resize_disabled);
6232 		atomic_inc(&cpu_buffer->record_disabled);
6233 	}
6234 
6235 	/* Make sure all commits have finished */
6236 	synchronize_rcu();
6237 
6238 	for_each_buffer_cpu(buffer, cpu) {
6239 		cpu_buffer = buffer->buffers[cpu];
6240 
6241 		reset_disabled_cpu_buffer(cpu_buffer);
6242 
6243 		atomic_dec(&cpu_buffer->record_disabled);
6244 		atomic_dec(&cpu_buffer->resize_disabled);
6245 	}
6246 
6247 	mutex_unlock(&buffer->mutex);
6248 }
6249 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6250 
6251 /**
6252  * ring_buffer_empty - is the ring buffer empty?
6253  * @buffer: The ring buffer to test
6254  */
6255 bool ring_buffer_empty(struct trace_buffer *buffer)
6256 {
6257 	struct ring_buffer_per_cpu *cpu_buffer;
6258 	unsigned long flags;
6259 	bool dolock;
6260 	bool ret;
6261 	int cpu;
6262 
6263 	/* yes this is racy, but if you don't like the race, lock the buffer */
6264 	for_each_buffer_cpu(buffer, cpu) {
6265 		cpu_buffer = buffer->buffers[cpu];
6266 		local_irq_save(flags);
6267 		dolock = rb_reader_lock(cpu_buffer);
6268 		ret = rb_per_cpu_empty(cpu_buffer);
6269 		rb_reader_unlock(cpu_buffer, dolock);
6270 		local_irq_restore(flags);
6271 
6272 		if (!ret)
6273 			return false;
6274 	}
6275 
6276 	return true;
6277 }
6278 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6279 
6280 /**
6281  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6282  * @buffer: The ring buffer
6283  * @cpu: The CPU buffer to test
6284  */
6285 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6286 {
6287 	struct ring_buffer_per_cpu *cpu_buffer;
6288 	unsigned long flags;
6289 	bool dolock;
6290 	bool ret;
6291 
6292 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6293 		return true;
6294 
6295 	cpu_buffer = buffer->buffers[cpu];
6296 	local_irq_save(flags);
6297 	dolock = rb_reader_lock(cpu_buffer);
6298 	ret = rb_per_cpu_empty(cpu_buffer);
6299 	rb_reader_unlock(cpu_buffer, dolock);
6300 	local_irq_restore(flags);
6301 
6302 	return ret;
6303 }
6304 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6305 
6306 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6307 /**
6308  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6309  * @buffer_a: One buffer to swap with
6310  * @buffer_b: The other buffer to swap with
6311  * @cpu: the CPU of the buffers to swap
6312  *
6313  * This function is useful for tracers that want to take a "snapshot"
6314  * of a CPU buffer and has another back up buffer lying around.
6315  * it is expected that the tracer handles the cpu buffer not being
6316  * used at the moment.
6317  */
6318 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6319 			 struct trace_buffer *buffer_b, int cpu)
6320 {
6321 	struct ring_buffer_per_cpu *cpu_buffer_a;
6322 	struct ring_buffer_per_cpu *cpu_buffer_b;
6323 	int ret = -EINVAL;
6324 
6325 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6326 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6327 		return -EINVAL;
6328 
6329 	cpu_buffer_a = buffer_a->buffers[cpu];
6330 	cpu_buffer_b = buffer_b->buffers[cpu];
6331 
6332 	/* It's up to the callers to not try to swap mapped buffers */
6333 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped))
6334 		return -EBUSY;
6335 
6336 	/* At least make sure the two buffers are somewhat the same */
6337 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6338 		return -EINVAL;
6339 
6340 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6341 		return -EINVAL;
6342 
6343 	if (atomic_read(&buffer_a->record_disabled))
6344 		return -EAGAIN;
6345 
6346 	if (atomic_read(&buffer_b->record_disabled))
6347 		return -EAGAIN;
6348 
6349 	if (atomic_read(&cpu_buffer_a->record_disabled))
6350 		return -EAGAIN;
6351 
6352 	if (atomic_read(&cpu_buffer_b->record_disabled))
6353 		return -EAGAIN;
6354 
6355 	/*
6356 	 * We can't do a synchronize_rcu here because this
6357 	 * function can be called in atomic context.
6358 	 * Normally this will be called from the same CPU as cpu.
6359 	 * If not it's up to the caller to protect this.
6360 	 */
6361 	atomic_inc(&cpu_buffer_a->record_disabled);
6362 	atomic_inc(&cpu_buffer_b->record_disabled);
6363 
6364 	ret = -EBUSY;
6365 	if (local_read(&cpu_buffer_a->committing))
6366 		goto out_dec;
6367 	if (local_read(&cpu_buffer_b->committing))
6368 		goto out_dec;
6369 
6370 	/*
6371 	 * When resize is in progress, we cannot swap it because
6372 	 * it will mess the state of the cpu buffer.
6373 	 */
6374 	if (atomic_read(&buffer_a->resizing))
6375 		goto out_dec;
6376 	if (atomic_read(&buffer_b->resizing))
6377 		goto out_dec;
6378 
6379 	buffer_a->buffers[cpu] = cpu_buffer_b;
6380 	buffer_b->buffers[cpu] = cpu_buffer_a;
6381 
6382 	cpu_buffer_b->buffer = buffer_a;
6383 	cpu_buffer_a->buffer = buffer_b;
6384 
6385 	ret = 0;
6386 
6387 out_dec:
6388 	atomic_dec(&cpu_buffer_a->record_disabled);
6389 	atomic_dec(&cpu_buffer_b->record_disabled);
6390 	return ret;
6391 }
6392 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6393 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6394 
6395 /**
6396  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6397  * @buffer: the buffer to allocate for.
6398  * @cpu: the cpu buffer to allocate.
6399  *
6400  * This function is used in conjunction with ring_buffer_read_page.
6401  * When reading a full page from the ring buffer, these functions
6402  * can be used to speed up the process. The calling function should
6403  * allocate a few pages first with this function. Then when it
6404  * needs to get pages from the ring buffer, it passes the result
6405  * of this function into ring_buffer_read_page, which will swap
6406  * the page that was allocated, with the read page of the buffer.
6407  *
6408  * Returns:
6409  *  The page allocated, or ERR_PTR
6410  */
6411 struct buffer_data_read_page *
6412 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6413 {
6414 	struct ring_buffer_per_cpu *cpu_buffer;
6415 	struct buffer_data_read_page *bpage = NULL;
6416 	unsigned long flags;
6417 	struct page *page;
6418 
6419 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6420 		return ERR_PTR(-ENODEV);
6421 
6422 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6423 	if (!bpage)
6424 		return ERR_PTR(-ENOMEM);
6425 
6426 	bpage->order = buffer->subbuf_order;
6427 	cpu_buffer = buffer->buffers[cpu];
6428 	local_irq_save(flags);
6429 	arch_spin_lock(&cpu_buffer->lock);
6430 
6431 	if (cpu_buffer->free_page) {
6432 		bpage->data = cpu_buffer->free_page;
6433 		cpu_buffer->free_page = NULL;
6434 	}
6435 
6436 	arch_spin_unlock(&cpu_buffer->lock);
6437 	local_irq_restore(flags);
6438 
6439 	if (bpage->data)
6440 		goto out;
6441 
6442 	page = alloc_pages_node(cpu_to_node(cpu),
6443 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6444 				cpu_buffer->buffer->subbuf_order);
6445 	if (!page) {
6446 		kfree(bpage);
6447 		return ERR_PTR(-ENOMEM);
6448 	}
6449 
6450 	bpage->data = page_address(page);
6451 
6452  out:
6453 	rb_init_page(bpage->data);
6454 
6455 	return bpage;
6456 }
6457 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6458 
6459 /**
6460  * ring_buffer_free_read_page - free an allocated read page
6461  * @buffer: the buffer the page was allocate for
6462  * @cpu: the cpu buffer the page came from
6463  * @data_page: the page to free
6464  *
6465  * Free a page allocated from ring_buffer_alloc_read_page.
6466  */
6467 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6468 				struct buffer_data_read_page *data_page)
6469 {
6470 	struct ring_buffer_per_cpu *cpu_buffer;
6471 	struct buffer_data_page *bpage = data_page->data;
6472 	struct page *page = virt_to_page(bpage);
6473 	unsigned long flags;
6474 
6475 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6476 		return;
6477 
6478 	cpu_buffer = buffer->buffers[cpu];
6479 
6480 	/*
6481 	 * If the page is still in use someplace else, or order of the page
6482 	 * is different from the subbuffer order of the buffer -
6483 	 * we can't reuse it
6484 	 */
6485 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6486 		goto out;
6487 
6488 	local_irq_save(flags);
6489 	arch_spin_lock(&cpu_buffer->lock);
6490 
6491 	if (!cpu_buffer->free_page) {
6492 		cpu_buffer->free_page = bpage;
6493 		bpage = NULL;
6494 	}
6495 
6496 	arch_spin_unlock(&cpu_buffer->lock);
6497 	local_irq_restore(flags);
6498 
6499  out:
6500 	free_pages((unsigned long)bpage, data_page->order);
6501 	kfree(data_page);
6502 }
6503 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6504 
6505 /**
6506  * ring_buffer_read_page - extract a page from the ring buffer
6507  * @buffer: buffer to extract from
6508  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6509  * @len: amount to extract
6510  * @cpu: the cpu of the buffer to extract
6511  * @full: should the extraction only happen when the page is full.
6512  *
6513  * This function will pull out a page from the ring buffer and consume it.
6514  * @data_page must be the address of the variable that was returned
6515  * from ring_buffer_alloc_read_page. This is because the page might be used
6516  * to swap with a page in the ring buffer.
6517  *
6518  * for example:
6519  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6520  *	if (IS_ERR(rpage))
6521  *		return PTR_ERR(rpage);
6522  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6523  *	if (ret >= 0)
6524  *		process_page(ring_buffer_read_page_data(rpage), ret);
6525  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6526  *
6527  * When @full is set, the function will not return true unless
6528  * the writer is off the reader page.
6529  *
6530  * Note: it is up to the calling functions to handle sleeps and wakeups.
6531  *  The ring buffer can be used anywhere in the kernel and can not
6532  *  blindly call wake_up. The layer that uses the ring buffer must be
6533  *  responsible for that.
6534  *
6535  * Returns:
6536  *  >=0 if data has been transferred, returns the offset of consumed data.
6537  *  <0 if no data has been transferred.
6538  */
6539 int ring_buffer_read_page(struct trace_buffer *buffer,
6540 			  struct buffer_data_read_page *data_page,
6541 			  size_t len, int cpu, int full)
6542 {
6543 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6544 	struct ring_buffer_event *event;
6545 	struct buffer_data_page *bpage;
6546 	struct buffer_page *reader;
6547 	unsigned long missed_events;
6548 	unsigned int commit;
6549 	unsigned int read;
6550 	u64 save_timestamp;
6551 
6552 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6553 		return -1;
6554 
6555 	/*
6556 	 * If len is not big enough to hold the page header, then
6557 	 * we can not copy anything.
6558 	 */
6559 	if (len <= BUF_PAGE_HDR_SIZE)
6560 		return -1;
6561 
6562 	len -= BUF_PAGE_HDR_SIZE;
6563 
6564 	if (!data_page || !data_page->data)
6565 		return -1;
6566 
6567 	if (data_page->order != buffer->subbuf_order)
6568 		return -1;
6569 
6570 	bpage = data_page->data;
6571 	if (!bpage)
6572 		return -1;
6573 
6574 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6575 
6576 	reader = rb_get_reader_page(cpu_buffer);
6577 	if (!reader)
6578 		return -1;
6579 
6580 	event = rb_reader_event(cpu_buffer);
6581 
6582 	read = reader->read;
6583 	commit = rb_page_size(reader);
6584 
6585 	/* Check if any events were dropped */
6586 	missed_events = cpu_buffer->lost_events;
6587 
6588 	/*
6589 	 * If this page has been partially read or
6590 	 * if len is not big enough to read the rest of the page or
6591 	 * a writer is still on the page, then
6592 	 * we must copy the data from the page to the buffer.
6593 	 * Otherwise, we can simply swap the page with the one passed in.
6594 	 */
6595 	if (read || (len < (commit - read)) ||
6596 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6597 	    cpu_buffer->mapped) {
6598 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6599 		unsigned int rpos = read;
6600 		unsigned int pos = 0;
6601 		unsigned int size;
6602 
6603 		/*
6604 		 * If a full page is expected, this can still be returned
6605 		 * if there's been a previous partial read and the
6606 		 * rest of the page can be read and the commit page is off
6607 		 * the reader page.
6608 		 */
6609 		if (full &&
6610 		    (!read || (len < (commit - read)) ||
6611 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6612 			return -1;
6613 
6614 		if (len > (commit - read))
6615 			len = (commit - read);
6616 
6617 		/* Always keep the time extend and data together */
6618 		size = rb_event_ts_length(event);
6619 
6620 		if (len < size)
6621 			return -1;
6622 
6623 		/* save the current timestamp, since the user will need it */
6624 		save_timestamp = cpu_buffer->read_stamp;
6625 
6626 		/* Need to copy one event at a time */
6627 		do {
6628 			/* We need the size of one event, because
6629 			 * rb_advance_reader only advances by one event,
6630 			 * whereas rb_event_ts_length may include the size of
6631 			 * one or two events.
6632 			 * We have already ensured there's enough space if this
6633 			 * is a time extend. */
6634 			size = rb_event_length(event);
6635 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6636 
6637 			len -= size;
6638 
6639 			rb_advance_reader(cpu_buffer);
6640 			rpos = reader->read;
6641 			pos += size;
6642 
6643 			if (rpos >= commit)
6644 				break;
6645 
6646 			event = rb_reader_event(cpu_buffer);
6647 			/* Always keep the time extend and data together */
6648 			size = rb_event_ts_length(event);
6649 		} while (len >= size);
6650 
6651 		/* update bpage */
6652 		local_set(&bpage->commit, pos);
6653 		bpage->time_stamp = save_timestamp;
6654 
6655 		/* we copied everything to the beginning */
6656 		read = 0;
6657 	} else {
6658 		/* update the entry counter */
6659 		cpu_buffer->read += rb_page_entries(reader);
6660 		cpu_buffer->read_bytes += rb_page_size(reader);
6661 
6662 		/* swap the pages */
6663 		rb_init_page(bpage);
6664 		bpage = reader->page;
6665 		reader->page = data_page->data;
6666 		local_set(&reader->write, 0);
6667 		local_set(&reader->entries, 0);
6668 		reader->read = 0;
6669 		data_page->data = bpage;
6670 
6671 		/*
6672 		 * Use the real_end for the data size,
6673 		 * This gives us a chance to store the lost events
6674 		 * on the page.
6675 		 */
6676 		if (reader->real_end)
6677 			local_set(&bpage->commit, reader->real_end);
6678 	}
6679 
6680 	cpu_buffer->lost_events = 0;
6681 
6682 	commit = local_read(&bpage->commit);
6683 	/*
6684 	 * Set a flag in the commit field if we lost events
6685 	 */
6686 	if (missed_events) {
6687 		/* If there is room at the end of the page to save the
6688 		 * missed events, then record it there.
6689 		 */
6690 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6691 			memcpy(&bpage->data[commit], &missed_events,
6692 			       sizeof(missed_events));
6693 			local_add(RB_MISSED_STORED, &bpage->commit);
6694 			commit += sizeof(missed_events);
6695 		}
6696 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6697 	}
6698 
6699 	/*
6700 	 * This page may be off to user land. Zero it out here.
6701 	 */
6702 	if (commit < buffer->subbuf_size)
6703 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6704 
6705 	return read;
6706 }
6707 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6708 
6709 /**
6710  * ring_buffer_read_page_data - get pointer to the data in the page.
6711  * @page:  the page to get the data from
6712  *
6713  * Returns pointer to the actual data in this page.
6714  */
6715 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6716 {
6717 	return page->data;
6718 }
6719 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6720 
6721 /**
6722  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6723  * @buffer: the buffer to get the sub buffer size from
6724  *
6725  * Returns size of the sub buffer, in bytes.
6726  */
6727 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6728 {
6729 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6730 }
6731 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6732 
6733 /**
6734  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6735  * @buffer: The ring_buffer to get the system sub page order from
6736  *
6737  * By default, one ring buffer sub page equals to one system page. This parameter
6738  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6739  * extended, but must be an order of system page size.
6740  *
6741  * Returns the order of buffer sub page size, in system pages:
6742  * 0 means the sub buffer size is 1 system page and so forth.
6743  * In case of an error < 0 is returned.
6744  */
6745 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6746 {
6747 	if (!buffer)
6748 		return -EINVAL;
6749 
6750 	return buffer->subbuf_order;
6751 }
6752 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6753 
6754 /**
6755  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6756  * @buffer: The ring_buffer to set the new page size.
6757  * @order: Order of the system pages in one sub buffer page
6758  *
6759  * By default, one ring buffer pages equals to one system page. This API can be
6760  * used to set new size of the ring buffer page. The size must be order of
6761  * system page size, that's why the input parameter @order is the order of
6762  * system pages that are allocated for one ring buffer page:
6763  *  0 - 1 system page
6764  *  1 - 2 system pages
6765  *  3 - 4 system pages
6766  *  ...
6767  *
6768  * Returns 0 on success or < 0 in case of an error.
6769  */
6770 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6771 {
6772 	struct ring_buffer_per_cpu *cpu_buffer;
6773 	struct buffer_page *bpage, *tmp;
6774 	int old_order, old_size;
6775 	int nr_pages;
6776 	int psize;
6777 	int err;
6778 	int cpu;
6779 
6780 	if (!buffer || order < 0)
6781 		return -EINVAL;
6782 
6783 	if (buffer->subbuf_order == order)
6784 		return 0;
6785 
6786 	psize = (1 << order) * PAGE_SIZE;
6787 	if (psize <= BUF_PAGE_HDR_SIZE)
6788 		return -EINVAL;
6789 
6790 	/* Size of a subbuf cannot be greater than the write counter */
6791 	if (psize > RB_WRITE_MASK + 1)
6792 		return -EINVAL;
6793 
6794 	old_order = buffer->subbuf_order;
6795 	old_size = buffer->subbuf_size;
6796 
6797 	/* prevent another thread from changing buffer sizes */
6798 	mutex_lock(&buffer->mutex);
6799 	atomic_inc(&buffer->record_disabled);
6800 
6801 	/* Make sure all commits have finished */
6802 	synchronize_rcu();
6803 
6804 	buffer->subbuf_order = order;
6805 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6806 
6807 	/* Make sure all new buffers are allocated, before deleting the old ones */
6808 	for_each_buffer_cpu(buffer, cpu) {
6809 
6810 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6811 			continue;
6812 
6813 		cpu_buffer = buffer->buffers[cpu];
6814 
6815 		if (cpu_buffer->mapped) {
6816 			err = -EBUSY;
6817 			goto error;
6818 		}
6819 
6820 		/* Update the number of pages to match the new size */
6821 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6822 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6823 
6824 		/* we need a minimum of two pages */
6825 		if (nr_pages < 2)
6826 			nr_pages = 2;
6827 
6828 		cpu_buffer->nr_pages_to_update = nr_pages;
6829 
6830 		/* Include the reader page */
6831 		nr_pages++;
6832 
6833 		/* Allocate the new size buffer */
6834 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6835 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6836 					&cpu_buffer->new_pages)) {
6837 			/* not enough memory for new pages */
6838 			err = -ENOMEM;
6839 			goto error;
6840 		}
6841 	}
6842 
6843 	for_each_buffer_cpu(buffer, cpu) {
6844 		struct buffer_data_page *old_free_data_page;
6845 		struct list_head old_pages;
6846 		unsigned long flags;
6847 
6848 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6849 			continue;
6850 
6851 		cpu_buffer = buffer->buffers[cpu];
6852 
6853 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6854 
6855 		/* Clear the head bit to make the link list normal to read */
6856 		rb_head_page_deactivate(cpu_buffer);
6857 
6858 		/*
6859 		 * Collect buffers from the cpu_buffer pages list and the
6860 		 * reader_page on old_pages, so they can be freed later when not
6861 		 * under a spinlock. The pages list is a linked list with no
6862 		 * head, adding old_pages turns it into a regular list with
6863 		 * old_pages being the head.
6864 		 */
6865 		list_add(&old_pages, cpu_buffer->pages);
6866 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6867 
6868 		/* One page was allocated for the reader page */
6869 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6870 						     struct buffer_page, list);
6871 		list_del_init(&cpu_buffer->reader_page->list);
6872 
6873 		/* Install the new pages, remove the head from the list */
6874 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6875 		list_del_init(&cpu_buffer->new_pages);
6876 		cpu_buffer->cnt++;
6877 
6878 		cpu_buffer->head_page
6879 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6880 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6881 
6882 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6883 		cpu_buffer->nr_pages_to_update = 0;
6884 
6885 		old_free_data_page = cpu_buffer->free_page;
6886 		cpu_buffer->free_page = NULL;
6887 
6888 		rb_head_page_activate(cpu_buffer);
6889 
6890 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6891 
6892 		/* Free old sub buffers */
6893 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6894 			list_del_init(&bpage->list);
6895 			free_buffer_page(bpage);
6896 		}
6897 		free_pages((unsigned long)old_free_data_page, old_order);
6898 
6899 		rb_check_pages(cpu_buffer);
6900 	}
6901 
6902 	atomic_dec(&buffer->record_disabled);
6903 	mutex_unlock(&buffer->mutex);
6904 
6905 	return 0;
6906 
6907 error:
6908 	buffer->subbuf_order = old_order;
6909 	buffer->subbuf_size = old_size;
6910 
6911 	atomic_dec(&buffer->record_disabled);
6912 	mutex_unlock(&buffer->mutex);
6913 
6914 	for_each_buffer_cpu(buffer, cpu) {
6915 		cpu_buffer = buffer->buffers[cpu];
6916 
6917 		if (!cpu_buffer->nr_pages_to_update)
6918 			continue;
6919 
6920 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6921 			list_del_init(&bpage->list);
6922 			free_buffer_page(bpage);
6923 		}
6924 	}
6925 
6926 	return err;
6927 }
6928 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6929 
6930 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6931 {
6932 	struct page *page;
6933 
6934 	if (cpu_buffer->meta_page)
6935 		return 0;
6936 
6937 	page = alloc_page(GFP_USER | __GFP_ZERO);
6938 	if (!page)
6939 		return -ENOMEM;
6940 
6941 	cpu_buffer->meta_page = page_to_virt(page);
6942 
6943 	return 0;
6944 }
6945 
6946 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6947 {
6948 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6949 
6950 	free_page(addr);
6951 	cpu_buffer->meta_page = NULL;
6952 }
6953 
6954 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6955 				   unsigned long *subbuf_ids)
6956 {
6957 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6958 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6959 	struct buffer_page *first_subbuf, *subbuf;
6960 	int cnt = 0;
6961 	int id = 0;
6962 
6963 	id = rb_page_id(cpu_buffer, cpu_buffer->reader_page, id);
6964 	subbuf_ids[id++] = (unsigned long)cpu_buffer->reader_page->page;
6965 	cnt++;
6966 
6967 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6968 	do {
6969 		id = rb_page_id(cpu_buffer, subbuf, id);
6970 
6971 		if (WARN_ON(id >= nr_subbufs))
6972 			break;
6973 
6974 		subbuf_ids[id] = (unsigned long)subbuf->page;
6975 
6976 		rb_inc_page(&subbuf);
6977 		id++;
6978 		cnt++;
6979 	} while (subbuf != first_subbuf);
6980 
6981 	WARN_ON(cnt != nr_subbufs);
6982 
6983 	/* install subbuf ID to kern VA translation */
6984 	cpu_buffer->subbuf_ids = subbuf_ids;
6985 
6986 	meta->meta_struct_len = sizeof(*meta);
6987 	meta->nr_subbufs = nr_subbufs;
6988 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6989 	meta->meta_page_size = meta->subbuf_size;
6990 
6991 	rb_update_meta_page(cpu_buffer);
6992 }
6993 
6994 static struct ring_buffer_per_cpu *
6995 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6996 {
6997 	struct ring_buffer_per_cpu *cpu_buffer;
6998 
6999 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7000 		return ERR_PTR(-EINVAL);
7001 
7002 	cpu_buffer = buffer->buffers[cpu];
7003 
7004 	mutex_lock(&cpu_buffer->mapping_lock);
7005 
7006 	if (!cpu_buffer->user_mapped) {
7007 		mutex_unlock(&cpu_buffer->mapping_lock);
7008 		return ERR_PTR(-ENODEV);
7009 	}
7010 
7011 	return cpu_buffer;
7012 }
7013 
7014 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
7015 {
7016 	mutex_unlock(&cpu_buffer->mapping_lock);
7017 }
7018 
7019 /*
7020  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
7021  * to be set-up or torn-down.
7022  */
7023 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
7024 			       bool inc)
7025 {
7026 	unsigned long flags;
7027 
7028 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7029 
7030 	/* mapped is always greater or equal to user_mapped */
7031 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
7032 		return -EINVAL;
7033 
7034 	if (inc && cpu_buffer->mapped == UINT_MAX)
7035 		return -EBUSY;
7036 
7037 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
7038 		return -EINVAL;
7039 
7040 	mutex_lock(&cpu_buffer->buffer->mutex);
7041 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7042 
7043 	if (inc) {
7044 		cpu_buffer->user_mapped++;
7045 		cpu_buffer->mapped++;
7046 	} else {
7047 		cpu_buffer->user_mapped--;
7048 		cpu_buffer->mapped--;
7049 	}
7050 
7051 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7052 	mutex_unlock(&cpu_buffer->buffer->mutex);
7053 
7054 	return 0;
7055 }
7056 
7057 /*
7058  *   +--------------+  pgoff == 0
7059  *   |   meta page  |
7060  *   +--------------+  pgoff == 1
7061  *   | subbuffer 0  |
7062  *   |              |
7063  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
7064  *   | subbuffer 1  |
7065  *   |              |
7066  *         ...
7067  */
7068 #ifdef CONFIG_MMU
7069 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7070 			struct vm_area_struct *vma)
7071 {
7072 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7073 	unsigned int subbuf_pages, subbuf_order;
7074 	struct page **pages __free(kfree) = NULL;
7075 	int p = 0, s = 0;
7076 	int err;
7077 
7078 	/* Refuse MP_PRIVATE or writable mappings */
7079 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7080 	    !(vma->vm_flags & VM_MAYSHARE))
7081 		return -EPERM;
7082 
7083 	subbuf_order = cpu_buffer->buffer->subbuf_order;
7084 	subbuf_pages = 1 << subbuf_order;
7085 
7086 	if (subbuf_order && pgoff % subbuf_pages)
7087 		return -EINVAL;
7088 
7089 	/*
7090 	 * Make sure the mapping cannot become writable later. Also tell the VM
7091 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7092 	 */
7093 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7094 		     VM_MAYWRITE);
7095 
7096 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7097 
7098 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7099 	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7100 	if (nr_pages <= pgoff)
7101 		return -EINVAL;
7102 
7103 	nr_pages -= pgoff;
7104 
7105 	nr_vma_pages = vma_pages(vma);
7106 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7107 		return -EINVAL;
7108 
7109 	nr_pages = nr_vma_pages;
7110 
7111 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7112 	if (!pages)
7113 		return -ENOMEM;
7114 
7115 	if (!pgoff) {
7116 		unsigned long meta_page_padding;
7117 
7118 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7119 
7120 		/*
7121 		 * Pad with the zero-page to align the meta-page with the
7122 		 * sub-buffers.
7123 		 */
7124 		meta_page_padding = subbuf_pages - 1;
7125 		while (meta_page_padding-- && p < nr_pages) {
7126 			unsigned long __maybe_unused zero_addr =
7127 				vma->vm_start + (PAGE_SIZE * p);
7128 
7129 			pages[p++] = ZERO_PAGE(zero_addr);
7130 		}
7131 	} else {
7132 		/* Skip the meta-page */
7133 		pgoff -= subbuf_pages;
7134 
7135 		s += pgoff / subbuf_pages;
7136 	}
7137 
7138 	while (p < nr_pages) {
7139 		struct page *page;
7140 		int off = 0;
7141 
7142 		if (WARN_ON_ONCE(s >= nr_subbufs))
7143 			return -EINVAL;
7144 
7145 		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7146 
7147 		for (; off < (1 << (subbuf_order)); off++, page++) {
7148 			if (p >= nr_pages)
7149 				break;
7150 
7151 			pages[p++] = page;
7152 		}
7153 		s++;
7154 	}
7155 
7156 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7157 
7158 	return err;
7159 }
7160 #else
7161 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7162 			struct vm_area_struct *vma)
7163 {
7164 	return -EOPNOTSUPP;
7165 }
7166 #endif
7167 
7168 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7169 		    struct vm_area_struct *vma)
7170 {
7171 	struct ring_buffer_per_cpu *cpu_buffer;
7172 	unsigned long flags, *subbuf_ids;
7173 	int err;
7174 
7175 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7176 		return -EINVAL;
7177 
7178 	cpu_buffer = buffer->buffers[cpu];
7179 
7180 	guard(mutex)(&cpu_buffer->mapping_lock);
7181 
7182 	if (cpu_buffer->user_mapped) {
7183 		err = __rb_map_vma(cpu_buffer, vma);
7184 		if (!err)
7185 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7186 		return err;
7187 	}
7188 
7189 	/* prevent another thread from changing buffer/sub-buffer sizes */
7190 	guard(mutex)(&buffer->mutex);
7191 
7192 	err = rb_alloc_meta_page(cpu_buffer);
7193 	if (err)
7194 		return err;
7195 
7196 	/* subbuf_ids include the reader while nr_pages does not */
7197 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7198 	if (!subbuf_ids) {
7199 		rb_free_meta_page(cpu_buffer);
7200 		return -ENOMEM;
7201 	}
7202 
7203 	atomic_inc(&cpu_buffer->resize_disabled);
7204 
7205 	/*
7206 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7207 	 * assigned.
7208 	 */
7209 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7210 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7211 
7212 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7213 
7214 	err = __rb_map_vma(cpu_buffer, vma);
7215 	if (!err) {
7216 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7217 		/* This is the first time it is mapped by user */
7218 		cpu_buffer->mapped++;
7219 		cpu_buffer->user_mapped = 1;
7220 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7221 	} else {
7222 		kfree(cpu_buffer->subbuf_ids);
7223 		cpu_buffer->subbuf_ids = NULL;
7224 		rb_free_meta_page(cpu_buffer);
7225 		atomic_dec(&cpu_buffer->resize_disabled);
7226 	}
7227 
7228 	return 0;
7229 }
7230 
7231 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7232 {
7233 	struct ring_buffer_per_cpu *cpu_buffer;
7234 	unsigned long flags;
7235 
7236 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7237 		return -EINVAL;
7238 
7239 	cpu_buffer = buffer->buffers[cpu];
7240 
7241 	guard(mutex)(&cpu_buffer->mapping_lock);
7242 
7243 	if (!cpu_buffer->user_mapped) {
7244 		return -ENODEV;
7245 	} else if (cpu_buffer->user_mapped > 1) {
7246 		__rb_inc_dec_mapped(cpu_buffer, false);
7247 		return 0;
7248 	}
7249 
7250 	guard(mutex)(&buffer->mutex);
7251 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7252 
7253 	/* This is the last user space mapping */
7254 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7255 		cpu_buffer->mapped--;
7256 	cpu_buffer->user_mapped = 0;
7257 
7258 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7259 
7260 	kfree(cpu_buffer->subbuf_ids);
7261 	cpu_buffer->subbuf_ids = NULL;
7262 	rb_free_meta_page(cpu_buffer);
7263 	atomic_dec(&cpu_buffer->resize_disabled);
7264 
7265 	return 0;
7266 }
7267 
7268 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7269 {
7270 	struct ring_buffer_per_cpu *cpu_buffer;
7271 	struct buffer_page *reader;
7272 	unsigned long missed_events;
7273 	unsigned long reader_size;
7274 	unsigned long flags;
7275 
7276 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7277 	if (IS_ERR(cpu_buffer))
7278 		return (int)PTR_ERR(cpu_buffer);
7279 
7280 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7281 
7282 consume:
7283 	if (rb_per_cpu_empty(cpu_buffer))
7284 		goto out;
7285 
7286 	reader_size = rb_page_size(cpu_buffer->reader_page);
7287 
7288 	/*
7289 	 * There are data to be read on the current reader page, we can
7290 	 * return to the caller. But before that, we assume the latter will read
7291 	 * everything. Let's update the kernel reader accordingly.
7292 	 */
7293 	if (cpu_buffer->reader_page->read < reader_size) {
7294 		while (cpu_buffer->reader_page->read < reader_size)
7295 			rb_advance_reader(cpu_buffer);
7296 		goto out;
7297 	}
7298 
7299 	reader = rb_get_reader_page(cpu_buffer);
7300 	if (WARN_ON(!reader))
7301 		goto out;
7302 
7303 	/* Check if any events were dropped */
7304 	missed_events = cpu_buffer->lost_events;
7305 
7306 	if (missed_events) {
7307 		if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7308 			struct buffer_data_page *bpage = reader->page;
7309 			unsigned int commit;
7310 			/*
7311 			 * Use the real_end for the data size,
7312 			 * This gives us a chance to store the lost events
7313 			 * on the page.
7314 			 */
7315 			if (reader->real_end)
7316 				local_set(&bpage->commit, reader->real_end);
7317 			/*
7318 			 * If there is room at the end of the page to save the
7319 			 * missed events, then record it there.
7320 			 */
7321 			commit = rb_page_size(reader);
7322 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7323 				memcpy(&bpage->data[commit], &missed_events,
7324 				       sizeof(missed_events));
7325 				local_add(RB_MISSED_STORED, &bpage->commit);
7326 			}
7327 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7328 		} else if (!WARN_ONCE(cpu_buffer->reader_page == cpu_buffer->tail_page,
7329 				      "Reader on commit with %ld missed events",
7330 				      missed_events)) {
7331 			/*
7332 			 * There shouldn't be any missed events if the tail_page
7333 			 * is on the reader page. But if the tail page is not on the
7334 			 * reader page and the commit_page is, that would mean that
7335 			 * there's a commit_overrun (an interrupt preempted an
7336 			 * addition of an event and then filled the buffer
7337 			 * with new events). In this case it's not an
7338 			 * error, but it should still be reported.
7339 			 *
7340 			 * TODO: Add missed events to the page for user space to know.
7341 			 */
7342 			pr_info("Ring buffer [%d] commit overrun lost %ld events at timestamp:%lld\n",
7343 				cpu, missed_events, cpu_buffer->reader_page->page->time_stamp);
7344 		}
7345 	}
7346 
7347 	cpu_buffer->lost_events = 0;
7348 
7349 	goto consume;
7350 
7351 out:
7352 	/* Some archs do not have data cache coherency between kernel and user-space */
7353 	flush_kernel_vmap_range(cpu_buffer->reader_page->page,
7354 				buffer->subbuf_size + BUF_PAGE_HDR_SIZE);
7355 
7356 	rb_update_meta_page(cpu_buffer);
7357 
7358 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7359 	rb_put_mapped_buffer(cpu_buffer);
7360 
7361 	return 0;
7362 }
7363 
7364 /*
7365  * We only allocate new buffers, never free them if the CPU goes down.
7366  * If we were to free the buffer, then the user would lose any trace that was in
7367  * the buffer.
7368  */
7369 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7370 {
7371 	struct trace_buffer *buffer;
7372 	long nr_pages_same;
7373 	int cpu_i;
7374 	unsigned long nr_pages;
7375 
7376 	buffer = container_of(node, struct trace_buffer, node);
7377 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7378 		return 0;
7379 
7380 	nr_pages = 0;
7381 	nr_pages_same = 1;
7382 	/* check if all cpu sizes are same */
7383 	for_each_buffer_cpu(buffer, cpu_i) {
7384 		/* fill in the size from first enabled cpu */
7385 		if (nr_pages == 0)
7386 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7387 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7388 			nr_pages_same = 0;
7389 			break;
7390 		}
7391 	}
7392 	/* allocate minimum pages, user can later expand it */
7393 	if (!nr_pages_same)
7394 		nr_pages = 2;
7395 	buffer->buffers[cpu] =
7396 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7397 	if (!buffer->buffers[cpu]) {
7398 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7399 		     cpu);
7400 		return -ENOMEM;
7401 	}
7402 	smp_wmb();
7403 	cpumask_set_cpu(cpu, buffer->cpumask);
7404 	return 0;
7405 }
7406 
7407 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7408 /*
7409  * This is a basic integrity check of the ring buffer.
7410  * Late in the boot cycle this test will run when configured in.
7411  * It will kick off a thread per CPU that will go into a loop
7412  * writing to the per cpu ring buffer various sizes of data.
7413  * Some of the data will be large items, some small.
7414  *
7415  * Another thread is created that goes into a spin, sending out
7416  * IPIs to the other CPUs to also write into the ring buffer.
7417  * this is to test the nesting ability of the buffer.
7418  *
7419  * Basic stats are recorded and reported. If something in the
7420  * ring buffer should happen that's not expected, a big warning
7421  * is displayed and all ring buffers are disabled.
7422  */
7423 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7424 
7425 struct rb_test_data {
7426 	struct trace_buffer *buffer;
7427 	unsigned long		events;
7428 	unsigned long		bytes_written;
7429 	unsigned long		bytes_alloc;
7430 	unsigned long		bytes_dropped;
7431 	unsigned long		events_nested;
7432 	unsigned long		bytes_written_nested;
7433 	unsigned long		bytes_alloc_nested;
7434 	unsigned long		bytes_dropped_nested;
7435 	int			min_size_nested;
7436 	int			max_size_nested;
7437 	int			max_size;
7438 	int			min_size;
7439 	int			cpu;
7440 	int			cnt;
7441 };
7442 
7443 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7444 
7445 /* 1 meg per cpu */
7446 #define RB_TEST_BUFFER_SIZE	1048576
7447 
7448 static char rb_string[] __initdata =
7449 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7450 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7451 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7452 
7453 static bool rb_test_started __initdata;
7454 
7455 struct rb_item {
7456 	int size;
7457 	char str[];
7458 };
7459 
7460 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7461 {
7462 	struct ring_buffer_event *event;
7463 	struct rb_item *item;
7464 	bool started;
7465 	int event_len;
7466 	int size;
7467 	int len;
7468 	int cnt;
7469 
7470 	/* Have nested writes different that what is written */
7471 	cnt = data->cnt + (nested ? 27 : 0);
7472 
7473 	/* Multiply cnt by ~e, to make some unique increment */
7474 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7475 
7476 	len = size + sizeof(struct rb_item);
7477 
7478 	started = rb_test_started;
7479 	/* read rb_test_started before checking buffer enabled */
7480 	smp_rmb();
7481 
7482 	event = ring_buffer_lock_reserve(data->buffer, len);
7483 	if (!event) {
7484 		/* Ignore dropped events before test starts. */
7485 		if (started) {
7486 			if (nested)
7487 				data->bytes_dropped_nested += len;
7488 			else
7489 				data->bytes_dropped += len;
7490 		}
7491 		return len;
7492 	}
7493 
7494 	event_len = ring_buffer_event_length(event);
7495 
7496 	if (RB_WARN_ON(data->buffer, event_len < len))
7497 		goto out;
7498 
7499 	item = ring_buffer_event_data(event);
7500 	item->size = size;
7501 	memcpy(item->str, rb_string, size);
7502 
7503 	if (nested) {
7504 		data->bytes_alloc_nested += event_len;
7505 		data->bytes_written_nested += len;
7506 		data->events_nested++;
7507 		if (!data->min_size_nested || len < data->min_size_nested)
7508 			data->min_size_nested = len;
7509 		if (len > data->max_size_nested)
7510 			data->max_size_nested = len;
7511 	} else {
7512 		data->bytes_alloc += event_len;
7513 		data->bytes_written += len;
7514 		data->events++;
7515 		if (!data->min_size || len < data->min_size)
7516 			data->max_size = len;
7517 		if (len > data->max_size)
7518 			data->max_size = len;
7519 	}
7520 
7521  out:
7522 	ring_buffer_unlock_commit(data->buffer);
7523 
7524 	return 0;
7525 }
7526 
7527 static __init int rb_test(void *arg)
7528 {
7529 	struct rb_test_data *data = arg;
7530 
7531 	while (!kthread_should_stop()) {
7532 		rb_write_something(data, false);
7533 		data->cnt++;
7534 
7535 		set_current_state(TASK_INTERRUPTIBLE);
7536 		/* Now sleep between a min of 100-300us and a max of 1ms */
7537 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7538 	}
7539 
7540 	return 0;
7541 }
7542 
7543 static __init void rb_ipi(void *ignore)
7544 {
7545 	struct rb_test_data *data;
7546 	int cpu = smp_processor_id();
7547 
7548 	data = &rb_data[cpu];
7549 	rb_write_something(data, true);
7550 }
7551 
7552 static __init int rb_hammer_test(void *arg)
7553 {
7554 	while (!kthread_should_stop()) {
7555 
7556 		/* Send an IPI to all cpus to write data! */
7557 		smp_call_function(rb_ipi, NULL, 1);
7558 		/* No sleep, but for non preempt, let others run */
7559 		schedule();
7560 	}
7561 
7562 	return 0;
7563 }
7564 
7565 static __init int test_ringbuffer(void)
7566 {
7567 	struct task_struct *rb_hammer;
7568 	struct trace_buffer *buffer;
7569 	int cpu;
7570 	int ret = 0;
7571 
7572 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7573 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7574 		return 0;
7575 	}
7576 
7577 	pr_info("Running ring buffer tests...\n");
7578 
7579 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7580 	if (WARN_ON(!buffer))
7581 		return 0;
7582 
7583 	/* Disable buffer so that threads can't write to it yet */
7584 	ring_buffer_record_off(buffer);
7585 
7586 	for_each_online_cpu(cpu) {
7587 		rb_data[cpu].buffer = buffer;
7588 		rb_data[cpu].cpu = cpu;
7589 		rb_data[cpu].cnt = cpu;
7590 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7591 						     cpu, "rbtester/%u");
7592 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7593 			pr_cont("FAILED\n");
7594 			ret = PTR_ERR(rb_threads[cpu]);
7595 			goto out_free;
7596 		}
7597 	}
7598 
7599 	/* Now create the rb hammer! */
7600 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7601 	if (WARN_ON(IS_ERR(rb_hammer))) {
7602 		pr_cont("FAILED\n");
7603 		ret = PTR_ERR(rb_hammer);
7604 		goto out_free;
7605 	}
7606 
7607 	ring_buffer_record_on(buffer);
7608 	/*
7609 	 * Show buffer is enabled before setting rb_test_started.
7610 	 * Yes there's a small race window where events could be
7611 	 * dropped and the thread wont catch it. But when a ring
7612 	 * buffer gets enabled, there will always be some kind of
7613 	 * delay before other CPUs see it. Thus, we don't care about
7614 	 * those dropped events. We care about events dropped after
7615 	 * the threads see that the buffer is active.
7616 	 */
7617 	smp_wmb();
7618 	rb_test_started = true;
7619 
7620 	set_current_state(TASK_INTERRUPTIBLE);
7621 	/* Just run for 10 seconds */;
7622 	schedule_timeout(10 * HZ);
7623 
7624 	kthread_stop(rb_hammer);
7625 
7626  out_free:
7627 	for_each_online_cpu(cpu) {
7628 		if (!rb_threads[cpu])
7629 			break;
7630 		kthread_stop(rb_threads[cpu]);
7631 	}
7632 	if (ret) {
7633 		ring_buffer_free(buffer);
7634 		return ret;
7635 	}
7636 
7637 	/* Report! */
7638 	pr_info("finished\n");
7639 	for_each_online_cpu(cpu) {
7640 		struct ring_buffer_event *event;
7641 		struct rb_test_data *data = &rb_data[cpu];
7642 		struct rb_item *item;
7643 		unsigned long total_events;
7644 		unsigned long total_dropped;
7645 		unsigned long total_written;
7646 		unsigned long total_alloc;
7647 		unsigned long total_read = 0;
7648 		unsigned long total_size = 0;
7649 		unsigned long total_len = 0;
7650 		unsigned long total_lost = 0;
7651 		unsigned long lost;
7652 		int big_event_size;
7653 		int small_event_size;
7654 
7655 		ret = -1;
7656 
7657 		total_events = data->events + data->events_nested;
7658 		total_written = data->bytes_written + data->bytes_written_nested;
7659 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7660 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7661 
7662 		big_event_size = data->max_size + data->max_size_nested;
7663 		small_event_size = data->min_size + data->min_size_nested;
7664 
7665 		pr_info("CPU %d:\n", cpu);
7666 		pr_info("              events:    %ld\n", total_events);
7667 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7668 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7669 		pr_info("       written bytes:    %ld\n", total_written);
7670 		pr_info("       biggest event:    %d\n", big_event_size);
7671 		pr_info("      smallest event:    %d\n", small_event_size);
7672 
7673 		if (RB_WARN_ON(buffer, total_dropped))
7674 			break;
7675 
7676 		ret = 0;
7677 
7678 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7679 			total_lost += lost;
7680 			item = ring_buffer_event_data(event);
7681 			total_len += ring_buffer_event_length(event);
7682 			total_size += item->size + sizeof(struct rb_item);
7683 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7684 				pr_info("FAILED!\n");
7685 				pr_info("buffer had: %.*s\n", item->size, item->str);
7686 				pr_info("expected:   %.*s\n", item->size, rb_string);
7687 				RB_WARN_ON(buffer, 1);
7688 				ret = -1;
7689 				break;
7690 			}
7691 			total_read++;
7692 		}
7693 		if (ret)
7694 			break;
7695 
7696 		ret = -1;
7697 
7698 		pr_info("         read events:   %ld\n", total_read);
7699 		pr_info("         lost events:   %ld\n", total_lost);
7700 		pr_info("        total events:   %ld\n", total_lost + total_read);
7701 		pr_info("  recorded len bytes:   %ld\n", total_len);
7702 		pr_info(" recorded size bytes:   %ld\n", total_size);
7703 		if (total_lost) {
7704 			pr_info(" With dropped events, record len and size may not match\n"
7705 				" alloced and written from above\n");
7706 		} else {
7707 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7708 				       total_size != total_written))
7709 				break;
7710 		}
7711 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7712 			break;
7713 
7714 		ret = 0;
7715 	}
7716 	if (!ret)
7717 		pr_info("Ring buffer PASSED!\n");
7718 
7719 	ring_buffer_free(buffer);
7720 	return 0;
7721 }
7722 
7723 late_initcall(test_ringbuffer);
7724 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7725