xref: /linux/kernel/trace/ftrace.c (revision 31f505dc70331243fbb54af868c14bb5f44a15bc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 /* Flags that do not get reset */
49 #define FTRACE_NOCLEAR_FLAGS	(FTRACE_FL_DISABLED | FTRACE_FL_TOUCHED | \
50 				 FTRACE_FL_MODIFIED)
51 
52 #define FTRACE_INVALID_FUNCTION		"__ftrace_invalid_address__"
53 
54 #define FTRACE_WARN_ON(cond)			\
55 	({					\
56 		int ___r = cond;		\
57 		if (WARN_ON(___r))		\
58 			ftrace_kill();		\
59 		___r;				\
60 	})
61 
62 #define FTRACE_WARN_ON_ONCE(cond)		\
63 	({					\
64 		int ___r = cond;		\
65 		if (WARN_ON_ONCE(___r))		\
66 			ftrace_kill();		\
67 		___r;				\
68 	})
69 
70 /* hash bits for specific function selection */
71 #define FTRACE_HASH_DEFAULT_BITS 10
72 #define FTRACE_HASH_MAX_BITS 12
73 
74 #ifdef CONFIG_DYNAMIC_FTRACE
75 #define INIT_OPS_HASH(opsname)	\
76 	.func_hash		= &opsname.local_hash,			\
77 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), \
78 	.subop_list		= LIST_HEAD_INIT(opsname.subop_list),
79 #else
80 #define INIT_OPS_HASH(opsname)
81 #endif
82 
83 enum {
84 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
85 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
86 };
87 
88 struct ftrace_ops ftrace_list_end __read_mostly = {
89 	.func		= ftrace_stub,
90 	.flags		= FTRACE_OPS_FL_STUB,
91 	INIT_OPS_HASH(ftrace_list_end)
92 };
93 
94 /* ftrace_enabled is a method to turn ftrace on or off */
95 int ftrace_enabled __read_mostly;
96 static int __maybe_unused last_ftrace_enabled;
97 
98 /* Current function tracing op */
99 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
100 /* What to set function_trace_op to */
101 static struct ftrace_ops *set_function_trace_op;
102 
103 bool ftrace_pids_enabled(struct ftrace_ops *ops)
104 {
105 	struct trace_array *tr;
106 
107 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
108 		return false;
109 
110 	tr = ops->private;
111 
112 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
113 }
114 
115 static void ftrace_update_trampoline(struct ftrace_ops *ops);
116 
117 /*
118  * ftrace_disabled is set when an anomaly is discovered.
119  * ftrace_disabled is much stronger than ftrace_enabled.
120  */
121 static int ftrace_disabled __read_mostly;
122 
123 DEFINE_MUTEX(ftrace_lock);
124 
125 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = (struct ftrace_ops __rcu *)&ftrace_list_end;
126 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
127 struct ftrace_ops global_ops;
128 
129 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */
130 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
131 			  struct ftrace_ops *op, struct ftrace_regs *fregs);
132 
133 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS
134 /*
135  * Stub used to invoke the list ops without requiring a separate trampoline.
136  */
137 const struct ftrace_ops ftrace_list_ops = {
138 	.func	= ftrace_ops_list_func,
139 	.flags	= FTRACE_OPS_FL_STUB,
140 };
141 
142 static void ftrace_ops_nop_func(unsigned long ip, unsigned long parent_ip,
143 				struct ftrace_ops *op,
144 				struct ftrace_regs *fregs)
145 {
146 	/* do nothing */
147 }
148 
149 /*
150  * Stub used when a call site is disabled. May be called transiently by threads
151  * which have made it into ftrace_caller but haven't yet recovered the ops at
152  * the point the call site is disabled.
153  */
154 const struct ftrace_ops ftrace_nop_ops = {
155 	.func	= ftrace_ops_nop_func,
156 	.flags  = FTRACE_OPS_FL_STUB,
157 };
158 #endif
159 
160 static inline void ftrace_ops_init(struct ftrace_ops *ops)
161 {
162 #ifdef CONFIG_DYNAMIC_FTRACE
163 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
164 		mutex_init(&ops->local_hash.regex_lock);
165 		INIT_LIST_HEAD(&ops->subop_list);
166 		ops->func_hash = &ops->local_hash;
167 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
168 	}
169 #endif
170 }
171 
172 /* Call this function for when a callback filters on set_ftrace_pid */
173 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
174 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
175 {
176 	struct trace_array *tr = op->private;
177 	int pid;
178 
179 	if (tr) {
180 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
181 		if (pid == FTRACE_PID_IGNORE)
182 			return;
183 		if (pid != FTRACE_PID_TRACE &&
184 		    pid != current->pid)
185 			return;
186 	}
187 
188 	op->saved_func(ip, parent_ip, op, fregs);
189 }
190 
191 static void ftrace_sync_ipi(void *data)
192 {
193 	/* Probably not needed, but do it anyway */
194 	smp_rmb();
195 }
196 
197 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
198 {
199 	/*
200 	 * If this is a dynamic or RCU ops, or we force list func,
201 	 * then it needs to call the list anyway.
202 	 */
203 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
204 	    FTRACE_FORCE_LIST_FUNC)
205 		return ftrace_ops_list_func;
206 
207 	return ftrace_ops_get_func(ops);
208 }
209 
210 static void update_ftrace_function(void)
211 {
212 	ftrace_func_t func;
213 
214 	/*
215 	 * Prepare the ftrace_ops that the arch callback will use.
216 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
217 	 * will point to the ops we want.
218 	 */
219 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
220 						lockdep_is_held(&ftrace_lock));
221 
222 	/* If there's no ftrace_ops registered, just call the stub function */
223 	if (set_function_trace_op == &ftrace_list_end) {
224 		func = ftrace_stub;
225 
226 	/*
227 	 * If we are at the end of the list and this ops is
228 	 * recursion safe and not dynamic and the arch supports passing ops,
229 	 * then have the mcount trampoline call the function directly.
230 	 */
231 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
232 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
233 		func = ftrace_ops_get_list_func(ftrace_ops_list);
234 
235 	} else {
236 		/* Just use the default ftrace_ops */
237 		set_function_trace_op = &ftrace_list_end;
238 		func = ftrace_ops_list_func;
239 	}
240 
241 	/* If there's no change, then do nothing more here */
242 	if (ftrace_trace_function == func)
243 		return;
244 
245 	/*
246 	 * If we are using the list function, it doesn't care
247 	 * about the function_trace_ops.
248 	 */
249 	if (func == ftrace_ops_list_func) {
250 		ftrace_trace_function = func;
251 		/*
252 		 * Don't even bother setting function_trace_ops,
253 		 * it would be racy to do so anyway.
254 		 */
255 		return;
256 	}
257 
258 #ifndef CONFIG_DYNAMIC_FTRACE
259 	/*
260 	 * For static tracing, we need to be a bit more careful.
261 	 * The function change takes affect immediately. Thus,
262 	 * we need to coordinate the setting of the function_trace_ops
263 	 * with the setting of the ftrace_trace_function.
264 	 *
265 	 * Set the function to the list ops, which will call the
266 	 * function we want, albeit indirectly, but it handles the
267 	 * ftrace_ops and doesn't depend on function_trace_op.
268 	 */
269 	ftrace_trace_function = ftrace_ops_list_func;
270 	/*
271 	 * Make sure all CPUs see this. Yes this is slow, but static
272 	 * tracing is slow and nasty to have enabled.
273 	 */
274 	synchronize_rcu_tasks_rude();
275 	/* Now all cpus are using the list ops. */
276 	function_trace_op = set_function_trace_op;
277 	/* Make sure the function_trace_op is visible on all CPUs */
278 	smp_wmb();
279 	/* Nasty way to force a rmb on all cpus */
280 	smp_call_function(ftrace_sync_ipi, NULL, 1);
281 	/* OK, we are all set to update the ftrace_trace_function now! */
282 #endif /* !CONFIG_DYNAMIC_FTRACE */
283 
284 	ftrace_trace_function = func;
285 }
286 
287 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
288 			   struct ftrace_ops *ops)
289 {
290 	rcu_assign_pointer(ops->next, *list);
291 
292 	/*
293 	 * We are entering ops into the list but another
294 	 * CPU might be walking that list. We need to make sure
295 	 * the ops->next pointer is valid before another CPU sees
296 	 * the ops pointer included into the list.
297 	 */
298 	rcu_assign_pointer(*list, ops);
299 }
300 
301 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
302 			     struct ftrace_ops *ops)
303 {
304 	struct ftrace_ops **p;
305 
306 	/*
307 	 * If we are removing the last function, then simply point
308 	 * to the ftrace_stub.
309 	 */
310 	if (rcu_dereference_protected(*list,
311 			lockdep_is_held(&ftrace_lock)) == ops &&
312 	    rcu_dereference_protected(ops->next,
313 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
314 		rcu_assign_pointer(*list, &ftrace_list_end);
315 		return 0;
316 	}
317 
318 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
319 		if (*p == ops)
320 			break;
321 
322 	if (*p != ops)
323 		return -1;
324 
325 	*p = (*p)->next;
326 	return 0;
327 }
328 
329 static void ftrace_update_trampoline(struct ftrace_ops *ops);
330 
331 int __register_ftrace_function(struct ftrace_ops *ops)
332 {
333 	if (ops->flags & FTRACE_OPS_FL_DELETED)
334 		return -EINVAL;
335 
336 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
337 		return -EBUSY;
338 
339 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
340 	/*
341 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
342 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
343 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
344 	 */
345 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
346 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
347 		return -EINVAL;
348 
349 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
350 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
351 #endif
352 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
353 		return -EBUSY;
354 
355 	if (!is_kernel_core_data((unsigned long)ops))
356 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
357 
358 	add_ftrace_ops(&ftrace_ops_list, ops);
359 
360 	/* Always save the function, and reset at unregistering */
361 	ops->saved_func = ops->func;
362 
363 	if (ftrace_pids_enabled(ops))
364 		ops->func = ftrace_pid_func;
365 
366 	ftrace_update_trampoline(ops);
367 
368 	if (ftrace_enabled)
369 		update_ftrace_function();
370 
371 	return 0;
372 }
373 
374 int __unregister_ftrace_function(struct ftrace_ops *ops)
375 {
376 	int ret;
377 
378 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
379 		return -EBUSY;
380 
381 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
382 
383 	if (ret < 0)
384 		return ret;
385 
386 	if (ftrace_enabled)
387 		update_ftrace_function();
388 
389 	ops->func = ops->saved_func;
390 
391 	return 0;
392 }
393 
394 static void ftrace_update_pid_func(void)
395 {
396 	struct ftrace_ops *op;
397 
398 	/* Only do something if we are tracing something */
399 	if (ftrace_trace_function == ftrace_stub)
400 		return;
401 
402 	do_for_each_ftrace_op(op, ftrace_ops_list) {
403 		if (op->flags & FTRACE_OPS_FL_PID) {
404 			op->func = ftrace_pids_enabled(op) ?
405 				ftrace_pid_func : op->saved_func;
406 			ftrace_update_trampoline(op);
407 		}
408 	} while_for_each_ftrace_op(op);
409 
410 	fgraph_update_pid_func();
411 
412 	update_ftrace_function();
413 }
414 
415 #ifdef CONFIG_FUNCTION_PROFILER
416 struct ftrace_profile {
417 	struct hlist_node		node;
418 	unsigned long			ip;
419 	unsigned long			counter;
420 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
421 	unsigned long long		time;
422 	unsigned long long		time_squared;
423 #endif
424 };
425 
426 struct ftrace_profile_page {
427 	struct ftrace_profile_page	*next;
428 	unsigned long			index;
429 	struct ftrace_profile		records[];
430 };
431 
432 struct ftrace_profile_stat {
433 	atomic_t			disabled;
434 	struct hlist_head		*hash;
435 	struct ftrace_profile_page	*pages;
436 	struct ftrace_profile_page	*start;
437 	struct tracer_stat		stat;
438 };
439 
440 #define PROFILE_RECORDS_SIZE						\
441 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
442 
443 #define PROFILES_PER_PAGE					\
444 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
445 
446 static int ftrace_profile_enabled __read_mostly;
447 
448 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
449 static DEFINE_MUTEX(ftrace_profile_lock);
450 
451 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
452 
453 #define FTRACE_PROFILE_HASH_BITS 10
454 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
455 
456 static void *
457 function_stat_next(void *v, int idx)
458 {
459 	struct ftrace_profile *rec = v;
460 	struct ftrace_profile_page *pg;
461 
462 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
463 
464  again:
465 	if (idx != 0)
466 		rec++;
467 
468 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
469 		pg = pg->next;
470 		if (!pg)
471 			return NULL;
472 		rec = &pg->records[0];
473 		if (!rec->counter)
474 			goto again;
475 	}
476 
477 	return rec;
478 }
479 
480 static void *function_stat_start(struct tracer_stat *trace)
481 {
482 	struct ftrace_profile_stat *stat =
483 		container_of(trace, struct ftrace_profile_stat, stat);
484 
485 	if (!stat || !stat->start)
486 		return NULL;
487 
488 	return function_stat_next(&stat->start->records[0], 0);
489 }
490 
491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
492 /* function graph compares on total time */
493 static int function_stat_cmp(const void *p1, const void *p2)
494 {
495 	const struct ftrace_profile *a = p1;
496 	const struct ftrace_profile *b = p2;
497 
498 	if (a->time < b->time)
499 		return -1;
500 	if (a->time > b->time)
501 		return 1;
502 	else
503 		return 0;
504 }
505 #else
506 /* not function graph compares against hits */
507 static int function_stat_cmp(const void *p1, const void *p2)
508 {
509 	const struct ftrace_profile *a = p1;
510 	const struct ftrace_profile *b = p2;
511 
512 	if (a->counter < b->counter)
513 		return -1;
514 	if (a->counter > b->counter)
515 		return 1;
516 	else
517 		return 0;
518 }
519 #endif
520 
521 static int function_stat_headers(struct seq_file *m)
522 {
523 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
524 	seq_puts(m, "  Function                               "
525 		 "Hit    Time            Avg             s^2\n"
526 		    "  --------                               "
527 		 "---    ----            ---             ---\n");
528 #else
529 	seq_puts(m, "  Function                               Hit\n"
530 		    "  --------                               ---\n");
531 #endif
532 	return 0;
533 }
534 
535 static int function_stat_show(struct seq_file *m, void *v)
536 {
537 	struct ftrace_profile *rec = v;
538 	char str[KSYM_SYMBOL_LEN];
539 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
540 	static struct trace_seq s;
541 	unsigned long long avg;
542 	unsigned long long stddev;
543 #endif
544 	guard(mutex)(&ftrace_profile_lock);
545 
546 	/* we raced with function_profile_reset() */
547 	if (unlikely(rec->counter == 0))
548 		return -EBUSY;
549 
550 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
551 	avg = div64_ul(rec->time, rec->counter);
552 	if (tracing_thresh && (avg < tracing_thresh))
553 		return 0;
554 #endif
555 
556 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
557 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
558 
559 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
560 	seq_puts(m, "    ");
561 
562 	/* Sample standard deviation (s^2) */
563 	if (rec->counter <= 1)
564 		stddev = 0;
565 	else {
566 		/*
567 		 * Apply Welford's method:
568 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
569 		 */
570 		stddev = rec->counter * rec->time_squared -
571 			 rec->time * rec->time;
572 
573 		/*
574 		 * Divide only 1000 for ns^2 -> us^2 conversion.
575 		 * trace_print_graph_duration will divide 1000 again.
576 		 */
577 		stddev = div64_ul(stddev,
578 				  rec->counter * (rec->counter - 1) * 1000);
579 	}
580 
581 	trace_seq_init(&s);
582 	trace_print_graph_duration(rec->time, &s);
583 	trace_seq_puts(&s, "    ");
584 	trace_print_graph_duration(avg, &s);
585 	trace_seq_puts(&s, "    ");
586 	trace_print_graph_duration(stddev, &s);
587 	trace_print_seq(m, &s);
588 #endif
589 	seq_putc(m, '\n');
590 
591 	return 0;
592 }
593 
594 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
595 {
596 	struct ftrace_profile_page *pg;
597 
598 	pg = stat->pages = stat->start;
599 
600 	while (pg) {
601 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
602 		pg->index = 0;
603 		pg = pg->next;
604 	}
605 
606 	memset(stat->hash, 0,
607 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
608 }
609 
610 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
611 {
612 	struct ftrace_profile_page *pg;
613 	int functions;
614 	int pages;
615 	int i;
616 
617 	/* If we already allocated, do nothing */
618 	if (stat->pages)
619 		return 0;
620 
621 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
622 	if (!stat->pages)
623 		return -ENOMEM;
624 
625 #ifdef CONFIG_DYNAMIC_FTRACE
626 	functions = ftrace_update_tot_cnt;
627 #else
628 	/*
629 	 * We do not know the number of functions that exist because
630 	 * dynamic tracing is what counts them. With past experience
631 	 * we have around 20K functions. That should be more than enough.
632 	 * It is highly unlikely we will execute every function in
633 	 * the kernel.
634 	 */
635 	functions = 20000;
636 #endif
637 
638 	pg = stat->start = stat->pages;
639 
640 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
641 
642 	for (i = 1; i < pages; i++) {
643 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
644 		if (!pg->next)
645 			goto out_free;
646 		pg = pg->next;
647 	}
648 
649 	return 0;
650 
651  out_free:
652 	pg = stat->start;
653 	while (pg) {
654 		unsigned long tmp = (unsigned long)pg;
655 
656 		pg = pg->next;
657 		free_page(tmp);
658 	}
659 
660 	stat->pages = NULL;
661 	stat->start = NULL;
662 
663 	return -ENOMEM;
664 }
665 
666 static int ftrace_profile_init_cpu(int cpu)
667 {
668 	struct ftrace_profile_stat *stat;
669 	int size;
670 
671 	stat = &per_cpu(ftrace_profile_stats, cpu);
672 
673 	if (stat->hash) {
674 		/* If the profile is already created, simply reset it */
675 		ftrace_profile_reset(stat);
676 		return 0;
677 	}
678 
679 	/*
680 	 * We are profiling all functions, but usually only a few thousand
681 	 * functions are hit. We'll make a hash of 1024 items.
682 	 */
683 	size = FTRACE_PROFILE_HASH_SIZE;
684 
685 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
686 
687 	if (!stat->hash)
688 		return -ENOMEM;
689 
690 	/* Preallocate the function profiling pages */
691 	if (ftrace_profile_pages_init(stat) < 0) {
692 		kfree(stat->hash);
693 		stat->hash = NULL;
694 		return -ENOMEM;
695 	}
696 
697 	return 0;
698 }
699 
700 static int ftrace_profile_init(void)
701 {
702 	int cpu;
703 	int ret = 0;
704 
705 	for_each_possible_cpu(cpu) {
706 		ret = ftrace_profile_init_cpu(cpu);
707 		if (ret)
708 			break;
709 	}
710 
711 	return ret;
712 }
713 
714 /* interrupts must be disabled */
715 static struct ftrace_profile *
716 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
717 {
718 	struct ftrace_profile *rec;
719 	struct hlist_head *hhd;
720 	unsigned long key;
721 
722 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
723 	hhd = &stat->hash[key];
724 
725 	if (hlist_empty(hhd))
726 		return NULL;
727 
728 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
729 		if (rec->ip == ip)
730 			return rec;
731 	}
732 
733 	return NULL;
734 }
735 
736 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
737 			       struct ftrace_profile *rec)
738 {
739 	unsigned long key;
740 
741 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
742 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
743 }
744 
745 /*
746  * The memory is already allocated, this simply finds a new record to use.
747  */
748 static struct ftrace_profile *
749 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
750 {
751 	struct ftrace_profile *rec = NULL;
752 
753 	/* prevent recursion (from NMIs) */
754 	if (atomic_inc_return(&stat->disabled) != 1)
755 		goto out;
756 
757 	/*
758 	 * Try to find the function again since an NMI
759 	 * could have added it
760 	 */
761 	rec = ftrace_find_profiled_func(stat, ip);
762 	if (rec)
763 		goto out;
764 
765 	if (stat->pages->index == PROFILES_PER_PAGE) {
766 		if (!stat->pages->next)
767 			goto out;
768 		stat->pages = stat->pages->next;
769 	}
770 
771 	rec = &stat->pages->records[stat->pages->index++];
772 	rec->ip = ip;
773 	ftrace_add_profile(stat, rec);
774 
775  out:
776 	atomic_dec(&stat->disabled);
777 
778 	return rec;
779 }
780 
781 static void
782 function_profile_call(unsigned long ip, unsigned long parent_ip,
783 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
784 {
785 	struct ftrace_profile_stat *stat;
786 	struct ftrace_profile *rec;
787 
788 	if (!ftrace_profile_enabled)
789 		return;
790 
791 	guard(preempt_notrace)();
792 
793 	stat = this_cpu_ptr(&ftrace_profile_stats);
794 	if (!stat->hash || !ftrace_profile_enabled)
795 		return;
796 
797 	rec = ftrace_find_profiled_func(stat, ip);
798 	if (!rec) {
799 		rec = ftrace_profile_alloc(stat, ip);
800 		if (!rec)
801 			return;
802 	}
803 
804 	rec->counter++;
805 }
806 
807 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
808 static bool fgraph_graph_time = true;
809 
810 void ftrace_graph_graph_time_control(bool enable)
811 {
812 	fgraph_graph_time = enable;
813 }
814 
815 struct profile_fgraph_data {
816 	unsigned long long		calltime;
817 	unsigned long long		subtime;
818 	unsigned long long		sleeptime;
819 };
820 
821 static int profile_graph_entry(struct ftrace_graph_ent *trace,
822 			       struct fgraph_ops *gops,
823 			       struct ftrace_regs *fregs)
824 {
825 	struct profile_fgraph_data *profile_data;
826 
827 	function_profile_call(trace->func, 0, NULL, NULL);
828 
829 	/* If function graph is shutting down, ret_stack can be NULL */
830 	if (!current->ret_stack)
831 		return 0;
832 
833 	profile_data = fgraph_reserve_data(gops->idx, sizeof(*profile_data));
834 	if (!profile_data)
835 		return 0;
836 
837 	profile_data->subtime = 0;
838 	profile_data->sleeptime = current->ftrace_sleeptime;
839 	profile_data->calltime = trace_clock_local();
840 
841 	return 1;
842 }
843 
844 static void profile_graph_return(struct ftrace_graph_ret *trace,
845 				 struct fgraph_ops *gops,
846 				 struct ftrace_regs *fregs)
847 {
848 	struct profile_fgraph_data *profile_data;
849 	struct ftrace_profile_stat *stat;
850 	unsigned long long calltime;
851 	unsigned long long rettime = trace_clock_local();
852 	struct ftrace_profile *rec;
853 	int size;
854 
855 	guard(preempt_notrace)();
856 
857 	stat = this_cpu_ptr(&ftrace_profile_stats);
858 	if (!stat->hash || !ftrace_profile_enabled)
859 		return;
860 
861 	profile_data = fgraph_retrieve_data(gops->idx, &size);
862 
863 	/* If the calltime was zero'd ignore it */
864 	if (!profile_data || !profile_data->calltime)
865 		return;
866 
867 	calltime = rettime - profile_data->calltime;
868 
869 	if (!fgraph_sleep_time) {
870 		if (current->ftrace_sleeptime)
871 			calltime -= current->ftrace_sleeptime - profile_data->sleeptime;
872 	}
873 
874 	if (!fgraph_graph_time) {
875 		struct profile_fgraph_data *parent_data;
876 
877 		/* Append this call time to the parent time to subtract */
878 		parent_data = fgraph_retrieve_parent_data(gops->idx, &size, 1);
879 		if (parent_data)
880 			parent_data->subtime += calltime;
881 
882 		if (profile_data->subtime && profile_data->subtime < calltime)
883 			calltime -= profile_data->subtime;
884 		else
885 			calltime = 0;
886 	}
887 
888 	rec = ftrace_find_profiled_func(stat, trace->func);
889 	if (rec) {
890 		rec->time += calltime;
891 		rec->time_squared += calltime * calltime;
892 	}
893 }
894 
895 static struct fgraph_ops fprofiler_ops = {
896 	.ops = {
897 		.flags = FTRACE_OPS_FL_INITIALIZED,
898 		INIT_OPS_HASH(fprofiler_ops.ops)
899 	},
900 	.entryfunc = &profile_graph_entry,
901 	.retfunc = &profile_graph_return,
902 };
903 
904 static int register_ftrace_profiler(void)
905 {
906 	return register_ftrace_graph(&fprofiler_ops);
907 }
908 
909 static void unregister_ftrace_profiler(void)
910 {
911 	unregister_ftrace_graph(&fprofiler_ops);
912 }
913 #else
914 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
915 	.func		= function_profile_call,
916 	.flags		= FTRACE_OPS_FL_INITIALIZED,
917 	INIT_OPS_HASH(ftrace_profile_ops)
918 };
919 
920 static int register_ftrace_profiler(void)
921 {
922 	return register_ftrace_function(&ftrace_profile_ops);
923 }
924 
925 static void unregister_ftrace_profiler(void)
926 {
927 	unregister_ftrace_function(&ftrace_profile_ops);
928 }
929 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
930 
931 static ssize_t
932 ftrace_profile_write(struct file *filp, const char __user *ubuf,
933 		     size_t cnt, loff_t *ppos)
934 {
935 	unsigned long val;
936 	int ret;
937 
938 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
939 	if (ret)
940 		return ret;
941 
942 	val = !!val;
943 
944 	guard(mutex)(&ftrace_profile_lock);
945 	if (ftrace_profile_enabled ^ val) {
946 		if (val) {
947 			ret = ftrace_profile_init();
948 			if (ret < 0)
949 				return ret;
950 
951 			ret = register_ftrace_profiler();
952 			if (ret < 0)
953 				return ret;
954 			ftrace_profile_enabled = 1;
955 		} else {
956 			ftrace_profile_enabled = 0;
957 			/*
958 			 * unregister_ftrace_profiler calls stop_machine
959 			 * so this acts like an synchronize_rcu.
960 			 */
961 			unregister_ftrace_profiler();
962 		}
963 	}
964 
965 	*ppos += cnt;
966 
967 	return cnt;
968 }
969 
970 static ssize_t
971 ftrace_profile_read(struct file *filp, char __user *ubuf,
972 		     size_t cnt, loff_t *ppos)
973 {
974 	char buf[64];		/* big enough to hold a number */
975 	int r;
976 
977 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
978 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
979 }
980 
981 static const struct file_operations ftrace_profile_fops = {
982 	.open		= tracing_open_generic,
983 	.read		= ftrace_profile_read,
984 	.write		= ftrace_profile_write,
985 	.llseek		= default_llseek,
986 };
987 
988 /* used to initialize the real stat files */
989 static struct tracer_stat function_stats __initdata = {
990 	.name		= "functions",
991 	.stat_start	= function_stat_start,
992 	.stat_next	= function_stat_next,
993 	.stat_cmp	= function_stat_cmp,
994 	.stat_headers	= function_stat_headers,
995 	.stat_show	= function_stat_show
996 };
997 
998 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
999 {
1000 	struct ftrace_profile_stat *stat;
1001 	char *name;
1002 	int ret;
1003 	int cpu;
1004 
1005 	for_each_possible_cpu(cpu) {
1006 		stat = &per_cpu(ftrace_profile_stats, cpu);
1007 
1008 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
1009 		if (!name) {
1010 			/*
1011 			 * The files created are permanent, if something happens
1012 			 * we still do not free memory.
1013 			 */
1014 			WARN(1,
1015 			     "Could not allocate stat file for cpu %d\n",
1016 			     cpu);
1017 			return;
1018 		}
1019 		stat->stat = function_stats;
1020 		stat->stat.name = name;
1021 		ret = register_stat_tracer(&stat->stat);
1022 		if (ret) {
1023 			WARN(1,
1024 			     "Could not register function stat for cpu %d\n",
1025 			     cpu);
1026 			kfree(name);
1027 			return;
1028 		}
1029 	}
1030 
1031 	trace_create_file("function_profile_enabled",
1032 			  TRACE_MODE_WRITE, d_tracer, NULL,
1033 			  &ftrace_profile_fops);
1034 }
1035 
1036 #else /* CONFIG_FUNCTION_PROFILER */
1037 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1038 {
1039 }
1040 #endif /* CONFIG_FUNCTION_PROFILER */
1041 
1042 #ifdef CONFIG_DYNAMIC_FTRACE
1043 
1044 static struct ftrace_ops *removed_ops;
1045 
1046 /*
1047  * Set when doing a global update, like enabling all recs or disabling them.
1048  * It is not set when just updating a single ftrace_ops.
1049  */
1050 static bool update_all_ops;
1051 
1052 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1053 # error Dynamic ftrace depends on MCOUNT_RECORD
1054 #endif
1055 
1056 struct ftrace_func_probe {
1057 	struct ftrace_probe_ops	*probe_ops;
1058 	struct ftrace_ops	ops;
1059 	struct trace_array	*tr;
1060 	struct list_head	list;
1061 	void			*data;
1062 	int			ref;
1063 };
1064 
1065 /*
1066  * We make these constant because no one should touch them,
1067  * but they are used as the default "empty hash", to avoid allocating
1068  * it all the time. These are in a read only section such that if
1069  * anyone does try to modify it, it will cause an exception.
1070  */
1071 static const struct hlist_head empty_buckets[1];
1072 static const struct ftrace_hash empty_hash = {
1073 	.buckets = (struct hlist_head *)empty_buckets,
1074 };
1075 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1076 
1077 struct ftrace_ops global_ops = {
1078 	.func				= ftrace_stub,
1079 	.local_hash.notrace_hash	= EMPTY_HASH,
1080 	.local_hash.filter_hash		= EMPTY_HASH,
1081 	INIT_OPS_HASH(global_ops)
1082 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1083 					  FTRACE_OPS_FL_PID,
1084 };
1085 
1086 /*
1087  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1088  */
1089 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1090 {
1091 	struct ftrace_ops *op = NULL;
1092 
1093 	/*
1094 	 * Some of the ops may be dynamically allocated,
1095 	 * they are freed after a synchronize_rcu().
1096 	 */
1097 	preempt_disable_notrace();
1098 
1099 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1100 		/*
1101 		 * This is to check for dynamically allocated trampolines.
1102 		 * Trampolines that are in kernel text will have
1103 		 * core_kernel_text() return true.
1104 		 */
1105 		if (op->trampoline && op->trampoline_size)
1106 			if (addr >= op->trampoline &&
1107 			    addr < op->trampoline + op->trampoline_size) {
1108 				preempt_enable_notrace();
1109 				return op;
1110 			}
1111 	} while_for_each_ftrace_op(op);
1112 	preempt_enable_notrace();
1113 
1114 	return NULL;
1115 }
1116 
1117 /*
1118  * This is used by __kernel_text_address() to return true if the
1119  * address is on a dynamically allocated trampoline that would
1120  * not return true for either core_kernel_text() or
1121  * is_module_text_address().
1122  */
1123 bool is_ftrace_trampoline(unsigned long addr)
1124 {
1125 	return ftrace_ops_trampoline(addr) != NULL;
1126 }
1127 
1128 struct ftrace_page {
1129 	struct ftrace_page	*next;
1130 	struct dyn_ftrace	*records;
1131 	int			index;
1132 	int			order;
1133 };
1134 
1135 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1136 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1137 
1138 static struct ftrace_page	*ftrace_pages_start;
1139 static struct ftrace_page	*ftrace_pages;
1140 
1141 static __always_inline unsigned long
1142 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1143 {
1144 	if (hash->size_bits > 0)
1145 		return hash_long(ip, hash->size_bits);
1146 
1147 	return 0;
1148 }
1149 
1150 /* Only use this function if ftrace_hash_empty() has already been tested */
1151 static __always_inline struct ftrace_func_entry *
1152 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1153 {
1154 	unsigned long key;
1155 	struct ftrace_func_entry *entry;
1156 	struct hlist_head *hhd;
1157 
1158 	key = ftrace_hash_key(hash, ip);
1159 	hhd = &hash->buckets[key];
1160 
1161 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1162 		if (entry->ip == ip)
1163 			return entry;
1164 	}
1165 	return NULL;
1166 }
1167 
1168 /**
1169  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1170  * @hash: The hash to look at
1171  * @ip: The instruction pointer to test
1172  *
1173  * Search a given @hash to see if a given instruction pointer (@ip)
1174  * exists in it.
1175  *
1176  * Returns: the entry that holds the @ip if found. NULL otherwise.
1177  */
1178 struct ftrace_func_entry *
1179 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1180 {
1181 	if (ftrace_hash_empty(hash))
1182 		return NULL;
1183 
1184 	return __ftrace_lookup_ip(hash, ip);
1185 }
1186 
1187 static void __add_hash_entry(struct ftrace_hash *hash,
1188 			     struct ftrace_func_entry *entry)
1189 {
1190 	struct hlist_head *hhd;
1191 	unsigned long key;
1192 
1193 	key = ftrace_hash_key(hash, entry->ip);
1194 	hhd = &hash->buckets[key];
1195 	hlist_add_head(&entry->hlist, hhd);
1196 	hash->count++;
1197 }
1198 
1199 static struct ftrace_func_entry *
1200 add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1201 {
1202 	struct ftrace_func_entry *entry;
1203 
1204 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1205 	if (!entry)
1206 		return NULL;
1207 
1208 	entry->ip = ip;
1209 	__add_hash_entry(hash, entry);
1210 
1211 	return entry;
1212 }
1213 
1214 static void
1215 free_hash_entry(struct ftrace_hash *hash,
1216 		  struct ftrace_func_entry *entry)
1217 {
1218 	hlist_del(&entry->hlist);
1219 	kfree(entry);
1220 	hash->count--;
1221 }
1222 
1223 static void
1224 remove_hash_entry(struct ftrace_hash *hash,
1225 		  struct ftrace_func_entry *entry)
1226 {
1227 	hlist_del_rcu(&entry->hlist);
1228 	hash->count--;
1229 }
1230 
1231 static void ftrace_hash_clear(struct ftrace_hash *hash)
1232 {
1233 	struct hlist_head *hhd;
1234 	struct hlist_node *tn;
1235 	struct ftrace_func_entry *entry;
1236 	int size = 1 << hash->size_bits;
1237 	int i;
1238 
1239 	if (!hash->count)
1240 		return;
1241 
1242 	for (i = 0; i < size; i++) {
1243 		hhd = &hash->buckets[i];
1244 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1245 			free_hash_entry(hash, entry);
1246 	}
1247 	FTRACE_WARN_ON(hash->count);
1248 }
1249 
1250 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1251 {
1252 	list_del(&ftrace_mod->list);
1253 	kfree(ftrace_mod->module);
1254 	kfree(ftrace_mod->func);
1255 	kfree(ftrace_mod);
1256 }
1257 
1258 static void clear_ftrace_mod_list(struct list_head *head)
1259 {
1260 	struct ftrace_mod_load *p, *n;
1261 
1262 	/* stack tracer isn't supported yet */
1263 	if (!head)
1264 		return;
1265 
1266 	mutex_lock(&ftrace_lock);
1267 	list_for_each_entry_safe(p, n, head, list)
1268 		free_ftrace_mod(p);
1269 	mutex_unlock(&ftrace_lock);
1270 }
1271 
1272 static void free_ftrace_hash(struct ftrace_hash *hash)
1273 {
1274 	if (!hash || hash == EMPTY_HASH)
1275 		return;
1276 	ftrace_hash_clear(hash);
1277 	kfree(hash->buckets);
1278 	kfree(hash);
1279 }
1280 
1281 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1282 {
1283 	struct ftrace_hash *hash;
1284 
1285 	hash = container_of(rcu, struct ftrace_hash, rcu);
1286 	free_ftrace_hash(hash);
1287 }
1288 
1289 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1290 {
1291 	if (!hash || hash == EMPTY_HASH)
1292 		return;
1293 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1294 }
1295 
1296 /**
1297  * ftrace_free_filter - remove all filters for an ftrace_ops
1298  * @ops: the ops to remove the filters from
1299  */
1300 void ftrace_free_filter(struct ftrace_ops *ops)
1301 {
1302 	ftrace_ops_init(ops);
1303 	free_ftrace_hash(ops->func_hash->filter_hash);
1304 	free_ftrace_hash(ops->func_hash->notrace_hash);
1305 }
1306 EXPORT_SYMBOL_GPL(ftrace_free_filter);
1307 
1308 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1309 {
1310 	struct ftrace_hash *hash;
1311 	int size;
1312 
1313 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1314 	if (!hash)
1315 		return NULL;
1316 
1317 	size = 1 << size_bits;
1318 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1319 
1320 	if (!hash->buckets) {
1321 		kfree(hash);
1322 		return NULL;
1323 	}
1324 
1325 	hash->size_bits = size_bits;
1326 
1327 	return hash;
1328 }
1329 
1330 /* Used to save filters on functions for modules not loaded yet */
1331 static int ftrace_add_mod(struct trace_array *tr,
1332 			  const char *func, const char *module,
1333 			  int enable)
1334 {
1335 	struct ftrace_mod_load *ftrace_mod;
1336 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1337 
1338 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1339 	if (!ftrace_mod)
1340 		return -ENOMEM;
1341 
1342 	INIT_LIST_HEAD(&ftrace_mod->list);
1343 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1344 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1345 	ftrace_mod->enable = enable;
1346 
1347 	if (!ftrace_mod->func || !ftrace_mod->module)
1348 		goto out_free;
1349 
1350 	list_add(&ftrace_mod->list, mod_head);
1351 
1352 	return 0;
1353 
1354  out_free:
1355 	free_ftrace_mod(ftrace_mod);
1356 
1357 	return -ENOMEM;
1358 }
1359 
1360 static struct ftrace_hash *
1361 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1362 {
1363 	struct ftrace_func_entry *entry;
1364 	struct ftrace_hash *new_hash;
1365 	int size;
1366 	int i;
1367 
1368 	new_hash = alloc_ftrace_hash(size_bits);
1369 	if (!new_hash)
1370 		return NULL;
1371 
1372 	if (hash)
1373 		new_hash->flags = hash->flags;
1374 
1375 	/* Empty hash? */
1376 	if (ftrace_hash_empty(hash))
1377 		return new_hash;
1378 
1379 	size = 1 << hash->size_bits;
1380 	for (i = 0; i < size; i++) {
1381 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1382 			if (add_hash_entry(new_hash, entry->ip) == NULL)
1383 				goto free_hash;
1384 		}
1385 	}
1386 
1387 	FTRACE_WARN_ON(new_hash->count != hash->count);
1388 
1389 	return new_hash;
1390 
1391  free_hash:
1392 	free_ftrace_hash(new_hash);
1393 	return NULL;
1394 }
1395 
1396 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops);
1397 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops);
1398 
1399 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1400 				       struct ftrace_hash *new_hash);
1401 
1402 /*
1403  * Allocate a new hash and remove entries from @src and move them to the new hash.
1404  * On success, the @src hash will be empty and should be freed.
1405  */
1406 static struct ftrace_hash *__move_hash(struct ftrace_hash *src, int size)
1407 {
1408 	struct ftrace_func_entry *entry;
1409 	struct ftrace_hash *new_hash;
1410 	struct hlist_head *hhd;
1411 	struct hlist_node *tn;
1412 	int bits = 0;
1413 	int i;
1414 
1415 	/*
1416 	 * Use around half the size (max bit of it), but
1417 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1418 	 */
1419 	bits = fls(size / 2);
1420 
1421 	/* Don't allocate too much */
1422 	if (bits > FTRACE_HASH_MAX_BITS)
1423 		bits = FTRACE_HASH_MAX_BITS;
1424 
1425 	new_hash = alloc_ftrace_hash(bits);
1426 	if (!new_hash)
1427 		return NULL;
1428 
1429 	new_hash->flags = src->flags;
1430 
1431 	size = 1 << src->size_bits;
1432 	for (i = 0; i < size; i++) {
1433 		hhd = &src->buckets[i];
1434 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1435 			remove_hash_entry(src, entry);
1436 			__add_hash_entry(new_hash, entry);
1437 		}
1438 	}
1439 	return new_hash;
1440 }
1441 
1442 /* Move the @src entries to a newly allocated hash */
1443 static struct ftrace_hash *
1444 __ftrace_hash_move(struct ftrace_hash *src)
1445 {
1446 	int size = src->count;
1447 
1448 	/*
1449 	 * If the new source is empty, just return the empty_hash.
1450 	 */
1451 	if (ftrace_hash_empty(src))
1452 		return EMPTY_HASH;
1453 
1454 	return __move_hash(src, size);
1455 }
1456 
1457 /**
1458  * ftrace_hash_move - move a new hash to a filter and do updates
1459  * @ops: The ops with the hash that @dst points to
1460  * @enable: True if for the filter hash, false for the notrace hash
1461  * @dst: Points to the @ops hash that should be updated
1462  * @src: The hash to update @dst with
1463  *
1464  * This is called when an ftrace_ops hash is being updated and the
1465  * the kernel needs to reflect this. Note, this only updates the kernel
1466  * function callbacks if the @ops is enabled (not to be confused with
1467  * @enable above). If the @ops is enabled, its hash determines what
1468  * callbacks get called. This function gets called when the @ops hash
1469  * is updated and it requires new callbacks.
1470  *
1471  * On success the elements of @src is moved to @dst, and @dst is updated
1472  * properly, as well as the functions determined by the @ops hashes
1473  * are now calling the @ops callback function.
1474  *
1475  * Regardless of return type, @src should be freed with free_ftrace_hash().
1476  */
1477 static int
1478 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1479 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1480 {
1481 	struct ftrace_hash *new_hash;
1482 	int ret;
1483 
1484 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1485 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1486 		return -EINVAL;
1487 
1488 	new_hash = __ftrace_hash_move(src);
1489 	if (!new_hash)
1490 		return -ENOMEM;
1491 
1492 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1493 	if (enable) {
1494 		/* IPMODIFY should be updated only when filter_hash updating */
1495 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1496 		if (ret < 0) {
1497 			free_ftrace_hash(new_hash);
1498 			return ret;
1499 		}
1500 	}
1501 
1502 	/*
1503 	 * Remove the current set, update the hash and add
1504 	 * them back.
1505 	 */
1506 	ftrace_hash_rec_disable_modify(ops);
1507 
1508 	rcu_assign_pointer(*dst, new_hash);
1509 
1510 	ftrace_hash_rec_enable_modify(ops);
1511 
1512 	return 0;
1513 }
1514 
1515 static bool hash_contains_ip(unsigned long ip,
1516 			     struct ftrace_ops_hash *hash)
1517 {
1518 	/*
1519 	 * The function record is a match if it exists in the filter
1520 	 * hash and not in the notrace hash. Note, an empty hash is
1521 	 * considered a match for the filter hash, but an empty
1522 	 * notrace hash is considered not in the notrace hash.
1523 	 */
1524 	return (ftrace_hash_empty(hash->filter_hash) ||
1525 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1526 		(ftrace_hash_empty(hash->notrace_hash) ||
1527 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1528 }
1529 
1530 /*
1531  * Test the hashes for this ops to see if we want to call
1532  * the ops->func or not.
1533  *
1534  * It's a match if the ip is in the ops->filter_hash or
1535  * the filter_hash does not exist or is empty,
1536  *  AND
1537  * the ip is not in the ops->notrace_hash.
1538  *
1539  * This needs to be called with preemption disabled as
1540  * the hashes are freed with call_rcu().
1541  */
1542 int
1543 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1544 {
1545 	struct ftrace_ops_hash hash;
1546 	int ret;
1547 
1548 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1549 	/*
1550 	 * There's a small race when adding ops that the ftrace handler
1551 	 * that wants regs, may be called without them. We can not
1552 	 * allow that handler to be called if regs is NULL.
1553 	 */
1554 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1555 		return 0;
1556 #endif
1557 
1558 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1559 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1560 
1561 	if (hash_contains_ip(ip, &hash))
1562 		ret = 1;
1563 	else
1564 		ret = 0;
1565 
1566 	return ret;
1567 }
1568 
1569 /*
1570  * This is a double for. Do not use 'break' to break out of the loop,
1571  * you must use a goto.
1572  */
1573 #define do_for_each_ftrace_rec(pg, rec)					\
1574 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1575 		int _____i;						\
1576 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1577 			rec = &pg->records[_____i];
1578 
1579 #define while_for_each_ftrace_rec()		\
1580 		}				\
1581 	}
1582 
1583 
1584 static int ftrace_cmp_recs(const void *a, const void *b)
1585 {
1586 	const struct dyn_ftrace *key = a;
1587 	const struct dyn_ftrace *rec = b;
1588 
1589 	if (key->flags < rec->ip)
1590 		return -1;
1591 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1592 		return 1;
1593 	return 0;
1594 }
1595 
1596 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1597 {
1598 	struct ftrace_page *pg;
1599 	struct dyn_ftrace *rec = NULL;
1600 	struct dyn_ftrace key;
1601 
1602 	key.ip = start;
1603 	key.flags = end;	/* overload flags, as it is unsigned long */
1604 
1605 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1606 		if (pg->index == 0 ||
1607 		    end < pg->records[0].ip ||
1608 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1609 			continue;
1610 		rec = bsearch(&key, pg->records, pg->index,
1611 			      sizeof(struct dyn_ftrace),
1612 			      ftrace_cmp_recs);
1613 		if (rec)
1614 			break;
1615 	}
1616 	return rec;
1617 }
1618 
1619 /**
1620  * ftrace_location_range - return the first address of a traced location
1621  *	if it touches the given ip range
1622  * @start: start of range to search.
1623  * @end: end of range to search (inclusive). @end points to the last byte
1624  *	to check.
1625  *
1626  * Returns: rec->ip if the related ftrace location is a least partly within
1627  * the given address range. That is, the first address of the instruction
1628  * that is either a NOP or call to the function tracer. It checks the ftrace
1629  * internal tables to determine if the address belongs or not.
1630  */
1631 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1632 {
1633 	struct dyn_ftrace *rec;
1634 	unsigned long ip = 0;
1635 
1636 	rcu_read_lock();
1637 	rec = lookup_rec(start, end);
1638 	if (rec)
1639 		ip = rec->ip;
1640 	rcu_read_unlock();
1641 
1642 	return ip;
1643 }
1644 
1645 /**
1646  * ftrace_location - return the ftrace location
1647  * @ip: the instruction pointer to check
1648  *
1649  * Returns:
1650  * * If @ip matches the ftrace location, return @ip.
1651  * * If @ip matches sym+0, return sym's ftrace location.
1652  * * Otherwise, return 0.
1653  */
1654 unsigned long ftrace_location(unsigned long ip)
1655 {
1656 	unsigned long loc;
1657 	unsigned long offset;
1658 	unsigned long size;
1659 
1660 	loc = ftrace_location_range(ip, ip);
1661 	if (!loc) {
1662 		if (!kallsyms_lookup_size_offset(ip, &size, &offset))
1663 			return 0;
1664 
1665 		/* map sym+0 to __fentry__ */
1666 		if (!offset)
1667 			loc = ftrace_location_range(ip, ip + size - 1);
1668 	}
1669 	return loc;
1670 }
1671 
1672 /**
1673  * ftrace_text_reserved - return true if range contains an ftrace location
1674  * @start: start of range to search
1675  * @end: end of range to search (inclusive). @end points to the last byte to check.
1676  *
1677  * Returns: 1 if @start and @end contains a ftrace location.
1678  * That is, the instruction that is either a NOP or call to
1679  * the function tracer. It checks the ftrace internal tables to
1680  * determine if the address belongs or not.
1681  */
1682 int ftrace_text_reserved(const void *start, const void *end)
1683 {
1684 	unsigned long ret;
1685 
1686 	ret = ftrace_location_range((unsigned long)start,
1687 				    (unsigned long)end);
1688 
1689 	return (int)!!ret;
1690 }
1691 
1692 /* Test if ops registered to this rec needs regs */
1693 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1694 {
1695 	struct ftrace_ops *ops;
1696 	bool keep_regs = false;
1697 
1698 	for (ops = ftrace_ops_list;
1699 	     ops != &ftrace_list_end; ops = ops->next) {
1700 		/* pass rec in as regs to have non-NULL val */
1701 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1702 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1703 				keep_regs = true;
1704 				break;
1705 			}
1706 		}
1707 	}
1708 
1709 	return  keep_regs;
1710 }
1711 
1712 static struct ftrace_ops *
1713 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1714 static struct ftrace_ops *
1715 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1716 static struct ftrace_ops *
1717 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1718 
1719 static bool skip_record(struct dyn_ftrace *rec)
1720 {
1721 	/*
1722 	 * At boot up, weak functions are set to disable. Function tracing
1723 	 * can be enabled before they are, and they still need to be disabled now.
1724 	 * If the record is disabled, still continue if it is marked as already
1725 	 * enabled (this is needed to keep the accounting working).
1726 	 */
1727 	return rec->flags & FTRACE_FL_DISABLED &&
1728 		!(rec->flags & FTRACE_FL_ENABLED);
1729 }
1730 
1731 /*
1732  * This is the main engine to the ftrace updates to the dyn_ftrace records.
1733  *
1734  * It will iterate through all the available ftrace functions
1735  * (the ones that ftrace can have callbacks to) and set the flags
1736  * in the associated dyn_ftrace records.
1737  *
1738  * @inc: If true, the functions associated to @ops are added to
1739  *       the dyn_ftrace records, otherwise they are removed.
1740  */
1741 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1742 				     bool inc)
1743 {
1744 	struct ftrace_hash *hash;
1745 	struct ftrace_hash *notrace_hash;
1746 	struct ftrace_page *pg;
1747 	struct dyn_ftrace *rec;
1748 	bool update = false;
1749 	int count = 0;
1750 	int all = false;
1751 
1752 	/* Only update if the ops has been registered */
1753 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1754 		return false;
1755 
1756 	/*
1757 	 *   If the count is zero, we update all records.
1758 	 *   Otherwise we just update the items in the hash.
1759 	 */
1760 	hash = ops->func_hash->filter_hash;
1761 	notrace_hash = ops->func_hash->notrace_hash;
1762 	if (ftrace_hash_empty(hash))
1763 		all = true;
1764 
1765 	do_for_each_ftrace_rec(pg, rec) {
1766 		int in_notrace_hash = 0;
1767 		int in_hash = 0;
1768 		int match = 0;
1769 
1770 		if (skip_record(rec))
1771 			continue;
1772 
1773 		if (all) {
1774 			/*
1775 			 * Only the filter_hash affects all records.
1776 			 * Update if the record is not in the notrace hash.
1777 			 */
1778 			if (!notrace_hash || !ftrace_lookup_ip(notrace_hash, rec->ip))
1779 				match = 1;
1780 		} else {
1781 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1782 			in_notrace_hash = !!ftrace_lookup_ip(notrace_hash, rec->ip);
1783 
1784 			/*
1785 			 * We want to match all functions that are in the hash but
1786 			 * not in the other hash.
1787 			 */
1788 			if (in_hash && !in_notrace_hash)
1789 				match = 1;
1790 		}
1791 		if (!match)
1792 			continue;
1793 
1794 		if (inc) {
1795 			rec->flags++;
1796 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1797 				return false;
1798 
1799 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1800 				rec->flags |= FTRACE_FL_DIRECT;
1801 
1802 			/*
1803 			 * If there's only a single callback registered to a
1804 			 * function, and the ops has a trampoline registered
1805 			 * for it, then we can call it directly.
1806 			 */
1807 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1808 				rec->flags |= FTRACE_FL_TRAMP;
1809 			else
1810 				/*
1811 				 * If we are adding another function callback
1812 				 * to this function, and the previous had a
1813 				 * custom trampoline in use, then we need to go
1814 				 * back to the default trampoline.
1815 				 */
1816 				rec->flags &= ~FTRACE_FL_TRAMP;
1817 
1818 			/*
1819 			 * If any ops wants regs saved for this function
1820 			 * then all ops will get saved regs.
1821 			 */
1822 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1823 				rec->flags |= FTRACE_FL_REGS;
1824 		} else {
1825 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1826 				return false;
1827 			rec->flags--;
1828 
1829 			/*
1830 			 * Only the internal direct_ops should have the
1831 			 * DIRECT flag set. Thus, if it is removing a
1832 			 * function, then that function should no longer
1833 			 * be direct.
1834 			 */
1835 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1836 				rec->flags &= ~FTRACE_FL_DIRECT;
1837 
1838 			/*
1839 			 * If the rec had REGS enabled and the ops that is
1840 			 * being removed had REGS set, then see if there is
1841 			 * still any ops for this record that wants regs.
1842 			 * If not, we can stop recording them.
1843 			 */
1844 			if (ftrace_rec_count(rec) > 0 &&
1845 			    rec->flags & FTRACE_FL_REGS &&
1846 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1847 				if (!test_rec_ops_needs_regs(rec))
1848 					rec->flags &= ~FTRACE_FL_REGS;
1849 			}
1850 
1851 			/*
1852 			 * The TRAMP needs to be set only if rec count
1853 			 * is decremented to one, and the ops that is
1854 			 * left has a trampoline. As TRAMP can only be
1855 			 * enabled if there is only a single ops attached
1856 			 * to it.
1857 			 */
1858 			if (ftrace_rec_count(rec) == 1 &&
1859 			    ftrace_find_tramp_ops_any_other(rec, ops))
1860 				rec->flags |= FTRACE_FL_TRAMP;
1861 			else
1862 				rec->flags &= ~FTRACE_FL_TRAMP;
1863 
1864 			/*
1865 			 * flags will be cleared in ftrace_check_record()
1866 			 * if rec count is zero.
1867 			 */
1868 		}
1869 
1870 		/*
1871 		 * If the rec has a single associated ops, and ops->func can be
1872 		 * called directly, allow the call site to call via the ops.
1873 		 */
1874 		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS) &&
1875 		    ftrace_rec_count(rec) == 1 &&
1876 		    ftrace_ops_get_func(ops) == ops->func)
1877 			rec->flags |= FTRACE_FL_CALL_OPS;
1878 		else
1879 			rec->flags &= ~FTRACE_FL_CALL_OPS;
1880 
1881 		count++;
1882 
1883 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1884 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1885 
1886 		/* Shortcut, if we handled all records, we are done. */
1887 		if (!all && count == hash->count)
1888 			return update;
1889 	} while_for_each_ftrace_rec();
1890 
1891 	return update;
1892 }
1893 
1894 /*
1895  * This is called when an ops is removed from tracing. It will decrement
1896  * the counters of the dyn_ftrace records for all the functions that
1897  * the @ops attached to.
1898  */
1899 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops)
1900 {
1901 	return __ftrace_hash_rec_update(ops, false);
1902 }
1903 
1904 /*
1905  * This is called when an ops is added to tracing. It will increment
1906  * the counters of the dyn_ftrace records for all the functions that
1907  * the @ops attached to.
1908  */
1909 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops)
1910 {
1911 	return __ftrace_hash_rec_update(ops, true);
1912 }
1913 
1914 /*
1915  * This function will update what functions @ops traces when its filter
1916  * changes.
1917  *
1918  * The @inc states if the @ops callbacks are going to be added or removed.
1919  * When one of the @ops hashes are updated to a "new_hash" the dyn_ftrace
1920  * records are update via:
1921  *
1922  * ftrace_hash_rec_disable_modify(ops);
1923  * ops->hash = new_hash
1924  * ftrace_hash_rec_enable_modify(ops);
1925  *
1926  * Where the @ops is removed from all the records it is tracing using
1927  * its old hash. The @ops hash is updated to the new hash, and then
1928  * the @ops is added back to the records so that it is tracing all
1929  * the new functions.
1930  */
1931 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, bool inc)
1932 {
1933 	struct ftrace_ops *op;
1934 
1935 	__ftrace_hash_rec_update(ops, inc);
1936 
1937 	if (ops->func_hash != &global_ops.local_hash)
1938 		return;
1939 
1940 	/*
1941 	 * If the ops shares the global_ops hash, then we need to update
1942 	 * all ops that are enabled and use this hash.
1943 	 */
1944 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1945 		/* Already done */
1946 		if (op == ops)
1947 			continue;
1948 		if (op->func_hash == &global_ops.local_hash)
1949 			__ftrace_hash_rec_update(op, inc);
1950 	} while_for_each_ftrace_op(op);
1951 }
1952 
1953 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops)
1954 {
1955 	ftrace_hash_rec_update_modify(ops, false);
1956 }
1957 
1958 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops)
1959 {
1960 	ftrace_hash_rec_update_modify(ops, true);
1961 }
1962 
1963 /*
1964  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1965  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1966  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1967  * Note that old_hash and new_hash has below meanings
1968  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1969  *  - If the hash is EMPTY_HASH, it hits nothing
1970  *  - Anything else hits the recs which match the hash entries.
1971  *
1972  * DIRECT ops does not have IPMODIFY flag, but we still need to check it
1973  * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call
1974  * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with
1975  * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate
1976  * the return value to the caller and eventually to the owner of the DIRECT
1977  * ops.
1978  */
1979 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1980 					 struct ftrace_hash *old_hash,
1981 					 struct ftrace_hash *new_hash)
1982 {
1983 	struct ftrace_page *pg;
1984 	struct dyn_ftrace *rec, *end = NULL;
1985 	int in_old, in_new;
1986 	bool is_ipmodify, is_direct;
1987 
1988 	/* Only update if the ops has been registered */
1989 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1990 		return 0;
1991 
1992 	is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY;
1993 	is_direct = ops->flags & FTRACE_OPS_FL_DIRECT;
1994 
1995 	/* neither IPMODIFY nor DIRECT, skip */
1996 	if (!is_ipmodify && !is_direct)
1997 		return 0;
1998 
1999 	if (WARN_ON_ONCE(is_ipmodify && is_direct))
2000 		return 0;
2001 
2002 	/*
2003 	 * Since the IPMODIFY and DIRECT are very address sensitive
2004 	 * actions, we do not allow ftrace_ops to set all functions to new
2005 	 * hash.
2006 	 */
2007 	if (!new_hash || !old_hash)
2008 		return -EINVAL;
2009 
2010 	/* Update rec->flags */
2011 	do_for_each_ftrace_rec(pg, rec) {
2012 
2013 		if (rec->flags & FTRACE_FL_DISABLED)
2014 			continue;
2015 
2016 		/* We need to update only differences of filter_hash */
2017 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
2018 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
2019 		if (in_old == in_new)
2020 			continue;
2021 
2022 		if (in_new) {
2023 			if (rec->flags & FTRACE_FL_IPMODIFY) {
2024 				int ret;
2025 
2026 				/* Cannot have two ipmodify on same rec */
2027 				if (is_ipmodify)
2028 					goto rollback;
2029 
2030 				FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT);
2031 
2032 				/*
2033 				 * Another ops with IPMODIFY is already
2034 				 * attached. We are now attaching a direct
2035 				 * ops. Run SHARE_IPMODIFY_SELF, to check
2036 				 * whether sharing is supported.
2037 				 */
2038 				if (!ops->ops_func)
2039 					return -EBUSY;
2040 				ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF);
2041 				if (ret)
2042 					return ret;
2043 			} else if (is_ipmodify) {
2044 				rec->flags |= FTRACE_FL_IPMODIFY;
2045 			}
2046 		} else if (is_ipmodify) {
2047 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2048 		}
2049 	} while_for_each_ftrace_rec();
2050 
2051 	return 0;
2052 
2053 rollback:
2054 	end = rec;
2055 
2056 	/* Roll back what we did above */
2057 	do_for_each_ftrace_rec(pg, rec) {
2058 
2059 		if (rec->flags & FTRACE_FL_DISABLED)
2060 			continue;
2061 
2062 		if (rec == end)
2063 			return -EBUSY;
2064 
2065 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
2066 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
2067 		if (in_old == in_new)
2068 			continue;
2069 
2070 		if (in_new)
2071 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2072 		else
2073 			rec->flags |= FTRACE_FL_IPMODIFY;
2074 	} while_for_each_ftrace_rec();
2075 
2076 	return -EBUSY;
2077 }
2078 
2079 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
2080 {
2081 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2082 
2083 	if (ftrace_hash_empty(hash))
2084 		hash = NULL;
2085 
2086 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
2087 }
2088 
2089 /* Disabling always succeeds */
2090 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
2091 {
2092 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2093 
2094 	if (ftrace_hash_empty(hash))
2095 		hash = NULL;
2096 
2097 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
2098 }
2099 
2100 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
2101 				       struct ftrace_hash *new_hash)
2102 {
2103 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
2104 
2105 	if (ftrace_hash_empty(old_hash))
2106 		old_hash = NULL;
2107 
2108 	if (ftrace_hash_empty(new_hash))
2109 		new_hash = NULL;
2110 
2111 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
2112 }
2113 
2114 static void print_ip_ins(const char *fmt, const unsigned char *p)
2115 {
2116 	char ins[MCOUNT_INSN_SIZE];
2117 
2118 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
2119 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
2120 		return;
2121 	}
2122 
2123 	printk(KERN_CONT "%s", fmt);
2124 	pr_cont("%*phC", MCOUNT_INSN_SIZE, ins);
2125 }
2126 
2127 enum ftrace_bug_type ftrace_bug_type;
2128 const void *ftrace_expected;
2129 
2130 static void print_bug_type(void)
2131 {
2132 	switch (ftrace_bug_type) {
2133 	case FTRACE_BUG_UNKNOWN:
2134 		break;
2135 	case FTRACE_BUG_INIT:
2136 		pr_info("Initializing ftrace call sites\n");
2137 		break;
2138 	case FTRACE_BUG_NOP:
2139 		pr_info("Setting ftrace call site to NOP\n");
2140 		break;
2141 	case FTRACE_BUG_CALL:
2142 		pr_info("Setting ftrace call site to call ftrace function\n");
2143 		break;
2144 	case FTRACE_BUG_UPDATE:
2145 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2146 		break;
2147 	}
2148 }
2149 
2150 /**
2151  * ftrace_bug - report and shutdown function tracer
2152  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2153  * @rec: The record that failed
2154  *
2155  * The arch code that enables or disables the function tracing
2156  * can call ftrace_bug() when it has detected a problem in
2157  * modifying the code. @failed should be one of either:
2158  * EFAULT - if the problem happens on reading the @ip address
2159  * EINVAL - if what is read at @ip is not what was expected
2160  * EPERM - if the problem happens on writing to the @ip address
2161  */
2162 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2163 {
2164 	unsigned long ip = rec ? rec->ip : 0;
2165 
2166 	pr_info("------------[ ftrace bug ]------------\n");
2167 
2168 	switch (failed) {
2169 	case -EFAULT:
2170 		pr_info("ftrace faulted on modifying ");
2171 		print_ip_sym(KERN_INFO, ip);
2172 		break;
2173 	case -EINVAL:
2174 		pr_info("ftrace failed to modify ");
2175 		print_ip_sym(KERN_INFO, ip);
2176 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2177 		pr_cont("\n");
2178 		if (ftrace_expected) {
2179 			print_ip_ins(" expected: ", ftrace_expected);
2180 			pr_cont("\n");
2181 		}
2182 		break;
2183 	case -EPERM:
2184 		pr_info("ftrace faulted on writing ");
2185 		print_ip_sym(KERN_INFO, ip);
2186 		break;
2187 	default:
2188 		pr_info("ftrace faulted on unknown error ");
2189 		print_ip_sym(KERN_INFO, ip);
2190 	}
2191 	print_bug_type();
2192 	if (rec) {
2193 		struct ftrace_ops *ops = NULL;
2194 
2195 		pr_info("ftrace record flags: %lx\n", rec->flags);
2196 		pr_cont(" (%ld)%s%s", ftrace_rec_count(rec),
2197 			rec->flags & FTRACE_FL_REGS ? " R" : "  ",
2198 			rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ");
2199 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2200 			ops = ftrace_find_tramp_ops_any(rec);
2201 			if (ops) {
2202 				do {
2203 					pr_cont("\ttramp: %pS (%pS)",
2204 						(void *)ops->trampoline,
2205 						(void *)ops->func);
2206 					ops = ftrace_find_tramp_ops_next(rec, ops);
2207 				} while (ops);
2208 			} else
2209 				pr_cont("\ttramp: ERROR!");
2210 
2211 		}
2212 		ip = ftrace_get_addr_curr(rec);
2213 		pr_cont("\n expected tramp: %lx\n", ip);
2214 	}
2215 
2216 	FTRACE_WARN_ON_ONCE(1);
2217 }
2218 
2219 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2220 {
2221 	unsigned long flag = 0UL;
2222 
2223 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2224 
2225 	if (skip_record(rec))
2226 		return FTRACE_UPDATE_IGNORE;
2227 
2228 	/*
2229 	 * If we are updating calls:
2230 	 *
2231 	 *   If the record has a ref count, then we need to enable it
2232 	 *   because someone is using it.
2233 	 *
2234 	 *   Otherwise we make sure its disabled.
2235 	 *
2236 	 * If we are disabling calls, then disable all records that
2237 	 * are enabled.
2238 	 */
2239 	if (enable && ftrace_rec_count(rec))
2240 		flag = FTRACE_FL_ENABLED;
2241 
2242 	/*
2243 	 * If enabling and the REGS flag does not match the REGS_EN, or
2244 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2245 	 * this record. Set flags to fail the compare against ENABLED.
2246 	 * Same for direct calls.
2247 	 */
2248 	if (flag) {
2249 		if (!(rec->flags & FTRACE_FL_REGS) !=
2250 		    !(rec->flags & FTRACE_FL_REGS_EN))
2251 			flag |= FTRACE_FL_REGS;
2252 
2253 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2254 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2255 			flag |= FTRACE_FL_TRAMP;
2256 
2257 		/*
2258 		 * Direct calls are special, as count matters.
2259 		 * We must test the record for direct, if the
2260 		 * DIRECT and DIRECT_EN do not match, but only
2261 		 * if the count is 1. That's because, if the
2262 		 * count is something other than one, we do not
2263 		 * want the direct enabled (it will be done via the
2264 		 * direct helper). But if DIRECT_EN is set, and
2265 		 * the count is not one, we need to clear it.
2266 		 *
2267 		 */
2268 		if (ftrace_rec_count(rec) == 1) {
2269 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2270 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2271 				flag |= FTRACE_FL_DIRECT;
2272 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2273 			flag |= FTRACE_FL_DIRECT;
2274 		}
2275 
2276 		/*
2277 		 * Ops calls are special, as count matters.
2278 		 * As with direct calls, they must only be enabled when count
2279 		 * is one, otherwise they'll be handled via the list ops.
2280 		 */
2281 		if (ftrace_rec_count(rec) == 1) {
2282 			if (!(rec->flags & FTRACE_FL_CALL_OPS) !=
2283 			    !(rec->flags & FTRACE_FL_CALL_OPS_EN))
2284 				flag |= FTRACE_FL_CALL_OPS;
2285 		} else if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
2286 			flag |= FTRACE_FL_CALL_OPS;
2287 		}
2288 	}
2289 
2290 	/* If the state of this record hasn't changed, then do nothing */
2291 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2292 		return FTRACE_UPDATE_IGNORE;
2293 
2294 	if (flag) {
2295 		/* Save off if rec is being enabled (for return value) */
2296 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2297 
2298 		if (update) {
2299 			rec->flags |= FTRACE_FL_ENABLED | FTRACE_FL_TOUCHED;
2300 			if (flag & FTRACE_FL_REGS) {
2301 				if (rec->flags & FTRACE_FL_REGS)
2302 					rec->flags |= FTRACE_FL_REGS_EN;
2303 				else
2304 					rec->flags &= ~FTRACE_FL_REGS_EN;
2305 			}
2306 			if (flag & FTRACE_FL_TRAMP) {
2307 				if (rec->flags & FTRACE_FL_TRAMP)
2308 					rec->flags |= FTRACE_FL_TRAMP_EN;
2309 				else
2310 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2311 			}
2312 
2313 			/* Keep track of anything that modifies the function */
2314 			if (rec->flags & (FTRACE_FL_DIRECT | FTRACE_FL_IPMODIFY))
2315 				rec->flags |= FTRACE_FL_MODIFIED;
2316 
2317 			if (flag & FTRACE_FL_DIRECT) {
2318 				/*
2319 				 * If there's only one user (direct_ops helper)
2320 				 * then we can call the direct function
2321 				 * directly (no ftrace trampoline).
2322 				 */
2323 				if (ftrace_rec_count(rec) == 1) {
2324 					if (rec->flags & FTRACE_FL_DIRECT)
2325 						rec->flags |= FTRACE_FL_DIRECT_EN;
2326 					else
2327 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2328 				} else {
2329 					/*
2330 					 * Can only call directly if there's
2331 					 * only one callback to the function.
2332 					 */
2333 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2334 				}
2335 			}
2336 
2337 			if (flag & FTRACE_FL_CALL_OPS) {
2338 				if (ftrace_rec_count(rec) == 1) {
2339 					if (rec->flags & FTRACE_FL_CALL_OPS)
2340 						rec->flags |= FTRACE_FL_CALL_OPS_EN;
2341 					else
2342 						rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2343 				} else {
2344 					/*
2345 					 * Can only call directly if there's
2346 					 * only one set of associated ops.
2347 					 */
2348 					rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2349 				}
2350 			}
2351 		}
2352 
2353 		/*
2354 		 * If this record is being updated from a nop, then
2355 		 *   return UPDATE_MAKE_CALL.
2356 		 * Otherwise,
2357 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2358 		 *   from the save regs, to a non-save regs function or
2359 		 *   vice versa, or from a trampoline call.
2360 		 */
2361 		if (flag & FTRACE_FL_ENABLED) {
2362 			ftrace_bug_type = FTRACE_BUG_CALL;
2363 			return FTRACE_UPDATE_MAKE_CALL;
2364 		}
2365 
2366 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2367 		return FTRACE_UPDATE_MODIFY_CALL;
2368 	}
2369 
2370 	if (update) {
2371 		/* If there's no more users, clear all flags */
2372 		if (!ftrace_rec_count(rec))
2373 			rec->flags &= FTRACE_NOCLEAR_FLAGS;
2374 		else
2375 			/*
2376 			 * Just disable the record, but keep the ops TRAMP
2377 			 * and REGS states. The _EN flags must be disabled though.
2378 			 */
2379 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2380 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN |
2381 					FTRACE_FL_CALL_OPS_EN);
2382 	}
2383 
2384 	ftrace_bug_type = FTRACE_BUG_NOP;
2385 	return FTRACE_UPDATE_MAKE_NOP;
2386 }
2387 
2388 /**
2389  * ftrace_update_record - set a record that now is tracing or not
2390  * @rec: the record to update
2391  * @enable: set to true if the record is tracing, false to force disable
2392  *
2393  * The records that represent all functions that can be traced need
2394  * to be updated when tracing has been enabled.
2395  */
2396 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2397 {
2398 	return ftrace_check_record(rec, enable, true);
2399 }
2400 
2401 /**
2402  * ftrace_test_record - check if the record has been enabled or not
2403  * @rec: the record to test
2404  * @enable: set to true to check if enabled, false if it is disabled
2405  *
2406  * The arch code may need to test if a record is already set to
2407  * tracing to determine how to modify the function code that it
2408  * represents.
2409  */
2410 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2411 {
2412 	return ftrace_check_record(rec, enable, false);
2413 }
2414 
2415 static struct ftrace_ops *
2416 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2417 {
2418 	struct ftrace_ops *op;
2419 	unsigned long ip = rec->ip;
2420 
2421 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2422 
2423 		if (!op->trampoline)
2424 			continue;
2425 
2426 		if (hash_contains_ip(ip, op->func_hash))
2427 			return op;
2428 	} while_for_each_ftrace_op(op);
2429 
2430 	return NULL;
2431 }
2432 
2433 static struct ftrace_ops *
2434 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2435 {
2436 	struct ftrace_ops *op;
2437 	unsigned long ip = rec->ip;
2438 
2439 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2440 
2441 		if (op == op_exclude || !op->trampoline)
2442 			continue;
2443 
2444 		if (hash_contains_ip(ip, op->func_hash))
2445 			return op;
2446 	} while_for_each_ftrace_op(op);
2447 
2448 	return NULL;
2449 }
2450 
2451 static struct ftrace_ops *
2452 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2453 			   struct ftrace_ops *op)
2454 {
2455 	unsigned long ip = rec->ip;
2456 
2457 	while_for_each_ftrace_op(op) {
2458 
2459 		if (!op->trampoline)
2460 			continue;
2461 
2462 		if (hash_contains_ip(ip, op->func_hash))
2463 			return op;
2464 	}
2465 
2466 	return NULL;
2467 }
2468 
2469 static struct ftrace_ops *
2470 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2471 {
2472 	struct ftrace_ops *op;
2473 	unsigned long ip = rec->ip;
2474 
2475 	/*
2476 	 * Need to check removed ops first.
2477 	 * If they are being removed, and this rec has a tramp,
2478 	 * and this rec is in the ops list, then it would be the
2479 	 * one with the tramp.
2480 	 */
2481 	if (removed_ops) {
2482 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2483 			return removed_ops;
2484 	}
2485 
2486 	/*
2487 	 * Need to find the current trampoline for a rec.
2488 	 * Now, a trampoline is only attached to a rec if there
2489 	 * was a single 'ops' attached to it. But this can be called
2490 	 * when we are adding another op to the rec or removing the
2491 	 * current one. Thus, if the op is being added, we can
2492 	 * ignore it because it hasn't attached itself to the rec
2493 	 * yet.
2494 	 *
2495 	 * If an ops is being modified (hooking to different functions)
2496 	 * then we don't care about the new functions that are being
2497 	 * added, just the old ones (that are probably being removed).
2498 	 *
2499 	 * If we are adding an ops to a function that already is using
2500 	 * a trampoline, it needs to be removed (trampolines are only
2501 	 * for single ops connected), then an ops that is not being
2502 	 * modified also needs to be checked.
2503 	 */
2504 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2505 
2506 		if (!op->trampoline)
2507 			continue;
2508 
2509 		/*
2510 		 * If the ops is being added, it hasn't gotten to
2511 		 * the point to be removed from this tree yet.
2512 		 */
2513 		if (op->flags & FTRACE_OPS_FL_ADDING)
2514 			continue;
2515 
2516 
2517 		/*
2518 		 * If the ops is being modified and is in the old
2519 		 * hash, then it is probably being removed from this
2520 		 * function.
2521 		 */
2522 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2523 		    hash_contains_ip(ip, &op->old_hash))
2524 			return op;
2525 		/*
2526 		 * If the ops is not being added or modified, and it's
2527 		 * in its normal filter hash, then this must be the one
2528 		 * we want!
2529 		 */
2530 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2531 		    hash_contains_ip(ip, op->func_hash))
2532 			return op;
2533 
2534 	} while_for_each_ftrace_op(op);
2535 
2536 	return NULL;
2537 }
2538 
2539 static struct ftrace_ops *
2540 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2541 {
2542 	struct ftrace_ops *op;
2543 	unsigned long ip = rec->ip;
2544 
2545 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2546 		/* pass rec in as regs to have non-NULL val */
2547 		if (hash_contains_ip(ip, op->func_hash))
2548 			return op;
2549 	} while_for_each_ftrace_op(op);
2550 
2551 	return NULL;
2552 }
2553 
2554 struct ftrace_ops *
2555 ftrace_find_unique_ops(struct dyn_ftrace *rec)
2556 {
2557 	struct ftrace_ops *op, *found = NULL;
2558 	unsigned long ip = rec->ip;
2559 
2560 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2561 
2562 		if (hash_contains_ip(ip, op->func_hash)) {
2563 			if (found)
2564 				return NULL;
2565 			found = op;
2566 		}
2567 
2568 	} while_for_each_ftrace_op(op);
2569 
2570 	return found;
2571 }
2572 
2573 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2574 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2575 static struct ftrace_hash __rcu *direct_functions = EMPTY_HASH;
2576 static DEFINE_MUTEX(direct_mutex);
2577 
2578 /*
2579  * Search the direct_functions hash to see if the given instruction pointer
2580  * has a direct caller attached to it.
2581  */
2582 unsigned long ftrace_find_rec_direct(unsigned long ip)
2583 {
2584 	struct ftrace_func_entry *entry;
2585 
2586 	entry = __ftrace_lookup_ip(direct_functions, ip);
2587 	if (!entry)
2588 		return 0;
2589 
2590 	return entry->direct;
2591 }
2592 
2593 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2594 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2595 {
2596 	unsigned long addr = READ_ONCE(ops->direct_call);
2597 
2598 	if (!addr)
2599 		return;
2600 
2601 	arch_ftrace_set_direct_caller(fregs, addr);
2602 }
2603 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2604 
2605 /**
2606  * ftrace_get_addr_new - Get the call address to set to
2607  * @rec:  The ftrace record descriptor
2608  *
2609  * If the record has the FTRACE_FL_REGS set, that means that it
2610  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2611  * is not set, then it wants to convert to the normal callback.
2612  *
2613  * Returns: the address of the trampoline to set to
2614  */
2615 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2616 {
2617 	struct ftrace_ops *ops;
2618 	unsigned long addr;
2619 
2620 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2621 	    (ftrace_rec_count(rec) == 1)) {
2622 		addr = ftrace_find_rec_direct(rec->ip);
2623 		if (addr)
2624 			return addr;
2625 		WARN_ON_ONCE(1);
2626 	}
2627 
2628 	/* Trampolines take precedence over regs */
2629 	if (rec->flags & FTRACE_FL_TRAMP) {
2630 		ops = ftrace_find_tramp_ops_new(rec);
2631 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2632 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2633 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2634 			/* Ftrace is shutting down, return anything */
2635 			return (unsigned long)FTRACE_ADDR;
2636 		}
2637 		return ops->trampoline;
2638 	}
2639 
2640 	if (rec->flags & FTRACE_FL_REGS)
2641 		return (unsigned long)FTRACE_REGS_ADDR;
2642 	else
2643 		return (unsigned long)FTRACE_ADDR;
2644 }
2645 
2646 /**
2647  * ftrace_get_addr_curr - Get the call address that is already there
2648  * @rec:  The ftrace record descriptor
2649  *
2650  * The FTRACE_FL_REGS_EN is set when the record already points to
2651  * a function that saves all the regs. Basically the '_EN' version
2652  * represents the current state of the function.
2653  *
2654  * Returns: the address of the trampoline that is currently being called
2655  */
2656 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2657 {
2658 	struct ftrace_ops *ops;
2659 	unsigned long addr;
2660 
2661 	/* Direct calls take precedence over trampolines */
2662 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2663 		addr = ftrace_find_rec_direct(rec->ip);
2664 		if (addr)
2665 			return addr;
2666 		WARN_ON_ONCE(1);
2667 	}
2668 
2669 	/* Trampolines take precedence over regs */
2670 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2671 		ops = ftrace_find_tramp_ops_curr(rec);
2672 		if (FTRACE_WARN_ON(!ops)) {
2673 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2674 				(void *)rec->ip, (void *)rec->ip);
2675 			/* Ftrace is shutting down, return anything */
2676 			return (unsigned long)FTRACE_ADDR;
2677 		}
2678 		return ops->trampoline;
2679 	}
2680 
2681 	if (rec->flags & FTRACE_FL_REGS_EN)
2682 		return (unsigned long)FTRACE_REGS_ADDR;
2683 	else
2684 		return (unsigned long)FTRACE_ADDR;
2685 }
2686 
2687 static int
2688 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2689 {
2690 	unsigned long ftrace_old_addr;
2691 	unsigned long ftrace_addr;
2692 	int ret;
2693 
2694 	ftrace_addr = ftrace_get_addr_new(rec);
2695 
2696 	/* This needs to be done before we call ftrace_update_record */
2697 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2698 
2699 	ret = ftrace_update_record(rec, enable);
2700 
2701 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2702 
2703 	switch (ret) {
2704 	case FTRACE_UPDATE_IGNORE:
2705 		return 0;
2706 
2707 	case FTRACE_UPDATE_MAKE_CALL:
2708 		ftrace_bug_type = FTRACE_BUG_CALL;
2709 		return ftrace_make_call(rec, ftrace_addr);
2710 
2711 	case FTRACE_UPDATE_MAKE_NOP:
2712 		ftrace_bug_type = FTRACE_BUG_NOP;
2713 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2714 
2715 	case FTRACE_UPDATE_MODIFY_CALL:
2716 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2717 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2718 	}
2719 
2720 	return -1; /* unknown ftrace bug */
2721 }
2722 
2723 void __weak ftrace_replace_code(int mod_flags)
2724 {
2725 	struct dyn_ftrace *rec;
2726 	struct ftrace_page *pg;
2727 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2728 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2729 	int failed;
2730 
2731 	if (unlikely(ftrace_disabled))
2732 		return;
2733 
2734 	do_for_each_ftrace_rec(pg, rec) {
2735 
2736 		if (skip_record(rec))
2737 			continue;
2738 
2739 		failed = __ftrace_replace_code(rec, enable);
2740 		if (failed) {
2741 			ftrace_bug(failed, rec);
2742 			/* Stop processing */
2743 			return;
2744 		}
2745 		if (schedulable)
2746 			cond_resched();
2747 	} while_for_each_ftrace_rec();
2748 }
2749 
2750 struct ftrace_rec_iter {
2751 	struct ftrace_page	*pg;
2752 	int			index;
2753 };
2754 
2755 /**
2756  * ftrace_rec_iter_start - start up iterating over traced functions
2757  *
2758  * Returns: an iterator handle that is used to iterate over all
2759  * the records that represent address locations where functions
2760  * are traced.
2761  *
2762  * May return NULL if no records are available.
2763  */
2764 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2765 {
2766 	/*
2767 	 * We only use a single iterator.
2768 	 * Protected by the ftrace_lock mutex.
2769 	 */
2770 	static struct ftrace_rec_iter ftrace_rec_iter;
2771 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2772 
2773 	iter->pg = ftrace_pages_start;
2774 	iter->index = 0;
2775 
2776 	/* Could have empty pages */
2777 	while (iter->pg && !iter->pg->index)
2778 		iter->pg = iter->pg->next;
2779 
2780 	if (!iter->pg)
2781 		return NULL;
2782 
2783 	return iter;
2784 }
2785 
2786 /**
2787  * ftrace_rec_iter_next - get the next record to process.
2788  * @iter: The handle to the iterator.
2789  *
2790  * Returns: the next iterator after the given iterator @iter.
2791  */
2792 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2793 {
2794 	iter->index++;
2795 
2796 	if (iter->index >= iter->pg->index) {
2797 		iter->pg = iter->pg->next;
2798 		iter->index = 0;
2799 
2800 		/* Could have empty pages */
2801 		while (iter->pg && !iter->pg->index)
2802 			iter->pg = iter->pg->next;
2803 	}
2804 
2805 	if (!iter->pg)
2806 		return NULL;
2807 
2808 	return iter;
2809 }
2810 
2811 /**
2812  * ftrace_rec_iter_record - get the record at the iterator location
2813  * @iter: The current iterator location
2814  *
2815  * Returns: the record that the current @iter is at.
2816  */
2817 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2818 {
2819 	return &iter->pg->records[iter->index];
2820 }
2821 
2822 static int
2823 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2824 {
2825 	int ret;
2826 
2827 	if (unlikely(ftrace_disabled))
2828 		return 0;
2829 
2830 	ret = ftrace_init_nop(mod, rec);
2831 	if (ret) {
2832 		ftrace_bug_type = FTRACE_BUG_INIT;
2833 		ftrace_bug(ret, rec);
2834 		return 0;
2835 	}
2836 	return 1;
2837 }
2838 
2839 /*
2840  * archs can override this function if they must do something
2841  * before the modifying code is performed.
2842  */
2843 void __weak ftrace_arch_code_modify_prepare(void)
2844 {
2845 }
2846 
2847 /*
2848  * archs can override this function if they must do something
2849  * after the modifying code is performed.
2850  */
2851 void __weak ftrace_arch_code_modify_post_process(void)
2852 {
2853 }
2854 
2855 static int update_ftrace_func(ftrace_func_t func)
2856 {
2857 	static ftrace_func_t save_func;
2858 
2859 	/* Avoid updating if it hasn't changed */
2860 	if (func == save_func)
2861 		return 0;
2862 
2863 	save_func = func;
2864 
2865 	return ftrace_update_ftrace_func(func);
2866 }
2867 
2868 void ftrace_modify_all_code(int command)
2869 {
2870 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2871 	int mod_flags = 0;
2872 	int err = 0;
2873 
2874 	if (command & FTRACE_MAY_SLEEP)
2875 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2876 
2877 	/*
2878 	 * If the ftrace_caller calls a ftrace_ops func directly,
2879 	 * we need to make sure that it only traces functions it
2880 	 * expects to trace. When doing the switch of functions,
2881 	 * we need to update to the ftrace_ops_list_func first
2882 	 * before the transition between old and new calls are set,
2883 	 * as the ftrace_ops_list_func will check the ops hashes
2884 	 * to make sure the ops are having the right functions
2885 	 * traced.
2886 	 */
2887 	if (update) {
2888 		err = update_ftrace_func(ftrace_ops_list_func);
2889 		if (FTRACE_WARN_ON(err))
2890 			return;
2891 	}
2892 
2893 	if (command & FTRACE_UPDATE_CALLS)
2894 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2895 	else if (command & FTRACE_DISABLE_CALLS)
2896 		ftrace_replace_code(mod_flags);
2897 
2898 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2899 		function_trace_op = set_function_trace_op;
2900 		smp_wmb();
2901 		/* If irqs are disabled, we are in stop machine */
2902 		if (!irqs_disabled())
2903 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2904 		err = update_ftrace_func(ftrace_trace_function);
2905 		if (FTRACE_WARN_ON(err))
2906 			return;
2907 	}
2908 
2909 	if (command & FTRACE_START_FUNC_RET)
2910 		err = ftrace_enable_ftrace_graph_caller();
2911 	else if (command & FTRACE_STOP_FUNC_RET)
2912 		err = ftrace_disable_ftrace_graph_caller();
2913 	FTRACE_WARN_ON(err);
2914 }
2915 
2916 static int __ftrace_modify_code(void *data)
2917 {
2918 	int *command = data;
2919 
2920 	ftrace_modify_all_code(*command);
2921 
2922 	return 0;
2923 }
2924 
2925 /**
2926  * ftrace_run_stop_machine - go back to the stop machine method
2927  * @command: The command to tell ftrace what to do
2928  *
2929  * If an arch needs to fall back to the stop machine method, the
2930  * it can call this function.
2931  */
2932 void ftrace_run_stop_machine(int command)
2933 {
2934 	stop_machine(__ftrace_modify_code, &command, NULL);
2935 }
2936 
2937 /**
2938  * arch_ftrace_update_code - modify the code to trace or not trace
2939  * @command: The command that needs to be done
2940  *
2941  * Archs can override this function if it does not need to
2942  * run stop_machine() to modify code.
2943  */
2944 void __weak arch_ftrace_update_code(int command)
2945 {
2946 	ftrace_run_stop_machine(command);
2947 }
2948 
2949 static void ftrace_run_update_code(int command)
2950 {
2951 	ftrace_arch_code_modify_prepare();
2952 
2953 	/*
2954 	 * By default we use stop_machine() to modify the code.
2955 	 * But archs can do what ever they want as long as it
2956 	 * is safe. The stop_machine() is the safest, but also
2957 	 * produces the most overhead.
2958 	 */
2959 	arch_ftrace_update_code(command);
2960 
2961 	ftrace_arch_code_modify_post_process();
2962 }
2963 
2964 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2965 				   struct ftrace_ops_hash *old_hash)
2966 {
2967 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2968 	ops->old_hash.filter_hash = old_hash->filter_hash;
2969 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2970 	ftrace_run_update_code(command);
2971 	ops->old_hash.filter_hash = NULL;
2972 	ops->old_hash.notrace_hash = NULL;
2973 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2974 }
2975 
2976 static ftrace_func_t saved_ftrace_func;
2977 static int ftrace_start_up;
2978 
2979 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2980 {
2981 }
2982 
2983 /* List of trace_ops that have allocated trampolines */
2984 static LIST_HEAD(ftrace_ops_trampoline_list);
2985 
2986 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2987 {
2988 	lockdep_assert_held(&ftrace_lock);
2989 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2990 }
2991 
2992 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2993 {
2994 	lockdep_assert_held(&ftrace_lock);
2995 	list_del_rcu(&ops->list);
2996 	synchronize_rcu();
2997 }
2998 
2999 /*
3000  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
3001  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
3002  * not a module.
3003  */
3004 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
3005 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
3006 
3007 static void ftrace_trampoline_free(struct ftrace_ops *ops)
3008 {
3009 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
3010 	    ops->trampoline) {
3011 		/*
3012 		 * Record the text poke event before the ksymbol unregister
3013 		 * event.
3014 		 */
3015 		perf_event_text_poke((void *)ops->trampoline,
3016 				     (void *)ops->trampoline,
3017 				     ops->trampoline_size, NULL, 0);
3018 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
3019 				   ops->trampoline, ops->trampoline_size,
3020 				   true, FTRACE_TRAMPOLINE_SYM);
3021 		/* Remove from kallsyms after the perf events */
3022 		ftrace_remove_trampoline_from_kallsyms(ops);
3023 	}
3024 
3025 	arch_ftrace_trampoline_free(ops);
3026 }
3027 
3028 static void ftrace_startup_enable(int command)
3029 {
3030 	if (saved_ftrace_func != ftrace_trace_function) {
3031 		saved_ftrace_func = ftrace_trace_function;
3032 		command |= FTRACE_UPDATE_TRACE_FUNC;
3033 	}
3034 
3035 	if (!command || !ftrace_enabled)
3036 		return;
3037 
3038 	ftrace_run_update_code(command);
3039 }
3040 
3041 static void ftrace_startup_all(int command)
3042 {
3043 	update_all_ops = true;
3044 	ftrace_startup_enable(command);
3045 	update_all_ops = false;
3046 }
3047 
3048 int ftrace_startup(struct ftrace_ops *ops, int command)
3049 {
3050 	int ret;
3051 
3052 	if (unlikely(ftrace_disabled))
3053 		return -ENODEV;
3054 
3055 	ret = __register_ftrace_function(ops);
3056 	if (ret)
3057 		return ret;
3058 
3059 	ftrace_start_up++;
3060 
3061 	/*
3062 	 * Note that ftrace probes uses this to start up
3063 	 * and modify functions it will probe. But we still
3064 	 * set the ADDING flag for modification, as probes
3065 	 * do not have trampolines. If they add them in the
3066 	 * future, then the probes will need to distinguish
3067 	 * between adding and updating probes.
3068 	 */
3069 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
3070 
3071 	ret = ftrace_hash_ipmodify_enable(ops);
3072 	if (ret < 0) {
3073 		/* Rollback registration process */
3074 		__unregister_ftrace_function(ops);
3075 		ftrace_start_up--;
3076 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3077 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
3078 			ftrace_trampoline_free(ops);
3079 		return ret;
3080 	}
3081 
3082 	if (ftrace_hash_rec_enable(ops))
3083 		command |= FTRACE_UPDATE_CALLS;
3084 
3085 	ftrace_startup_enable(command);
3086 
3087 	/*
3088 	 * If ftrace is in an undefined state, we just remove ops from list
3089 	 * to prevent the NULL pointer, instead of totally rolling it back and
3090 	 * free trampoline, because those actions could cause further damage.
3091 	 */
3092 	if (unlikely(ftrace_disabled)) {
3093 		__unregister_ftrace_function(ops);
3094 		return -ENODEV;
3095 	}
3096 
3097 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
3098 
3099 	return 0;
3100 }
3101 
3102 int ftrace_shutdown(struct ftrace_ops *ops, int command)
3103 {
3104 	int ret;
3105 
3106 	if (unlikely(ftrace_disabled))
3107 		return -ENODEV;
3108 
3109 	ret = __unregister_ftrace_function(ops);
3110 	if (ret)
3111 		return ret;
3112 
3113 	ftrace_start_up--;
3114 	/*
3115 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
3116 	 * critical but the ftrace_call callers may be never nopped again after
3117 	 * further ftrace uses.
3118 	 */
3119 	WARN_ON_ONCE(ftrace_start_up < 0);
3120 
3121 	/* Disabling ipmodify never fails */
3122 	ftrace_hash_ipmodify_disable(ops);
3123 
3124 	if (ftrace_hash_rec_disable(ops))
3125 		command |= FTRACE_UPDATE_CALLS;
3126 
3127 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3128 
3129 	if (saved_ftrace_func != ftrace_trace_function) {
3130 		saved_ftrace_func = ftrace_trace_function;
3131 		command |= FTRACE_UPDATE_TRACE_FUNC;
3132 	}
3133 
3134 	if (!command || !ftrace_enabled)
3135 		goto out;
3136 
3137 	/*
3138 	 * If the ops uses a trampoline, then it needs to be
3139 	 * tested first on update.
3140 	 */
3141 	ops->flags |= FTRACE_OPS_FL_REMOVING;
3142 	removed_ops = ops;
3143 
3144 	/* The trampoline logic checks the old hashes */
3145 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
3146 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
3147 
3148 	ftrace_run_update_code(command);
3149 
3150 	/*
3151 	 * If there's no more ops registered with ftrace, run a
3152 	 * sanity check to make sure all rec flags are cleared.
3153 	 */
3154 	if (rcu_dereference_protected(ftrace_ops_list,
3155 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
3156 		struct ftrace_page *pg;
3157 		struct dyn_ftrace *rec;
3158 
3159 		do_for_each_ftrace_rec(pg, rec) {
3160 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_NOCLEAR_FLAGS))
3161 				pr_warn("  %pS flags:%lx\n",
3162 					(void *)rec->ip, rec->flags);
3163 		} while_for_each_ftrace_rec();
3164 	}
3165 
3166 	ops->old_hash.filter_hash = NULL;
3167 	ops->old_hash.notrace_hash = NULL;
3168 
3169 	removed_ops = NULL;
3170 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
3171 
3172 out:
3173 	/*
3174 	 * Dynamic ops may be freed, we must make sure that all
3175 	 * callers are done before leaving this function.
3176 	 */
3177 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
3178 		/*
3179 		 * We need to do a hard force of sched synchronization.
3180 		 * This is because we use preempt_disable() to do RCU, but
3181 		 * the function tracers can be called where RCU is not watching
3182 		 * (like before user_exit()). We can not rely on the RCU
3183 		 * infrastructure to do the synchronization, thus we must do it
3184 		 * ourselves.
3185 		 */
3186 		synchronize_rcu_tasks_rude();
3187 
3188 		/*
3189 		 * When the kernel is preemptive, tasks can be preempted
3190 		 * while on a ftrace trampoline. Just scheduling a task on
3191 		 * a CPU is not good enough to flush them. Calling
3192 		 * synchronize_rcu_tasks() will wait for those tasks to
3193 		 * execute and either schedule voluntarily or enter user space.
3194 		 */
3195 		synchronize_rcu_tasks();
3196 
3197 		ftrace_trampoline_free(ops);
3198 	}
3199 
3200 	return 0;
3201 }
3202 
3203 /* Simply make a copy of @src and return it */
3204 static struct ftrace_hash *copy_hash(struct ftrace_hash *src)
3205 {
3206 	if (ftrace_hash_empty(src))
3207 		return EMPTY_HASH;
3208 
3209 	return alloc_and_copy_ftrace_hash(src->size_bits, src);
3210 }
3211 
3212 /*
3213  * Append @new_hash entries to @hash:
3214  *
3215  *  If @hash is the EMPTY_HASH then it traces all functions and nothing
3216  *  needs to be done.
3217  *
3218  *  If @new_hash is the EMPTY_HASH, then make *hash the EMPTY_HASH so
3219  *  that it traces everything.
3220  *
3221  *  Otherwise, go through all of @new_hash and add anything that @hash
3222  *  doesn't already have, to @hash.
3223  *
3224  *  The filter_hash updates uses just the append_hash() function
3225  *  and the notrace_hash does not.
3226  */
3227 static int append_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash)
3228 {
3229 	struct ftrace_func_entry *entry;
3230 	int size;
3231 	int i;
3232 
3233 	/* An empty hash does everything */
3234 	if (ftrace_hash_empty(*hash))
3235 		return 0;
3236 
3237 	/* If new_hash has everything make hash have everything */
3238 	if (ftrace_hash_empty(new_hash)) {
3239 		free_ftrace_hash(*hash);
3240 		*hash = EMPTY_HASH;
3241 		return 0;
3242 	}
3243 
3244 	size = 1 << new_hash->size_bits;
3245 	for (i = 0; i < size; i++) {
3246 		hlist_for_each_entry(entry, &new_hash->buckets[i], hlist) {
3247 			/* Only add if not already in hash */
3248 			if (!__ftrace_lookup_ip(*hash, entry->ip) &&
3249 			    add_hash_entry(*hash, entry->ip) == NULL)
3250 				return -ENOMEM;
3251 		}
3252 	}
3253 	return 0;
3254 }
3255 
3256 /*
3257  * Add to @hash only those that are in both @new_hash1 and @new_hash2
3258  *
3259  * The notrace_hash updates uses just the intersect_hash() function
3260  * and the filter_hash does not.
3261  */
3262 static int intersect_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash1,
3263 			  struct ftrace_hash *new_hash2)
3264 {
3265 	struct ftrace_func_entry *entry;
3266 	int size;
3267 	int i;
3268 
3269 	/*
3270 	 * If new_hash1 or new_hash2 is the EMPTY_HASH then make the hash
3271 	 * empty as well as empty for notrace means none are notraced.
3272 	 */
3273 	if (ftrace_hash_empty(new_hash1) || ftrace_hash_empty(new_hash2)) {
3274 		free_ftrace_hash(*hash);
3275 		*hash = EMPTY_HASH;
3276 		return 0;
3277 	}
3278 
3279 	size = 1 << new_hash1->size_bits;
3280 	for (i = 0; i < size; i++) {
3281 		hlist_for_each_entry(entry, &new_hash1->buckets[i], hlist) {
3282 			/* Only add if in both @new_hash1 and @new_hash2 */
3283 			if (__ftrace_lookup_ip(new_hash2, entry->ip) &&
3284 			    add_hash_entry(*hash, entry->ip) == NULL)
3285 				return -ENOMEM;
3286 		}
3287 	}
3288 	/* If nothing intersects, make it the empty set */
3289 	if (ftrace_hash_empty(*hash)) {
3290 		free_ftrace_hash(*hash);
3291 		*hash = EMPTY_HASH;
3292 	}
3293 	return 0;
3294 }
3295 
3296 /* Return a new hash that has a union of all @ops->filter_hash entries */
3297 static struct ftrace_hash *append_hashes(struct ftrace_ops *ops)
3298 {
3299 	struct ftrace_hash *new_hash;
3300 	struct ftrace_ops *subops;
3301 	int ret;
3302 
3303 	new_hash = alloc_ftrace_hash(ops->func_hash->filter_hash->size_bits);
3304 	if (!new_hash)
3305 		return NULL;
3306 
3307 	list_for_each_entry(subops, &ops->subop_list, list) {
3308 		ret = append_hash(&new_hash, subops->func_hash->filter_hash);
3309 		if (ret < 0) {
3310 			free_ftrace_hash(new_hash);
3311 			return NULL;
3312 		}
3313 		/* Nothing more to do if new_hash is empty */
3314 		if (ftrace_hash_empty(new_hash))
3315 			break;
3316 	}
3317 	return new_hash;
3318 }
3319 
3320 /* Make @ops trace evenything except what all its subops do not trace */
3321 static struct ftrace_hash *intersect_hashes(struct ftrace_ops *ops)
3322 {
3323 	struct ftrace_hash *new_hash = NULL;
3324 	struct ftrace_ops *subops;
3325 	int size_bits;
3326 	int ret;
3327 
3328 	list_for_each_entry(subops, &ops->subop_list, list) {
3329 		struct ftrace_hash *next_hash;
3330 
3331 		if (!new_hash) {
3332 			size_bits = subops->func_hash->notrace_hash->size_bits;
3333 			new_hash = alloc_and_copy_ftrace_hash(size_bits, ops->func_hash->notrace_hash);
3334 			if (!new_hash)
3335 				return NULL;
3336 			continue;
3337 		}
3338 		size_bits = new_hash->size_bits;
3339 		next_hash = new_hash;
3340 		new_hash = alloc_ftrace_hash(size_bits);
3341 		ret = intersect_hash(&new_hash, next_hash, subops->func_hash->notrace_hash);
3342 		free_ftrace_hash(next_hash);
3343 		if (ret < 0) {
3344 			free_ftrace_hash(new_hash);
3345 			return NULL;
3346 		}
3347 		/* Nothing more to do if new_hash is empty */
3348 		if (ftrace_hash_empty(new_hash))
3349 			break;
3350 	}
3351 	return new_hash;
3352 }
3353 
3354 static bool ops_equal(struct ftrace_hash *A, struct ftrace_hash *B)
3355 {
3356 	struct ftrace_func_entry *entry;
3357 	int size;
3358 	int i;
3359 
3360 	if (ftrace_hash_empty(A))
3361 		return ftrace_hash_empty(B);
3362 
3363 	if (ftrace_hash_empty(B))
3364 		return ftrace_hash_empty(A);
3365 
3366 	if (A->count != B->count)
3367 		return false;
3368 
3369 	size = 1 << A->size_bits;
3370 	for (i = 0; i < size; i++) {
3371 		hlist_for_each_entry(entry, &A->buckets[i], hlist) {
3372 			if (!__ftrace_lookup_ip(B, entry->ip))
3373 				return false;
3374 		}
3375 	}
3376 
3377 	return true;
3378 }
3379 
3380 static void ftrace_ops_update_code(struct ftrace_ops *ops,
3381 				   struct ftrace_ops_hash *old_hash);
3382 
3383 static int __ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
3384 					     struct ftrace_hash **orig_hash,
3385 					     struct ftrace_hash *hash,
3386 					     int enable)
3387 {
3388 	struct ftrace_ops_hash old_hash_ops;
3389 	struct ftrace_hash *old_hash;
3390 	int ret;
3391 
3392 	old_hash = *orig_hash;
3393 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
3394 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
3395 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
3396 	if (!ret) {
3397 		ftrace_ops_update_code(ops, &old_hash_ops);
3398 		free_ftrace_hash_rcu(old_hash);
3399 	}
3400 	return ret;
3401 }
3402 
3403 static int ftrace_update_ops(struct ftrace_ops *ops, struct ftrace_hash *filter_hash,
3404 			     struct ftrace_hash *notrace_hash)
3405 {
3406 	int ret;
3407 
3408 	if (!ops_equal(filter_hash, ops->func_hash->filter_hash)) {
3409 		ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->filter_hash,
3410 							filter_hash, 1);
3411 		if (ret < 0)
3412 			return ret;
3413 	}
3414 
3415 	if (!ops_equal(notrace_hash, ops->func_hash->notrace_hash)) {
3416 		ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->notrace_hash,
3417 							notrace_hash, 0);
3418 		if (ret < 0)
3419 			return ret;
3420 	}
3421 
3422 	return 0;
3423 }
3424 
3425 /**
3426  * ftrace_startup_subops - enable tracing for subops of an ops
3427  * @ops: Manager ops (used to pick all the functions of its subops)
3428  * @subops: A new ops to add to @ops
3429  * @command: Extra commands to use to enable tracing
3430  *
3431  * The @ops is a manager @ops that has the filter that includes all the functions
3432  * that its list of subops are tracing. Adding a new @subops will add the
3433  * functions of @subops to @ops.
3434  */
3435 int ftrace_startup_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command)
3436 {
3437 	struct ftrace_hash *filter_hash;
3438 	struct ftrace_hash *notrace_hash;
3439 	struct ftrace_hash *save_filter_hash;
3440 	struct ftrace_hash *save_notrace_hash;
3441 	int size_bits;
3442 	int ret;
3443 
3444 	if (unlikely(ftrace_disabled))
3445 		return -ENODEV;
3446 
3447 	ftrace_ops_init(ops);
3448 	ftrace_ops_init(subops);
3449 
3450 	if (WARN_ON_ONCE(subops->flags & FTRACE_OPS_FL_ENABLED))
3451 		return -EBUSY;
3452 
3453 	/* Make everything canonical (Just in case!) */
3454 	if (!ops->func_hash->filter_hash)
3455 		ops->func_hash->filter_hash = EMPTY_HASH;
3456 	if (!ops->func_hash->notrace_hash)
3457 		ops->func_hash->notrace_hash = EMPTY_HASH;
3458 	if (!subops->func_hash->filter_hash)
3459 		subops->func_hash->filter_hash = EMPTY_HASH;
3460 	if (!subops->func_hash->notrace_hash)
3461 		subops->func_hash->notrace_hash = EMPTY_HASH;
3462 
3463 	/* For the first subops to ops just enable it normally */
3464 	if (list_empty(&ops->subop_list)) {
3465 		/* Just use the subops hashes */
3466 		filter_hash = copy_hash(subops->func_hash->filter_hash);
3467 		notrace_hash = copy_hash(subops->func_hash->notrace_hash);
3468 		if (!filter_hash || !notrace_hash) {
3469 			free_ftrace_hash(filter_hash);
3470 			free_ftrace_hash(notrace_hash);
3471 			return -ENOMEM;
3472 		}
3473 
3474 		save_filter_hash = ops->func_hash->filter_hash;
3475 		save_notrace_hash = ops->func_hash->notrace_hash;
3476 
3477 		ops->func_hash->filter_hash = filter_hash;
3478 		ops->func_hash->notrace_hash = notrace_hash;
3479 		list_add(&subops->list, &ops->subop_list);
3480 		ret = ftrace_startup(ops, command);
3481 		if (ret < 0) {
3482 			list_del(&subops->list);
3483 			ops->func_hash->filter_hash = save_filter_hash;
3484 			ops->func_hash->notrace_hash = save_notrace_hash;
3485 			free_ftrace_hash(filter_hash);
3486 			free_ftrace_hash(notrace_hash);
3487 		} else {
3488 			free_ftrace_hash(save_filter_hash);
3489 			free_ftrace_hash(save_notrace_hash);
3490 			subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP;
3491 			subops->managed = ops;
3492 		}
3493 		return ret;
3494 	}
3495 
3496 	/*
3497 	 * Here there's already something attached. Here are the rules:
3498 	 *   o If either filter_hash is empty then the final stays empty
3499 	 *      o Otherwise, the final is a superset of both hashes
3500 	 *   o If either notrace_hash is empty then the final stays empty
3501 	 *      o Otherwise, the final is an intersection between the hashes
3502 	 */
3503 	if (ftrace_hash_empty(ops->func_hash->filter_hash) ||
3504 	    ftrace_hash_empty(subops->func_hash->filter_hash)) {
3505 		filter_hash = EMPTY_HASH;
3506 	} else {
3507 		size_bits = max(ops->func_hash->filter_hash->size_bits,
3508 				subops->func_hash->filter_hash->size_bits);
3509 		filter_hash = alloc_and_copy_ftrace_hash(size_bits, ops->func_hash->filter_hash);
3510 		if (!filter_hash)
3511 			return -ENOMEM;
3512 		ret = append_hash(&filter_hash, subops->func_hash->filter_hash);
3513 		if (ret < 0) {
3514 			free_ftrace_hash(filter_hash);
3515 			return ret;
3516 		}
3517 	}
3518 
3519 	if (ftrace_hash_empty(ops->func_hash->notrace_hash) ||
3520 	    ftrace_hash_empty(subops->func_hash->notrace_hash)) {
3521 		notrace_hash = EMPTY_HASH;
3522 	} else {
3523 		size_bits = max(ops->func_hash->filter_hash->size_bits,
3524 				subops->func_hash->filter_hash->size_bits);
3525 		notrace_hash = alloc_ftrace_hash(size_bits);
3526 		if (!notrace_hash) {
3527 			free_ftrace_hash(filter_hash);
3528 			return -ENOMEM;
3529 		}
3530 
3531 		ret = intersect_hash(&notrace_hash, ops->func_hash->filter_hash,
3532 				     subops->func_hash->filter_hash);
3533 		if (ret < 0) {
3534 			free_ftrace_hash(filter_hash);
3535 			free_ftrace_hash(notrace_hash);
3536 			return ret;
3537 		}
3538 	}
3539 
3540 	list_add(&subops->list, &ops->subop_list);
3541 
3542 	ret = ftrace_update_ops(ops, filter_hash, notrace_hash);
3543 	free_ftrace_hash(filter_hash);
3544 	free_ftrace_hash(notrace_hash);
3545 	if (ret < 0) {
3546 		list_del(&subops->list);
3547 	} else {
3548 		subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP;
3549 		subops->managed = ops;
3550 	}
3551 	return ret;
3552 }
3553 
3554 /**
3555  * ftrace_shutdown_subops - Remove a subops from a manager ops
3556  * @ops: A manager ops to remove @subops from
3557  * @subops: The subops to remove from @ops
3558  * @command: Any extra command flags to add to modifying the text
3559  *
3560  * Removes the functions being traced by the @subops from @ops. Note, it
3561  * will not affect functions that are being traced by other subops that
3562  * still exist in @ops.
3563  *
3564  * If the last subops is removed from @ops, then @ops is shutdown normally.
3565  */
3566 int ftrace_shutdown_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command)
3567 {
3568 	struct ftrace_hash *filter_hash;
3569 	struct ftrace_hash *notrace_hash;
3570 	int ret;
3571 
3572 	if (unlikely(ftrace_disabled))
3573 		return -ENODEV;
3574 
3575 	if (WARN_ON_ONCE(!(subops->flags & FTRACE_OPS_FL_ENABLED)))
3576 		return -EINVAL;
3577 
3578 	list_del(&subops->list);
3579 
3580 	if (list_empty(&ops->subop_list)) {
3581 		/* Last one, just disable the current ops */
3582 
3583 		ret = ftrace_shutdown(ops, command);
3584 		if (ret < 0) {
3585 			list_add(&subops->list, &ops->subop_list);
3586 			return ret;
3587 		}
3588 
3589 		subops->flags &= ~FTRACE_OPS_FL_ENABLED;
3590 
3591 		free_ftrace_hash(ops->func_hash->filter_hash);
3592 		free_ftrace_hash(ops->func_hash->notrace_hash);
3593 		ops->func_hash->filter_hash = EMPTY_HASH;
3594 		ops->func_hash->notrace_hash = EMPTY_HASH;
3595 		subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP);
3596 		subops->managed = NULL;
3597 
3598 		return 0;
3599 	}
3600 
3601 	/* Rebuild the hashes without subops */
3602 	filter_hash = append_hashes(ops);
3603 	notrace_hash = intersect_hashes(ops);
3604 	if (!filter_hash || !notrace_hash) {
3605 		free_ftrace_hash(filter_hash);
3606 		free_ftrace_hash(notrace_hash);
3607 		list_add(&subops->list, &ops->subop_list);
3608 		return -ENOMEM;
3609 	}
3610 
3611 	ret = ftrace_update_ops(ops, filter_hash, notrace_hash);
3612 	if (ret < 0) {
3613 		list_add(&subops->list, &ops->subop_list);
3614 	} else {
3615 		subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP);
3616 		subops->managed = NULL;
3617 	}
3618 	free_ftrace_hash(filter_hash);
3619 	free_ftrace_hash(notrace_hash);
3620 	return ret;
3621 }
3622 
3623 static int ftrace_hash_move_and_update_subops(struct ftrace_ops *subops,
3624 					      struct ftrace_hash **orig_subhash,
3625 					      struct ftrace_hash *hash,
3626 					      int enable)
3627 {
3628 	struct ftrace_ops *ops = subops->managed;
3629 	struct ftrace_hash **orig_hash;
3630 	struct ftrace_hash *save_hash;
3631 	struct ftrace_hash *new_hash;
3632 	int ret;
3633 
3634 	/* Manager ops can not be subops (yet) */
3635 	if (WARN_ON_ONCE(!ops || ops->flags & FTRACE_OPS_FL_SUBOP))
3636 		return -EINVAL;
3637 
3638 	/* Move the new hash over to the subops hash */
3639 	save_hash = *orig_subhash;
3640 	*orig_subhash = __ftrace_hash_move(hash);
3641 	if (!*orig_subhash) {
3642 		*orig_subhash = save_hash;
3643 		return -ENOMEM;
3644 	}
3645 
3646 	/* Create a new_hash to hold the ops new functions */
3647 	if (enable) {
3648 		orig_hash = &ops->func_hash->filter_hash;
3649 		new_hash = append_hashes(ops);
3650 	} else {
3651 		orig_hash = &ops->func_hash->notrace_hash;
3652 		new_hash = intersect_hashes(ops);
3653 	}
3654 
3655 	/* Move the hash over to the new hash */
3656 	ret = __ftrace_hash_move_and_update_ops(ops, orig_hash, new_hash, enable);
3657 
3658 	free_ftrace_hash(new_hash);
3659 
3660 	if (ret) {
3661 		/* Put back the original hash */
3662 		free_ftrace_hash_rcu(*orig_subhash);
3663 		*orig_subhash = save_hash;
3664 	} else {
3665 		free_ftrace_hash_rcu(save_hash);
3666 	}
3667 	return ret;
3668 }
3669 
3670 
3671 u64			ftrace_update_time;
3672 u64			ftrace_total_mod_time;
3673 unsigned long		ftrace_update_tot_cnt;
3674 unsigned long		ftrace_number_of_pages;
3675 unsigned long		ftrace_number_of_groups;
3676 
3677 static inline int ops_traces_mod(struct ftrace_ops *ops)
3678 {
3679 	/*
3680 	 * Filter_hash being empty will default to trace module.
3681 	 * But notrace hash requires a test of individual module functions.
3682 	 */
3683 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3684 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3685 }
3686 
3687 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3688 {
3689 	bool init_nop = ftrace_need_init_nop();
3690 	struct ftrace_page *pg;
3691 	struct dyn_ftrace *p;
3692 	u64 start, stop, update_time;
3693 	unsigned long update_cnt = 0;
3694 	unsigned long rec_flags = 0;
3695 	int i;
3696 
3697 	start = ftrace_now(raw_smp_processor_id());
3698 
3699 	/*
3700 	 * When a module is loaded, this function is called to convert
3701 	 * the calls to mcount in its text to nops, and also to create
3702 	 * an entry in the ftrace data. Now, if ftrace is activated
3703 	 * after this call, but before the module sets its text to
3704 	 * read-only, the modification of enabling ftrace can fail if
3705 	 * the read-only is done while ftrace is converting the calls.
3706 	 * To prevent this, the module's records are set as disabled
3707 	 * and will be enabled after the call to set the module's text
3708 	 * to read-only.
3709 	 */
3710 	if (mod)
3711 		rec_flags |= FTRACE_FL_DISABLED;
3712 
3713 	for (pg = new_pgs; pg; pg = pg->next) {
3714 
3715 		for (i = 0; i < pg->index; i++) {
3716 
3717 			/* If something went wrong, bail without enabling anything */
3718 			if (unlikely(ftrace_disabled))
3719 				return -1;
3720 
3721 			p = &pg->records[i];
3722 			p->flags = rec_flags;
3723 
3724 			/*
3725 			 * Do the initial record conversion from mcount jump
3726 			 * to the NOP instructions.
3727 			 */
3728 			if (init_nop && !ftrace_nop_initialize(mod, p))
3729 				break;
3730 
3731 			update_cnt++;
3732 		}
3733 	}
3734 
3735 	stop = ftrace_now(raw_smp_processor_id());
3736 	update_time = stop - start;
3737 	if (mod)
3738 		ftrace_total_mod_time += update_time;
3739 	else
3740 		ftrace_update_time = update_time;
3741 	ftrace_update_tot_cnt += update_cnt;
3742 
3743 	return 0;
3744 }
3745 
3746 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3747 {
3748 	int order;
3749 	int pages;
3750 	int cnt;
3751 
3752 	if (WARN_ON(!count))
3753 		return -EINVAL;
3754 
3755 	/* We want to fill as much as possible, with no empty pages */
3756 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3757 	order = fls(pages) - 1;
3758 
3759  again:
3760 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3761 
3762 	if (!pg->records) {
3763 		/* if we can't allocate this size, try something smaller */
3764 		if (!order)
3765 			return -ENOMEM;
3766 		order--;
3767 		goto again;
3768 	}
3769 
3770 	ftrace_number_of_pages += 1 << order;
3771 	ftrace_number_of_groups++;
3772 
3773 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3774 	pg->order = order;
3775 
3776 	if (cnt > count)
3777 		cnt = count;
3778 
3779 	return cnt;
3780 }
3781 
3782 static void ftrace_free_pages(struct ftrace_page *pages)
3783 {
3784 	struct ftrace_page *pg = pages;
3785 
3786 	while (pg) {
3787 		if (pg->records) {
3788 			free_pages((unsigned long)pg->records, pg->order);
3789 			ftrace_number_of_pages -= 1 << pg->order;
3790 		}
3791 		pages = pg->next;
3792 		kfree(pg);
3793 		pg = pages;
3794 		ftrace_number_of_groups--;
3795 	}
3796 }
3797 
3798 static struct ftrace_page *
3799 ftrace_allocate_pages(unsigned long num_to_init)
3800 {
3801 	struct ftrace_page *start_pg;
3802 	struct ftrace_page *pg;
3803 	int cnt;
3804 
3805 	if (!num_to_init)
3806 		return NULL;
3807 
3808 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3809 	if (!pg)
3810 		return NULL;
3811 
3812 	/*
3813 	 * Try to allocate as much as possible in one continues
3814 	 * location that fills in all of the space. We want to
3815 	 * waste as little space as possible.
3816 	 */
3817 	for (;;) {
3818 		cnt = ftrace_allocate_records(pg, num_to_init);
3819 		if (cnt < 0)
3820 			goto free_pages;
3821 
3822 		num_to_init -= cnt;
3823 		if (!num_to_init)
3824 			break;
3825 
3826 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3827 		if (!pg->next)
3828 			goto free_pages;
3829 
3830 		pg = pg->next;
3831 	}
3832 
3833 	return start_pg;
3834 
3835  free_pages:
3836 	ftrace_free_pages(start_pg);
3837 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3838 	return NULL;
3839 }
3840 
3841 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3842 
3843 struct ftrace_iterator {
3844 	loff_t				pos;
3845 	loff_t				func_pos;
3846 	loff_t				mod_pos;
3847 	struct ftrace_page		*pg;
3848 	struct dyn_ftrace		*func;
3849 	struct ftrace_func_probe	*probe;
3850 	struct ftrace_func_entry	*probe_entry;
3851 	struct trace_parser		parser;
3852 	struct ftrace_hash		*hash;
3853 	struct ftrace_ops		*ops;
3854 	struct trace_array		*tr;
3855 	struct list_head		*mod_list;
3856 	int				pidx;
3857 	int				idx;
3858 	unsigned			flags;
3859 };
3860 
3861 static void *
3862 t_probe_next(struct seq_file *m, loff_t *pos)
3863 {
3864 	struct ftrace_iterator *iter = m->private;
3865 	struct trace_array *tr = iter->ops->private;
3866 	struct list_head *func_probes;
3867 	struct ftrace_hash *hash;
3868 	struct list_head *next;
3869 	struct hlist_node *hnd = NULL;
3870 	struct hlist_head *hhd;
3871 	int size;
3872 
3873 	(*pos)++;
3874 	iter->pos = *pos;
3875 
3876 	if (!tr)
3877 		return NULL;
3878 
3879 	func_probes = &tr->func_probes;
3880 	if (list_empty(func_probes))
3881 		return NULL;
3882 
3883 	if (!iter->probe) {
3884 		next = func_probes->next;
3885 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3886 	}
3887 
3888 	if (iter->probe_entry)
3889 		hnd = &iter->probe_entry->hlist;
3890 
3891 	hash = iter->probe->ops.func_hash->filter_hash;
3892 
3893 	/*
3894 	 * A probe being registered may temporarily have an empty hash
3895 	 * and it's at the end of the func_probes list.
3896 	 */
3897 	if (!hash || hash == EMPTY_HASH)
3898 		return NULL;
3899 
3900 	size = 1 << hash->size_bits;
3901 
3902  retry:
3903 	if (iter->pidx >= size) {
3904 		if (iter->probe->list.next == func_probes)
3905 			return NULL;
3906 		next = iter->probe->list.next;
3907 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3908 		hash = iter->probe->ops.func_hash->filter_hash;
3909 		size = 1 << hash->size_bits;
3910 		iter->pidx = 0;
3911 	}
3912 
3913 	hhd = &hash->buckets[iter->pidx];
3914 
3915 	if (hlist_empty(hhd)) {
3916 		iter->pidx++;
3917 		hnd = NULL;
3918 		goto retry;
3919 	}
3920 
3921 	if (!hnd)
3922 		hnd = hhd->first;
3923 	else {
3924 		hnd = hnd->next;
3925 		if (!hnd) {
3926 			iter->pidx++;
3927 			goto retry;
3928 		}
3929 	}
3930 
3931 	if (WARN_ON_ONCE(!hnd))
3932 		return NULL;
3933 
3934 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3935 
3936 	return iter;
3937 }
3938 
3939 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3940 {
3941 	struct ftrace_iterator *iter = m->private;
3942 	void *p = NULL;
3943 	loff_t l;
3944 
3945 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3946 		return NULL;
3947 
3948 	if (iter->mod_pos > *pos)
3949 		return NULL;
3950 
3951 	iter->probe = NULL;
3952 	iter->probe_entry = NULL;
3953 	iter->pidx = 0;
3954 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3955 		p = t_probe_next(m, &l);
3956 		if (!p)
3957 			break;
3958 	}
3959 	if (!p)
3960 		return NULL;
3961 
3962 	/* Only set this if we have an item */
3963 	iter->flags |= FTRACE_ITER_PROBE;
3964 
3965 	return iter;
3966 }
3967 
3968 static int
3969 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3970 {
3971 	struct ftrace_func_entry *probe_entry;
3972 	struct ftrace_probe_ops *probe_ops;
3973 	struct ftrace_func_probe *probe;
3974 
3975 	probe = iter->probe;
3976 	probe_entry = iter->probe_entry;
3977 
3978 	if (WARN_ON_ONCE(!probe || !probe_entry))
3979 		return -EIO;
3980 
3981 	probe_ops = probe->probe_ops;
3982 
3983 	if (probe_ops->print)
3984 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3985 
3986 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3987 		   (void *)probe_ops->func);
3988 
3989 	return 0;
3990 }
3991 
3992 static void *
3993 t_mod_next(struct seq_file *m, loff_t *pos)
3994 {
3995 	struct ftrace_iterator *iter = m->private;
3996 	struct trace_array *tr = iter->tr;
3997 
3998 	(*pos)++;
3999 	iter->pos = *pos;
4000 
4001 	iter->mod_list = iter->mod_list->next;
4002 
4003 	if (iter->mod_list == &tr->mod_trace ||
4004 	    iter->mod_list == &tr->mod_notrace) {
4005 		iter->flags &= ~FTRACE_ITER_MOD;
4006 		return NULL;
4007 	}
4008 
4009 	iter->mod_pos = *pos;
4010 
4011 	return iter;
4012 }
4013 
4014 static void *t_mod_start(struct seq_file *m, loff_t *pos)
4015 {
4016 	struct ftrace_iterator *iter = m->private;
4017 	void *p = NULL;
4018 	loff_t l;
4019 
4020 	if (iter->func_pos > *pos)
4021 		return NULL;
4022 
4023 	iter->mod_pos = iter->func_pos;
4024 
4025 	/* probes are only available if tr is set */
4026 	if (!iter->tr)
4027 		return NULL;
4028 
4029 	for (l = 0; l <= (*pos - iter->func_pos); ) {
4030 		p = t_mod_next(m, &l);
4031 		if (!p)
4032 			break;
4033 	}
4034 	if (!p) {
4035 		iter->flags &= ~FTRACE_ITER_MOD;
4036 		return t_probe_start(m, pos);
4037 	}
4038 
4039 	/* Only set this if we have an item */
4040 	iter->flags |= FTRACE_ITER_MOD;
4041 
4042 	return iter;
4043 }
4044 
4045 static int
4046 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
4047 {
4048 	struct ftrace_mod_load *ftrace_mod;
4049 	struct trace_array *tr = iter->tr;
4050 
4051 	if (WARN_ON_ONCE(!iter->mod_list) ||
4052 			 iter->mod_list == &tr->mod_trace ||
4053 			 iter->mod_list == &tr->mod_notrace)
4054 		return -EIO;
4055 
4056 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
4057 
4058 	if (ftrace_mod->func)
4059 		seq_printf(m, "%s", ftrace_mod->func);
4060 	else
4061 		seq_putc(m, '*');
4062 
4063 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
4064 
4065 	return 0;
4066 }
4067 
4068 static void *
4069 t_func_next(struct seq_file *m, loff_t *pos)
4070 {
4071 	struct ftrace_iterator *iter = m->private;
4072 	struct dyn_ftrace *rec = NULL;
4073 
4074 	(*pos)++;
4075 
4076  retry:
4077 	if (iter->idx >= iter->pg->index) {
4078 		if (iter->pg->next) {
4079 			iter->pg = iter->pg->next;
4080 			iter->idx = 0;
4081 			goto retry;
4082 		}
4083 	} else {
4084 		rec = &iter->pg->records[iter->idx++];
4085 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
4086 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
4087 
4088 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
4089 		     !(rec->flags & FTRACE_FL_ENABLED)) ||
4090 
4091 		    ((iter->flags & FTRACE_ITER_TOUCHED) &&
4092 		     !(rec->flags & FTRACE_FL_TOUCHED))) {
4093 
4094 			rec = NULL;
4095 			goto retry;
4096 		}
4097 	}
4098 
4099 	if (!rec)
4100 		return NULL;
4101 
4102 	iter->pos = iter->func_pos = *pos;
4103 	iter->func = rec;
4104 
4105 	return iter;
4106 }
4107 
4108 static void *
4109 t_next(struct seq_file *m, void *v, loff_t *pos)
4110 {
4111 	struct ftrace_iterator *iter = m->private;
4112 	loff_t l = *pos; /* t_probe_start() must use original pos */
4113 	void *ret;
4114 
4115 	if (unlikely(ftrace_disabled))
4116 		return NULL;
4117 
4118 	if (iter->flags & FTRACE_ITER_PROBE)
4119 		return t_probe_next(m, pos);
4120 
4121 	if (iter->flags & FTRACE_ITER_MOD)
4122 		return t_mod_next(m, pos);
4123 
4124 	if (iter->flags & FTRACE_ITER_PRINTALL) {
4125 		/* next must increment pos, and t_probe_start does not */
4126 		(*pos)++;
4127 		return t_mod_start(m, &l);
4128 	}
4129 
4130 	ret = t_func_next(m, pos);
4131 
4132 	if (!ret)
4133 		return t_mod_start(m, &l);
4134 
4135 	return ret;
4136 }
4137 
4138 static void reset_iter_read(struct ftrace_iterator *iter)
4139 {
4140 	iter->pos = 0;
4141 	iter->func_pos = 0;
4142 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
4143 }
4144 
4145 static void *t_start(struct seq_file *m, loff_t *pos)
4146 {
4147 	struct ftrace_iterator *iter = m->private;
4148 	void *p = NULL;
4149 	loff_t l;
4150 
4151 	mutex_lock(&ftrace_lock);
4152 
4153 	if (unlikely(ftrace_disabled))
4154 		return NULL;
4155 
4156 	/*
4157 	 * If an lseek was done, then reset and start from beginning.
4158 	 */
4159 	if (*pos < iter->pos)
4160 		reset_iter_read(iter);
4161 
4162 	/*
4163 	 * For set_ftrace_filter reading, if we have the filter
4164 	 * off, we can short cut and just print out that all
4165 	 * functions are enabled.
4166 	 */
4167 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
4168 	    ftrace_hash_empty(iter->hash)) {
4169 		iter->func_pos = 1; /* Account for the message */
4170 		if (*pos > 0)
4171 			return t_mod_start(m, pos);
4172 		iter->flags |= FTRACE_ITER_PRINTALL;
4173 		/* reset in case of seek/pread */
4174 		iter->flags &= ~FTRACE_ITER_PROBE;
4175 		return iter;
4176 	}
4177 
4178 	if (iter->flags & FTRACE_ITER_MOD)
4179 		return t_mod_start(m, pos);
4180 
4181 	/*
4182 	 * Unfortunately, we need to restart at ftrace_pages_start
4183 	 * every time we let go of the ftrace_mutex. This is because
4184 	 * those pointers can change without the lock.
4185 	 */
4186 	iter->pg = ftrace_pages_start;
4187 	iter->idx = 0;
4188 	for (l = 0; l <= *pos; ) {
4189 		p = t_func_next(m, &l);
4190 		if (!p)
4191 			break;
4192 	}
4193 
4194 	if (!p)
4195 		return t_mod_start(m, pos);
4196 
4197 	return iter;
4198 }
4199 
4200 static void t_stop(struct seq_file *m, void *p)
4201 {
4202 	mutex_unlock(&ftrace_lock);
4203 }
4204 
4205 void * __weak
4206 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
4207 {
4208 	return NULL;
4209 }
4210 
4211 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
4212 				struct dyn_ftrace *rec)
4213 {
4214 	void *ptr;
4215 
4216 	ptr = arch_ftrace_trampoline_func(ops, rec);
4217 	if (ptr)
4218 		seq_printf(m, " ->%pS", ptr);
4219 }
4220 
4221 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4222 /*
4223  * Weak functions can still have an mcount/fentry that is saved in
4224  * the __mcount_loc section. These can be detected by having a
4225  * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the
4226  * symbol found by kallsyms is not the function that the mcount/fentry
4227  * is part of. The offset is much greater in these cases.
4228  *
4229  * Test the record to make sure that the ip points to a valid kallsyms
4230  * and if not, mark it disabled.
4231  */
4232 static int test_for_valid_rec(struct dyn_ftrace *rec)
4233 {
4234 	char str[KSYM_SYMBOL_LEN];
4235 	unsigned long offset;
4236 	const char *ret;
4237 
4238 	ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str);
4239 
4240 	/* Weak functions can cause invalid addresses */
4241 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
4242 		rec->flags |= FTRACE_FL_DISABLED;
4243 		return 0;
4244 	}
4245 	return 1;
4246 }
4247 
4248 static struct workqueue_struct *ftrace_check_wq __initdata;
4249 static struct work_struct ftrace_check_work __initdata;
4250 
4251 /*
4252  * Scan all the mcount/fentry entries to make sure they are valid.
4253  */
4254 static __init void ftrace_check_work_func(struct work_struct *work)
4255 {
4256 	struct ftrace_page *pg;
4257 	struct dyn_ftrace *rec;
4258 
4259 	mutex_lock(&ftrace_lock);
4260 	do_for_each_ftrace_rec(pg, rec) {
4261 		test_for_valid_rec(rec);
4262 	} while_for_each_ftrace_rec();
4263 	mutex_unlock(&ftrace_lock);
4264 }
4265 
4266 static int __init ftrace_check_for_weak_functions(void)
4267 {
4268 	INIT_WORK(&ftrace_check_work, ftrace_check_work_func);
4269 
4270 	ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0);
4271 
4272 	queue_work(ftrace_check_wq, &ftrace_check_work);
4273 	return 0;
4274 }
4275 
4276 static int __init ftrace_check_sync(void)
4277 {
4278 	/* Make sure the ftrace_check updates are finished */
4279 	if (ftrace_check_wq)
4280 		destroy_workqueue(ftrace_check_wq);
4281 	return 0;
4282 }
4283 
4284 late_initcall_sync(ftrace_check_sync);
4285 subsys_initcall(ftrace_check_for_weak_functions);
4286 
4287 static int print_rec(struct seq_file *m, unsigned long ip)
4288 {
4289 	unsigned long offset;
4290 	char str[KSYM_SYMBOL_LEN];
4291 	char *modname;
4292 	const char *ret;
4293 
4294 	ret = kallsyms_lookup(ip, NULL, &offset, &modname, str);
4295 	/* Weak functions can cause invalid addresses */
4296 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
4297 		snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld",
4298 			 FTRACE_INVALID_FUNCTION, offset);
4299 		ret = NULL;
4300 	}
4301 
4302 	seq_puts(m, str);
4303 	if (modname)
4304 		seq_printf(m, " [%s]", modname);
4305 	return ret == NULL ? -1 : 0;
4306 }
4307 #else
4308 static inline int test_for_valid_rec(struct dyn_ftrace *rec)
4309 {
4310 	return 1;
4311 }
4312 
4313 static inline int print_rec(struct seq_file *m, unsigned long ip)
4314 {
4315 	seq_printf(m, "%ps", (void *)ip);
4316 	return 0;
4317 }
4318 #endif
4319 
4320 static int t_show(struct seq_file *m, void *v)
4321 {
4322 	struct ftrace_iterator *iter = m->private;
4323 	struct dyn_ftrace *rec;
4324 
4325 	if (iter->flags & FTRACE_ITER_PROBE)
4326 		return t_probe_show(m, iter);
4327 
4328 	if (iter->flags & FTRACE_ITER_MOD)
4329 		return t_mod_show(m, iter);
4330 
4331 	if (iter->flags & FTRACE_ITER_PRINTALL) {
4332 		if (iter->flags & FTRACE_ITER_NOTRACE)
4333 			seq_puts(m, "#### no functions disabled ####\n");
4334 		else
4335 			seq_puts(m, "#### all functions enabled ####\n");
4336 		return 0;
4337 	}
4338 
4339 	rec = iter->func;
4340 
4341 	if (!rec)
4342 		return 0;
4343 
4344 	if (iter->flags & FTRACE_ITER_ADDRS)
4345 		seq_printf(m, "%lx ", rec->ip);
4346 
4347 	if (print_rec(m, rec->ip)) {
4348 		/* This should only happen when a rec is disabled */
4349 		WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED));
4350 		seq_putc(m, '\n');
4351 		return 0;
4352 	}
4353 
4354 	if (iter->flags & (FTRACE_ITER_ENABLED | FTRACE_ITER_TOUCHED)) {
4355 		struct ftrace_ops *ops;
4356 
4357 		seq_printf(m, " (%ld)%s%s%s%s%s",
4358 			   ftrace_rec_count(rec),
4359 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
4360 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
4361 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ",
4362 			   rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ",
4363 			   rec->flags & FTRACE_FL_MODIFIED ? " M " : "   ");
4364 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
4365 			ops = ftrace_find_tramp_ops_any(rec);
4366 			if (ops) {
4367 				do {
4368 					seq_printf(m, "\ttramp: %pS (%pS)",
4369 						   (void *)ops->trampoline,
4370 						   (void *)ops->func);
4371 					add_trampoline_func(m, ops, rec);
4372 					ops = ftrace_find_tramp_ops_next(rec, ops);
4373 				} while (ops);
4374 			} else
4375 				seq_puts(m, "\ttramp: ERROR!");
4376 		} else {
4377 			add_trampoline_func(m, NULL, rec);
4378 		}
4379 		if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
4380 			ops = ftrace_find_unique_ops(rec);
4381 			if (ops) {
4382 				seq_printf(m, "\tops: %pS (%pS)",
4383 					   ops, ops->func);
4384 			} else {
4385 				seq_puts(m, "\tops: ERROR!");
4386 			}
4387 		}
4388 		if (rec->flags & FTRACE_FL_DIRECT) {
4389 			unsigned long direct;
4390 
4391 			direct = ftrace_find_rec_direct(rec->ip);
4392 			if (direct)
4393 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
4394 		}
4395 	}
4396 
4397 	seq_putc(m, '\n');
4398 
4399 	return 0;
4400 }
4401 
4402 static const struct seq_operations show_ftrace_seq_ops = {
4403 	.start = t_start,
4404 	.next = t_next,
4405 	.stop = t_stop,
4406 	.show = t_show,
4407 };
4408 
4409 static int
4410 ftrace_avail_open(struct inode *inode, struct file *file)
4411 {
4412 	struct ftrace_iterator *iter;
4413 	int ret;
4414 
4415 	ret = security_locked_down(LOCKDOWN_TRACEFS);
4416 	if (ret)
4417 		return ret;
4418 
4419 	if (unlikely(ftrace_disabled))
4420 		return -ENODEV;
4421 
4422 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4423 	if (!iter)
4424 		return -ENOMEM;
4425 
4426 	iter->pg = ftrace_pages_start;
4427 	iter->ops = &global_ops;
4428 
4429 	return 0;
4430 }
4431 
4432 static int
4433 ftrace_enabled_open(struct inode *inode, struct file *file)
4434 {
4435 	struct ftrace_iterator *iter;
4436 
4437 	/*
4438 	 * This shows us what functions are currently being
4439 	 * traced and by what. Not sure if we want lockdown
4440 	 * to hide such critical information for an admin.
4441 	 * Although, perhaps it can show information we don't
4442 	 * want people to see, but if something is tracing
4443 	 * something, we probably want to know about it.
4444 	 */
4445 
4446 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4447 	if (!iter)
4448 		return -ENOMEM;
4449 
4450 	iter->pg = ftrace_pages_start;
4451 	iter->flags = FTRACE_ITER_ENABLED;
4452 	iter->ops = &global_ops;
4453 
4454 	return 0;
4455 }
4456 
4457 static int
4458 ftrace_touched_open(struct inode *inode, struct file *file)
4459 {
4460 	struct ftrace_iterator *iter;
4461 
4462 	/*
4463 	 * This shows us what functions have ever been enabled
4464 	 * (traced, direct, patched, etc). Not sure if we want lockdown
4465 	 * to hide such critical information for an admin.
4466 	 * Although, perhaps it can show information we don't
4467 	 * want people to see, but if something had traced
4468 	 * something, we probably want to know about it.
4469 	 */
4470 
4471 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4472 	if (!iter)
4473 		return -ENOMEM;
4474 
4475 	iter->pg = ftrace_pages_start;
4476 	iter->flags = FTRACE_ITER_TOUCHED;
4477 	iter->ops = &global_ops;
4478 
4479 	return 0;
4480 }
4481 
4482 static int
4483 ftrace_avail_addrs_open(struct inode *inode, struct file *file)
4484 {
4485 	struct ftrace_iterator *iter;
4486 	int ret;
4487 
4488 	ret = security_locked_down(LOCKDOWN_TRACEFS);
4489 	if (ret)
4490 		return ret;
4491 
4492 	if (unlikely(ftrace_disabled))
4493 		return -ENODEV;
4494 
4495 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4496 	if (!iter)
4497 		return -ENOMEM;
4498 
4499 	iter->pg = ftrace_pages_start;
4500 	iter->flags = FTRACE_ITER_ADDRS;
4501 	iter->ops = &global_ops;
4502 
4503 	return 0;
4504 }
4505 
4506 /**
4507  * ftrace_regex_open - initialize function tracer filter files
4508  * @ops: The ftrace_ops that hold the hash filters
4509  * @flag: The type of filter to process
4510  * @inode: The inode, usually passed in to your open routine
4511  * @file: The file, usually passed in to your open routine
4512  *
4513  * ftrace_regex_open() initializes the filter files for the
4514  * @ops. Depending on @flag it may process the filter hash or
4515  * the notrace hash of @ops. With this called from the open
4516  * routine, you can use ftrace_filter_write() for the write
4517  * routine if @flag has FTRACE_ITER_FILTER set, or
4518  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
4519  * tracing_lseek() should be used as the lseek routine, and
4520  * release must call ftrace_regex_release().
4521  *
4522  * Returns: 0 on success or a negative errno value on failure
4523  */
4524 int
4525 ftrace_regex_open(struct ftrace_ops *ops, int flag,
4526 		  struct inode *inode, struct file *file)
4527 {
4528 	struct ftrace_iterator *iter;
4529 	struct ftrace_hash *hash;
4530 	struct list_head *mod_head;
4531 	struct trace_array *tr = ops->private;
4532 	int ret = -ENOMEM;
4533 
4534 	ftrace_ops_init(ops);
4535 
4536 	if (unlikely(ftrace_disabled))
4537 		return -ENODEV;
4538 
4539 	if (tracing_check_open_get_tr(tr))
4540 		return -ENODEV;
4541 
4542 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
4543 	if (!iter)
4544 		goto out;
4545 
4546 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
4547 		goto out;
4548 
4549 	iter->ops = ops;
4550 	iter->flags = flag;
4551 	iter->tr = tr;
4552 
4553 	mutex_lock(&ops->func_hash->regex_lock);
4554 
4555 	if (flag & FTRACE_ITER_NOTRACE) {
4556 		hash = ops->func_hash->notrace_hash;
4557 		mod_head = tr ? &tr->mod_notrace : NULL;
4558 	} else {
4559 		hash = ops->func_hash->filter_hash;
4560 		mod_head = tr ? &tr->mod_trace : NULL;
4561 	}
4562 
4563 	iter->mod_list = mod_head;
4564 
4565 	if (file->f_mode & FMODE_WRITE) {
4566 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
4567 
4568 		if (file->f_flags & O_TRUNC) {
4569 			iter->hash = alloc_ftrace_hash(size_bits);
4570 			clear_ftrace_mod_list(mod_head);
4571 	        } else {
4572 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
4573 		}
4574 
4575 		if (!iter->hash) {
4576 			trace_parser_put(&iter->parser);
4577 			goto out_unlock;
4578 		}
4579 	} else
4580 		iter->hash = hash;
4581 
4582 	ret = 0;
4583 
4584 	if (file->f_mode & FMODE_READ) {
4585 		iter->pg = ftrace_pages_start;
4586 
4587 		ret = seq_open(file, &show_ftrace_seq_ops);
4588 		if (!ret) {
4589 			struct seq_file *m = file->private_data;
4590 			m->private = iter;
4591 		} else {
4592 			/* Failed */
4593 			free_ftrace_hash(iter->hash);
4594 			trace_parser_put(&iter->parser);
4595 		}
4596 	} else
4597 		file->private_data = iter;
4598 
4599  out_unlock:
4600 	mutex_unlock(&ops->func_hash->regex_lock);
4601 
4602  out:
4603 	if (ret) {
4604 		kfree(iter);
4605 		if (tr)
4606 			trace_array_put(tr);
4607 	}
4608 
4609 	return ret;
4610 }
4611 
4612 static int
4613 ftrace_filter_open(struct inode *inode, struct file *file)
4614 {
4615 	struct ftrace_ops *ops = inode->i_private;
4616 
4617 	/* Checks for tracefs lockdown */
4618 	return ftrace_regex_open(ops,
4619 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
4620 			inode, file);
4621 }
4622 
4623 static int
4624 ftrace_notrace_open(struct inode *inode, struct file *file)
4625 {
4626 	struct ftrace_ops *ops = inode->i_private;
4627 
4628 	/* Checks for tracefs lockdown */
4629 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
4630 				 inode, file);
4631 }
4632 
4633 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
4634 struct ftrace_glob {
4635 	char *search;
4636 	unsigned len;
4637 	int type;
4638 };
4639 
4640 /*
4641  * If symbols in an architecture don't correspond exactly to the user-visible
4642  * name of what they represent, it is possible to define this function to
4643  * perform the necessary adjustments.
4644 */
4645 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
4646 {
4647 	return str;
4648 }
4649 
4650 static int ftrace_match(char *str, struct ftrace_glob *g)
4651 {
4652 	int matched = 0;
4653 	int slen;
4654 
4655 	str = arch_ftrace_match_adjust(str, g->search);
4656 
4657 	switch (g->type) {
4658 	case MATCH_FULL:
4659 		if (strcmp(str, g->search) == 0)
4660 			matched = 1;
4661 		break;
4662 	case MATCH_FRONT_ONLY:
4663 		if (strncmp(str, g->search, g->len) == 0)
4664 			matched = 1;
4665 		break;
4666 	case MATCH_MIDDLE_ONLY:
4667 		if (strstr(str, g->search))
4668 			matched = 1;
4669 		break;
4670 	case MATCH_END_ONLY:
4671 		slen = strlen(str);
4672 		if (slen >= g->len &&
4673 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
4674 			matched = 1;
4675 		break;
4676 	case MATCH_GLOB:
4677 		if (glob_match(g->search, str))
4678 			matched = 1;
4679 		break;
4680 	}
4681 
4682 	return matched;
4683 }
4684 
4685 static int
4686 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
4687 {
4688 	struct ftrace_func_entry *entry;
4689 	int ret = 0;
4690 
4691 	entry = ftrace_lookup_ip(hash, rec->ip);
4692 	if (clear_filter) {
4693 		/* Do nothing if it doesn't exist */
4694 		if (!entry)
4695 			return 0;
4696 
4697 		free_hash_entry(hash, entry);
4698 	} else {
4699 		/* Do nothing if it exists */
4700 		if (entry)
4701 			return 0;
4702 		if (add_hash_entry(hash, rec->ip) == NULL)
4703 			ret = -ENOMEM;
4704 	}
4705 	return ret;
4706 }
4707 
4708 static int
4709 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
4710 		 int clear_filter)
4711 {
4712 	long index;
4713 	struct ftrace_page *pg;
4714 	struct dyn_ftrace *rec;
4715 
4716 	/* The index starts at 1 */
4717 	if (kstrtoul(func_g->search, 0, &index) || --index < 0)
4718 		return 0;
4719 
4720 	do_for_each_ftrace_rec(pg, rec) {
4721 		if (pg->index <= index) {
4722 			index -= pg->index;
4723 			/* this is a double loop, break goes to the next page */
4724 			break;
4725 		}
4726 		rec = &pg->records[index];
4727 		enter_record(hash, rec, clear_filter);
4728 		return 1;
4729 	} while_for_each_ftrace_rec();
4730 	return 0;
4731 }
4732 
4733 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4734 static int lookup_ip(unsigned long ip, char **modname, char *str)
4735 {
4736 	unsigned long offset;
4737 
4738 	kallsyms_lookup(ip, NULL, &offset, modname, str);
4739 	if (offset > FTRACE_MCOUNT_MAX_OFFSET)
4740 		return -1;
4741 	return 0;
4742 }
4743 #else
4744 static int lookup_ip(unsigned long ip, char **modname, char *str)
4745 {
4746 	kallsyms_lookup(ip, NULL, NULL, modname, str);
4747 	return 0;
4748 }
4749 #endif
4750 
4751 static int
4752 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
4753 		struct ftrace_glob *mod_g, int exclude_mod)
4754 {
4755 	char str[KSYM_SYMBOL_LEN];
4756 	char *modname;
4757 
4758 	if (lookup_ip(rec->ip, &modname, str)) {
4759 		/* This should only happen when a rec is disabled */
4760 		WARN_ON_ONCE(system_state == SYSTEM_RUNNING &&
4761 			     !(rec->flags & FTRACE_FL_DISABLED));
4762 		return 0;
4763 	}
4764 
4765 	if (mod_g) {
4766 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
4767 
4768 		/* blank module name to match all modules */
4769 		if (!mod_g->len) {
4770 			/* blank module globbing: modname xor exclude_mod */
4771 			if (!exclude_mod != !modname)
4772 				goto func_match;
4773 			return 0;
4774 		}
4775 
4776 		/*
4777 		 * exclude_mod is set to trace everything but the given
4778 		 * module. If it is set and the module matches, then
4779 		 * return 0. If it is not set, and the module doesn't match
4780 		 * also return 0. Otherwise, check the function to see if
4781 		 * that matches.
4782 		 */
4783 		if (!mod_matches == !exclude_mod)
4784 			return 0;
4785 func_match:
4786 		/* blank search means to match all funcs in the mod */
4787 		if (!func_g->len)
4788 			return 1;
4789 	}
4790 
4791 	return ftrace_match(str, func_g);
4792 }
4793 
4794 static int
4795 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4796 {
4797 	struct ftrace_page *pg;
4798 	struct dyn_ftrace *rec;
4799 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4800 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4801 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4802 	int exclude_mod = 0;
4803 	int found = 0;
4804 	int ret;
4805 	int clear_filter = 0;
4806 
4807 	if (func) {
4808 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4809 						 &clear_filter);
4810 		func_g.len = strlen(func_g.search);
4811 	}
4812 
4813 	if (mod) {
4814 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4815 				&mod_g.search, &exclude_mod);
4816 		mod_g.len = strlen(mod_g.search);
4817 	}
4818 
4819 	guard(mutex)(&ftrace_lock);
4820 
4821 	if (unlikely(ftrace_disabled))
4822 		return 0;
4823 
4824 	if (func_g.type == MATCH_INDEX)
4825 		return add_rec_by_index(hash, &func_g, clear_filter);
4826 
4827 	do_for_each_ftrace_rec(pg, rec) {
4828 
4829 		if (rec->flags & FTRACE_FL_DISABLED)
4830 			continue;
4831 
4832 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4833 			ret = enter_record(hash, rec, clear_filter);
4834 			if (ret < 0)
4835 				return ret;
4836 			found = 1;
4837 		}
4838 		cond_resched();
4839 	} while_for_each_ftrace_rec();
4840 
4841 	return found;
4842 }
4843 
4844 static int
4845 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4846 {
4847 	return match_records(hash, buff, len, NULL);
4848 }
4849 
4850 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4851 				   struct ftrace_ops_hash *old_hash)
4852 {
4853 	struct ftrace_ops *op;
4854 
4855 	if (!ftrace_enabled)
4856 		return;
4857 
4858 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4859 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4860 		return;
4861 	}
4862 
4863 	/*
4864 	 * If this is the shared global_ops filter, then we need to
4865 	 * check if there is another ops that shares it, is enabled.
4866 	 * If so, we still need to run the modify code.
4867 	 */
4868 	if (ops->func_hash != &global_ops.local_hash)
4869 		return;
4870 
4871 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4872 		if (op->func_hash == &global_ops.local_hash &&
4873 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4874 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4875 			/* Only need to do this once */
4876 			return;
4877 		}
4878 	} while_for_each_ftrace_op(op);
4879 }
4880 
4881 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4882 					   struct ftrace_hash **orig_hash,
4883 					   struct ftrace_hash *hash,
4884 					   int enable)
4885 {
4886 	if (ops->flags & FTRACE_OPS_FL_SUBOP)
4887 		return ftrace_hash_move_and_update_subops(ops, orig_hash, hash, enable);
4888 
4889 	/*
4890 	 * If this ops is not enabled, it could be sharing its filters
4891 	 * with a subop. If that's the case, update the subop instead of
4892 	 * this ops. Shared filters are only allowed to have one ops set
4893 	 * at a time, and if we update the ops that is not enabled,
4894 	 * it will not affect subops that share it.
4895 	 */
4896 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) {
4897 		struct ftrace_ops *op;
4898 
4899 		/* Check if any other manager subops maps to this hash */
4900 		do_for_each_ftrace_op(op, ftrace_ops_list) {
4901 			struct ftrace_ops *subops;
4902 
4903 			list_for_each_entry(subops, &op->subop_list, list) {
4904 				if ((subops->flags & FTRACE_OPS_FL_ENABLED) &&
4905 				     subops->func_hash == ops->func_hash) {
4906 					return ftrace_hash_move_and_update_subops(subops, orig_hash, hash, enable);
4907 				}
4908 			}
4909 		} while_for_each_ftrace_op(op);
4910 	}
4911 
4912 	return __ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4913 }
4914 
4915 static bool module_exists(const char *module)
4916 {
4917 	/* All modules have the symbol __this_module */
4918 	static const char this_mod[] = "__this_module";
4919 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4920 	unsigned long val;
4921 	int n;
4922 
4923 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4924 
4925 	if (n > sizeof(modname) - 1)
4926 		return false;
4927 
4928 	val = module_kallsyms_lookup_name(modname);
4929 	return val != 0;
4930 }
4931 
4932 static int cache_mod(struct trace_array *tr,
4933 		     const char *func, char *module, int enable)
4934 {
4935 	struct ftrace_mod_load *ftrace_mod, *n;
4936 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4937 
4938 	guard(mutex)(&ftrace_lock);
4939 
4940 	/* We do not cache inverse filters */
4941 	if (func[0] == '!') {
4942 		int ret = -EINVAL;
4943 
4944 		func++;
4945 
4946 		/* Look to remove this hash */
4947 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4948 			if (strcmp(ftrace_mod->module, module) != 0)
4949 				continue;
4950 
4951 			/* no func matches all */
4952 			if (strcmp(func, "*") == 0 ||
4953 			    (ftrace_mod->func &&
4954 			     strcmp(ftrace_mod->func, func) == 0)) {
4955 				ret = 0;
4956 				free_ftrace_mod(ftrace_mod);
4957 				continue;
4958 			}
4959 		}
4960 		return ret;
4961 	}
4962 
4963 	/* We only care about modules that have not been loaded yet */
4964 	if (module_exists(module))
4965 		return -EINVAL;
4966 
4967 	/* Save this string off, and execute it when the module is loaded */
4968 	return ftrace_add_mod(tr, func, module, enable);
4969 }
4970 
4971 #ifdef CONFIG_MODULES
4972 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4973 			     char *mod, bool enable)
4974 {
4975 	struct ftrace_mod_load *ftrace_mod, *n;
4976 	struct ftrace_hash **orig_hash, *new_hash;
4977 	LIST_HEAD(process_mods);
4978 	char *func;
4979 
4980 	mutex_lock(&ops->func_hash->regex_lock);
4981 
4982 	if (enable)
4983 		orig_hash = &ops->func_hash->filter_hash;
4984 	else
4985 		orig_hash = &ops->func_hash->notrace_hash;
4986 
4987 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4988 					      *orig_hash);
4989 	if (!new_hash)
4990 		goto out; /* warn? */
4991 
4992 	mutex_lock(&ftrace_lock);
4993 
4994 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4995 
4996 		if (strcmp(ftrace_mod->module, mod) != 0)
4997 			continue;
4998 
4999 		if (ftrace_mod->func)
5000 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
5001 		else
5002 			func = kstrdup("*", GFP_KERNEL);
5003 
5004 		if (!func) /* warn? */
5005 			continue;
5006 
5007 		list_move(&ftrace_mod->list, &process_mods);
5008 
5009 		/* Use the newly allocated func, as it may be "*" */
5010 		kfree(ftrace_mod->func);
5011 		ftrace_mod->func = func;
5012 	}
5013 
5014 	mutex_unlock(&ftrace_lock);
5015 
5016 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
5017 
5018 		func = ftrace_mod->func;
5019 
5020 		/* Grabs ftrace_lock, which is why we have this extra step */
5021 		match_records(new_hash, func, strlen(func), mod);
5022 		free_ftrace_mod(ftrace_mod);
5023 	}
5024 
5025 	if (enable && list_empty(head))
5026 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
5027 
5028 	mutex_lock(&ftrace_lock);
5029 
5030 	ftrace_hash_move_and_update_ops(ops, orig_hash,
5031 					      new_hash, enable);
5032 	mutex_unlock(&ftrace_lock);
5033 
5034  out:
5035 	mutex_unlock(&ops->func_hash->regex_lock);
5036 
5037 	free_ftrace_hash(new_hash);
5038 }
5039 
5040 static void process_cached_mods(const char *mod_name)
5041 {
5042 	struct trace_array *tr;
5043 	char *mod;
5044 
5045 	mod = kstrdup(mod_name, GFP_KERNEL);
5046 	if (!mod)
5047 		return;
5048 
5049 	mutex_lock(&trace_types_lock);
5050 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
5051 		if (!list_empty(&tr->mod_trace))
5052 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
5053 		if (!list_empty(&tr->mod_notrace))
5054 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
5055 	}
5056 	mutex_unlock(&trace_types_lock);
5057 
5058 	kfree(mod);
5059 }
5060 #endif
5061 
5062 /*
5063  * We register the module command as a template to show others how
5064  * to register the a command as well.
5065  */
5066 
5067 static int
5068 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
5069 		    char *func_orig, char *cmd, char *module, int enable)
5070 {
5071 	char *func;
5072 	int ret;
5073 
5074 	if (!tr)
5075 		return -ENODEV;
5076 
5077 	/* match_records() modifies func, and we need the original */
5078 	func = kstrdup(func_orig, GFP_KERNEL);
5079 	if (!func)
5080 		return -ENOMEM;
5081 
5082 	/*
5083 	 * cmd == 'mod' because we only registered this func
5084 	 * for the 'mod' ftrace_func_command.
5085 	 * But if you register one func with multiple commands,
5086 	 * you can tell which command was used by the cmd
5087 	 * parameter.
5088 	 */
5089 	ret = match_records(hash, func, strlen(func), module);
5090 	kfree(func);
5091 
5092 	if (!ret)
5093 		return cache_mod(tr, func_orig, module, enable);
5094 	if (ret < 0)
5095 		return ret;
5096 	return 0;
5097 }
5098 
5099 static struct ftrace_func_command ftrace_mod_cmd = {
5100 	.name			= "mod",
5101 	.func			= ftrace_mod_callback,
5102 };
5103 
5104 static int __init ftrace_mod_cmd_init(void)
5105 {
5106 	return register_ftrace_command(&ftrace_mod_cmd);
5107 }
5108 core_initcall(ftrace_mod_cmd_init);
5109 
5110 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
5111 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
5112 {
5113 	struct ftrace_probe_ops *probe_ops;
5114 	struct ftrace_func_probe *probe;
5115 
5116 	probe = container_of(op, struct ftrace_func_probe, ops);
5117 	probe_ops = probe->probe_ops;
5118 
5119 	/*
5120 	 * Disable preemption for these calls to prevent a RCU grace
5121 	 * period. This syncs the hash iteration and freeing of items
5122 	 * on the hash. rcu_read_lock is too dangerous here.
5123 	 */
5124 	preempt_disable_notrace();
5125 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
5126 	preempt_enable_notrace();
5127 }
5128 
5129 struct ftrace_func_map {
5130 	struct ftrace_func_entry	entry;
5131 	void				*data;
5132 };
5133 
5134 struct ftrace_func_mapper {
5135 	struct ftrace_hash		hash;
5136 };
5137 
5138 /**
5139  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
5140  *
5141  * Returns: a ftrace_func_mapper descriptor that can be used to map ips to data.
5142  */
5143 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
5144 {
5145 	struct ftrace_hash *hash;
5146 
5147 	/*
5148 	 * The mapper is simply a ftrace_hash, but since the entries
5149 	 * in the hash are not ftrace_func_entry type, we define it
5150 	 * as a separate structure.
5151 	 */
5152 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5153 	return (struct ftrace_func_mapper *)hash;
5154 }
5155 
5156 /**
5157  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
5158  * @mapper: The mapper that has the ip maps
5159  * @ip: the instruction pointer to find the data for
5160  *
5161  * Returns: the data mapped to @ip if found otherwise NULL. The return
5162  * is actually the address of the mapper data pointer. The address is
5163  * returned for use cases where the data is no bigger than a long, and
5164  * the user can use the data pointer as its data instead of having to
5165  * allocate more memory for the reference.
5166  */
5167 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
5168 				  unsigned long ip)
5169 {
5170 	struct ftrace_func_entry *entry;
5171 	struct ftrace_func_map *map;
5172 
5173 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5174 	if (!entry)
5175 		return NULL;
5176 
5177 	map = (struct ftrace_func_map *)entry;
5178 	return &map->data;
5179 }
5180 
5181 /**
5182  * ftrace_func_mapper_add_ip - Map some data to an ip
5183  * @mapper: The mapper that has the ip maps
5184  * @ip: The instruction pointer address to map @data to
5185  * @data: The data to map to @ip
5186  *
5187  * Returns: 0 on success otherwise an error.
5188  */
5189 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
5190 			      unsigned long ip, void *data)
5191 {
5192 	struct ftrace_func_entry *entry;
5193 	struct ftrace_func_map *map;
5194 
5195 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5196 	if (entry)
5197 		return -EBUSY;
5198 
5199 	map = kmalloc(sizeof(*map), GFP_KERNEL);
5200 	if (!map)
5201 		return -ENOMEM;
5202 
5203 	map->entry.ip = ip;
5204 	map->data = data;
5205 
5206 	__add_hash_entry(&mapper->hash, &map->entry);
5207 
5208 	return 0;
5209 }
5210 
5211 /**
5212  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
5213  * @mapper: The mapper that has the ip maps
5214  * @ip: The instruction pointer address to remove the data from
5215  *
5216  * Returns: the data if it is found, otherwise NULL.
5217  * Note, if the data pointer is used as the data itself, (see
5218  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
5219  * if the data pointer was set to zero.
5220  */
5221 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
5222 				   unsigned long ip)
5223 {
5224 	struct ftrace_func_entry *entry;
5225 	struct ftrace_func_map *map;
5226 	void *data;
5227 
5228 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5229 	if (!entry)
5230 		return NULL;
5231 
5232 	map = (struct ftrace_func_map *)entry;
5233 	data = map->data;
5234 
5235 	remove_hash_entry(&mapper->hash, entry);
5236 	kfree(entry);
5237 
5238 	return data;
5239 }
5240 
5241 /**
5242  * free_ftrace_func_mapper - free a mapping of ips and data
5243  * @mapper: The mapper that has the ip maps
5244  * @free_func: A function to be called on each data item.
5245  *
5246  * This is used to free the function mapper. The @free_func is optional
5247  * and can be used if the data needs to be freed as well.
5248  */
5249 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
5250 			     ftrace_mapper_func free_func)
5251 {
5252 	struct ftrace_func_entry *entry;
5253 	struct ftrace_func_map *map;
5254 	struct hlist_head *hhd;
5255 	int size, i;
5256 
5257 	if (!mapper)
5258 		return;
5259 
5260 	if (free_func && mapper->hash.count) {
5261 		size = 1 << mapper->hash.size_bits;
5262 		for (i = 0; i < size; i++) {
5263 			hhd = &mapper->hash.buckets[i];
5264 			hlist_for_each_entry(entry, hhd, hlist) {
5265 				map = (struct ftrace_func_map *)entry;
5266 				free_func(map);
5267 			}
5268 		}
5269 	}
5270 	free_ftrace_hash(&mapper->hash);
5271 }
5272 
5273 static void release_probe(struct ftrace_func_probe *probe)
5274 {
5275 	struct ftrace_probe_ops *probe_ops;
5276 
5277 	guard(mutex)(&ftrace_lock);
5278 
5279 	WARN_ON(probe->ref <= 0);
5280 
5281 	/* Subtract the ref that was used to protect this instance */
5282 	probe->ref--;
5283 
5284 	if (!probe->ref) {
5285 		probe_ops = probe->probe_ops;
5286 		/*
5287 		 * Sending zero as ip tells probe_ops to free
5288 		 * the probe->data itself
5289 		 */
5290 		if (probe_ops->free)
5291 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
5292 		list_del(&probe->list);
5293 		kfree(probe);
5294 	}
5295 }
5296 
5297 static void acquire_probe_locked(struct ftrace_func_probe *probe)
5298 {
5299 	/*
5300 	 * Add one ref to keep it from being freed when releasing the
5301 	 * ftrace_lock mutex.
5302 	 */
5303 	probe->ref++;
5304 }
5305 
5306 int
5307 register_ftrace_function_probe(char *glob, struct trace_array *tr,
5308 			       struct ftrace_probe_ops *probe_ops,
5309 			       void *data)
5310 {
5311 	struct ftrace_func_probe *probe = NULL, *iter;
5312 	struct ftrace_func_entry *entry;
5313 	struct ftrace_hash **orig_hash;
5314 	struct ftrace_hash *old_hash;
5315 	struct ftrace_hash *hash;
5316 	int count = 0;
5317 	int size;
5318 	int ret;
5319 	int i;
5320 
5321 	if (WARN_ON(!tr))
5322 		return -EINVAL;
5323 
5324 	/* We do not support '!' for function probes */
5325 	if (WARN_ON(glob[0] == '!'))
5326 		return -EINVAL;
5327 
5328 
5329 	mutex_lock(&ftrace_lock);
5330 	/* Check if the probe_ops is already registered */
5331 	list_for_each_entry(iter, &tr->func_probes, list) {
5332 		if (iter->probe_ops == probe_ops) {
5333 			probe = iter;
5334 			break;
5335 		}
5336 	}
5337 	if (!probe) {
5338 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
5339 		if (!probe) {
5340 			mutex_unlock(&ftrace_lock);
5341 			return -ENOMEM;
5342 		}
5343 		probe->probe_ops = probe_ops;
5344 		probe->ops.func = function_trace_probe_call;
5345 		probe->tr = tr;
5346 		ftrace_ops_init(&probe->ops);
5347 		list_add(&probe->list, &tr->func_probes);
5348 	}
5349 
5350 	acquire_probe_locked(probe);
5351 
5352 	mutex_unlock(&ftrace_lock);
5353 
5354 	/*
5355 	 * Note, there's a small window here that the func_hash->filter_hash
5356 	 * may be NULL or empty. Need to be careful when reading the loop.
5357 	 */
5358 	mutex_lock(&probe->ops.func_hash->regex_lock);
5359 
5360 	orig_hash = &probe->ops.func_hash->filter_hash;
5361 	old_hash = *orig_hash;
5362 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
5363 
5364 	if (!hash) {
5365 		ret = -ENOMEM;
5366 		goto out;
5367 	}
5368 
5369 	ret = ftrace_match_records(hash, glob, strlen(glob));
5370 
5371 	/* Nothing found? */
5372 	if (!ret)
5373 		ret = -EINVAL;
5374 
5375 	if (ret < 0)
5376 		goto out;
5377 
5378 	size = 1 << hash->size_bits;
5379 	for (i = 0; i < size; i++) {
5380 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5381 			if (ftrace_lookup_ip(old_hash, entry->ip))
5382 				continue;
5383 			/*
5384 			 * The caller might want to do something special
5385 			 * for each function we find. We call the callback
5386 			 * to give the caller an opportunity to do so.
5387 			 */
5388 			if (probe_ops->init) {
5389 				ret = probe_ops->init(probe_ops, tr,
5390 						      entry->ip, data,
5391 						      &probe->data);
5392 				if (ret < 0) {
5393 					if (probe_ops->free && count)
5394 						probe_ops->free(probe_ops, tr,
5395 								0, probe->data);
5396 					probe->data = NULL;
5397 					goto out;
5398 				}
5399 			}
5400 			count++;
5401 		}
5402 	}
5403 
5404 	mutex_lock(&ftrace_lock);
5405 
5406 	if (!count) {
5407 		/* Nothing was added? */
5408 		ret = -EINVAL;
5409 		goto out_unlock;
5410 	}
5411 
5412 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
5413 					      hash, 1);
5414 	if (ret < 0)
5415 		goto err_unlock;
5416 
5417 	/* One ref for each new function traced */
5418 	probe->ref += count;
5419 
5420 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
5421 		ret = ftrace_startup(&probe->ops, 0);
5422 
5423  out_unlock:
5424 	mutex_unlock(&ftrace_lock);
5425 
5426 	if (!ret)
5427 		ret = count;
5428  out:
5429 	mutex_unlock(&probe->ops.func_hash->regex_lock);
5430 	free_ftrace_hash(hash);
5431 
5432 	release_probe(probe);
5433 
5434 	return ret;
5435 
5436  err_unlock:
5437 	if (!probe_ops->free || !count)
5438 		goto out_unlock;
5439 
5440 	/* Failed to do the move, need to call the free functions */
5441 	for (i = 0; i < size; i++) {
5442 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5443 			if (ftrace_lookup_ip(old_hash, entry->ip))
5444 				continue;
5445 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
5446 		}
5447 	}
5448 	goto out_unlock;
5449 }
5450 
5451 int
5452 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
5453 				      struct ftrace_probe_ops *probe_ops)
5454 {
5455 	struct ftrace_func_probe *probe = NULL, *iter;
5456 	struct ftrace_ops_hash old_hash_ops;
5457 	struct ftrace_func_entry *entry;
5458 	struct ftrace_glob func_g;
5459 	struct ftrace_hash **orig_hash;
5460 	struct ftrace_hash *old_hash;
5461 	struct ftrace_hash *hash = NULL;
5462 	struct hlist_node *tmp;
5463 	struct hlist_head hhd;
5464 	char str[KSYM_SYMBOL_LEN];
5465 	int count = 0;
5466 	int i, ret = -ENODEV;
5467 	int size;
5468 
5469 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
5470 		func_g.search = NULL;
5471 	else {
5472 		int not;
5473 
5474 		func_g.type = filter_parse_regex(glob, strlen(glob),
5475 						 &func_g.search, &not);
5476 		func_g.len = strlen(func_g.search);
5477 
5478 		/* we do not support '!' for function probes */
5479 		if (WARN_ON(not))
5480 			return -EINVAL;
5481 	}
5482 
5483 	mutex_lock(&ftrace_lock);
5484 	/* Check if the probe_ops is already registered */
5485 	list_for_each_entry(iter, &tr->func_probes, list) {
5486 		if (iter->probe_ops == probe_ops) {
5487 			probe = iter;
5488 			break;
5489 		}
5490 	}
5491 	if (!probe)
5492 		goto err_unlock_ftrace;
5493 
5494 	ret = -EINVAL;
5495 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
5496 		goto err_unlock_ftrace;
5497 
5498 	acquire_probe_locked(probe);
5499 
5500 	mutex_unlock(&ftrace_lock);
5501 
5502 	mutex_lock(&probe->ops.func_hash->regex_lock);
5503 
5504 	orig_hash = &probe->ops.func_hash->filter_hash;
5505 	old_hash = *orig_hash;
5506 
5507 	if (ftrace_hash_empty(old_hash))
5508 		goto out_unlock;
5509 
5510 	old_hash_ops.filter_hash = old_hash;
5511 	/* Probes only have filters */
5512 	old_hash_ops.notrace_hash = NULL;
5513 
5514 	ret = -ENOMEM;
5515 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
5516 	if (!hash)
5517 		goto out_unlock;
5518 
5519 	INIT_HLIST_HEAD(&hhd);
5520 
5521 	size = 1 << hash->size_bits;
5522 	for (i = 0; i < size; i++) {
5523 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
5524 
5525 			if (func_g.search) {
5526 				kallsyms_lookup(entry->ip, NULL, NULL,
5527 						NULL, str);
5528 				if (!ftrace_match(str, &func_g))
5529 					continue;
5530 			}
5531 			count++;
5532 			remove_hash_entry(hash, entry);
5533 			hlist_add_head(&entry->hlist, &hhd);
5534 		}
5535 	}
5536 
5537 	/* Nothing found? */
5538 	if (!count) {
5539 		ret = -EINVAL;
5540 		goto out_unlock;
5541 	}
5542 
5543 	mutex_lock(&ftrace_lock);
5544 
5545 	WARN_ON(probe->ref < count);
5546 
5547 	probe->ref -= count;
5548 
5549 	if (ftrace_hash_empty(hash))
5550 		ftrace_shutdown(&probe->ops, 0);
5551 
5552 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
5553 					      hash, 1);
5554 
5555 	/* still need to update the function call sites */
5556 	if (ftrace_enabled && !ftrace_hash_empty(hash))
5557 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
5558 				       &old_hash_ops);
5559 	synchronize_rcu();
5560 
5561 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
5562 		hlist_del(&entry->hlist);
5563 		if (probe_ops->free)
5564 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
5565 		kfree(entry);
5566 	}
5567 	mutex_unlock(&ftrace_lock);
5568 
5569  out_unlock:
5570 	mutex_unlock(&probe->ops.func_hash->regex_lock);
5571 	free_ftrace_hash(hash);
5572 
5573 	release_probe(probe);
5574 
5575 	return ret;
5576 
5577  err_unlock_ftrace:
5578 	mutex_unlock(&ftrace_lock);
5579 	return ret;
5580 }
5581 
5582 void clear_ftrace_function_probes(struct trace_array *tr)
5583 {
5584 	struct ftrace_func_probe *probe, *n;
5585 
5586 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
5587 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
5588 }
5589 
5590 static LIST_HEAD(ftrace_commands);
5591 static DEFINE_MUTEX(ftrace_cmd_mutex);
5592 
5593 /*
5594  * Currently we only register ftrace commands from __init, so mark this
5595  * __init too.
5596  */
5597 __init int register_ftrace_command(struct ftrace_func_command *cmd)
5598 {
5599 	struct ftrace_func_command *p;
5600 
5601 	guard(mutex)(&ftrace_cmd_mutex);
5602 	list_for_each_entry(p, &ftrace_commands, list) {
5603 		if (strcmp(cmd->name, p->name) == 0)
5604 			return -EBUSY;
5605 	}
5606 	list_add(&cmd->list, &ftrace_commands);
5607 
5608 	return 0;
5609 }
5610 
5611 /*
5612  * Currently we only unregister ftrace commands from __init, so mark
5613  * this __init too.
5614  */
5615 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
5616 {
5617 	struct ftrace_func_command *p, *n;
5618 
5619 	guard(mutex)(&ftrace_cmd_mutex);
5620 
5621 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
5622 		if (strcmp(cmd->name, p->name) == 0) {
5623 			list_del_init(&p->list);
5624 			return 0;
5625 		}
5626 	}
5627 
5628 	return -ENODEV;
5629 }
5630 
5631 static int ftrace_process_regex(struct ftrace_iterator *iter,
5632 				char *buff, int len, int enable)
5633 {
5634 	struct ftrace_hash *hash = iter->hash;
5635 	struct trace_array *tr = iter->ops->private;
5636 	char *func, *command, *next = buff;
5637 	struct ftrace_func_command *p;
5638 	int ret;
5639 
5640 	func = strsep(&next, ":");
5641 
5642 	if (!next) {
5643 		ret = ftrace_match_records(hash, func, len);
5644 		if (!ret)
5645 			ret = -EINVAL;
5646 		if (ret < 0)
5647 			return ret;
5648 		return 0;
5649 	}
5650 
5651 	/* command found */
5652 
5653 	command = strsep(&next, ":");
5654 
5655 	guard(mutex)(&ftrace_cmd_mutex);
5656 
5657 	list_for_each_entry(p, &ftrace_commands, list) {
5658 		if (strcmp(p->name, command) == 0)
5659 			return p->func(tr, hash, func, command, next, enable);
5660 	}
5661 
5662 	return -EINVAL;
5663 }
5664 
5665 static ssize_t
5666 ftrace_regex_write(struct file *file, const char __user *ubuf,
5667 		   size_t cnt, loff_t *ppos, int enable)
5668 {
5669 	struct ftrace_iterator *iter;
5670 	struct trace_parser *parser;
5671 	ssize_t ret, read;
5672 
5673 	if (!cnt)
5674 		return 0;
5675 
5676 	if (file->f_mode & FMODE_READ) {
5677 		struct seq_file *m = file->private_data;
5678 		iter = m->private;
5679 	} else
5680 		iter = file->private_data;
5681 
5682 	if (unlikely(ftrace_disabled))
5683 		return -ENODEV;
5684 
5685 	/* iter->hash is a local copy, so we don't need regex_lock */
5686 
5687 	parser = &iter->parser;
5688 	read = trace_get_user(parser, ubuf, cnt, ppos);
5689 
5690 	if (read >= 0 && trace_parser_loaded(parser) &&
5691 	    !trace_parser_cont(parser)) {
5692 		ret = ftrace_process_regex(iter, parser->buffer,
5693 					   parser->idx, enable);
5694 		trace_parser_clear(parser);
5695 		if (ret < 0)
5696 			return ret;
5697 	}
5698 
5699 	return read;
5700 }
5701 
5702 ssize_t
5703 ftrace_filter_write(struct file *file, const char __user *ubuf,
5704 		    size_t cnt, loff_t *ppos)
5705 {
5706 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
5707 }
5708 
5709 ssize_t
5710 ftrace_notrace_write(struct file *file, const char __user *ubuf,
5711 		     size_t cnt, loff_t *ppos)
5712 {
5713 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
5714 }
5715 
5716 static int
5717 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
5718 {
5719 	struct ftrace_func_entry *entry;
5720 
5721 	ip = ftrace_location(ip);
5722 	if (!ip)
5723 		return -EINVAL;
5724 
5725 	if (remove) {
5726 		entry = ftrace_lookup_ip(hash, ip);
5727 		if (!entry)
5728 			return -ENOENT;
5729 		free_hash_entry(hash, entry);
5730 		return 0;
5731 	}
5732 
5733 	entry = add_hash_entry(hash, ip);
5734 	return entry ? 0 :  -ENOMEM;
5735 }
5736 
5737 static int
5738 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips,
5739 		  unsigned int cnt, int remove)
5740 {
5741 	unsigned int i;
5742 	int err;
5743 
5744 	for (i = 0; i < cnt; i++) {
5745 		err = __ftrace_match_addr(hash, ips[i], remove);
5746 		if (err) {
5747 			/*
5748 			 * This expects the @hash is a temporary hash and if this
5749 			 * fails the caller must free the @hash.
5750 			 */
5751 			return err;
5752 		}
5753 	}
5754 	return 0;
5755 }
5756 
5757 static int
5758 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
5759 		unsigned long *ips, unsigned int cnt,
5760 		int remove, int reset, int enable, char *mod)
5761 {
5762 	struct ftrace_hash **orig_hash;
5763 	struct ftrace_hash *hash;
5764 	int ret;
5765 
5766 	if (unlikely(ftrace_disabled))
5767 		return -ENODEV;
5768 
5769 	mutex_lock(&ops->func_hash->regex_lock);
5770 
5771 	if (enable)
5772 		orig_hash = &ops->func_hash->filter_hash;
5773 	else
5774 		orig_hash = &ops->func_hash->notrace_hash;
5775 
5776 	if (reset)
5777 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5778 	else
5779 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
5780 
5781 	if (!hash) {
5782 		ret = -ENOMEM;
5783 		goto out_regex_unlock;
5784 	}
5785 
5786 	if (buf && !match_records(hash, buf, len, mod)) {
5787 		/* If this was for a module and nothing was enabled, flag it */
5788 		if (mod)
5789 			(*orig_hash)->flags |= FTRACE_HASH_FL_MOD;
5790 
5791 		/*
5792 		 * Even if it is a mod, return error to let caller know
5793 		 * nothing was added
5794 		 */
5795 		ret = -EINVAL;
5796 		goto out_regex_unlock;
5797 	}
5798 	if (ips) {
5799 		ret = ftrace_match_addr(hash, ips, cnt, remove);
5800 		if (ret < 0)
5801 			goto out_regex_unlock;
5802 	}
5803 
5804 	mutex_lock(&ftrace_lock);
5805 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5806 	mutex_unlock(&ftrace_lock);
5807 
5808  out_regex_unlock:
5809 	mutex_unlock(&ops->func_hash->regex_lock);
5810 
5811 	free_ftrace_hash(hash);
5812 	return ret;
5813 }
5814 
5815 static int
5816 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt,
5817 		int remove, int reset, int enable)
5818 {
5819 	return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable, NULL);
5820 }
5821 
5822 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5823 
5824 static int register_ftrace_function_nolock(struct ftrace_ops *ops);
5825 
5826 /*
5827  * If there are multiple ftrace_ops, use SAVE_REGS by default, so that direct
5828  * call will be jumped from ftrace_regs_caller. Only if the architecture does
5829  * not support ftrace_regs_caller but direct_call, use SAVE_ARGS so that it
5830  * jumps from ftrace_caller for multiple ftrace_ops.
5831  */
5832 #ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_REGS
5833 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_ARGS)
5834 #else
5835 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS)
5836 #endif
5837 
5838 static int check_direct_multi(struct ftrace_ops *ops)
5839 {
5840 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5841 		return -EINVAL;
5842 	if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS)
5843 		return -EINVAL;
5844 	return 0;
5845 }
5846 
5847 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr)
5848 {
5849 	struct ftrace_func_entry *entry, *del;
5850 	int size, i;
5851 
5852 	size = 1 << hash->size_bits;
5853 	for (i = 0; i < size; i++) {
5854 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5855 			del = __ftrace_lookup_ip(direct_functions, entry->ip);
5856 			if (del && del->direct == addr) {
5857 				remove_hash_entry(direct_functions, del);
5858 				kfree(del);
5859 			}
5860 		}
5861 	}
5862 }
5863 
5864 static void register_ftrace_direct_cb(struct rcu_head *rhp)
5865 {
5866 	struct ftrace_hash *fhp = container_of(rhp, struct ftrace_hash, rcu);
5867 
5868 	free_ftrace_hash(fhp);
5869 }
5870 
5871 /**
5872  * register_ftrace_direct - Call a custom trampoline directly
5873  * for multiple functions registered in @ops
5874  * @ops: The address of the struct ftrace_ops object
5875  * @addr: The address of the trampoline to call at @ops functions
5876  *
5877  * This is used to connect a direct calls to @addr from the nop locations
5878  * of the functions registered in @ops (with by ftrace_set_filter_ip
5879  * function).
5880  *
5881  * The location that it calls (@addr) must be able to handle a direct call,
5882  * and save the parameters of the function being traced, and restore them
5883  * (or inject new ones if needed), before returning.
5884  *
5885  * Returns:
5886  *  0 on success
5887  *  -EINVAL  - The @ops object was already registered with this call or
5888  *             when there are no functions in @ops object.
5889  *  -EBUSY   - Another direct function is already attached (there can be only one)
5890  *  -ENODEV  - @ip does not point to a ftrace nop location (or not supported)
5891  *  -ENOMEM  - There was an allocation failure.
5892  */
5893 int register_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
5894 {
5895 	struct ftrace_hash *hash, *new_hash = NULL, *free_hash = NULL;
5896 	struct ftrace_func_entry *entry, *new;
5897 	int err = -EBUSY, size, i;
5898 
5899 	if (ops->func || ops->trampoline)
5900 		return -EINVAL;
5901 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5902 		return -EINVAL;
5903 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
5904 		return -EINVAL;
5905 
5906 	hash = ops->func_hash->filter_hash;
5907 	if (ftrace_hash_empty(hash))
5908 		return -EINVAL;
5909 
5910 	mutex_lock(&direct_mutex);
5911 
5912 	/* Make sure requested entries are not already registered.. */
5913 	size = 1 << hash->size_bits;
5914 	for (i = 0; i < size; i++) {
5915 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5916 			if (ftrace_find_rec_direct(entry->ip))
5917 				goto out_unlock;
5918 		}
5919 	}
5920 
5921 	err = -ENOMEM;
5922 
5923 	/* Make a copy hash to place the new and the old entries in */
5924 	size = hash->count + direct_functions->count;
5925 	if (size > 32)
5926 		size = 32;
5927 	new_hash = alloc_ftrace_hash(fls(size));
5928 	if (!new_hash)
5929 		goto out_unlock;
5930 
5931 	/* Now copy over the existing direct entries */
5932 	size = 1 << direct_functions->size_bits;
5933 	for (i = 0; i < size; i++) {
5934 		hlist_for_each_entry(entry, &direct_functions->buckets[i], hlist) {
5935 			new = add_hash_entry(new_hash, entry->ip);
5936 			if (!new)
5937 				goto out_unlock;
5938 			new->direct = entry->direct;
5939 		}
5940 	}
5941 
5942 	/* ... and add the new entries */
5943 	size = 1 << hash->size_bits;
5944 	for (i = 0; i < size; i++) {
5945 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5946 			new = add_hash_entry(new_hash, entry->ip);
5947 			if (!new)
5948 				goto out_unlock;
5949 			/* Update both the copy and the hash entry */
5950 			new->direct = addr;
5951 			entry->direct = addr;
5952 		}
5953 	}
5954 
5955 	free_hash = direct_functions;
5956 	rcu_assign_pointer(direct_functions, new_hash);
5957 	new_hash = NULL;
5958 
5959 	ops->func = call_direct_funcs;
5960 	ops->flags = MULTI_FLAGS;
5961 	ops->trampoline = FTRACE_REGS_ADDR;
5962 	ops->direct_call = addr;
5963 
5964 	err = register_ftrace_function_nolock(ops);
5965 
5966  out_unlock:
5967 	mutex_unlock(&direct_mutex);
5968 
5969 	if (free_hash && free_hash != EMPTY_HASH)
5970 		call_rcu_tasks(&free_hash->rcu, register_ftrace_direct_cb);
5971 
5972 	if (new_hash)
5973 		free_ftrace_hash(new_hash);
5974 
5975 	return err;
5976 }
5977 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5978 
5979 /**
5980  * unregister_ftrace_direct - Remove calls to custom trampoline
5981  * previously registered by register_ftrace_direct for @ops object.
5982  * @ops: The address of the struct ftrace_ops object
5983  * @addr: The address of the direct function that is called by the @ops functions
5984  * @free_filters: Set to true to remove all filters for the ftrace_ops, false otherwise
5985  *
5986  * This is used to remove a direct calls to @addr from the nop locations
5987  * of the functions registered in @ops (with by ftrace_set_filter_ip
5988  * function).
5989  *
5990  * Returns:
5991  *  0 on success
5992  *  -EINVAL - The @ops object was not properly registered.
5993  */
5994 int unregister_ftrace_direct(struct ftrace_ops *ops, unsigned long addr,
5995 			     bool free_filters)
5996 {
5997 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
5998 	int err;
5999 
6000 	if (check_direct_multi(ops))
6001 		return -EINVAL;
6002 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6003 		return -EINVAL;
6004 
6005 	mutex_lock(&direct_mutex);
6006 	err = unregister_ftrace_function(ops);
6007 	remove_direct_functions_hash(hash, addr);
6008 	mutex_unlock(&direct_mutex);
6009 
6010 	/* cleanup for possible another register call */
6011 	ops->func = NULL;
6012 	ops->trampoline = 0;
6013 
6014 	if (free_filters)
6015 		ftrace_free_filter(ops);
6016 	return err;
6017 }
6018 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
6019 
6020 static int
6021 __modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
6022 {
6023 	struct ftrace_hash *hash;
6024 	struct ftrace_func_entry *entry, *iter;
6025 	static struct ftrace_ops tmp_ops = {
6026 		.func		= ftrace_stub,
6027 		.flags		= FTRACE_OPS_FL_STUB,
6028 	};
6029 	int i, size;
6030 	int err;
6031 
6032 	lockdep_assert_held_once(&direct_mutex);
6033 
6034 	/* Enable the tmp_ops to have the same functions as the direct ops */
6035 	ftrace_ops_init(&tmp_ops);
6036 	tmp_ops.func_hash = ops->func_hash;
6037 	tmp_ops.direct_call = addr;
6038 
6039 	err = register_ftrace_function_nolock(&tmp_ops);
6040 	if (err)
6041 		return err;
6042 
6043 	/*
6044 	 * Now the ftrace_ops_list_func() is called to do the direct callers.
6045 	 * We can safely change the direct functions attached to each entry.
6046 	 */
6047 	mutex_lock(&ftrace_lock);
6048 
6049 	hash = ops->func_hash->filter_hash;
6050 	size = 1 << hash->size_bits;
6051 	for (i = 0; i < size; i++) {
6052 		hlist_for_each_entry(iter, &hash->buckets[i], hlist) {
6053 			entry = __ftrace_lookup_ip(direct_functions, iter->ip);
6054 			if (!entry)
6055 				continue;
6056 			entry->direct = addr;
6057 		}
6058 	}
6059 	/* Prevent store tearing if a trampoline concurrently accesses the value */
6060 	WRITE_ONCE(ops->direct_call, addr);
6061 
6062 	mutex_unlock(&ftrace_lock);
6063 
6064 	/* Removing the tmp_ops will add the updated direct callers to the functions */
6065 	unregister_ftrace_function(&tmp_ops);
6066 
6067 	return err;
6068 }
6069 
6070 /**
6071  * modify_ftrace_direct_nolock - Modify an existing direct 'multi' call
6072  * to call something else
6073  * @ops: The address of the struct ftrace_ops object
6074  * @addr: The address of the new trampoline to call at @ops functions
6075  *
6076  * This is used to unregister currently registered direct caller and
6077  * register new one @addr on functions registered in @ops object.
6078  *
6079  * Note there's window between ftrace_shutdown and ftrace_startup calls
6080  * where there will be no callbacks called.
6081  *
6082  * Caller should already have direct_mutex locked, so we don't lock
6083  * direct_mutex here.
6084  *
6085  * Returns: zero on success. Non zero on error, which includes:
6086  *  -EINVAL - The @ops object was not properly registered.
6087  */
6088 int modify_ftrace_direct_nolock(struct ftrace_ops *ops, unsigned long addr)
6089 {
6090 	if (check_direct_multi(ops))
6091 		return -EINVAL;
6092 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6093 		return -EINVAL;
6094 
6095 	return __modify_ftrace_direct(ops, addr);
6096 }
6097 EXPORT_SYMBOL_GPL(modify_ftrace_direct_nolock);
6098 
6099 /**
6100  * modify_ftrace_direct - Modify an existing direct 'multi' call
6101  * to call something else
6102  * @ops: The address of the struct ftrace_ops object
6103  * @addr: The address of the new trampoline to call at @ops functions
6104  *
6105  * This is used to unregister currently registered direct caller and
6106  * register new one @addr on functions registered in @ops object.
6107  *
6108  * Note there's window between ftrace_shutdown and ftrace_startup calls
6109  * where there will be no callbacks called.
6110  *
6111  * Returns: zero on success. Non zero on error, which includes:
6112  *  -EINVAL - The @ops object was not properly registered.
6113  */
6114 int modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
6115 {
6116 	int err;
6117 
6118 	if (check_direct_multi(ops))
6119 		return -EINVAL;
6120 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6121 		return -EINVAL;
6122 
6123 	mutex_lock(&direct_mutex);
6124 	err = __modify_ftrace_direct(ops, addr);
6125 	mutex_unlock(&direct_mutex);
6126 	return err;
6127 }
6128 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
6129 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
6130 
6131 /**
6132  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
6133  * @ops: the ops to set the filter with
6134  * @ip: the address to add to or remove from the filter.
6135  * @remove: non zero to remove the ip from the filter
6136  * @reset: non zero to reset all filters before applying this filter.
6137  *
6138  * Filters denote which functions should be enabled when tracing is enabled
6139  * If @ip is NULL, it fails to update filter.
6140  *
6141  * This can allocate memory which must be freed before @ops can be freed,
6142  * either by removing each filtered addr or by using
6143  * ftrace_free_filter(@ops).
6144  */
6145 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
6146 			 int remove, int reset)
6147 {
6148 	ftrace_ops_init(ops);
6149 	return ftrace_set_addr(ops, &ip, 1, remove, reset, 1);
6150 }
6151 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
6152 
6153 /**
6154  * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses
6155  * @ops: the ops to set the filter with
6156  * @ips: the array of addresses to add to or remove from the filter.
6157  * @cnt: the number of addresses in @ips
6158  * @remove: non zero to remove ips from the filter
6159  * @reset: non zero to reset all filters before applying this filter.
6160  *
6161  * Filters denote which functions should be enabled when tracing is enabled
6162  * If @ips array or any ip specified within is NULL , it fails to update filter.
6163  *
6164  * This can allocate memory which must be freed before @ops can be freed,
6165  * either by removing each filtered addr or by using
6166  * ftrace_free_filter(@ops).
6167 */
6168 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
6169 			  unsigned int cnt, int remove, int reset)
6170 {
6171 	ftrace_ops_init(ops);
6172 	return ftrace_set_addr(ops, ips, cnt, remove, reset, 1);
6173 }
6174 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips);
6175 
6176 /**
6177  * ftrace_ops_set_global_filter - setup ops to use global filters
6178  * @ops: the ops which will use the global filters
6179  *
6180  * ftrace users who need global function trace filtering should call this.
6181  * It can set the global filter only if ops were not initialized before.
6182  */
6183 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
6184 {
6185 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
6186 		return;
6187 
6188 	ftrace_ops_init(ops);
6189 	ops->func_hash = &global_ops.local_hash;
6190 }
6191 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
6192 
6193 static int
6194 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
6195 		 int reset, int enable)
6196 {
6197 	char *mod = NULL, *func, *command, *next = buf;
6198 	char *tmp __free(kfree) = NULL;
6199 	struct trace_array *tr = ops->private;
6200 	int ret;
6201 
6202 	func = strsep(&next, ":");
6203 
6204 	/* This can also handle :mod: parsing */
6205 	if (next) {
6206 		if (!tr)
6207 			return -EINVAL;
6208 
6209 		command = strsep(&next, ":");
6210 		if (strcmp(command, "mod") != 0)
6211 			return -EINVAL;
6212 
6213 		mod = next;
6214 		len = command - func;
6215 		/* Save the original func as ftrace_set_hash() can modify it */
6216 		tmp = kstrdup(func, GFP_KERNEL);
6217 	}
6218 
6219 	ret = ftrace_set_hash(ops, func, len, NULL, 0, 0, reset, enable, mod);
6220 
6221 	if (tr && mod && ret < 0) {
6222 		/* Did tmp fail to allocate? */
6223 		if (!tmp)
6224 			return -ENOMEM;
6225 		ret = cache_mod(tr, tmp, mod, enable);
6226 	}
6227 
6228 	return ret;
6229 }
6230 
6231 /**
6232  * ftrace_set_filter - set a function to filter on in ftrace
6233  * @ops: the ops to set the filter with
6234  * @buf: the string that holds the function filter text.
6235  * @len: the length of the string.
6236  * @reset: non-zero to reset all filters before applying this filter.
6237  *
6238  * Filters denote which functions should be enabled when tracing is enabled.
6239  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6240  *
6241  * This can allocate memory which must be freed before @ops can be freed,
6242  * either by removing each filtered addr or by using
6243  * ftrace_free_filter(@ops).
6244  */
6245 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
6246 		       int len, int reset)
6247 {
6248 	ftrace_ops_init(ops);
6249 	return ftrace_set_regex(ops, buf, len, reset, 1);
6250 }
6251 EXPORT_SYMBOL_GPL(ftrace_set_filter);
6252 
6253 /**
6254  * ftrace_set_notrace - set a function to not trace in ftrace
6255  * @ops: the ops to set the notrace filter with
6256  * @buf: the string that holds the function notrace text.
6257  * @len: the length of the string.
6258  * @reset: non-zero to reset all filters before applying this filter.
6259  *
6260  * Notrace Filters denote which functions should not be enabled when tracing
6261  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6262  * for tracing.
6263  *
6264  * This can allocate memory which must be freed before @ops can be freed,
6265  * either by removing each filtered addr or by using
6266  * ftrace_free_filter(@ops).
6267  */
6268 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
6269 			int len, int reset)
6270 {
6271 	ftrace_ops_init(ops);
6272 	return ftrace_set_regex(ops, buf, len, reset, 0);
6273 }
6274 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
6275 /**
6276  * ftrace_set_global_filter - set a function to filter on with global tracers
6277  * @buf: the string that holds the function filter text.
6278  * @len: the length of the string.
6279  * @reset: non-zero to reset all filters before applying this filter.
6280  *
6281  * Filters denote which functions should be enabled when tracing is enabled.
6282  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6283  */
6284 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
6285 {
6286 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
6287 }
6288 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
6289 
6290 /**
6291  * ftrace_set_global_notrace - set a function to not trace with global tracers
6292  * @buf: the string that holds the function notrace text.
6293  * @len: the length of the string.
6294  * @reset: non-zero to reset all filters before applying this filter.
6295  *
6296  * Notrace Filters denote which functions should not be enabled when tracing
6297  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6298  * for tracing.
6299  */
6300 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
6301 {
6302 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
6303 }
6304 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
6305 
6306 /*
6307  * command line interface to allow users to set filters on boot up.
6308  */
6309 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
6310 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6311 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
6312 
6313 /* Used by function selftest to not test if filter is set */
6314 bool ftrace_filter_param __initdata;
6315 
6316 static int __init set_ftrace_notrace(char *str)
6317 {
6318 	ftrace_filter_param = true;
6319 	strscpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
6320 	return 1;
6321 }
6322 __setup("ftrace_notrace=", set_ftrace_notrace);
6323 
6324 static int __init set_ftrace_filter(char *str)
6325 {
6326 	ftrace_filter_param = true;
6327 	strscpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
6328 	return 1;
6329 }
6330 __setup("ftrace_filter=", set_ftrace_filter);
6331 
6332 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6333 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
6334 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6335 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
6336 
6337 static int __init set_graph_function(char *str)
6338 {
6339 	strscpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
6340 	return 1;
6341 }
6342 __setup("ftrace_graph_filter=", set_graph_function);
6343 
6344 static int __init set_graph_notrace_function(char *str)
6345 {
6346 	strscpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
6347 	return 1;
6348 }
6349 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
6350 
6351 static int __init set_graph_max_depth_function(char *str)
6352 {
6353 	if (!str || kstrtouint(str, 0, &fgraph_max_depth))
6354 		return 0;
6355 	return 1;
6356 }
6357 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
6358 
6359 static void __init set_ftrace_early_graph(char *buf, int enable)
6360 {
6361 	int ret;
6362 	char *func;
6363 	struct ftrace_hash *hash;
6364 
6365 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
6366 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
6367 		return;
6368 
6369 	while (buf) {
6370 		func = strsep(&buf, ",");
6371 		/* we allow only one expression at a time */
6372 		ret = ftrace_graph_set_hash(hash, func);
6373 		if (ret)
6374 			printk(KERN_DEBUG "ftrace: function %s not "
6375 					  "traceable\n", func);
6376 	}
6377 
6378 	if (enable)
6379 		ftrace_graph_hash = hash;
6380 	else
6381 		ftrace_graph_notrace_hash = hash;
6382 }
6383 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6384 
6385 void __init
6386 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
6387 {
6388 	char *func;
6389 
6390 	ftrace_ops_init(ops);
6391 
6392 	/* The trace_array is needed for caching module function filters */
6393 	if (!ops->private) {
6394 		struct trace_array *tr = trace_get_global_array();
6395 
6396 		ops->private = tr;
6397 		ftrace_init_trace_array(tr);
6398 	}
6399 
6400 	while (buf) {
6401 		func = strsep(&buf, ",");
6402 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
6403 	}
6404 }
6405 
6406 static void __init set_ftrace_early_filters(void)
6407 {
6408 	if (ftrace_filter_buf[0])
6409 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
6410 	if (ftrace_notrace_buf[0])
6411 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
6412 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6413 	if (ftrace_graph_buf[0])
6414 		set_ftrace_early_graph(ftrace_graph_buf, 1);
6415 	if (ftrace_graph_notrace_buf[0])
6416 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
6417 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6418 }
6419 
6420 int ftrace_regex_release(struct inode *inode, struct file *file)
6421 {
6422 	struct seq_file *m = (struct seq_file *)file->private_data;
6423 	struct ftrace_iterator *iter;
6424 	struct ftrace_hash **orig_hash;
6425 	struct trace_parser *parser;
6426 	int filter_hash;
6427 
6428 	if (file->f_mode & FMODE_READ) {
6429 		iter = m->private;
6430 		seq_release(inode, file);
6431 	} else
6432 		iter = file->private_data;
6433 
6434 	parser = &iter->parser;
6435 	if (trace_parser_loaded(parser)) {
6436 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
6437 
6438 		ftrace_process_regex(iter, parser->buffer,
6439 				     parser->idx, enable);
6440 	}
6441 
6442 	trace_parser_put(parser);
6443 
6444 	mutex_lock(&iter->ops->func_hash->regex_lock);
6445 
6446 	if (file->f_mode & FMODE_WRITE) {
6447 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
6448 
6449 		if (filter_hash) {
6450 			orig_hash = &iter->ops->func_hash->filter_hash;
6451 			if (iter->tr) {
6452 				if (list_empty(&iter->tr->mod_trace))
6453 					iter->hash->flags &= ~FTRACE_HASH_FL_MOD;
6454 				else
6455 					iter->hash->flags |= FTRACE_HASH_FL_MOD;
6456 			}
6457 		} else
6458 			orig_hash = &iter->ops->func_hash->notrace_hash;
6459 
6460 		mutex_lock(&ftrace_lock);
6461 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
6462 						      iter->hash, filter_hash);
6463 		mutex_unlock(&ftrace_lock);
6464 	} else {
6465 		/* For read only, the hash is the ops hash */
6466 		iter->hash = NULL;
6467 	}
6468 
6469 	mutex_unlock(&iter->ops->func_hash->regex_lock);
6470 	free_ftrace_hash(iter->hash);
6471 	if (iter->tr)
6472 		trace_array_put(iter->tr);
6473 	kfree(iter);
6474 
6475 	return 0;
6476 }
6477 
6478 static const struct file_operations ftrace_avail_fops = {
6479 	.open = ftrace_avail_open,
6480 	.read = seq_read,
6481 	.llseek = seq_lseek,
6482 	.release = seq_release_private,
6483 };
6484 
6485 static const struct file_operations ftrace_enabled_fops = {
6486 	.open = ftrace_enabled_open,
6487 	.read = seq_read,
6488 	.llseek = seq_lseek,
6489 	.release = seq_release_private,
6490 };
6491 
6492 static const struct file_operations ftrace_touched_fops = {
6493 	.open = ftrace_touched_open,
6494 	.read = seq_read,
6495 	.llseek = seq_lseek,
6496 	.release = seq_release_private,
6497 };
6498 
6499 static const struct file_operations ftrace_avail_addrs_fops = {
6500 	.open = ftrace_avail_addrs_open,
6501 	.read = seq_read,
6502 	.llseek = seq_lseek,
6503 	.release = seq_release_private,
6504 };
6505 
6506 static const struct file_operations ftrace_filter_fops = {
6507 	.open = ftrace_filter_open,
6508 	.read = seq_read,
6509 	.write = ftrace_filter_write,
6510 	.llseek = tracing_lseek,
6511 	.release = ftrace_regex_release,
6512 };
6513 
6514 static const struct file_operations ftrace_notrace_fops = {
6515 	.open = ftrace_notrace_open,
6516 	.read = seq_read,
6517 	.write = ftrace_notrace_write,
6518 	.llseek = tracing_lseek,
6519 	.release = ftrace_regex_release,
6520 };
6521 
6522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6523 
6524 static DEFINE_MUTEX(graph_lock);
6525 
6526 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
6527 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
6528 
6529 enum graph_filter_type {
6530 	GRAPH_FILTER_NOTRACE	= 0,
6531 	GRAPH_FILTER_FUNCTION,
6532 };
6533 
6534 #define FTRACE_GRAPH_EMPTY	((void *)1)
6535 
6536 struct ftrace_graph_data {
6537 	struct ftrace_hash		*hash;
6538 	struct ftrace_func_entry	*entry;
6539 	int				idx;   /* for hash table iteration */
6540 	enum graph_filter_type		type;
6541 	struct ftrace_hash		*new_hash;
6542 	const struct seq_operations	*seq_ops;
6543 	struct trace_parser		parser;
6544 };
6545 
6546 static void *
6547 __g_next(struct seq_file *m, loff_t *pos)
6548 {
6549 	struct ftrace_graph_data *fgd = m->private;
6550 	struct ftrace_func_entry *entry = fgd->entry;
6551 	struct hlist_head *head;
6552 	int i, idx = fgd->idx;
6553 
6554 	if (*pos >= fgd->hash->count)
6555 		return NULL;
6556 
6557 	if (entry) {
6558 		hlist_for_each_entry_continue(entry, hlist) {
6559 			fgd->entry = entry;
6560 			return entry;
6561 		}
6562 
6563 		idx++;
6564 	}
6565 
6566 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
6567 		head = &fgd->hash->buckets[i];
6568 		hlist_for_each_entry(entry, head, hlist) {
6569 			fgd->entry = entry;
6570 			fgd->idx = i;
6571 			return entry;
6572 		}
6573 	}
6574 	return NULL;
6575 }
6576 
6577 static void *
6578 g_next(struct seq_file *m, void *v, loff_t *pos)
6579 {
6580 	(*pos)++;
6581 	return __g_next(m, pos);
6582 }
6583 
6584 static void *g_start(struct seq_file *m, loff_t *pos)
6585 {
6586 	struct ftrace_graph_data *fgd = m->private;
6587 
6588 	mutex_lock(&graph_lock);
6589 
6590 	if (fgd->type == GRAPH_FILTER_FUNCTION)
6591 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6592 					lockdep_is_held(&graph_lock));
6593 	else
6594 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6595 					lockdep_is_held(&graph_lock));
6596 
6597 	/* Nothing, tell g_show to print all functions are enabled */
6598 	if (ftrace_hash_empty(fgd->hash) && !*pos)
6599 		return FTRACE_GRAPH_EMPTY;
6600 
6601 	fgd->idx = 0;
6602 	fgd->entry = NULL;
6603 	return __g_next(m, pos);
6604 }
6605 
6606 static void g_stop(struct seq_file *m, void *p)
6607 {
6608 	mutex_unlock(&graph_lock);
6609 }
6610 
6611 static int g_show(struct seq_file *m, void *v)
6612 {
6613 	struct ftrace_func_entry *entry = v;
6614 
6615 	if (!entry)
6616 		return 0;
6617 
6618 	if (entry == FTRACE_GRAPH_EMPTY) {
6619 		struct ftrace_graph_data *fgd = m->private;
6620 
6621 		if (fgd->type == GRAPH_FILTER_FUNCTION)
6622 			seq_puts(m, "#### all functions enabled ####\n");
6623 		else
6624 			seq_puts(m, "#### no functions disabled ####\n");
6625 		return 0;
6626 	}
6627 
6628 	seq_printf(m, "%ps\n", (void *)entry->ip);
6629 
6630 	return 0;
6631 }
6632 
6633 static const struct seq_operations ftrace_graph_seq_ops = {
6634 	.start = g_start,
6635 	.next = g_next,
6636 	.stop = g_stop,
6637 	.show = g_show,
6638 };
6639 
6640 static int
6641 __ftrace_graph_open(struct inode *inode, struct file *file,
6642 		    struct ftrace_graph_data *fgd)
6643 {
6644 	int ret;
6645 	struct ftrace_hash *new_hash = NULL;
6646 
6647 	ret = security_locked_down(LOCKDOWN_TRACEFS);
6648 	if (ret)
6649 		return ret;
6650 
6651 	if (file->f_mode & FMODE_WRITE) {
6652 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
6653 
6654 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
6655 			return -ENOMEM;
6656 
6657 		if (file->f_flags & O_TRUNC)
6658 			new_hash = alloc_ftrace_hash(size_bits);
6659 		else
6660 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
6661 							      fgd->hash);
6662 		if (!new_hash) {
6663 			ret = -ENOMEM;
6664 			goto out;
6665 		}
6666 	}
6667 
6668 	if (file->f_mode & FMODE_READ) {
6669 		ret = seq_open(file, &ftrace_graph_seq_ops);
6670 		if (!ret) {
6671 			struct seq_file *m = file->private_data;
6672 			m->private = fgd;
6673 		} else {
6674 			/* Failed */
6675 			free_ftrace_hash(new_hash);
6676 			new_hash = NULL;
6677 		}
6678 	} else
6679 		file->private_data = fgd;
6680 
6681 out:
6682 	if (ret < 0 && file->f_mode & FMODE_WRITE)
6683 		trace_parser_put(&fgd->parser);
6684 
6685 	fgd->new_hash = new_hash;
6686 
6687 	/*
6688 	 * All uses of fgd->hash must be taken with the graph_lock
6689 	 * held. The graph_lock is going to be released, so force
6690 	 * fgd->hash to be reinitialized when it is taken again.
6691 	 */
6692 	fgd->hash = NULL;
6693 
6694 	return ret;
6695 }
6696 
6697 static int
6698 ftrace_graph_open(struct inode *inode, struct file *file)
6699 {
6700 	struct ftrace_graph_data *fgd;
6701 	int ret;
6702 
6703 	if (unlikely(ftrace_disabled))
6704 		return -ENODEV;
6705 
6706 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6707 	if (fgd == NULL)
6708 		return -ENOMEM;
6709 
6710 	mutex_lock(&graph_lock);
6711 
6712 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6713 					lockdep_is_held(&graph_lock));
6714 	fgd->type = GRAPH_FILTER_FUNCTION;
6715 	fgd->seq_ops = &ftrace_graph_seq_ops;
6716 
6717 	ret = __ftrace_graph_open(inode, file, fgd);
6718 	if (ret < 0)
6719 		kfree(fgd);
6720 
6721 	mutex_unlock(&graph_lock);
6722 	return ret;
6723 }
6724 
6725 static int
6726 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
6727 {
6728 	struct ftrace_graph_data *fgd;
6729 	int ret;
6730 
6731 	if (unlikely(ftrace_disabled))
6732 		return -ENODEV;
6733 
6734 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6735 	if (fgd == NULL)
6736 		return -ENOMEM;
6737 
6738 	mutex_lock(&graph_lock);
6739 
6740 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6741 					lockdep_is_held(&graph_lock));
6742 	fgd->type = GRAPH_FILTER_NOTRACE;
6743 	fgd->seq_ops = &ftrace_graph_seq_ops;
6744 
6745 	ret = __ftrace_graph_open(inode, file, fgd);
6746 	if (ret < 0)
6747 		kfree(fgd);
6748 
6749 	mutex_unlock(&graph_lock);
6750 	return ret;
6751 }
6752 
6753 static int
6754 ftrace_graph_release(struct inode *inode, struct file *file)
6755 {
6756 	struct ftrace_graph_data *fgd;
6757 	struct ftrace_hash *old_hash, *new_hash;
6758 	struct trace_parser *parser;
6759 	int ret = 0;
6760 
6761 	if (file->f_mode & FMODE_READ) {
6762 		struct seq_file *m = file->private_data;
6763 
6764 		fgd = m->private;
6765 		seq_release(inode, file);
6766 	} else {
6767 		fgd = file->private_data;
6768 	}
6769 
6770 
6771 	if (file->f_mode & FMODE_WRITE) {
6772 
6773 		parser = &fgd->parser;
6774 
6775 		if (trace_parser_loaded((parser))) {
6776 			ret = ftrace_graph_set_hash(fgd->new_hash,
6777 						    parser->buffer);
6778 		}
6779 
6780 		trace_parser_put(parser);
6781 
6782 		new_hash = __ftrace_hash_move(fgd->new_hash);
6783 		if (!new_hash) {
6784 			ret = -ENOMEM;
6785 			goto out;
6786 		}
6787 
6788 		mutex_lock(&graph_lock);
6789 
6790 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
6791 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
6792 					lockdep_is_held(&graph_lock));
6793 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
6794 		} else {
6795 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6796 					lockdep_is_held(&graph_lock));
6797 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
6798 		}
6799 
6800 		mutex_unlock(&graph_lock);
6801 
6802 		/*
6803 		 * We need to do a hard force of sched synchronization.
6804 		 * This is because we use preempt_disable() to do RCU, but
6805 		 * the function tracers can be called where RCU is not watching
6806 		 * (like before user_exit()). We can not rely on the RCU
6807 		 * infrastructure to do the synchronization, thus we must do it
6808 		 * ourselves.
6809 		 */
6810 		if (old_hash != EMPTY_HASH)
6811 			synchronize_rcu_tasks_rude();
6812 
6813 		free_ftrace_hash(old_hash);
6814 	}
6815 
6816  out:
6817 	free_ftrace_hash(fgd->new_hash);
6818 	kfree(fgd);
6819 
6820 	return ret;
6821 }
6822 
6823 static int
6824 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6825 {
6826 	struct ftrace_glob func_g;
6827 	struct dyn_ftrace *rec;
6828 	struct ftrace_page *pg;
6829 	struct ftrace_func_entry *entry;
6830 	int fail = 1;
6831 	int not;
6832 
6833 	/* decode regex */
6834 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6835 					 &func_g.search, &not);
6836 
6837 	func_g.len = strlen(func_g.search);
6838 
6839 	guard(mutex)(&ftrace_lock);
6840 
6841 	if (unlikely(ftrace_disabled))
6842 		return -ENODEV;
6843 
6844 	do_for_each_ftrace_rec(pg, rec) {
6845 
6846 		if (rec->flags & FTRACE_FL_DISABLED)
6847 			continue;
6848 
6849 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6850 			entry = ftrace_lookup_ip(hash, rec->ip);
6851 
6852 			if (!not) {
6853 				fail = 0;
6854 
6855 				if (entry)
6856 					continue;
6857 				if (add_hash_entry(hash, rec->ip) == NULL)
6858 					return 0;
6859 			} else {
6860 				if (entry) {
6861 					free_hash_entry(hash, entry);
6862 					fail = 0;
6863 				}
6864 			}
6865 		}
6866 	} while_for_each_ftrace_rec();
6867 
6868 	return fail ? -EINVAL : 0;
6869 }
6870 
6871 static ssize_t
6872 ftrace_graph_write(struct file *file, const char __user *ubuf,
6873 		   size_t cnt, loff_t *ppos)
6874 {
6875 	ssize_t read, ret = 0;
6876 	struct ftrace_graph_data *fgd = file->private_data;
6877 	struct trace_parser *parser;
6878 
6879 	if (!cnt)
6880 		return 0;
6881 
6882 	/* Read mode uses seq functions */
6883 	if (file->f_mode & FMODE_READ) {
6884 		struct seq_file *m = file->private_data;
6885 		fgd = m->private;
6886 	}
6887 
6888 	parser = &fgd->parser;
6889 
6890 	read = trace_get_user(parser, ubuf, cnt, ppos);
6891 
6892 	if (read >= 0 && trace_parser_loaded(parser) &&
6893 	    !trace_parser_cont(parser)) {
6894 
6895 		ret = ftrace_graph_set_hash(fgd->new_hash,
6896 					    parser->buffer);
6897 		trace_parser_clear(parser);
6898 	}
6899 
6900 	if (!ret)
6901 		ret = read;
6902 
6903 	return ret;
6904 }
6905 
6906 static const struct file_operations ftrace_graph_fops = {
6907 	.open		= ftrace_graph_open,
6908 	.read		= seq_read,
6909 	.write		= ftrace_graph_write,
6910 	.llseek		= tracing_lseek,
6911 	.release	= ftrace_graph_release,
6912 };
6913 
6914 static const struct file_operations ftrace_graph_notrace_fops = {
6915 	.open		= ftrace_graph_notrace_open,
6916 	.read		= seq_read,
6917 	.write		= ftrace_graph_write,
6918 	.llseek		= tracing_lseek,
6919 	.release	= ftrace_graph_release,
6920 };
6921 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6922 
6923 void ftrace_create_filter_files(struct ftrace_ops *ops,
6924 				struct dentry *parent)
6925 {
6926 
6927 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6928 			  ops, &ftrace_filter_fops);
6929 
6930 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6931 			  ops, &ftrace_notrace_fops);
6932 }
6933 
6934 /*
6935  * The name "destroy_filter_files" is really a misnomer. Although
6936  * in the future, it may actually delete the files, but this is
6937  * really intended to make sure the ops passed in are disabled
6938  * and that when this function returns, the caller is free to
6939  * free the ops.
6940  *
6941  * The "destroy" name is only to match the "create" name that this
6942  * should be paired with.
6943  */
6944 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6945 {
6946 	mutex_lock(&ftrace_lock);
6947 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6948 		ftrace_shutdown(ops, 0);
6949 	ops->flags |= FTRACE_OPS_FL_DELETED;
6950 	ftrace_free_filter(ops);
6951 	mutex_unlock(&ftrace_lock);
6952 }
6953 
6954 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6955 {
6956 
6957 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
6958 			d_tracer, NULL, &ftrace_avail_fops);
6959 
6960 	trace_create_file("available_filter_functions_addrs", TRACE_MODE_READ,
6961 			d_tracer, NULL, &ftrace_avail_addrs_fops);
6962 
6963 	trace_create_file("enabled_functions", TRACE_MODE_READ,
6964 			d_tracer, NULL, &ftrace_enabled_fops);
6965 
6966 	trace_create_file("touched_functions", TRACE_MODE_READ,
6967 			d_tracer, NULL, &ftrace_touched_fops);
6968 
6969 	ftrace_create_filter_files(&global_ops, d_tracer);
6970 
6971 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6972 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6973 				    NULL,
6974 				    &ftrace_graph_fops);
6975 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6976 				    NULL,
6977 				    &ftrace_graph_notrace_fops);
6978 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6979 
6980 	return 0;
6981 }
6982 
6983 static int ftrace_cmp_ips(const void *a, const void *b)
6984 {
6985 	const unsigned long *ipa = a;
6986 	const unsigned long *ipb = b;
6987 
6988 	if (*ipa > *ipb)
6989 		return 1;
6990 	if (*ipa < *ipb)
6991 		return -1;
6992 	return 0;
6993 }
6994 
6995 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST
6996 static void test_is_sorted(unsigned long *start, unsigned long count)
6997 {
6998 	int i;
6999 
7000 	for (i = 1; i < count; i++) {
7001 		if (WARN(start[i - 1] > start[i],
7002 			 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i,
7003 			 (void *)start[i - 1], start[i - 1],
7004 			 (void *)start[i], start[i]))
7005 			break;
7006 	}
7007 	if (i == count)
7008 		pr_info("ftrace section at %px sorted properly\n", start);
7009 }
7010 #else
7011 static void test_is_sorted(unsigned long *start, unsigned long count)
7012 {
7013 }
7014 #endif
7015 
7016 static int ftrace_process_locs(struct module *mod,
7017 			       unsigned long *start,
7018 			       unsigned long *end)
7019 {
7020 	struct ftrace_page *pg_unuse = NULL;
7021 	struct ftrace_page *start_pg;
7022 	struct ftrace_page *pg;
7023 	struct dyn_ftrace *rec;
7024 	unsigned long skipped = 0;
7025 	unsigned long count;
7026 	unsigned long *p;
7027 	unsigned long addr;
7028 	unsigned long flags = 0; /* Shut up gcc */
7029 	int ret = -ENOMEM;
7030 
7031 	count = end - start;
7032 
7033 	if (!count)
7034 		return 0;
7035 
7036 	/*
7037 	 * Sorting mcount in vmlinux at build time depend on
7038 	 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in
7039 	 * modules can not be sorted at build time.
7040 	 */
7041 	if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) {
7042 		sort(start, count, sizeof(*start),
7043 		     ftrace_cmp_ips, NULL);
7044 	} else {
7045 		test_is_sorted(start, count);
7046 	}
7047 
7048 	start_pg = ftrace_allocate_pages(count);
7049 	if (!start_pg)
7050 		return -ENOMEM;
7051 
7052 	mutex_lock(&ftrace_lock);
7053 
7054 	/*
7055 	 * Core and each module needs their own pages, as
7056 	 * modules will free them when they are removed.
7057 	 * Force a new page to be allocated for modules.
7058 	 */
7059 	if (!mod) {
7060 		WARN_ON(ftrace_pages || ftrace_pages_start);
7061 		/* First initialization */
7062 		ftrace_pages = ftrace_pages_start = start_pg;
7063 	} else {
7064 		if (!ftrace_pages)
7065 			goto out;
7066 
7067 		if (WARN_ON(ftrace_pages->next)) {
7068 			/* Hmm, we have free pages? */
7069 			while (ftrace_pages->next)
7070 				ftrace_pages = ftrace_pages->next;
7071 		}
7072 
7073 		ftrace_pages->next = start_pg;
7074 	}
7075 
7076 	p = start;
7077 	pg = start_pg;
7078 	while (p < end) {
7079 		unsigned long end_offset;
7080 		addr = ftrace_call_adjust(*p++);
7081 		/*
7082 		 * Some architecture linkers will pad between
7083 		 * the different mcount_loc sections of different
7084 		 * object files to satisfy alignments.
7085 		 * Skip any NULL pointers.
7086 		 */
7087 		if (!addr) {
7088 			skipped++;
7089 			continue;
7090 		}
7091 
7092 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
7093 		if (end_offset > PAGE_SIZE << pg->order) {
7094 			/* We should have allocated enough */
7095 			if (WARN_ON(!pg->next))
7096 				break;
7097 			pg = pg->next;
7098 		}
7099 
7100 		rec = &pg->records[pg->index++];
7101 		rec->ip = addr;
7102 	}
7103 
7104 	if (pg->next) {
7105 		pg_unuse = pg->next;
7106 		pg->next = NULL;
7107 	}
7108 
7109 	/* Assign the last page to ftrace_pages */
7110 	ftrace_pages = pg;
7111 
7112 	/*
7113 	 * We only need to disable interrupts on start up
7114 	 * because we are modifying code that an interrupt
7115 	 * may execute, and the modification is not atomic.
7116 	 * But for modules, nothing runs the code we modify
7117 	 * until we are finished with it, and there's no
7118 	 * reason to cause large interrupt latencies while we do it.
7119 	 */
7120 	if (!mod)
7121 		local_irq_save(flags);
7122 	ftrace_update_code(mod, start_pg);
7123 	if (!mod)
7124 		local_irq_restore(flags);
7125 	ret = 0;
7126  out:
7127 	mutex_unlock(&ftrace_lock);
7128 
7129 	/* We should have used all pages unless we skipped some */
7130 	if (pg_unuse) {
7131 		WARN_ON(!skipped);
7132 		/* Need to synchronize with ftrace_location_range() */
7133 		synchronize_rcu();
7134 		ftrace_free_pages(pg_unuse);
7135 	}
7136 	return ret;
7137 }
7138 
7139 struct ftrace_mod_func {
7140 	struct list_head	list;
7141 	char			*name;
7142 	unsigned long		ip;
7143 	unsigned int		size;
7144 };
7145 
7146 struct ftrace_mod_map {
7147 	struct rcu_head		rcu;
7148 	struct list_head	list;
7149 	struct module		*mod;
7150 	unsigned long		start_addr;
7151 	unsigned long		end_addr;
7152 	struct list_head	funcs;
7153 	unsigned int		num_funcs;
7154 };
7155 
7156 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
7157 					 unsigned long *value, char *type,
7158 					 char *name, char *module_name,
7159 					 int *exported)
7160 {
7161 	struct ftrace_ops *op;
7162 
7163 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
7164 		if (!op->trampoline || symnum--)
7165 			continue;
7166 		*value = op->trampoline;
7167 		*type = 't';
7168 		strscpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
7169 		strscpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
7170 		*exported = 0;
7171 		return 0;
7172 	}
7173 
7174 	return -ERANGE;
7175 }
7176 
7177 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES)
7178 /*
7179  * Check if the current ops references the given ip.
7180  *
7181  * If the ops traces all functions, then it was already accounted for.
7182  * If the ops does not trace the current record function, skip it.
7183  * If the ops ignores the function via notrace filter, skip it.
7184  */
7185 static bool
7186 ops_references_ip(struct ftrace_ops *ops, unsigned long ip)
7187 {
7188 	/* If ops isn't enabled, ignore it */
7189 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
7190 		return false;
7191 
7192 	/* If ops traces all then it includes this function */
7193 	if (ops_traces_mod(ops))
7194 		return true;
7195 
7196 	/* The function must be in the filter */
7197 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
7198 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip))
7199 		return false;
7200 
7201 	/* If in notrace hash, we ignore it too */
7202 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip))
7203 		return false;
7204 
7205 	return true;
7206 }
7207 #endif
7208 
7209 #ifdef CONFIG_MODULES
7210 
7211 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
7212 
7213 static LIST_HEAD(ftrace_mod_maps);
7214 
7215 static int referenced_filters(struct dyn_ftrace *rec)
7216 {
7217 	struct ftrace_ops *ops;
7218 	int cnt = 0;
7219 
7220 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
7221 		if (ops_references_ip(ops, rec->ip)) {
7222 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
7223 				continue;
7224 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
7225 				continue;
7226 			cnt++;
7227 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
7228 				rec->flags |= FTRACE_FL_REGS;
7229 			if (cnt == 1 && ops->trampoline)
7230 				rec->flags |= FTRACE_FL_TRAMP;
7231 			else
7232 				rec->flags &= ~FTRACE_FL_TRAMP;
7233 		}
7234 	}
7235 
7236 	return cnt;
7237 }
7238 
7239 static void
7240 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
7241 {
7242 	struct ftrace_func_entry *entry;
7243 	struct dyn_ftrace *rec;
7244 	int i;
7245 
7246 	if (ftrace_hash_empty(hash))
7247 		return;
7248 
7249 	for (i = 0; i < pg->index; i++) {
7250 		rec = &pg->records[i];
7251 		entry = __ftrace_lookup_ip(hash, rec->ip);
7252 		/*
7253 		 * Do not allow this rec to match again.
7254 		 * Yeah, it may waste some memory, but will be removed
7255 		 * if/when the hash is modified again.
7256 		 */
7257 		if (entry)
7258 			entry->ip = 0;
7259 	}
7260 }
7261 
7262 /* Clear any records from hashes */
7263 static void clear_mod_from_hashes(struct ftrace_page *pg)
7264 {
7265 	struct trace_array *tr;
7266 
7267 	mutex_lock(&trace_types_lock);
7268 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7269 		if (!tr->ops || !tr->ops->func_hash)
7270 			continue;
7271 		mutex_lock(&tr->ops->func_hash->regex_lock);
7272 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
7273 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
7274 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7275 	}
7276 	mutex_unlock(&trace_types_lock);
7277 }
7278 
7279 static void ftrace_free_mod_map(struct rcu_head *rcu)
7280 {
7281 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
7282 	struct ftrace_mod_func *mod_func;
7283 	struct ftrace_mod_func *n;
7284 
7285 	/* All the contents of mod_map are now not visible to readers */
7286 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
7287 		kfree(mod_func->name);
7288 		list_del(&mod_func->list);
7289 		kfree(mod_func);
7290 	}
7291 
7292 	kfree(mod_map);
7293 }
7294 
7295 void ftrace_release_mod(struct module *mod)
7296 {
7297 	struct ftrace_mod_map *mod_map;
7298 	struct ftrace_mod_map *n;
7299 	struct dyn_ftrace *rec;
7300 	struct ftrace_page **last_pg;
7301 	struct ftrace_page *tmp_page = NULL;
7302 	struct ftrace_page *pg;
7303 
7304 	mutex_lock(&ftrace_lock);
7305 
7306 	if (ftrace_disabled)
7307 		goto out_unlock;
7308 
7309 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
7310 		if (mod_map->mod == mod) {
7311 			list_del_rcu(&mod_map->list);
7312 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
7313 			break;
7314 		}
7315 	}
7316 
7317 	/*
7318 	 * Each module has its own ftrace_pages, remove
7319 	 * them from the list.
7320 	 */
7321 	last_pg = &ftrace_pages_start;
7322 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
7323 		rec = &pg->records[0];
7324 		if (within_module(rec->ip, mod)) {
7325 			/*
7326 			 * As core pages are first, the first
7327 			 * page should never be a module page.
7328 			 */
7329 			if (WARN_ON(pg == ftrace_pages_start))
7330 				goto out_unlock;
7331 
7332 			/* Check if we are deleting the last page */
7333 			if (pg == ftrace_pages)
7334 				ftrace_pages = next_to_ftrace_page(last_pg);
7335 
7336 			ftrace_update_tot_cnt -= pg->index;
7337 			*last_pg = pg->next;
7338 
7339 			pg->next = tmp_page;
7340 			tmp_page = pg;
7341 		} else
7342 			last_pg = &pg->next;
7343 	}
7344  out_unlock:
7345 	mutex_unlock(&ftrace_lock);
7346 
7347 	/* Need to synchronize with ftrace_location_range() */
7348 	if (tmp_page)
7349 		synchronize_rcu();
7350 	for (pg = tmp_page; pg; pg = tmp_page) {
7351 
7352 		/* Needs to be called outside of ftrace_lock */
7353 		clear_mod_from_hashes(pg);
7354 
7355 		if (pg->records) {
7356 			free_pages((unsigned long)pg->records, pg->order);
7357 			ftrace_number_of_pages -= 1 << pg->order;
7358 		}
7359 		tmp_page = pg->next;
7360 		kfree(pg);
7361 		ftrace_number_of_groups--;
7362 	}
7363 }
7364 
7365 void ftrace_module_enable(struct module *mod)
7366 {
7367 	struct dyn_ftrace *rec;
7368 	struct ftrace_page *pg;
7369 
7370 	mutex_lock(&ftrace_lock);
7371 
7372 	if (ftrace_disabled)
7373 		goto out_unlock;
7374 
7375 	/*
7376 	 * If the tracing is enabled, go ahead and enable the record.
7377 	 *
7378 	 * The reason not to enable the record immediately is the
7379 	 * inherent check of ftrace_make_nop/ftrace_make_call for
7380 	 * correct previous instructions.  Making first the NOP
7381 	 * conversion puts the module to the correct state, thus
7382 	 * passing the ftrace_make_call check.
7383 	 *
7384 	 * We also delay this to after the module code already set the
7385 	 * text to read-only, as we now need to set it back to read-write
7386 	 * so that we can modify the text.
7387 	 */
7388 	if (ftrace_start_up)
7389 		ftrace_arch_code_modify_prepare();
7390 
7391 	do_for_each_ftrace_rec(pg, rec) {
7392 		int cnt;
7393 		/*
7394 		 * do_for_each_ftrace_rec() is a double loop.
7395 		 * module text shares the pg. If a record is
7396 		 * not part of this module, then skip this pg,
7397 		 * which the "break" will do.
7398 		 */
7399 		if (!within_module(rec->ip, mod))
7400 			break;
7401 
7402 		/* Weak functions should still be ignored */
7403 		if (!test_for_valid_rec(rec)) {
7404 			/* Clear all other flags. Should not be enabled anyway */
7405 			rec->flags = FTRACE_FL_DISABLED;
7406 			continue;
7407 		}
7408 
7409 		cnt = 0;
7410 
7411 		/*
7412 		 * When adding a module, we need to check if tracers are
7413 		 * currently enabled and if they are, and can trace this record,
7414 		 * we need to enable the module functions as well as update the
7415 		 * reference counts for those function records.
7416 		 */
7417 		if (ftrace_start_up)
7418 			cnt += referenced_filters(rec);
7419 
7420 		rec->flags &= ~FTRACE_FL_DISABLED;
7421 		rec->flags += cnt;
7422 
7423 		if (ftrace_start_up && cnt) {
7424 			int failed = __ftrace_replace_code(rec, 1);
7425 			if (failed) {
7426 				ftrace_bug(failed, rec);
7427 				goto out_loop;
7428 			}
7429 		}
7430 
7431 	} while_for_each_ftrace_rec();
7432 
7433  out_loop:
7434 	if (ftrace_start_up)
7435 		ftrace_arch_code_modify_post_process();
7436 
7437  out_unlock:
7438 	mutex_unlock(&ftrace_lock);
7439 
7440 	process_cached_mods(mod->name);
7441 }
7442 
7443 void ftrace_module_init(struct module *mod)
7444 {
7445 	int ret;
7446 
7447 	if (ftrace_disabled || !mod->num_ftrace_callsites)
7448 		return;
7449 
7450 	ret = ftrace_process_locs(mod, mod->ftrace_callsites,
7451 				  mod->ftrace_callsites + mod->num_ftrace_callsites);
7452 	if (ret)
7453 		pr_warn("ftrace: failed to allocate entries for module '%s' functions\n",
7454 			mod->name);
7455 }
7456 
7457 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7458 				struct dyn_ftrace *rec)
7459 {
7460 	struct ftrace_mod_func *mod_func;
7461 	unsigned long symsize;
7462 	unsigned long offset;
7463 	char str[KSYM_SYMBOL_LEN];
7464 	char *modname;
7465 	const char *ret;
7466 
7467 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
7468 	if (!ret)
7469 		return;
7470 
7471 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
7472 	if (!mod_func)
7473 		return;
7474 
7475 	mod_func->name = kstrdup(str, GFP_KERNEL);
7476 	if (!mod_func->name) {
7477 		kfree(mod_func);
7478 		return;
7479 	}
7480 
7481 	mod_func->ip = rec->ip - offset;
7482 	mod_func->size = symsize;
7483 
7484 	mod_map->num_funcs++;
7485 
7486 	list_add_rcu(&mod_func->list, &mod_map->funcs);
7487 }
7488 
7489 static struct ftrace_mod_map *
7490 allocate_ftrace_mod_map(struct module *mod,
7491 			unsigned long start, unsigned long end)
7492 {
7493 	struct ftrace_mod_map *mod_map;
7494 
7495 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
7496 	if (!mod_map)
7497 		return NULL;
7498 
7499 	mod_map->mod = mod;
7500 	mod_map->start_addr = start;
7501 	mod_map->end_addr = end;
7502 	mod_map->num_funcs = 0;
7503 
7504 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
7505 
7506 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
7507 
7508 	return mod_map;
7509 }
7510 
7511 static int
7512 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
7513 			   unsigned long addr, unsigned long *size,
7514 			   unsigned long *off, char *sym)
7515 {
7516 	struct ftrace_mod_func *found_func =  NULL;
7517 	struct ftrace_mod_func *mod_func;
7518 
7519 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7520 		if (addr >= mod_func->ip &&
7521 		    addr < mod_func->ip + mod_func->size) {
7522 			found_func = mod_func;
7523 			break;
7524 		}
7525 	}
7526 
7527 	if (found_func) {
7528 		if (size)
7529 			*size = found_func->size;
7530 		if (off)
7531 			*off = addr - found_func->ip;
7532 		return strscpy(sym, found_func->name, KSYM_NAME_LEN);
7533 	}
7534 
7535 	return 0;
7536 }
7537 
7538 int
7539 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
7540 		   unsigned long *off, char **modname, char *sym)
7541 {
7542 	struct ftrace_mod_map *mod_map;
7543 	int ret = 0;
7544 
7545 	/* mod_map is freed via call_rcu() */
7546 	preempt_disable();
7547 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7548 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
7549 		if (ret) {
7550 			if (modname)
7551 				*modname = mod_map->mod->name;
7552 			break;
7553 		}
7554 	}
7555 	preempt_enable();
7556 
7557 	return ret;
7558 }
7559 
7560 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7561 			   char *type, char *name,
7562 			   char *module_name, int *exported)
7563 {
7564 	struct ftrace_mod_map *mod_map;
7565 	struct ftrace_mod_func *mod_func;
7566 	int ret;
7567 
7568 	preempt_disable();
7569 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7570 
7571 		if (symnum >= mod_map->num_funcs) {
7572 			symnum -= mod_map->num_funcs;
7573 			continue;
7574 		}
7575 
7576 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7577 			if (symnum > 1) {
7578 				symnum--;
7579 				continue;
7580 			}
7581 
7582 			*value = mod_func->ip;
7583 			*type = 'T';
7584 			strscpy(name, mod_func->name, KSYM_NAME_LEN);
7585 			strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
7586 			*exported = 1;
7587 			preempt_enable();
7588 			return 0;
7589 		}
7590 		WARN_ON(1);
7591 		break;
7592 	}
7593 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7594 					    module_name, exported);
7595 	preempt_enable();
7596 	return ret;
7597 }
7598 
7599 #else
7600 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7601 				struct dyn_ftrace *rec) { }
7602 static inline struct ftrace_mod_map *
7603 allocate_ftrace_mod_map(struct module *mod,
7604 			unsigned long start, unsigned long end)
7605 {
7606 	return NULL;
7607 }
7608 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7609 			   char *type, char *name, char *module_name,
7610 			   int *exported)
7611 {
7612 	int ret;
7613 
7614 	preempt_disable();
7615 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7616 					    module_name, exported);
7617 	preempt_enable();
7618 	return ret;
7619 }
7620 #endif /* CONFIG_MODULES */
7621 
7622 struct ftrace_init_func {
7623 	struct list_head list;
7624 	unsigned long ip;
7625 };
7626 
7627 /* Clear any init ips from hashes */
7628 static void
7629 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
7630 {
7631 	struct ftrace_func_entry *entry;
7632 
7633 	entry = ftrace_lookup_ip(hash, func->ip);
7634 	/*
7635 	 * Do not allow this rec to match again.
7636 	 * Yeah, it may waste some memory, but will be removed
7637 	 * if/when the hash is modified again.
7638 	 */
7639 	if (entry)
7640 		entry->ip = 0;
7641 }
7642 
7643 static void
7644 clear_func_from_hashes(struct ftrace_init_func *func)
7645 {
7646 	struct trace_array *tr;
7647 
7648 	mutex_lock(&trace_types_lock);
7649 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7650 		if (!tr->ops || !tr->ops->func_hash)
7651 			continue;
7652 		mutex_lock(&tr->ops->func_hash->regex_lock);
7653 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
7654 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
7655 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7656 	}
7657 	mutex_unlock(&trace_types_lock);
7658 }
7659 
7660 static void add_to_clear_hash_list(struct list_head *clear_list,
7661 				   struct dyn_ftrace *rec)
7662 {
7663 	struct ftrace_init_func *func;
7664 
7665 	func = kmalloc(sizeof(*func), GFP_KERNEL);
7666 	if (!func) {
7667 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
7668 		return;
7669 	}
7670 
7671 	func->ip = rec->ip;
7672 	list_add(&func->list, clear_list);
7673 }
7674 
7675 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
7676 {
7677 	unsigned long start = (unsigned long)(start_ptr);
7678 	unsigned long end = (unsigned long)(end_ptr);
7679 	struct ftrace_page **last_pg = &ftrace_pages_start;
7680 	struct ftrace_page *tmp_page = NULL;
7681 	struct ftrace_page *pg;
7682 	struct dyn_ftrace *rec;
7683 	struct dyn_ftrace key;
7684 	struct ftrace_mod_map *mod_map = NULL;
7685 	struct ftrace_init_func *func, *func_next;
7686 	LIST_HEAD(clear_hash);
7687 
7688 	key.ip = start;
7689 	key.flags = end;	/* overload flags, as it is unsigned long */
7690 
7691 	mutex_lock(&ftrace_lock);
7692 
7693 	/*
7694 	 * If we are freeing module init memory, then check if
7695 	 * any tracer is active. If so, we need to save a mapping of
7696 	 * the module functions being freed with the address.
7697 	 */
7698 	if (mod && ftrace_ops_list != &ftrace_list_end)
7699 		mod_map = allocate_ftrace_mod_map(mod, start, end);
7700 
7701 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
7702 		if (end < pg->records[0].ip ||
7703 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
7704 			continue;
7705  again:
7706 		rec = bsearch(&key, pg->records, pg->index,
7707 			      sizeof(struct dyn_ftrace),
7708 			      ftrace_cmp_recs);
7709 		if (!rec)
7710 			continue;
7711 
7712 		/* rec will be cleared from hashes after ftrace_lock unlock */
7713 		add_to_clear_hash_list(&clear_hash, rec);
7714 
7715 		if (mod_map)
7716 			save_ftrace_mod_rec(mod_map, rec);
7717 
7718 		pg->index--;
7719 		ftrace_update_tot_cnt--;
7720 		if (!pg->index) {
7721 			*last_pg = pg->next;
7722 			pg->next = tmp_page;
7723 			tmp_page = pg;
7724 			pg = container_of(last_pg, struct ftrace_page, next);
7725 			if (!(*last_pg))
7726 				ftrace_pages = pg;
7727 			continue;
7728 		}
7729 		memmove(rec, rec + 1,
7730 			(pg->index - (rec - pg->records)) * sizeof(*rec));
7731 		/* More than one function may be in this block */
7732 		goto again;
7733 	}
7734 	mutex_unlock(&ftrace_lock);
7735 
7736 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
7737 		clear_func_from_hashes(func);
7738 		kfree(func);
7739 	}
7740 	/* Need to synchronize with ftrace_location_range() */
7741 	if (tmp_page) {
7742 		synchronize_rcu();
7743 		ftrace_free_pages(tmp_page);
7744 	}
7745 }
7746 
7747 void __init ftrace_free_init_mem(void)
7748 {
7749 	void *start = (void *)(&__init_begin);
7750 	void *end = (void *)(&__init_end);
7751 
7752 	ftrace_boot_snapshot();
7753 
7754 	ftrace_free_mem(NULL, start, end);
7755 }
7756 
7757 int __init __weak ftrace_dyn_arch_init(void)
7758 {
7759 	return 0;
7760 }
7761 
7762 void __init ftrace_init(void)
7763 {
7764 	extern unsigned long __start_mcount_loc[];
7765 	extern unsigned long __stop_mcount_loc[];
7766 	unsigned long count, flags;
7767 	int ret;
7768 
7769 	local_irq_save(flags);
7770 	ret = ftrace_dyn_arch_init();
7771 	local_irq_restore(flags);
7772 	if (ret)
7773 		goto failed;
7774 
7775 	count = __stop_mcount_loc - __start_mcount_loc;
7776 	if (!count) {
7777 		pr_info("ftrace: No functions to be traced?\n");
7778 		goto failed;
7779 	}
7780 
7781 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
7782 		count, DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
7783 
7784 	ret = ftrace_process_locs(NULL,
7785 				  __start_mcount_loc,
7786 				  __stop_mcount_loc);
7787 	if (ret) {
7788 		pr_warn("ftrace: failed to allocate entries for functions\n");
7789 		goto failed;
7790 	}
7791 
7792 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
7793 		ftrace_number_of_pages, ftrace_number_of_groups);
7794 
7795 	last_ftrace_enabled = ftrace_enabled = 1;
7796 
7797 	set_ftrace_early_filters();
7798 
7799 	return;
7800  failed:
7801 	ftrace_disabled = 1;
7802 }
7803 
7804 /* Do nothing if arch does not support this */
7805 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
7806 {
7807 }
7808 
7809 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7810 {
7811 	unsigned long trampoline = ops->trampoline;
7812 
7813 	arch_ftrace_update_trampoline(ops);
7814 	if (ops->trampoline && ops->trampoline != trampoline &&
7815 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
7816 		/* Add to kallsyms before the perf events */
7817 		ftrace_add_trampoline_to_kallsyms(ops);
7818 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
7819 				   ops->trampoline, ops->trampoline_size, false,
7820 				   FTRACE_TRAMPOLINE_SYM);
7821 		/*
7822 		 * Record the perf text poke event after the ksymbol register
7823 		 * event.
7824 		 */
7825 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
7826 				     (void *)ops->trampoline,
7827 				     ops->trampoline_size);
7828 	}
7829 }
7830 
7831 void ftrace_init_trace_array(struct trace_array *tr)
7832 {
7833 	if (tr->flags & TRACE_ARRAY_FL_MOD_INIT)
7834 		return;
7835 
7836 	INIT_LIST_HEAD(&tr->func_probes);
7837 	INIT_LIST_HEAD(&tr->mod_trace);
7838 	INIT_LIST_HEAD(&tr->mod_notrace);
7839 
7840 	tr->flags |= TRACE_ARRAY_FL_MOD_INIT;
7841 }
7842 #else
7843 
7844 struct ftrace_ops global_ops = {
7845 	.func			= ftrace_stub,
7846 	.flags			= FTRACE_OPS_FL_INITIALIZED |
7847 				  FTRACE_OPS_FL_PID,
7848 };
7849 
7850 static int __init ftrace_nodyn_init(void)
7851 {
7852 	ftrace_enabled = 1;
7853 	return 0;
7854 }
7855 core_initcall(ftrace_nodyn_init);
7856 
7857 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
7858 static inline void ftrace_startup_all(int command) { }
7859 
7860 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7861 {
7862 }
7863 
7864 #endif /* CONFIG_DYNAMIC_FTRACE */
7865 
7866 __init void ftrace_init_global_array_ops(struct trace_array *tr)
7867 {
7868 	tr->ops = &global_ops;
7869 	if (!global_ops.private)
7870 		global_ops.private = tr;
7871 	ftrace_init_trace_array(tr);
7872 	init_array_fgraph_ops(tr, tr->ops);
7873 }
7874 
7875 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
7876 {
7877 	/* If we filter on pids, update to use the pid function */
7878 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
7879 		if (WARN_ON(tr->ops->func != ftrace_stub))
7880 			printk("ftrace ops had %pS for function\n",
7881 			       tr->ops->func);
7882 	}
7883 	tr->ops->func = func;
7884 	tr->ops->private = tr;
7885 }
7886 
7887 void ftrace_reset_array_ops(struct trace_array *tr)
7888 {
7889 	tr->ops->func = ftrace_stub;
7890 }
7891 
7892 static nokprobe_inline void
7893 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7894 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
7895 {
7896 	struct pt_regs *regs = ftrace_get_regs(fregs);
7897 	struct ftrace_ops *op;
7898 	int bit;
7899 
7900 	/*
7901 	 * The ftrace_test_and_set_recursion() will disable preemption,
7902 	 * which is required since some of the ops may be dynamically
7903 	 * allocated, they must be freed after a synchronize_rcu().
7904 	 */
7905 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7906 	if (bit < 0)
7907 		return;
7908 
7909 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7910 		/* Stub functions don't need to be called nor tested */
7911 		if (op->flags & FTRACE_OPS_FL_STUB)
7912 			continue;
7913 		/*
7914 		 * Check the following for each ops before calling their func:
7915 		 *  if RCU flag is set, then rcu_is_watching() must be true
7916 		 *  Otherwise test if the ip matches the ops filter
7917 		 *
7918 		 * If any of the above fails then the op->func() is not executed.
7919 		 */
7920 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7921 		    ftrace_ops_test(op, ip, regs)) {
7922 			if (FTRACE_WARN_ON(!op->func)) {
7923 				pr_warn("op=%p %pS\n", op, op);
7924 				goto out;
7925 			}
7926 			op->func(ip, parent_ip, op, fregs);
7927 		}
7928 	} while_for_each_ftrace_op(op);
7929 out:
7930 	trace_clear_recursion(bit);
7931 }
7932 
7933 /*
7934  * Some archs only support passing ip and parent_ip. Even though
7935  * the list function ignores the op parameter, we do not want any
7936  * C side effects, where a function is called without the caller
7937  * sending a third parameter.
7938  * Archs are to support both the regs and ftrace_ops at the same time.
7939  * If they support ftrace_ops, it is assumed they support regs.
7940  * If call backs want to use regs, they must either check for regs
7941  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7942  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7943  * An architecture can pass partial regs with ftrace_ops and still
7944  * set the ARCH_SUPPORTS_FTRACE_OPS.
7945  *
7946  * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be
7947  * arch_ftrace_ops_list_func.
7948  */
7949 #if ARCH_SUPPORTS_FTRACE_OPS
7950 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7951 			       struct ftrace_ops *op, struct ftrace_regs *fregs)
7952 {
7953 	kmsan_unpoison_memory(fregs, ftrace_regs_size());
7954 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7955 }
7956 #else
7957 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip)
7958 {
7959 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7960 }
7961 #endif
7962 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func);
7963 
7964 /*
7965  * If there's only one function registered but it does not support
7966  * recursion, needs RCU protection, then this function will be called
7967  * by the mcount trampoline.
7968  */
7969 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7970 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7971 {
7972 	int bit;
7973 
7974 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7975 	if (bit < 0)
7976 		return;
7977 
7978 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7979 		op->func(ip, parent_ip, op, fregs);
7980 
7981 	trace_clear_recursion(bit);
7982 }
7983 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7984 
7985 /**
7986  * ftrace_ops_get_func - get the function a trampoline should call
7987  * @ops: the ops to get the function for
7988  *
7989  * Normally the mcount trampoline will call the ops->func, but there
7990  * are times that it should not. For example, if the ops does not
7991  * have its own recursion protection, then it should call the
7992  * ftrace_ops_assist_func() instead.
7993  *
7994  * Returns: the function that the trampoline should call for @ops.
7995  */
7996 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7997 {
7998 	/*
7999 	 * If the function does not handle recursion or needs to be RCU safe,
8000 	 * then we need to call the assist handler.
8001 	 */
8002 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
8003 			  FTRACE_OPS_FL_RCU))
8004 		return ftrace_ops_assist_func;
8005 
8006 	return ops->func;
8007 }
8008 
8009 static void
8010 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
8011 				     struct task_struct *prev,
8012 				     struct task_struct *next,
8013 				     unsigned int prev_state)
8014 {
8015 	struct trace_array *tr = data;
8016 	struct trace_pid_list *pid_list;
8017 	struct trace_pid_list *no_pid_list;
8018 
8019 	pid_list = rcu_dereference_sched(tr->function_pids);
8020 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
8021 
8022 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
8023 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8024 			       FTRACE_PID_IGNORE);
8025 	else
8026 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8027 			       next->pid);
8028 }
8029 
8030 static void
8031 ftrace_pid_follow_sched_process_fork(void *data,
8032 				     struct task_struct *self,
8033 				     struct task_struct *task)
8034 {
8035 	struct trace_pid_list *pid_list;
8036 	struct trace_array *tr = data;
8037 
8038 	pid_list = rcu_dereference_sched(tr->function_pids);
8039 	trace_filter_add_remove_task(pid_list, self, task);
8040 
8041 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8042 	trace_filter_add_remove_task(pid_list, self, task);
8043 }
8044 
8045 static void
8046 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
8047 {
8048 	struct trace_pid_list *pid_list;
8049 	struct trace_array *tr = data;
8050 
8051 	pid_list = rcu_dereference_sched(tr->function_pids);
8052 	trace_filter_add_remove_task(pid_list, NULL, task);
8053 
8054 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8055 	trace_filter_add_remove_task(pid_list, NULL, task);
8056 }
8057 
8058 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
8059 {
8060 	if (enable) {
8061 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
8062 						  tr);
8063 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
8064 						  tr);
8065 	} else {
8066 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
8067 						    tr);
8068 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
8069 						    tr);
8070 	}
8071 }
8072 
8073 static void clear_ftrace_pids(struct trace_array *tr, int type)
8074 {
8075 	struct trace_pid_list *pid_list;
8076 	struct trace_pid_list *no_pid_list;
8077 	int cpu;
8078 
8079 	pid_list = rcu_dereference_protected(tr->function_pids,
8080 					     lockdep_is_held(&ftrace_lock));
8081 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
8082 						lockdep_is_held(&ftrace_lock));
8083 
8084 	/* Make sure there's something to do */
8085 	if (!pid_type_enabled(type, pid_list, no_pid_list))
8086 		return;
8087 
8088 	/* See if the pids still need to be checked after this */
8089 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
8090 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
8091 		for_each_possible_cpu(cpu)
8092 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
8093 	}
8094 
8095 	if (type & TRACE_PIDS)
8096 		rcu_assign_pointer(tr->function_pids, NULL);
8097 
8098 	if (type & TRACE_NO_PIDS)
8099 		rcu_assign_pointer(tr->function_no_pids, NULL);
8100 
8101 	/* Wait till all users are no longer using pid filtering */
8102 	synchronize_rcu();
8103 
8104 	if ((type & TRACE_PIDS) && pid_list)
8105 		trace_pid_list_free(pid_list);
8106 
8107 	if ((type & TRACE_NO_PIDS) && no_pid_list)
8108 		trace_pid_list_free(no_pid_list);
8109 }
8110 
8111 void ftrace_clear_pids(struct trace_array *tr)
8112 {
8113 	mutex_lock(&ftrace_lock);
8114 
8115 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
8116 
8117 	mutex_unlock(&ftrace_lock);
8118 }
8119 
8120 static void ftrace_pid_reset(struct trace_array *tr, int type)
8121 {
8122 	mutex_lock(&ftrace_lock);
8123 	clear_ftrace_pids(tr, type);
8124 
8125 	ftrace_update_pid_func();
8126 	ftrace_startup_all(0);
8127 
8128 	mutex_unlock(&ftrace_lock);
8129 }
8130 
8131 /* Greater than any max PID */
8132 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
8133 
8134 static void *fpid_start(struct seq_file *m, loff_t *pos)
8135 	__acquires(RCU)
8136 {
8137 	struct trace_pid_list *pid_list;
8138 	struct trace_array *tr = m->private;
8139 
8140 	mutex_lock(&ftrace_lock);
8141 	rcu_read_lock_sched();
8142 
8143 	pid_list = rcu_dereference_sched(tr->function_pids);
8144 
8145 	if (!pid_list)
8146 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
8147 
8148 	return trace_pid_start(pid_list, pos);
8149 }
8150 
8151 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
8152 {
8153 	struct trace_array *tr = m->private;
8154 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
8155 
8156 	if (v == FTRACE_NO_PIDS) {
8157 		(*pos)++;
8158 		return NULL;
8159 	}
8160 	return trace_pid_next(pid_list, v, pos);
8161 }
8162 
8163 static void fpid_stop(struct seq_file *m, void *p)
8164 	__releases(RCU)
8165 {
8166 	rcu_read_unlock_sched();
8167 	mutex_unlock(&ftrace_lock);
8168 }
8169 
8170 static int fpid_show(struct seq_file *m, void *v)
8171 {
8172 	if (v == FTRACE_NO_PIDS) {
8173 		seq_puts(m, "no pid\n");
8174 		return 0;
8175 	}
8176 
8177 	return trace_pid_show(m, v);
8178 }
8179 
8180 static const struct seq_operations ftrace_pid_sops = {
8181 	.start = fpid_start,
8182 	.next = fpid_next,
8183 	.stop = fpid_stop,
8184 	.show = fpid_show,
8185 };
8186 
8187 static void *fnpid_start(struct seq_file *m, loff_t *pos)
8188 	__acquires(RCU)
8189 {
8190 	struct trace_pid_list *pid_list;
8191 	struct trace_array *tr = m->private;
8192 
8193 	mutex_lock(&ftrace_lock);
8194 	rcu_read_lock_sched();
8195 
8196 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8197 
8198 	if (!pid_list)
8199 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
8200 
8201 	return trace_pid_start(pid_list, pos);
8202 }
8203 
8204 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
8205 {
8206 	struct trace_array *tr = m->private;
8207 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
8208 
8209 	if (v == FTRACE_NO_PIDS) {
8210 		(*pos)++;
8211 		return NULL;
8212 	}
8213 	return trace_pid_next(pid_list, v, pos);
8214 }
8215 
8216 static const struct seq_operations ftrace_no_pid_sops = {
8217 	.start = fnpid_start,
8218 	.next = fnpid_next,
8219 	.stop = fpid_stop,
8220 	.show = fpid_show,
8221 };
8222 
8223 static int pid_open(struct inode *inode, struct file *file, int type)
8224 {
8225 	const struct seq_operations *seq_ops;
8226 	struct trace_array *tr = inode->i_private;
8227 	struct seq_file *m;
8228 	int ret = 0;
8229 
8230 	ret = tracing_check_open_get_tr(tr);
8231 	if (ret)
8232 		return ret;
8233 
8234 	if ((file->f_mode & FMODE_WRITE) &&
8235 	    (file->f_flags & O_TRUNC))
8236 		ftrace_pid_reset(tr, type);
8237 
8238 	switch (type) {
8239 	case TRACE_PIDS:
8240 		seq_ops = &ftrace_pid_sops;
8241 		break;
8242 	case TRACE_NO_PIDS:
8243 		seq_ops = &ftrace_no_pid_sops;
8244 		break;
8245 	default:
8246 		trace_array_put(tr);
8247 		WARN_ON_ONCE(1);
8248 		return -EINVAL;
8249 	}
8250 
8251 	ret = seq_open(file, seq_ops);
8252 	if (ret < 0) {
8253 		trace_array_put(tr);
8254 	} else {
8255 		m = file->private_data;
8256 		/* copy tr over to seq ops */
8257 		m->private = tr;
8258 	}
8259 
8260 	return ret;
8261 }
8262 
8263 static int
8264 ftrace_pid_open(struct inode *inode, struct file *file)
8265 {
8266 	return pid_open(inode, file, TRACE_PIDS);
8267 }
8268 
8269 static int
8270 ftrace_no_pid_open(struct inode *inode, struct file *file)
8271 {
8272 	return pid_open(inode, file, TRACE_NO_PIDS);
8273 }
8274 
8275 static void ignore_task_cpu(void *data)
8276 {
8277 	struct trace_array *tr = data;
8278 	struct trace_pid_list *pid_list;
8279 	struct trace_pid_list *no_pid_list;
8280 
8281 	/*
8282 	 * This function is called by on_each_cpu() while the
8283 	 * event_mutex is held.
8284 	 */
8285 	pid_list = rcu_dereference_protected(tr->function_pids,
8286 					     mutex_is_locked(&ftrace_lock));
8287 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
8288 						mutex_is_locked(&ftrace_lock));
8289 
8290 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
8291 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8292 			       FTRACE_PID_IGNORE);
8293 	else
8294 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8295 			       current->pid);
8296 }
8297 
8298 static ssize_t
8299 pid_write(struct file *filp, const char __user *ubuf,
8300 	  size_t cnt, loff_t *ppos, int type)
8301 {
8302 	struct seq_file *m = filp->private_data;
8303 	struct trace_array *tr = m->private;
8304 	struct trace_pid_list *filtered_pids;
8305 	struct trace_pid_list *other_pids;
8306 	struct trace_pid_list *pid_list;
8307 	ssize_t ret;
8308 
8309 	if (!cnt)
8310 		return 0;
8311 
8312 	guard(mutex)(&ftrace_lock);
8313 
8314 	switch (type) {
8315 	case TRACE_PIDS:
8316 		filtered_pids = rcu_dereference_protected(tr->function_pids,
8317 					     lockdep_is_held(&ftrace_lock));
8318 		other_pids = rcu_dereference_protected(tr->function_no_pids,
8319 					     lockdep_is_held(&ftrace_lock));
8320 		break;
8321 	case TRACE_NO_PIDS:
8322 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
8323 					     lockdep_is_held(&ftrace_lock));
8324 		other_pids = rcu_dereference_protected(tr->function_pids,
8325 					     lockdep_is_held(&ftrace_lock));
8326 		break;
8327 	default:
8328 		WARN_ON_ONCE(1);
8329 		return -EINVAL;
8330 	}
8331 
8332 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
8333 	if (ret < 0)
8334 		return ret;
8335 
8336 	switch (type) {
8337 	case TRACE_PIDS:
8338 		rcu_assign_pointer(tr->function_pids, pid_list);
8339 		break;
8340 	case TRACE_NO_PIDS:
8341 		rcu_assign_pointer(tr->function_no_pids, pid_list);
8342 		break;
8343 	}
8344 
8345 
8346 	if (filtered_pids) {
8347 		synchronize_rcu();
8348 		trace_pid_list_free(filtered_pids);
8349 	} else if (pid_list && !other_pids) {
8350 		/* Register a probe to set whether to ignore the tracing of a task */
8351 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
8352 	}
8353 
8354 	/*
8355 	 * Ignoring of pids is done at task switch. But we have to
8356 	 * check for those tasks that are currently running.
8357 	 * Always do this in case a pid was appended or removed.
8358 	 */
8359 	on_each_cpu(ignore_task_cpu, tr, 1);
8360 
8361 	ftrace_update_pid_func();
8362 	ftrace_startup_all(0);
8363 
8364 	*ppos += ret;
8365 
8366 	return ret;
8367 }
8368 
8369 static ssize_t
8370 ftrace_pid_write(struct file *filp, const char __user *ubuf,
8371 		 size_t cnt, loff_t *ppos)
8372 {
8373 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
8374 }
8375 
8376 static ssize_t
8377 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
8378 		    size_t cnt, loff_t *ppos)
8379 {
8380 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
8381 }
8382 
8383 static int
8384 ftrace_pid_release(struct inode *inode, struct file *file)
8385 {
8386 	struct trace_array *tr = inode->i_private;
8387 
8388 	trace_array_put(tr);
8389 
8390 	return seq_release(inode, file);
8391 }
8392 
8393 static const struct file_operations ftrace_pid_fops = {
8394 	.open		= ftrace_pid_open,
8395 	.write		= ftrace_pid_write,
8396 	.read		= seq_read,
8397 	.llseek		= tracing_lseek,
8398 	.release	= ftrace_pid_release,
8399 };
8400 
8401 static const struct file_operations ftrace_no_pid_fops = {
8402 	.open		= ftrace_no_pid_open,
8403 	.write		= ftrace_no_pid_write,
8404 	.read		= seq_read,
8405 	.llseek		= tracing_lseek,
8406 	.release	= ftrace_pid_release,
8407 };
8408 
8409 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
8410 {
8411 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
8412 			    tr, &ftrace_pid_fops);
8413 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
8414 			  d_tracer, tr, &ftrace_no_pid_fops);
8415 }
8416 
8417 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
8418 					 struct dentry *d_tracer)
8419 {
8420 	/* Only the top level directory has the dyn_tracefs and profile */
8421 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
8422 
8423 	ftrace_init_dyn_tracefs(d_tracer);
8424 	ftrace_profile_tracefs(d_tracer);
8425 }
8426 
8427 /**
8428  * ftrace_kill - kill ftrace
8429  *
8430  * This function should be used by panic code. It stops ftrace
8431  * but in a not so nice way. If you need to simply kill ftrace
8432  * from a non-atomic section, use ftrace_kill.
8433  */
8434 void ftrace_kill(void)
8435 {
8436 	ftrace_disabled = 1;
8437 	ftrace_enabled = 0;
8438 	ftrace_trace_function = ftrace_stub;
8439 	kprobe_ftrace_kill();
8440 }
8441 
8442 /**
8443  * ftrace_is_dead - Test if ftrace is dead or not.
8444  *
8445  * Returns: 1 if ftrace is "dead", zero otherwise.
8446  */
8447 int ftrace_is_dead(void)
8448 {
8449 	return ftrace_disabled;
8450 }
8451 
8452 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
8453 /*
8454  * When registering ftrace_ops with IPMODIFY, it is necessary to make sure
8455  * it doesn't conflict with any direct ftrace_ops. If there is existing
8456  * direct ftrace_ops on a kernel function being patched, call
8457  * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing.
8458  *
8459  * @ops:     ftrace_ops being registered.
8460  *
8461  * Returns:
8462  *         0 on success;
8463  *         Negative on failure.
8464  */
8465 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8466 {
8467 	struct ftrace_func_entry *entry;
8468 	struct ftrace_hash *hash;
8469 	struct ftrace_ops *op;
8470 	int size, i, ret;
8471 
8472 	lockdep_assert_held_once(&direct_mutex);
8473 
8474 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8475 		return 0;
8476 
8477 	hash = ops->func_hash->filter_hash;
8478 	size = 1 << hash->size_bits;
8479 	for (i = 0; i < size; i++) {
8480 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8481 			unsigned long ip = entry->ip;
8482 			bool found_op = false;
8483 
8484 			mutex_lock(&ftrace_lock);
8485 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8486 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8487 					continue;
8488 				if (ops_references_ip(op, ip)) {
8489 					found_op = true;
8490 					break;
8491 				}
8492 			} while_for_each_ftrace_op(op);
8493 			mutex_unlock(&ftrace_lock);
8494 
8495 			if (found_op) {
8496 				if (!op->ops_func)
8497 					return -EBUSY;
8498 
8499 				ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER);
8500 				if (ret)
8501 					return ret;
8502 			}
8503 		}
8504 	}
8505 
8506 	return 0;
8507 }
8508 
8509 /*
8510  * Similar to prepare_direct_functions_for_ipmodify, clean up after ops
8511  * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT
8512  * ops.
8513  */
8514 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8515 {
8516 	struct ftrace_func_entry *entry;
8517 	struct ftrace_hash *hash;
8518 	struct ftrace_ops *op;
8519 	int size, i;
8520 
8521 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8522 		return;
8523 
8524 	mutex_lock(&direct_mutex);
8525 
8526 	hash = ops->func_hash->filter_hash;
8527 	size = 1 << hash->size_bits;
8528 	for (i = 0; i < size; i++) {
8529 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8530 			unsigned long ip = entry->ip;
8531 			bool found_op = false;
8532 
8533 			mutex_lock(&ftrace_lock);
8534 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8535 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8536 					continue;
8537 				if (ops_references_ip(op, ip)) {
8538 					found_op = true;
8539 					break;
8540 				}
8541 			} while_for_each_ftrace_op(op);
8542 			mutex_unlock(&ftrace_lock);
8543 
8544 			/* The cleanup is optional, ignore any errors */
8545 			if (found_op && op->ops_func)
8546 				op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER);
8547 		}
8548 	}
8549 	mutex_unlock(&direct_mutex);
8550 }
8551 
8552 #define lock_direct_mutex()	mutex_lock(&direct_mutex)
8553 #define unlock_direct_mutex()	mutex_unlock(&direct_mutex)
8554 
8555 #else  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8556 
8557 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8558 {
8559 	return 0;
8560 }
8561 
8562 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8563 {
8564 }
8565 
8566 #define lock_direct_mutex()	do { } while (0)
8567 #define unlock_direct_mutex()	do { } while (0)
8568 
8569 #endif  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8570 
8571 /*
8572  * Similar to register_ftrace_function, except we don't lock direct_mutex.
8573  */
8574 static int register_ftrace_function_nolock(struct ftrace_ops *ops)
8575 {
8576 	int ret;
8577 
8578 	ftrace_ops_init(ops);
8579 
8580 	mutex_lock(&ftrace_lock);
8581 
8582 	ret = ftrace_startup(ops, 0);
8583 
8584 	mutex_unlock(&ftrace_lock);
8585 
8586 	return ret;
8587 }
8588 
8589 /**
8590  * register_ftrace_function - register a function for profiling
8591  * @ops:	ops structure that holds the function for profiling.
8592  *
8593  * Register a function to be called by all functions in the
8594  * kernel.
8595  *
8596  * Note: @ops->func and all the functions it calls must be labeled
8597  *       with "notrace", otherwise it will go into a
8598  *       recursive loop.
8599  */
8600 int register_ftrace_function(struct ftrace_ops *ops)
8601 {
8602 	int ret;
8603 
8604 	lock_direct_mutex();
8605 	ret = prepare_direct_functions_for_ipmodify(ops);
8606 	if (ret < 0)
8607 		goto out_unlock;
8608 
8609 	ret = register_ftrace_function_nolock(ops);
8610 
8611 out_unlock:
8612 	unlock_direct_mutex();
8613 	return ret;
8614 }
8615 EXPORT_SYMBOL_GPL(register_ftrace_function);
8616 
8617 /**
8618  * unregister_ftrace_function - unregister a function for profiling.
8619  * @ops:	ops structure that holds the function to unregister
8620  *
8621  * Unregister a function that was added to be called by ftrace profiling.
8622  */
8623 int unregister_ftrace_function(struct ftrace_ops *ops)
8624 {
8625 	int ret;
8626 
8627 	mutex_lock(&ftrace_lock);
8628 	ret = ftrace_shutdown(ops, 0);
8629 	mutex_unlock(&ftrace_lock);
8630 
8631 	cleanup_direct_functions_after_ipmodify(ops);
8632 	return ret;
8633 }
8634 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
8635 
8636 static int symbols_cmp(const void *a, const void *b)
8637 {
8638 	const char **str_a = (const char **) a;
8639 	const char **str_b = (const char **) b;
8640 
8641 	return strcmp(*str_a, *str_b);
8642 }
8643 
8644 struct kallsyms_data {
8645 	unsigned long *addrs;
8646 	const char **syms;
8647 	size_t cnt;
8648 	size_t found;
8649 };
8650 
8651 /* This function gets called for all kernel and module symbols
8652  * and returns 1 in case we resolved all the requested symbols,
8653  * 0 otherwise.
8654  */
8655 static int kallsyms_callback(void *data, const char *name, unsigned long addr)
8656 {
8657 	struct kallsyms_data *args = data;
8658 	const char **sym;
8659 	int idx;
8660 
8661 	sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp);
8662 	if (!sym)
8663 		return 0;
8664 
8665 	idx = sym - args->syms;
8666 	if (args->addrs[idx])
8667 		return 0;
8668 
8669 	if (!ftrace_location(addr))
8670 		return 0;
8671 
8672 	args->addrs[idx] = addr;
8673 	args->found++;
8674 	return args->found == args->cnt ? 1 : 0;
8675 }
8676 
8677 /**
8678  * ftrace_lookup_symbols - Lookup addresses for array of symbols
8679  *
8680  * @sorted_syms: array of symbols pointers symbols to resolve,
8681  * must be alphabetically sorted
8682  * @cnt: number of symbols/addresses in @syms/@addrs arrays
8683  * @addrs: array for storing resulting addresses
8684  *
8685  * This function looks up addresses for array of symbols provided in
8686  * @syms array (must be alphabetically sorted) and stores them in
8687  * @addrs array, which needs to be big enough to store at least @cnt
8688  * addresses.
8689  *
8690  * Returns: 0 if all provided symbols are found, -ESRCH otherwise.
8691  */
8692 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
8693 {
8694 	struct kallsyms_data args;
8695 	int found_all;
8696 
8697 	memset(addrs, 0, sizeof(*addrs) * cnt);
8698 	args.addrs = addrs;
8699 	args.syms = sorted_syms;
8700 	args.cnt = cnt;
8701 	args.found = 0;
8702 
8703 	found_all = kallsyms_on_each_symbol(kallsyms_callback, &args);
8704 	if (found_all)
8705 		return 0;
8706 	found_all = module_kallsyms_on_each_symbol(NULL, kallsyms_callback, &args);
8707 	return found_all ? 0 : -ESRCH;
8708 }
8709 
8710 #ifdef CONFIG_SYSCTL
8711 
8712 #ifdef CONFIG_DYNAMIC_FTRACE
8713 static void ftrace_startup_sysctl(void)
8714 {
8715 	int command;
8716 
8717 	if (unlikely(ftrace_disabled))
8718 		return;
8719 
8720 	/* Force update next time */
8721 	saved_ftrace_func = NULL;
8722 	/* ftrace_start_up is true if we want ftrace running */
8723 	if (ftrace_start_up) {
8724 		command = FTRACE_UPDATE_CALLS;
8725 		if (ftrace_graph_active)
8726 			command |= FTRACE_START_FUNC_RET;
8727 		ftrace_startup_enable(command);
8728 	}
8729 }
8730 
8731 static void ftrace_shutdown_sysctl(void)
8732 {
8733 	int command;
8734 
8735 	if (unlikely(ftrace_disabled))
8736 		return;
8737 
8738 	/* ftrace_start_up is true if ftrace is running */
8739 	if (ftrace_start_up) {
8740 		command = FTRACE_DISABLE_CALLS;
8741 		if (ftrace_graph_active)
8742 			command |= FTRACE_STOP_FUNC_RET;
8743 		ftrace_run_update_code(command);
8744 	}
8745 }
8746 #else
8747 # define ftrace_startup_sysctl()       do { } while (0)
8748 # define ftrace_shutdown_sysctl()      do { } while (0)
8749 #endif /* CONFIG_DYNAMIC_FTRACE */
8750 
8751 static bool is_permanent_ops_registered(void)
8752 {
8753 	struct ftrace_ops *op;
8754 
8755 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8756 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
8757 			return true;
8758 	} while_for_each_ftrace_op(op);
8759 
8760 	return false;
8761 }
8762 
8763 static int
8764 ftrace_enable_sysctl(const struct ctl_table *table, int write,
8765 		     void *buffer, size_t *lenp, loff_t *ppos)
8766 {
8767 	int ret;
8768 
8769 	guard(mutex)(&ftrace_lock);
8770 
8771 	if (unlikely(ftrace_disabled))
8772 		return -ENODEV;
8773 
8774 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8775 
8776 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
8777 		return ret;
8778 
8779 	if (ftrace_enabled) {
8780 
8781 		/* we are starting ftrace again */
8782 		if (rcu_dereference_protected(ftrace_ops_list,
8783 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
8784 			update_ftrace_function();
8785 
8786 		ftrace_startup_sysctl();
8787 
8788 	} else {
8789 		if (is_permanent_ops_registered()) {
8790 			ftrace_enabled = true;
8791 			return -EBUSY;
8792 		}
8793 
8794 		/* stopping ftrace calls (just send to ftrace_stub) */
8795 		ftrace_trace_function = ftrace_stub;
8796 
8797 		ftrace_shutdown_sysctl();
8798 	}
8799 
8800 	last_ftrace_enabled = !!ftrace_enabled;
8801 	return 0;
8802 }
8803 
8804 static struct ctl_table ftrace_sysctls[] = {
8805 	{
8806 		.procname       = "ftrace_enabled",
8807 		.data           = &ftrace_enabled,
8808 		.maxlen         = sizeof(int),
8809 		.mode           = 0644,
8810 		.proc_handler   = ftrace_enable_sysctl,
8811 	},
8812 };
8813 
8814 static int __init ftrace_sysctl_init(void)
8815 {
8816 	register_sysctl_init("kernel", ftrace_sysctls);
8817 	return 0;
8818 }
8819 late_initcall(ftrace_sysctl_init);
8820 #endif
8821