1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 /* Flags that do not get reset */
49 #define FTRACE_NOCLEAR_FLAGS	(FTRACE_FL_DISABLED | FTRACE_FL_TOUCHED | \
50 				 FTRACE_FL_MODIFIED)
51 
52 #define FTRACE_INVALID_FUNCTION		"__ftrace_invalid_address__"
53 
54 #define FTRACE_WARN_ON(cond)			\
55 	({					\
56 		int ___r = cond;		\
57 		if (WARN_ON(___r))		\
58 			ftrace_kill();		\
59 		___r;				\
60 	})
61 
62 #define FTRACE_WARN_ON_ONCE(cond)		\
63 	({					\
64 		int ___r = cond;		\
65 		if (WARN_ON_ONCE(___r))		\
66 			ftrace_kill();		\
67 		___r;				\
68 	})
69 
70 /* hash bits for specific function selection */
71 #define FTRACE_HASH_DEFAULT_BITS 10
72 #define FTRACE_HASH_MAX_BITS 12
73 
74 #ifdef CONFIG_DYNAMIC_FTRACE
75 #define INIT_OPS_HASH(opsname)	\
76 	.func_hash		= &opsname.local_hash,			\
77 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), \
78 	.subop_list		= LIST_HEAD_INIT(opsname.subop_list),
79 #else
80 #define INIT_OPS_HASH(opsname)
81 #endif
82 
83 enum {
84 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
85 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
86 };
87 
88 struct ftrace_ops ftrace_list_end __read_mostly = {
89 	.func		= ftrace_stub,
90 	.flags		= FTRACE_OPS_FL_STUB,
91 	INIT_OPS_HASH(ftrace_list_end)
92 };
93 
94 /* ftrace_enabled is a method to turn ftrace on or off */
95 int ftrace_enabled __read_mostly;
96 static int __maybe_unused last_ftrace_enabled;
97 
98 /* Current function tracing op */
99 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
100 /* What to set function_trace_op to */
101 static struct ftrace_ops *set_function_trace_op;
102 
103 bool ftrace_pids_enabled(struct ftrace_ops *ops)
104 {
105 	struct trace_array *tr;
106 
107 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
108 		return false;
109 
110 	tr = ops->private;
111 
112 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
113 }
114 
115 static void ftrace_update_trampoline(struct ftrace_ops *ops);
116 
117 /*
118  * ftrace_disabled is set when an anomaly is discovered.
119  * ftrace_disabled is much stronger than ftrace_enabled.
120  */
121 static int ftrace_disabled __read_mostly;
122 
123 DEFINE_MUTEX(ftrace_lock);
124 
125 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = (struct ftrace_ops __rcu *)&ftrace_list_end;
126 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
127 struct ftrace_ops global_ops;
128 
129 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */
130 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
131 			  struct ftrace_ops *op, struct ftrace_regs *fregs);
132 
133 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS
134 /*
135  * Stub used to invoke the list ops without requiring a separate trampoline.
136  */
137 const struct ftrace_ops ftrace_list_ops = {
138 	.func	= ftrace_ops_list_func,
139 	.flags	= FTRACE_OPS_FL_STUB,
140 };
141 
142 static void ftrace_ops_nop_func(unsigned long ip, unsigned long parent_ip,
143 				struct ftrace_ops *op,
144 				struct ftrace_regs *fregs)
145 {
146 	/* do nothing */
147 }
148 
149 /*
150  * Stub used when a call site is disabled. May be called transiently by threads
151  * which have made it into ftrace_caller but haven't yet recovered the ops at
152  * the point the call site is disabled.
153  */
154 const struct ftrace_ops ftrace_nop_ops = {
155 	.func	= ftrace_ops_nop_func,
156 	.flags  = FTRACE_OPS_FL_STUB,
157 };
158 #endif
159 
160 static inline void ftrace_ops_init(struct ftrace_ops *ops)
161 {
162 #ifdef CONFIG_DYNAMIC_FTRACE
163 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
164 		mutex_init(&ops->local_hash.regex_lock);
165 		INIT_LIST_HEAD(&ops->subop_list);
166 		ops->func_hash = &ops->local_hash;
167 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
168 	}
169 #endif
170 }
171 
172 /* Call this function for when a callback filters on set_ftrace_pid */
173 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
174 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
175 {
176 	struct trace_array *tr = op->private;
177 	int pid;
178 
179 	if (tr) {
180 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
181 		if (pid == FTRACE_PID_IGNORE)
182 			return;
183 		if (pid != FTRACE_PID_TRACE &&
184 		    pid != current->pid)
185 			return;
186 	}
187 
188 	op->saved_func(ip, parent_ip, op, fregs);
189 }
190 
191 void ftrace_sync_ipi(void *data)
192 {
193 	/* Probably not needed, but do it anyway */
194 	smp_rmb();
195 }
196 
197 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
198 {
199 	/*
200 	 * If this is a dynamic or RCU ops, or we force list func,
201 	 * then it needs to call the list anyway.
202 	 */
203 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
204 	    FTRACE_FORCE_LIST_FUNC)
205 		return ftrace_ops_list_func;
206 
207 	return ftrace_ops_get_func(ops);
208 }
209 
210 static void update_ftrace_function(void)
211 {
212 	ftrace_func_t func;
213 
214 	/*
215 	 * Prepare the ftrace_ops that the arch callback will use.
216 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
217 	 * will point to the ops we want.
218 	 */
219 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
220 						lockdep_is_held(&ftrace_lock));
221 
222 	/* If there's no ftrace_ops registered, just call the stub function */
223 	if (set_function_trace_op == &ftrace_list_end) {
224 		func = ftrace_stub;
225 
226 	/*
227 	 * If we are at the end of the list and this ops is
228 	 * recursion safe and not dynamic and the arch supports passing ops,
229 	 * then have the mcount trampoline call the function directly.
230 	 */
231 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
232 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
233 		func = ftrace_ops_get_list_func(ftrace_ops_list);
234 
235 	} else {
236 		/* Just use the default ftrace_ops */
237 		set_function_trace_op = &ftrace_list_end;
238 		func = ftrace_ops_list_func;
239 	}
240 
241 	/* If there's no change, then do nothing more here */
242 	if (ftrace_trace_function == func)
243 		return;
244 
245 	/*
246 	 * If we are using the list function, it doesn't care
247 	 * about the function_trace_ops.
248 	 */
249 	if (func == ftrace_ops_list_func) {
250 		ftrace_trace_function = func;
251 		/*
252 		 * Don't even bother setting function_trace_ops,
253 		 * it would be racy to do so anyway.
254 		 */
255 		return;
256 	}
257 
258 #ifndef CONFIG_DYNAMIC_FTRACE
259 	/*
260 	 * For static tracing, we need to be a bit more careful.
261 	 * The function change takes affect immediately. Thus,
262 	 * we need to coordinate the setting of the function_trace_ops
263 	 * with the setting of the ftrace_trace_function.
264 	 *
265 	 * Set the function to the list ops, which will call the
266 	 * function we want, albeit indirectly, but it handles the
267 	 * ftrace_ops and doesn't depend on function_trace_op.
268 	 */
269 	ftrace_trace_function = ftrace_ops_list_func;
270 	/*
271 	 * Make sure all CPUs see this. Yes this is slow, but static
272 	 * tracing is slow and nasty to have enabled.
273 	 */
274 	synchronize_rcu_tasks_rude();
275 	/* Now all cpus are using the list ops. */
276 	function_trace_op = set_function_trace_op;
277 	/* Make sure the function_trace_op is visible on all CPUs */
278 	smp_wmb();
279 	/* Nasty way to force a rmb on all cpus */
280 	smp_call_function(ftrace_sync_ipi, NULL, 1);
281 	/* OK, we are all set to update the ftrace_trace_function now! */
282 #endif /* !CONFIG_DYNAMIC_FTRACE */
283 
284 	ftrace_trace_function = func;
285 }
286 
287 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
288 			   struct ftrace_ops *ops)
289 {
290 	rcu_assign_pointer(ops->next, *list);
291 
292 	/*
293 	 * We are entering ops into the list but another
294 	 * CPU might be walking that list. We need to make sure
295 	 * the ops->next pointer is valid before another CPU sees
296 	 * the ops pointer included into the list.
297 	 */
298 	rcu_assign_pointer(*list, ops);
299 }
300 
301 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
302 			     struct ftrace_ops *ops)
303 {
304 	struct ftrace_ops **p;
305 
306 	/*
307 	 * If we are removing the last function, then simply point
308 	 * to the ftrace_stub.
309 	 */
310 	if (rcu_dereference_protected(*list,
311 			lockdep_is_held(&ftrace_lock)) == ops &&
312 	    rcu_dereference_protected(ops->next,
313 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
314 		rcu_assign_pointer(*list, &ftrace_list_end);
315 		return 0;
316 	}
317 
318 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
319 		if (*p == ops)
320 			break;
321 
322 	if (*p != ops)
323 		return -1;
324 
325 	*p = (*p)->next;
326 	return 0;
327 }
328 
329 static void ftrace_update_trampoline(struct ftrace_ops *ops);
330 
331 int __register_ftrace_function(struct ftrace_ops *ops)
332 {
333 	if (ops->flags & FTRACE_OPS_FL_DELETED)
334 		return -EINVAL;
335 
336 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
337 		return -EBUSY;
338 
339 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
340 	/*
341 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
342 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
343 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
344 	 */
345 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
346 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
347 		return -EINVAL;
348 
349 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
350 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
351 #endif
352 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
353 		return -EBUSY;
354 
355 	if (!is_kernel_core_data((unsigned long)ops))
356 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
357 
358 	add_ftrace_ops(&ftrace_ops_list, ops);
359 
360 	/* Always save the function, and reset at unregistering */
361 	ops->saved_func = ops->func;
362 
363 	if (ftrace_pids_enabled(ops))
364 		ops->func = ftrace_pid_func;
365 
366 	ftrace_update_trampoline(ops);
367 
368 	if (ftrace_enabled)
369 		update_ftrace_function();
370 
371 	return 0;
372 }
373 
374 int __unregister_ftrace_function(struct ftrace_ops *ops)
375 {
376 	int ret;
377 
378 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
379 		return -EBUSY;
380 
381 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
382 
383 	if (ret < 0)
384 		return ret;
385 
386 	if (ftrace_enabled)
387 		update_ftrace_function();
388 
389 	ops->func = ops->saved_func;
390 
391 	return 0;
392 }
393 
394 static void ftrace_update_pid_func(void)
395 {
396 	struct ftrace_ops *op;
397 
398 	/* Only do something if we are tracing something */
399 	if (ftrace_trace_function == ftrace_stub)
400 		return;
401 
402 	do_for_each_ftrace_op(op, ftrace_ops_list) {
403 		if (op->flags & FTRACE_OPS_FL_PID) {
404 			op->func = ftrace_pids_enabled(op) ?
405 				ftrace_pid_func : op->saved_func;
406 			ftrace_update_trampoline(op);
407 		}
408 	} while_for_each_ftrace_op(op);
409 
410 	fgraph_update_pid_func();
411 
412 	update_ftrace_function();
413 }
414 
415 #ifdef CONFIG_FUNCTION_PROFILER
416 struct ftrace_profile {
417 	struct hlist_node		node;
418 	unsigned long			ip;
419 	unsigned long			counter;
420 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
421 	unsigned long long		time;
422 	unsigned long long		time_squared;
423 #endif
424 };
425 
426 struct ftrace_profile_page {
427 	struct ftrace_profile_page	*next;
428 	unsigned long			index;
429 	struct ftrace_profile		records[];
430 };
431 
432 struct ftrace_profile_stat {
433 	atomic_t			disabled;
434 	struct hlist_head		*hash;
435 	struct ftrace_profile_page	*pages;
436 	struct ftrace_profile_page	*start;
437 	struct tracer_stat		stat;
438 };
439 
440 #define PROFILE_RECORDS_SIZE						\
441 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
442 
443 #define PROFILES_PER_PAGE					\
444 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
445 
446 static int ftrace_profile_enabled __read_mostly;
447 
448 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
449 static DEFINE_MUTEX(ftrace_profile_lock);
450 
451 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
452 
453 #define FTRACE_PROFILE_HASH_BITS 10
454 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
455 
456 static void *
457 function_stat_next(void *v, int idx)
458 {
459 	struct ftrace_profile *rec = v;
460 	struct ftrace_profile_page *pg;
461 
462 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
463 
464  again:
465 	if (idx != 0)
466 		rec++;
467 
468 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
469 		pg = pg->next;
470 		if (!pg)
471 			return NULL;
472 		rec = &pg->records[0];
473 		if (!rec->counter)
474 			goto again;
475 	}
476 
477 	return rec;
478 }
479 
480 static void *function_stat_start(struct tracer_stat *trace)
481 {
482 	struct ftrace_profile_stat *stat =
483 		container_of(trace, struct ftrace_profile_stat, stat);
484 
485 	if (!stat || !stat->start)
486 		return NULL;
487 
488 	return function_stat_next(&stat->start->records[0], 0);
489 }
490 
491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
492 /* function graph compares on total time */
493 static int function_stat_cmp(const void *p1, const void *p2)
494 {
495 	const struct ftrace_profile *a = p1;
496 	const struct ftrace_profile *b = p2;
497 
498 	if (a->time < b->time)
499 		return -1;
500 	if (a->time > b->time)
501 		return 1;
502 	else
503 		return 0;
504 }
505 #else
506 /* not function graph compares against hits */
507 static int function_stat_cmp(const void *p1, const void *p2)
508 {
509 	const struct ftrace_profile *a = p1;
510 	const struct ftrace_profile *b = p2;
511 
512 	if (a->counter < b->counter)
513 		return -1;
514 	if (a->counter > b->counter)
515 		return 1;
516 	else
517 		return 0;
518 }
519 #endif
520 
521 static int function_stat_headers(struct seq_file *m)
522 {
523 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
524 	seq_puts(m, "  Function                               "
525 		 "Hit    Time            Avg             s^2\n"
526 		    "  --------                               "
527 		 "---    ----            ---             ---\n");
528 #else
529 	seq_puts(m, "  Function                               Hit\n"
530 		    "  --------                               ---\n");
531 #endif
532 	return 0;
533 }
534 
535 static int function_stat_show(struct seq_file *m, void *v)
536 {
537 	struct ftrace_profile *rec = v;
538 	char str[KSYM_SYMBOL_LEN];
539 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
540 	static struct trace_seq s;
541 	unsigned long long avg;
542 	unsigned long long stddev;
543 	unsigned long long stddev_denom;
544 #endif
545 	guard(mutex)(&ftrace_profile_lock);
546 
547 	/* we raced with function_profile_reset() */
548 	if (unlikely(rec->counter == 0))
549 		return -EBUSY;
550 
551 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
552 	avg = div64_ul(rec->time, rec->counter);
553 	if (tracing_thresh && (avg < tracing_thresh))
554 		return 0;
555 #endif
556 
557 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
558 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
559 
560 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
561 	seq_puts(m, "    ");
562 
563 	/*
564 	 * Variance formula:
565 	 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
566 	 * Maybe Welford's method is better here?
567 	 * Divide only by 1000 for ns^2 -> us^2 conversion.
568 	 * trace_print_graph_duration will divide by 1000 again.
569 	 */
570 	stddev = 0;
571 	stddev_denom = rec->counter * (rec->counter - 1) * 1000;
572 	if (stddev_denom) {
573 		stddev = rec->counter * rec->time_squared -
574 			 rec->time * rec->time;
575 		stddev = div64_ul(stddev, stddev_denom);
576 	}
577 
578 	trace_seq_init(&s);
579 	trace_print_graph_duration(rec->time, &s);
580 	trace_seq_puts(&s, "    ");
581 	trace_print_graph_duration(avg, &s);
582 	trace_seq_puts(&s, "    ");
583 	trace_print_graph_duration(stddev, &s);
584 	trace_print_seq(m, &s);
585 #endif
586 	seq_putc(m, '\n');
587 
588 	return 0;
589 }
590 
591 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
592 {
593 	struct ftrace_profile_page *pg;
594 
595 	pg = stat->pages = stat->start;
596 
597 	while (pg) {
598 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
599 		pg->index = 0;
600 		pg = pg->next;
601 	}
602 
603 	memset(stat->hash, 0,
604 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
605 }
606 
607 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
608 {
609 	struct ftrace_profile_page *pg;
610 	int functions;
611 	int pages;
612 	int i;
613 
614 	/* If we already allocated, do nothing */
615 	if (stat->pages)
616 		return 0;
617 
618 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
619 	if (!stat->pages)
620 		return -ENOMEM;
621 
622 #ifdef CONFIG_DYNAMIC_FTRACE
623 	functions = ftrace_update_tot_cnt;
624 #else
625 	/*
626 	 * We do not know the number of functions that exist because
627 	 * dynamic tracing is what counts them. With past experience
628 	 * we have around 20K functions. That should be more than enough.
629 	 * It is highly unlikely we will execute every function in
630 	 * the kernel.
631 	 */
632 	functions = 20000;
633 #endif
634 
635 	pg = stat->start = stat->pages;
636 
637 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
638 
639 	for (i = 1; i < pages; i++) {
640 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
641 		if (!pg->next)
642 			goto out_free;
643 		pg = pg->next;
644 	}
645 
646 	return 0;
647 
648  out_free:
649 	pg = stat->start;
650 	while (pg) {
651 		unsigned long tmp = (unsigned long)pg;
652 
653 		pg = pg->next;
654 		free_page(tmp);
655 	}
656 
657 	stat->pages = NULL;
658 	stat->start = NULL;
659 
660 	return -ENOMEM;
661 }
662 
663 static int ftrace_profile_init_cpu(int cpu)
664 {
665 	struct ftrace_profile_stat *stat;
666 	int size;
667 
668 	stat = &per_cpu(ftrace_profile_stats, cpu);
669 
670 	if (stat->hash) {
671 		/* If the profile is already created, simply reset it */
672 		ftrace_profile_reset(stat);
673 		return 0;
674 	}
675 
676 	/*
677 	 * We are profiling all functions, but usually only a few thousand
678 	 * functions are hit. We'll make a hash of 1024 items.
679 	 */
680 	size = FTRACE_PROFILE_HASH_SIZE;
681 
682 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
683 
684 	if (!stat->hash)
685 		return -ENOMEM;
686 
687 	/* Preallocate the function profiling pages */
688 	if (ftrace_profile_pages_init(stat) < 0) {
689 		kfree(stat->hash);
690 		stat->hash = NULL;
691 		return -ENOMEM;
692 	}
693 
694 	return 0;
695 }
696 
697 static int ftrace_profile_init(void)
698 {
699 	int cpu;
700 	int ret = 0;
701 
702 	for_each_possible_cpu(cpu) {
703 		ret = ftrace_profile_init_cpu(cpu);
704 		if (ret)
705 			break;
706 	}
707 
708 	return ret;
709 }
710 
711 /* interrupts must be disabled */
712 static struct ftrace_profile *
713 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
714 {
715 	struct ftrace_profile *rec;
716 	struct hlist_head *hhd;
717 	unsigned long key;
718 
719 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
720 	hhd = &stat->hash[key];
721 
722 	if (hlist_empty(hhd))
723 		return NULL;
724 
725 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
726 		if (rec->ip == ip)
727 			return rec;
728 	}
729 
730 	return NULL;
731 }
732 
733 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
734 			       struct ftrace_profile *rec)
735 {
736 	unsigned long key;
737 
738 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
739 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
740 }
741 
742 /*
743  * The memory is already allocated, this simply finds a new record to use.
744  */
745 static struct ftrace_profile *
746 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
747 {
748 	struct ftrace_profile *rec = NULL;
749 
750 	/* prevent recursion (from NMIs) */
751 	if (atomic_inc_return(&stat->disabled) != 1)
752 		goto out;
753 
754 	/*
755 	 * Try to find the function again since an NMI
756 	 * could have added it
757 	 */
758 	rec = ftrace_find_profiled_func(stat, ip);
759 	if (rec)
760 		goto out;
761 
762 	if (stat->pages->index == PROFILES_PER_PAGE) {
763 		if (!stat->pages->next)
764 			goto out;
765 		stat->pages = stat->pages->next;
766 	}
767 
768 	rec = &stat->pages->records[stat->pages->index++];
769 	rec->ip = ip;
770 	ftrace_add_profile(stat, rec);
771 
772  out:
773 	atomic_dec(&stat->disabled);
774 
775 	return rec;
776 }
777 
778 static void
779 function_profile_call(unsigned long ip, unsigned long parent_ip,
780 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
781 {
782 	struct ftrace_profile_stat *stat;
783 	struct ftrace_profile *rec;
784 
785 	if (!ftrace_profile_enabled)
786 		return;
787 
788 	guard(preempt_notrace)();
789 
790 	stat = this_cpu_ptr(&ftrace_profile_stats);
791 	if (!stat->hash || !ftrace_profile_enabled)
792 		return;
793 
794 	rec = ftrace_find_profiled_func(stat, ip);
795 	if (!rec) {
796 		rec = ftrace_profile_alloc(stat, ip);
797 		if (!rec)
798 			return;
799 	}
800 
801 	rec->counter++;
802 }
803 
804 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
805 static bool fgraph_graph_time = true;
806 
807 void ftrace_graph_graph_time_control(bool enable)
808 {
809 	fgraph_graph_time = enable;
810 }
811 
812 struct profile_fgraph_data {
813 	unsigned long long		calltime;
814 	unsigned long long		subtime;
815 	unsigned long long		sleeptime;
816 };
817 
818 static int profile_graph_entry(struct ftrace_graph_ent *trace,
819 			       struct fgraph_ops *gops,
820 			       struct ftrace_regs *fregs)
821 {
822 	struct profile_fgraph_data *profile_data;
823 
824 	function_profile_call(trace->func, 0, NULL, NULL);
825 
826 	/* If function graph is shutting down, ret_stack can be NULL */
827 	if (!current->ret_stack)
828 		return 0;
829 
830 	profile_data = fgraph_reserve_data(gops->idx, sizeof(*profile_data));
831 	if (!profile_data)
832 		return 0;
833 
834 	profile_data->subtime = 0;
835 	profile_data->sleeptime = current->ftrace_sleeptime;
836 	profile_data->calltime = trace_clock_local();
837 
838 	return 1;
839 }
840 
841 static void profile_graph_return(struct ftrace_graph_ret *trace,
842 				 struct fgraph_ops *gops,
843 				 struct ftrace_regs *fregs)
844 {
845 	struct profile_fgraph_data *profile_data;
846 	struct ftrace_profile_stat *stat;
847 	unsigned long long calltime;
848 	unsigned long long rettime = trace_clock_local();
849 	struct ftrace_profile *rec;
850 	int size;
851 
852 	guard(preempt_notrace)();
853 
854 	stat = this_cpu_ptr(&ftrace_profile_stats);
855 	if (!stat->hash || !ftrace_profile_enabled)
856 		return;
857 
858 	profile_data = fgraph_retrieve_data(gops->idx, &size);
859 
860 	/* If the calltime was zero'd ignore it */
861 	if (!profile_data || !profile_data->calltime)
862 		return;
863 
864 	calltime = rettime - profile_data->calltime;
865 
866 	if (!fgraph_sleep_time) {
867 		if (current->ftrace_sleeptime)
868 			calltime -= current->ftrace_sleeptime - profile_data->sleeptime;
869 	}
870 
871 	if (!fgraph_graph_time) {
872 		struct profile_fgraph_data *parent_data;
873 
874 		/* Append this call time to the parent time to subtract */
875 		parent_data = fgraph_retrieve_parent_data(gops->idx, &size, 1);
876 		if (parent_data)
877 			parent_data->subtime += calltime;
878 
879 		if (profile_data->subtime && profile_data->subtime < calltime)
880 			calltime -= profile_data->subtime;
881 		else
882 			calltime = 0;
883 	}
884 
885 	rec = ftrace_find_profiled_func(stat, trace->func);
886 	if (rec) {
887 		rec->time += calltime;
888 		rec->time_squared += calltime * calltime;
889 	}
890 }
891 
892 static struct fgraph_ops fprofiler_ops = {
893 	.entryfunc = &profile_graph_entry,
894 	.retfunc = &profile_graph_return,
895 };
896 
897 static int register_ftrace_profiler(void)
898 {
899 	ftrace_ops_set_global_filter(&fprofiler_ops.ops);
900 	return register_ftrace_graph(&fprofiler_ops);
901 }
902 
903 static void unregister_ftrace_profiler(void)
904 {
905 	unregister_ftrace_graph(&fprofiler_ops);
906 }
907 #else
908 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
909 	.func		= function_profile_call,
910 };
911 
912 static int register_ftrace_profiler(void)
913 {
914 	ftrace_ops_set_global_filter(&ftrace_profile_ops);
915 	return register_ftrace_function(&ftrace_profile_ops);
916 }
917 
918 static void unregister_ftrace_profiler(void)
919 {
920 	unregister_ftrace_function(&ftrace_profile_ops);
921 }
922 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
923 
924 static ssize_t
925 ftrace_profile_write(struct file *filp, const char __user *ubuf,
926 		     size_t cnt, loff_t *ppos)
927 {
928 	unsigned long val;
929 	int ret;
930 
931 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
932 	if (ret)
933 		return ret;
934 
935 	val = !!val;
936 
937 	guard(mutex)(&ftrace_profile_lock);
938 	if (ftrace_profile_enabled ^ val) {
939 		if (val) {
940 			ret = ftrace_profile_init();
941 			if (ret < 0)
942 				return ret;
943 
944 			ret = register_ftrace_profiler();
945 			if (ret < 0)
946 				return ret;
947 			ftrace_profile_enabled = 1;
948 		} else {
949 			ftrace_profile_enabled = 0;
950 			/*
951 			 * unregister_ftrace_profiler calls stop_machine
952 			 * so this acts like an synchronize_rcu.
953 			 */
954 			unregister_ftrace_profiler();
955 		}
956 	}
957 
958 	*ppos += cnt;
959 
960 	return cnt;
961 }
962 
963 static ssize_t
964 ftrace_profile_read(struct file *filp, char __user *ubuf,
965 		     size_t cnt, loff_t *ppos)
966 {
967 	char buf[64];		/* big enough to hold a number */
968 	int r;
969 
970 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
971 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
972 }
973 
974 static const struct file_operations ftrace_profile_fops = {
975 	.open		= tracing_open_generic,
976 	.read		= ftrace_profile_read,
977 	.write		= ftrace_profile_write,
978 	.llseek		= default_llseek,
979 };
980 
981 /* used to initialize the real stat files */
982 static struct tracer_stat function_stats __initdata = {
983 	.name		= "functions",
984 	.stat_start	= function_stat_start,
985 	.stat_next	= function_stat_next,
986 	.stat_cmp	= function_stat_cmp,
987 	.stat_headers	= function_stat_headers,
988 	.stat_show	= function_stat_show
989 };
990 
991 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
992 {
993 	struct ftrace_profile_stat *stat;
994 	char *name;
995 	int ret;
996 	int cpu;
997 
998 	for_each_possible_cpu(cpu) {
999 		stat = &per_cpu(ftrace_profile_stats, cpu);
1000 
1001 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
1002 		if (!name) {
1003 			/*
1004 			 * The files created are permanent, if something happens
1005 			 * we still do not free memory.
1006 			 */
1007 			WARN(1,
1008 			     "Could not allocate stat file for cpu %d\n",
1009 			     cpu);
1010 			return;
1011 		}
1012 		stat->stat = function_stats;
1013 		stat->stat.name = name;
1014 		ret = register_stat_tracer(&stat->stat);
1015 		if (ret) {
1016 			WARN(1,
1017 			     "Could not register function stat for cpu %d\n",
1018 			     cpu);
1019 			kfree(name);
1020 			return;
1021 		}
1022 	}
1023 
1024 	trace_create_file("function_profile_enabled",
1025 			  TRACE_MODE_WRITE, d_tracer, NULL,
1026 			  &ftrace_profile_fops);
1027 }
1028 
1029 #else /* CONFIG_FUNCTION_PROFILER */
1030 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1031 {
1032 }
1033 #endif /* CONFIG_FUNCTION_PROFILER */
1034 
1035 #ifdef CONFIG_DYNAMIC_FTRACE
1036 
1037 static struct ftrace_ops *removed_ops;
1038 
1039 /*
1040  * Set when doing a global update, like enabling all recs or disabling them.
1041  * It is not set when just updating a single ftrace_ops.
1042  */
1043 static bool update_all_ops;
1044 
1045 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1046 # error Dynamic ftrace depends on MCOUNT_RECORD
1047 #endif
1048 
1049 struct ftrace_func_probe {
1050 	struct ftrace_probe_ops	*probe_ops;
1051 	struct ftrace_ops	ops;
1052 	struct trace_array	*tr;
1053 	struct list_head	list;
1054 	void			*data;
1055 	int			ref;
1056 };
1057 
1058 /*
1059  * We make these constant because no one should touch them,
1060  * but they are used as the default "empty hash", to avoid allocating
1061  * it all the time. These are in a read only section such that if
1062  * anyone does try to modify it, it will cause an exception.
1063  */
1064 static const struct hlist_head empty_buckets[1];
1065 static const struct ftrace_hash empty_hash = {
1066 	.buckets = (struct hlist_head *)empty_buckets,
1067 };
1068 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1069 
1070 struct ftrace_ops global_ops = {
1071 	.func				= ftrace_stub,
1072 	.local_hash.notrace_hash	= EMPTY_HASH,
1073 	.local_hash.filter_hash		= EMPTY_HASH,
1074 	INIT_OPS_HASH(global_ops)
1075 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1076 					  FTRACE_OPS_FL_PID,
1077 };
1078 
1079 /*
1080  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1081  */
1082 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1083 {
1084 	struct ftrace_ops *op = NULL;
1085 
1086 	/*
1087 	 * Some of the ops may be dynamically allocated,
1088 	 * they are freed after a synchronize_rcu().
1089 	 */
1090 	preempt_disable_notrace();
1091 
1092 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1093 		/*
1094 		 * This is to check for dynamically allocated trampolines.
1095 		 * Trampolines that are in kernel text will have
1096 		 * core_kernel_text() return true.
1097 		 */
1098 		if (op->trampoline && op->trampoline_size)
1099 			if (addr >= op->trampoline &&
1100 			    addr < op->trampoline + op->trampoline_size) {
1101 				preempt_enable_notrace();
1102 				return op;
1103 			}
1104 	} while_for_each_ftrace_op(op);
1105 	preempt_enable_notrace();
1106 
1107 	return NULL;
1108 }
1109 
1110 /*
1111  * This is used by __kernel_text_address() to return true if the
1112  * address is on a dynamically allocated trampoline that would
1113  * not return true for either core_kernel_text() or
1114  * is_module_text_address().
1115  */
1116 bool is_ftrace_trampoline(unsigned long addr)
1117 {
1118 	return ftrace_ops_trampoline(addr) != NULL;
1119 }
1120 
1121 struct ftrace_page {
1122 	struct ftrace_page	*next;
1123 	struct dyn_ftrace	*records;
1124 	int			index;
1125 	int			order;
1126 };
1127 
1128 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1129 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1130 
1131 static struct ftrace_page	*ftrace_pages_start;
1132 static struct ftrace_page	*ftrace_pages;
1133 
1134 static __always_inline unsigned long
1135 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1136 {
1137 	if (hash->size_bits > 0)
1138 		return hash_long(ip, hash->size_bits);
1139 
1140 	return 0;
1141 }
1142 
1143 /* Only use this function if ftrace_hash_empty() has already been tested */
1144 static __always_inline struct ftrace_func_entry *
1145 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1146 {
1147 	unsigned long key;
1148 	struct ftrace_func_entry *entry;
1149 	struct hlist_head *hhd;
1150 
1151 	key = ftrace_hash_key(hash, ip);
1152 	hhd = &hash->buckets[key];
1153 
1154 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1155 		if (entry->ip == ip)
1156 			return entry;
1157 	}
1158 	return NULL;
1159 }
1160 
1161 /**
1162  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1163  * @hash: The hash to look at
1164  * @ip: The instruction pointer to test
1165  *
1166  * Search a given @hash to see if a given instruction pointer (@ip)
1167  * exists in it.
1168  *
1169  * Returns: the entry that holds the @ip if found. NULL otherwise.
1170  */
1171 struct ftrace_func_entry *
1172 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1173 {
1174 	if (ftrace_hash_empty(hash))
1175 		return NULL;
1176 
1177 	return __ftrace_lookup_ip(hash, ip);
1178 }
1179 
1180 static void __add_hash_entry(struct ftrace_hash *hash,
1181 			     struct ftrace_func_entry *entry)
1182 {
1183 	struct hlist_head *hhd;
1184 	unsigned long key;
1185 
1186 	key = ftrace_hash_key(hash, entry->ip);
1187 	hhd = &hash->buckets[key];
1188 	hlist_add_head(&entry->hlist, hhd);
1189 	hash->count++;
1190 }
1191 
1192 static struct ftrace_func_entry *
1193 add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1194 {
1195 	struct ftrace_func_entry *entry;
1196 
1197 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1198 	if (!entry)
1199 		return NULL;
1200 
1201 	entry->ip = ip;
1202 	__add_hash_entry(hash, entry);
1203 
1204 	return entry;
1205 }
1206 
1207 static void
1208 free_hash_entry(struct ftrace_hash *hash,
1209 		  struct ftrace_func_entry *entry)
1210 {
1211 	hlist_del(&entry->hlist);
1212 	kfree(entry);
1213 	hash->count--;
1214 }
1215 
1216 static void
1217 remove_hash_entry(struct ftrace_hash *hash,
1218 		  struct ftrace_func_entry *entry)
1219 {
1220 	hlist_del_rcu(&entry->hlist);
1221 	hash->count--;
1222 }
1223 
1224 static void ftrace_hash_clear(struct ftrace_hash *hash)
1225 {
1226 	struct hlist_head *hhd;
1227 	struct hlist_node *tn;
1228 	struct ftrace_func_entry *entry;
1229 	int size = 1 << hash->size_bits;
1230 	int i;
1231 
1232 	if (!hash->count)
1233 		return;
1234 
1235 	for (i = 0; i < size; i++) {
1236 		hhd = &hash->buckets[i];
1237 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1238 			free_hash_entry(hash, entry);
1239 	}
1240 	FTRACE_WARN_ON(hash->count);
1241 }
1242 
1243 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1244 {
1245 	list_del(&ftrace_mod->list);
1246 	kfree(ftrace_mod->module);
1247 	kfree(ftrace_mod->func);
1248 	kfree(ftrace_mod);
1249 }
1250 
1251 static void clear_ftrace_mod_list(struct list_head *head)
1252 {
1253 	struct ftrace_mod_load *p, *n;
1254 
1255 	/* stack tracer isn't supported yet */
1256 	if (!head)
1257 		return;
1258 
1259 	mutex_lock(&ftrace_lock);
1260 	list_for_each_entry_safe(p, n, head, list)
1261 		free_ftrace_mod(p);
1262 	mutex_unlock(&ftrace_lock);
1263 }
1264 
1265 static void free_ftrace_hash(struct ftrace_hash *hash)
1266 {
1267 	if (!hash || hash == EMPTY_HASH)
1268 		return;
1269 	ftrace_hash_clear(hash);
1270 	kfree(hash->buckets);
1271 	kfree(hash);
1272 }
1273 
1274 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1275 {
1276 	struct ftrace_hash *hash;
1277 
1278 	hash = container_of(rcu, struct ftrace_hash, rcu);
1279 	free_ftrace_hash(hash);
1280 }
1281 
1282 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1283 {
1284 	if (!hash || hash == EMPTY_HASH)
1285 		return;
1286 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1287 }
1288 
1289 /**
1290  * ftrace_free_filter - remove all filters for an ftrace_ops
1291  * @ops: the ops to remove the filters from
1292  */
1293 void ftrace_free_filter(struct ftrace_ops *ops)
1294 {
1295 	ftrace_ops_init(ops);
1296 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
1297 		return;
1298 	free_ftrace_hash(ops->func_hash->filter_hash);
1299 	free_ftrace_hash(ops->func_hash->notrace_hash);
1300 	ops->func_hash->filter_hash = EMPTY_HASH;
1301 	ops->func_hash->notrace_hash = EMPTY_HASH;
1302 }
1303 EXPORT_SYMBOL_GPL(ftrace_free_filter);
1304 
1305 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1306 {
1307 	struct ftrace_hash *hash;
1308 	int size;
1309 
1310 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1311 	if (!hash)
1312 		return NULL;
1313 
1314 	size = 1 << size_bits;
1315 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1316 
1317 	if (!hash->buckets) {
1318 		kfree(hash);
1319 		return NULL;
1320 	}
1321 
1322 	hash->size_bits = size_bits;
1323 
1324 	return hash;
1325 }
1326 
1327 /* Used to save filters on functions for modules not loaded yet */
1328 static int ftrace_add_mod(struct trace_array *tr,
1329 			  const char *func, const char *module,
1330 			  int enable)
1331 {
1332 	struct ftrace_mod_load *ftrace_mod;
1333 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1334 
1335 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1336 	if (!ftrace_mod)
1337 		return -ENOMEM;
1338 
1339 	INIT_LIST_HEAD(&ftrace_mod->list);
1340 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1341 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1342 	ftrace_mod->enable = enable;
1343 
1344 	if (!ftrace_mod->func || !ftrace_mod->module)
1345 		goto out_free;
1346 
1347 	list_add(&ftrace_mod->list, mod_head);
1348 
1349 	return 0;
1350 
1351  out_free:
1352 	free_ftrace_mod(ftrace_mod);
1353 
1354 	return -ENOMEM;
1355 }
1356 
1357 static struct ftrace_hash *
1358 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1359 {
1360 	struct ftrace_func_entry *entry;
1361 	struct ftrace_hash *new_hash;
1362 	int size;
1363 	int i;
1364 
1365 	new_hash = alloc_ftrace_hash(size_bits);
1366 	if (!new_hash)
1367 		return NULL;
1368 
1369 	if (hash)
1370 		new_hash->flags = hash->flags;
1371 
1372 	/* Empty hash? */
1373 	if (ftrace_hash_empty(hash))
1374 		return new_hash;
1375 
1376 	size = 1 << hash->size_bits;
1377 	for (i = 0; i < size; i++) {
1378 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1379 			if (add_hash_entry(new_hash, entry->ip) == NULL)
1380 				goto free_hash;
1381 		}
1382 	}
1383 
1384 	FTRACE_WARN_ON(new_hash->count != hash->count);
1385 
1386 	return new_hash;
1387 
1388  free_hash:
1389 	free_ftrace_hash(new_hash);
1390 	return NULL;
1391 }
1392 
1393 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops);
1394 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops);
1395 
1396 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1397 				       struct ftrace_hash *new_hash);
1398 
1399 /*
1400  * Allocate a new hash and remove entries from @src and move them to the new hash.
1401  * On success, the @src hash will be empty and should be freed.
1402  */
1403 static struct ftrace_hash *__move_hash(struct ftrace_hash *src, int size)
1404 {
1405 	struct ftrace_func_entry *entry;
1406 	struct ftrace_hash *new_hash;
1407 	struct hlist_head *hhd;
1408 	struct hlist_node *tn;
1409 	int bits = 0;
1410 	int i;
1411 
1412 	/*
1413 	 * Use around half the size (max bit of it), but
1414 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1415 	 */
1416 	bits = fls(size / 2);
1417 
1418 	/* Don't allocate too much */
1419 	if (bits > FTRACE_HASH_MAX_BITS)
1420 		bits = FTRACE_HASH_MAX_BITS;
1421 
1422 	new_hash = alloc_ftrace_hash(bits);
1423 	if (!new_hash)
1424 		return NULL;
1425 
1426 	new_hash->flags = src->flags;
1427 
1428 	size = 1 << src->size_bits;
1429 	for (i = 0; i < size; i++) {
1430 		hhd = &src->buckets[i];
1431 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1432 			remove_hash_entry(src, entry);
1433 			__add_hash_entry(new_hash, entry);
1434 		}
1435 	}
1436 	return new_hash;
1437 }
1438 
1439 /* Move the @src entries to a newly allocated hash */
1440 static struct ftrace_hash *
1441 __ftrace_hash_move(struct ftrace_hash *src)
1442 {
1443 	int size = src->count;
1444 
1445 	/*
1446 	 * If the new source is empty, just return the empty_hash.
1447 	 */
1448 	if (ftrace_hash_empty(src))
1449 		return EMPTY_HASH;
1450 
1451 	return __move_hash(src, size);
1452 }
1453 
1454 /**
1455  * ftrace_hash_move - move a new hash to a filter and do updates
1456  * @ops: The ops with the hash that @dst points to
1457  * @enable: True if for the filter hash, false for the notrace hash
1458  * @dst: Points to the @ops hash that should be updated
1459  * @src: The hash to update @dst with
1460  *
1461  * This is called when an ftrace_ops hash is being updated and the
1462  * the kernel needs to reflect this. Note, this only updates the kernel
1463  * function callbacks if the @ops is enabled (not to be confused with
1464  * @enable above). If the @ops is enabled, its hash determines what
1465  * callbacks get called. This function gets called when the @ops hash
1466  * is updated and it requires new callbacks.
1467  *
1468  * On success the elements of @src is moved to @dst, and @dst is updated
1469  * properly, as well as the functions determined by the @ops hashes
1470  * are now calling the @ops callback function.
1471  *
1472  * Regardless of return type, @src should be freed with free_ftrace_hash().
1473  */
1474 static int
1475 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1476 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1477 {
1478 	struct ftrace_hash *new_hash;
1479 	int ret;
1480 
1481 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1482 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1483 		return -EINVAL;
1484 
1485 	new_hash = __ftrace_hash_move(src);
1486 	if (!new_hash)
1487 		return -ENOMEM;
1488 
1489 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1490 	if (enable) {
1491 		/* IPMODIFY should be updated only when filter_hash updating */
1492 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1493 		if (ret < 0) {
1494 			free_ftrace_hash(new_hash);
1495 			return ret;
1496 		}
1497 	}
1498 
1499 	/*
1500 	 * Remove the current set, update the hash and add
1501 	 * them back.
1502 	 */
1503 	ftrace_hash_rec_disable_modify(ops);
1504 
1505 	rcu_assign_pointer(*dst, new_hash);
1506 
1507 	ftrace_hash_rec_enable_modify(ops);
1508 
1509 	return 0;
1510 }
1511 
1512 static bool hash_contains_ip(unsigned long ip,
1513 			     struct ftrace_ops_hash *hash)
1514 {
1515 	/*
1516 	 * The function record is a match if it exists in the filter
1517 	 * hash and not in the notrace hash. Note, an empty hash is
1518 	 * considered a match for the filter hash, but an empty
1519 	 * notrace hash is considered not in the notrace hash.
1520 	 */
1521 	return (ftrace_hash_empty(hash->filter_hash) ||
1522 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1523 		(ftrace_hash_empty(hash->notrace_hash) ||
1524 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1525 }
1526 
1527 /*
1528  * Test the hashes for this ops to see if we want to call
1529  * the ops->func or not.
1530  *
1531  * It's a match if the ip is in the ops->filter_hash or
1532  * the filter_hash does not exist or is empty,
1533  *  AND
1534  * the ip is not in the ops->notrace_hash.
1535  *
1536  * This needs to be called with preemption disabled as
1537  * the hashes are freed with call_rcu().
1538  */
1539 int
1540 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1541 {
1542 	struct ftrace_ops_hash hash;
1543 	int ret;
1544 
1545 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1546 	/*
1547 	 * There's a small race when adding ops that the ftrace handler
1548 	 * that wants regs, may be called without them. We can not
1549 	 * allow that handler to be called if regs is NULL.
1550 	 */
1551 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1552 		return 0;
1553 #endif
1554 
1555 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1556 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1557 
1558 	if (hash_contains_ip(ip, &hash))
1559 		ret = 1;
1560 	else
1561 		ret = 0;
1562 
1563 	return ret;
1564 }
1565 
1566 /*
1567  * This is a double for. Do not use 'break' to break out of the loop,
1568  * you must use a goto.
1569  */
1570 #define do_for_each_ftrace_rec(pg, rec)					\
1571 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1572 		int _____i;						\
1573 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1574 			rec = &pg->records[_____i];
1575 
1576 #define while_for_each_ftrace_rec()		\
1577 		}				\
1578 	}
1579 
1580 
1581 static int ftrace_cmp_recs(const void *a, const void *b)
1582 {
1583 	const struct dyn_ftrace *key = a;
1584 	const struct dyn_ftrace *rec = b;
1585 
1586 	if (key->flags < rec->ip)
1587 		return -1;
1588 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1589 		return 1;
1590 	return 0;
1591 }
1592 
1593 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1594 {
1595 	struct ftrace_page *pg;
1596 	struct dyn_ftrace *rec = NULL;
1597 	struct dyn_ftrace key;
1598 
1599 	key.ip = start;
1600 	key.flags = end;	/* overload flags, as it is unsigned long */
1601 
1602 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1603 		if (pg->index == 0 ||
1604 		    end < pg->records[0].ip ||
1605 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1606 			continue;
1607 		rec = bsearch(&key, pg->records, pg->index,
1608 			      sizeof(struct dyn_ftrace),
1609 			      ftrace_cmp_recs);
1610 		if (rec)
1611 			break;
1612 	}
1613 	return rec;
1614 }
1615 
1616 /**
1617  * ftrace_location_range - return the first address of a traced location
1618  *	if it touches the given ip range
1619  * @start: start of range to search.
1620  * @end: end of range to search (inclusive). @end points to the last byte
1621  *	to check.
1622  *
1623  * Returns: rec->ip if the related ftrace location is a least partly within
1624  * the given address range. That is, the first address of the instruction
1625  * that is either a NOP or call to the function tracer. It checks the ftrace
1626  * internal tables to determine if the address belongs or not.
1627  */
1628 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1629 {
1630 	struct dyn_ftrace *rec;
1631 	unsigned long ip = 0;
1632 
1633 	rcu_read_lock();
1634 	rec = lookup_rec(start, end);
1635 	if (rec)
1636 		ip = rec->ip;
1637 	rcu_read_unlock();
1638 
1639 	return ip;
1640 }
1641 
1642 /**
1643  * ftrace_location - return the ftrace location
1644  * @ip: the instruction pointer to check
1645  *
1646  * Returns:
1647  * * If @ip matches the ftrace location, return @ip.
1648  * * If @ip matches sym+0, return sym's ftrace location.
1649  * * Otherwise, return 0.
1650  */
1651 unsigned long ftrace_location(unsigned long ip)
1652 {
1653 	unsigned long loc;
1654 	unsigned long offset;
1655 	unsigned long size;
1656 
1657 	loc = ftrace_location_range(ip, ip);
1658 	if (!loc) {
1659 		if (!kallsyms_lookup_size_offset(ip, &size, &offset))
1660 			return 0;
1661 
1662 		/* map sym+0 to __fentry__ */
1663 		if (!offset)
1664 			loc = ftrace_location_range(ip, ip + size - 1);
1665 	}
1666 	return loc;
1667 }
1668 
1669 /**
1670  * ftrace_text_reserved - return true if range contains an ftrace location
1671  * @start: start of range to search
1672  * @end: end of range to search (inclusive). @end points to the last byte to check.
1673  *
1674  * Returns: 1 if @start and @end contains a ftrace location.
1675  * That is, the instruction that is either a NOP or call to
1676  * the function tracer. It checks the ftrace internal tables to
1677  * determine if the address belongs or not.
1678  */
1679 int ftrace_text_reserved(const void *start, const void *end)
1680 {
1681 	unsigned long ret;
1682 
1683 	ret = ftrace_location_range((unsigned long)start,
1684 				    (unsigned long)end);
1685 
1686 	return (int)!!ret;
1687 }
1688 
1689 /* Test if ops registered to this rec needs regs */
1690 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1691 {
1692 	struct ftrace_ops *ops;
1693 	bool keep_regs = false;
1694 
1695 	for (ops = ftrace_ops_list;
1696 	     ops != &ftrace_list_end; ops = ops->next) {
1697 		/* pass rec in as regs to have non-NULL val */
1698 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1699 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1700 				keep_regs = true;
1701 				break;
1702 			}
1703 		}
1704 	}
1705 
1706 	return  keep_regs;
1707 }
1708 
1709 static struct ftrace_ops *
1710 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1711 static struct ftrace_ops *
1712 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1713 static struct ftrace_ops *
1714 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1715 
1716 static bool skip_record(struct dyn_ftrace *rec)
1717 {
1718 	/*
1719 	 * At boot up, weak functions are set to disable. Function tracing
1720 	 * can be enabled before they are, and they still need to be disabled now.
1721 	 * If the record is disabled, still continue if it is marked as already
1722 	 * enabled (this is needed to keep the accounting working).
1723 	 */
1724 	return rec->flags & FTRACE_FL_DISABLED &&
1725 		!(rec->flags & FTRACE_FL_ENABLED);
1726 }
1727 
1728 /*
1729  * This is the main engine to the ftrace updates to the dyn_ftrace records.
1730  *
1731  * It will iterate through all the available ftrace functions
1732  * (the ones that ftrace can have callbacks to) and set the flags
1733  * in the associated dyn_ftrace records.
1734  *
1735  * @inc: If true, the functions associated to @ops are added to
1736  *       the dyn_ftrace records, otherwise they are removed.
1737  */
1738 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1739 				     bool inc)
1740 {
1741 	struct ftrace_hash *hash;
1742 	struct ftrace_hash *notrace_hash;
1743 	struct ftrace_page *pg;
1744 	struct dyn_ftrace *rec;
1745 	bool update = false;
1746 	int count = 0;
1747 	int all = false;
1748 
1749 	/* Only update if the ops has been registered */
1750 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1751 		return false;
1752 
1753 	/*
1754 	 *   If the count is zero, we update all records.
1755 	 *   Otherwise we just update the items in the hash.
1756 	 */
1757 	hash = ops->func_hash->filter_hash;
1758 	notrace_hash = ops->func_hash->notrace_hash;
1759 	if (ftrace_hash_empty(hash))
1760 		all = true;
1761 
1762 	do_for_each_ftrace_rec(pg, rec) {
1763 		int in_notrace_hash = 0;
1764 		int in_hash = 0;
1765 		int match = 0;
1766 
1767 		if (skip_record(rec))
1768 			continue;
1769 
1770 		if (all) {
1771 			/*
1772 			 * Only the filter_hash affects all records.
1773 			 * Update if the record is not in the notrace hash.
1774 			 */
1775 			if (!notrace_hash || !ftrace_lookup_ip(notrace_hash, rec->ip))
1776 				match = 1;
1777 		} else {
1778 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1779 			in_notrace_hash = !!ftrace_lookup_ip(notrace_hash, rec->ip);
1780 
1781 			/*
1782 			 * We want to match all functions that are in the hash but
1783 			 * not in the other hash.
1784 			 */
1785 			if (in_hash && !in_notrace_hash)
1786 				match = 1;
1787 		}
1788 		if (!match)
1789 			continue;
1790 
1791 		if (inc) {
1792 			rec->flags++;
1793 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1794 				return false;
1795 
1796 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1797 				rec->flags |= FTRACE_FL_DIRECT;
1798 
1799 			/*
1800 			 * If there's only a single callback registered to a
1801 			 * function, and the ops has a trampoline registered
1802 			 * for it, then we can call it directly.
1803 			 */
1804 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1805 				rec->flags |= FTRACE_FL_TRAMP;
1806 			else
1807 				/*
1808 				 * If we are adding another function callback
1809 				 * to this function, and the previous had a
1810 				 * custom trampoline in use, then we need to go
1811 				 * back to the default trampoline.
1812 				 */
1813 				rec->flags &= ~FTRACE_FL_TRAMP;
1814 
1815 			/*
1816 			 * If any ops wants regs saved for this function
1817 			 * then all ops will get saved regs.
1818 			 */
1819 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1820 				rec->flags |= FTRACE_FL_REGS;
1821 		} else {
1822 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1823 				return false;
1824 			rec->flags--;
1825 
1826 			/*
1827 			 * Only the internal direct_ops should have the
1828 			 * DIRECT flag set. Thus, if it is removing a
1829 			 * function, then that function should no longer
1830 			 * be direct.
1831 			 */
1832 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1833 				rec->flags &= ~FTRACE_FL_DIRECT;
1834 
1835 			/*
1836 			 * If the rec had REGS enabled and the ops that is
1837 			 * being removed had REGS set, then see if there is
1838 			 * still any ops for this record that wants regs.
1839 			 * If not, we can stop recording them.
1840 			 */
1841 			if (ftrace_rec_count(rec) > 0 &&
1842 			    rec->flags & FTRACE_FL_REGS &&
1843 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1844 				if (!test_rec_ops_needs_regs(rec))
1845 					rec->flags &= ~FTRACE_FL_REGS;
1846 			}
1847 
1848 			/*
1849 			 * The TRAMP needs to be set only if rec count
1850 			 * is decremented to one, and the ops that is
1851 			 * left has a trampoline. As TRAMP can only be
1852 			 * enabled if there is only a single ops attached
1853 			 * to it.
1854 			 */
1855 			if (ftrace_rec_count(rec) == 1 &&
1856 			    ftrace_find_tramp_ops_any_other(rec, ops))
1857 				rec->flags |= FTRACE_FL_TRAMP;
1858 			else
1859 				rec->flags &= ~FTRACE_FL_TRAMP;
1860 
1861 			/*
1862 			 * flags will be cleared in ftrace_check_record()
1863 			 * if rec count is zero.
1864 			 */
1865 		}
1866 
1867 		/*
1868 		 * If the rec has a single associated ops, and ops->func can be
1869 		 * called directly, allow the call site to call via the ops.
1870 		 */
1871 		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS) &&
1872 		    ftrace_rec_count(rec) == 1 &&
1873 		    ftrace_ops_get_func(ops) == ops->func)
1874 			rec->flags |= FTRACE_FL_CALL_OPS;
1875 		else
1876 			rec->flags &= ~FTRACE_FL_CALL_OPS;
1877 
1878 		count++;
1879 
1880 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1881 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1882 
1883 		/* Shortcut, if we handled all records, we are done. */
1884 		if (!all && count == hash->count)
1885 			return update;
1886 	} while_for_each_ftrace_rec();
1887 
1888 	return update;
1889 }
1890 
1891 /*
1892  * This is called when an ops is removed from tracing. It will decrement
1893  * the counters of the dyn_ftrace records for all the functions that
1894  * the @ops attached to.
1895  */
1896 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops)
1897 {
1898 	return __ftrace_hash_rec_update(ops, false);
1899 }
1900 
1901 /*
1902  * This is called when an ops is added to tracing. It will increment
1903  * the counters of the dyn_ftrace records for all the functions that
1904  * the @ops attached to.
1905  */
1906 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops)
1907 {
1908 	return __ftrace_hash_rec_update(ops, true);
1909 }
1910 
1911 /*
1912  * This function will update what functions @ops traces when its filter
1913  * changes.
1914  *
1915  * The @inc states if the @ops callbacks are going to be added or removed.
1916  * When one of the @ops hashes are updated to a "new_hash" the dyn_ftrace
1917  * records are update via:
1918  *
1919  * ftrace_hash_rec_disable_modify(ops);
1920  * ops->hash = new_hash
1921  * ftrace_hash_rec_enable_modify(ops);
1922  *
1923  * Where the @ops is removed from all the records it is tracing using
1924  * its old hash. The @ops hash is updated to the new hash, and then
1925  * the @ops is added back to the records so that it is tracing all
1926  * the new functions.
1927  */
1928 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, bool inc)
1929 {
1930 	struct ftrace_ops *op;
1931 
1932 	__ftrace_hash_rec_update(ops, inc);
1933 
1934 	if (ops->func_hash != &global_ops.local_hash)
1935 		return;
1936 
1937 	/*
1938 	 * If the ops shares the global_ops hash, then we need to update
1939 	 * all ops that are enabled and use this hash.
1940 	 */
1941 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1942 		/* Already done */
1943 		if (op == ops)
1944 			continue;
1945 		if (op->func_hash == &global_ops.local_hash)
1946 			__ftrace_hash_rec_update(op, inc);
1947 	} while_for_each_ftrace_op(op);
1948 }
1949 
1950 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops)
1951 {
1952 	ftrace_hash_rec_update_modify(ops, false);
1953 }
1954 
1955 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops)
1956 {
1957 	ftrace_hash_rec_update_modify(ops, true);
1958 }
1959 
1960 /*
1961  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1962  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1963  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1964  * Note that old_hash and new_hash has below meanings
1965  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1966  *  - If the hash is EMPTY_HASH, it hits nothing
1967  *  - Anything else hits the recs which match the hash entries.
1968  *
1969  * DIRECT ops does not have IPMODIFY flag, but we still need to check it
1970  * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call
1971  * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with
1972  * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate
1973  * the return value to the caller and eventually to the owner of the DIRECT
1974  * ops.
1975  */
1976 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1977 					 struct ftrace_hash *old_hash,
1978 					 struct ftrace_hash *new_hash)
1979 {
1980 	struct ftrace_page *pg;
1981 	struct dyn_ftrace *rec, *end = NULL;
1982 	int in_old, in_new;
1983 	bool is_ipmodify, is_direct;
1984 
1985 	/* Only update if the ops has been registered */
1986 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1987 		return 0;
1988 
1989 	is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY;
1990 	is_direct = ops->flags & FTRACE_OPS_FL_DIRECT;
1991 
1992 	/* neither IPMODIFY nor DIRECT, skip */
1993 	if (!is_ipmodify && !is_direct)
1994 		return 0;
1995 
1996 	if (WARN_ON_ONCE(is_ipmodify && is_direct))
1997 		return 0;
1998 
1999 	/*
2000 	 * Since the IPMODIFY and DIRECT are very address sensitive
2001 	 * actions, we do not allow ftrace_ops to set all functions to new
2002 	 * hash.
2003 	 */
2004 	if (!new_hash || !old_hash)
2005 		return -EINVAL;
2006 
2007 	/* Update rec->flags */
2008 	do_for_each_ftrace_rec(pg, rec) {
2009 
2010 		if (rec->flags & FTRACE_FL_DISABLED)
2011 			continue;
2012 
2013 		/* We need to update only differences of filter_hash */
2014 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
2015 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
2016 		if (in_old == in_new)
2017 			continue;
2018 
2019 		if (in_new) {
2020 			if (rec->flags & FTRACE_FL_IPMODIFY) {
2021 				int ret;
2022 
2023 				/* Cannot have two ipmodify on same rec */
2024 				if (is_ipmodify)
2025 					goto rollback;
2026 
2027 				FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT);
2028 
2029 				/*
2030 				 * Another ops with IPMODIFY is already
2031 				 * attached. We are now attaching a direct
2032 				 * ops. Run SHARE_IPMODIFY_SELF, to check
2033 				 * whether sharing is supported.
2034 				 */
2035 				if (!ops->ops_func)
2036 					return -EBUSY;
2037 				ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF);
2038 				if (ret)
2039 					return ret;
2040 			} else if (is_ipmodify) {
2041 				rec->flags |= FTRACE_FL_IPMODIFY;
2042 			}
2043 		} else if (is_ipmodify) {
2044 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2045 		}
2046 	} while_for_each_ftrace_rec();
2047 
2048 	return 0;
2049 
2050 rollback:
2051 	end = rec;
2052 
2053 	/* Roll back what we did above */
2054 	do_for_each_ftrace_rec(pg, rec) {
2055 
2056 		if (rec->flags & FTRACE_FL_DISABLED)
2057 			continue;
2058 
2059 		if (rec == end)
2060 			return -EBUSY;
2061 
2062 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
2063 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
2064 		if (in_old == in_new)
2065 			continue;
2066 
2067 		if (in_new)
2068 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2069 		else
2070 			rec->flags |= FTRACE_FL_IPMODIFY;
2071 	} while_for_each_ftrace_rec();
2072 
2073 	return -EBUSY;
2074 }
2075 
2076 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
2077 {
2078 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2079 
2080 	if (ftrace_hash_empty(hash))
2081 		hash = NULL;
2082 
2083 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
2084 }
2085 
2086 /* Disabling always succeeds */
2087 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
2088 {
2089 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2090 
2091 	if (ftrace_hash_empty(hash))
2092 		hash = NULL;
2093 
2094 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
2095 }
2096 
2097 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
2098 				       struct ftrace_hash *new_hash)
2099 {
2100 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
2101 
2102 	if (ftrace_hash_empty(old_hash))
2103 		old_hash = NULL;
2104 
2105 	if (ftrace_hash_empty(new_hash))
2106 		new_hash = NULL;
2107 
2108 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
2109 }
2110 
2111 static void print_ip_ins(const char *fmt, const unsigned char *p)
2112 {
2113 	char ins[MCOUNT_INSN_SIZE];
2114 
2115 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
2116 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
2117 		return;
2118 	}
2119 
2120 	printk(KERN_CONT "%s", fmt);
2121 	pr_cont("%*phC", MCOUNT_INSN_SIZE, ins);
2122 }
2123 
2124 enum ftrace_bug_type ftrace_bug_type;
2125 const void *ftrace_expected;
2126 
2127 static void print_bug_type(void)
2128 {
2129 	switch (ftrace_bug_type) {
2130 	case FTRACE_BUG_UNKNOWN:
2131 		break;
2132 	case FTRACE_BUG_INIT:
2133 		pr_info("Initializing ftrace call sites\n");
2134 		break;
2135 	case FTRACE_BUG_NOP:
2136 		pr_info("Setting ftrace call site to NOP\n");
2137 		break;
2138 	case FTRACE_BUG_CALL:
2139 		pr_info("Setting ftrace call site to call ftrace function\n");
2140 		break;
2141 	case FTRACE_BUG_UPDATE:
2142 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2143 		break;
2144 	}
2145 }
2146 
2147 /**
2148  * ftrace_bug - report and shutdown function tracer
2149  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2150  * @rec: The record that failed
2151  *
2152  * The arch code that enables or disables the function tracing
2153  * can call ftrace_bug() when it has detected a problem in
2154  * modifying the code. @failed should be one of either:
2155  * EFAULT - if the problem happens on reading the @ip address
2156  * EINVAL - if what is read at @ip is not what was expected
2157  * EPERM - if the problem happens on writing to the @ip address
2158  */
2159 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2160 {
2161 	unsigned long ip = rec ? rec->ip : 0;
2162 
2163 	pr_info("------------[ ftrace bug ]------------\n");
2164 
2165 	switch (failed) {
2166 	case -EFAULT:
2167 		pr_info("ftrace faulted on modifying ");
2168 		print_ip_sym(KERN_INFO, ip);
2169 		break;
2170 	case -EINVAL:
2171 		pr_info("ftrace failed to modify ");
2172 		print_ip_sym(KERN_INFO, ip);
2173 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2174 		pr_cont("\n");
2175 		if (ftrace_expected) {
2176 			print_ip_ins(" expected: ", ftrace_expected);
2177 			pr_cont("\n");
2178 		}
2179 		break;
2180 	case -EPERM:
2181 		pr_info("ftrace faulted on writing ");
2182 		print_ip_sym(KERN_INFO, ip);
2183 		break;
2184 	default:
2185 		pr_info("ftrace faulted on unknown error ");
2186 		print_ip_sym(KERN_INFO, ip);
2187 	}
2188 	print_bug_type();
2189 	if (rec) {
2190 		struct ftrace_ops *ops = NULL;
2191 
2192 		pr_info("ftrace record flags: %lx\n", rec->flags);
2193 		pr_cont(" (%ld)%s%s", ftrace_rec_count(rec),
2194 			rec->flags & FTRACE_FL_REGS ? " R" : "  ",
2195 			rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ");
2196 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2197 			ops = ftrace_find_tramp_ops_any(rec);
2198 			if (ops) {
2199 				do {
2200 					pr_cont("\ttramp: %pS (%pS)",
2201 						(void *)ops->trampoline,
2202 						(void *)ops->func);
2203 					ops = ftrace_find_tramp_ops_next(rec, ops);
2204 				} while (ops);
2205 			} else
2206 				pr_cont("\ttramp: ERROR!");
2207 
2208 		}
2209 		ip = ftrace_get_addr_curr(rec);
2210 		pr_cont("\n expected tramp: %lx\n", ip);
2211 	}
2212 
2213 	FTRACE_WARN_ON_ONCE(1);
2214 }
2215 
2216 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2217 {
2218 	unsigned long flag = 0UL;
2219 
2220 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2221 
2222 	if (skip_record(rec))
2223 		return FTRACE_UPDATE_IGNORE;
2224 
2225 	/*
2226 	 * If we are updating calls:
2227 	 *
2228 	 *   If the record has a ref count, then we need to enable it
2229 	 *   because someone is using it.
2230 	 *
2231 	 *   Otherwise we make sure its disabled.
2232 	 *
2233 	 * If we are disabling calls, then disable all records that
2234 	 * are enabled.
2235 	 */
2236 	if (enable && ftrace_rec_count(rec))
2237 		flag = FTRACE_FL_ENABLED;
2238 
2239 	/*
2240 	 * If enabling and the REGS flag does not match the REGS_EN, or
2241 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2242 	 * this record. Set flags to fail the compare against ENABLED.
2243 	 * Same for direct calls.
2244 	 */
2245 	if (flag) {
2246 		if (!(rec->flags & FTRACE_FL_REGS) !=
2247 		    !(rec->flags & FTRACE_FL_REGS_EN))
2248 			flag |= FTRACE_FL_REGS;
2249 
2250 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2251 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2252 			flag |= FTRACE_FL_TRAMP;
2253 
2254 		/*
2255 		 * Direct calls are special, as count matters.
2256 		 * We must test the record for direct, if the
2257 		 * DIRECT and DIRECT_EN do not match, but only
2258 		 * if the count is 1. That's because, if the
2259 		 * count is something other than one, we do not
2260 		 * want the direct enabled (it will be done via the
2261 		 * direct helper). But if DIRECT_EN is set, and
2262 		 * the count is not one, we need to clear it.
2263 		 *
2264 		 */
2265 		if (ftrace_rec_count(rec) == 1) {
2266 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2267 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2268 				flag |= FTRACE_FL_DIRECT;
2269 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2270 			flag |= FTRACE_FL_DIRECT;
2271 		}
2272 
2273 		/*
2274 		 * Ops calls are special, as count matters.
2275 		 * As with direct calls, they must only be enabled when count
2276 		 * is one, otherwise they'll be handled via the list ops.
2277 		 */
2278 		if (ftrace_rec_count(rec) == 1) {
2279 			if (!(rec->flags & FTRACE_FL_CALL_OPS) !=
2280 			    !(rec->flags & FTRACE_FL_CALL_OPS_EN))
2281 				flag |= FTRACE_FL_CALL_OPS;
2282 		} else if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
2283 			flag |= FTRACE_FL_CALL_OPS;
2284 		}
2285 	}
2286 
2287 	/* If the state of this record hasn't changed, then do nothing */
2288 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2289 		return FTRACE_UPDATE_IGNORE;
2290 
2291 	if (flag) {
2292 		/* Save off if rec is being enabled (for return value) */
2293 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2294 
2295 		if (update) {
2296 			rec->flags |= FTRACE_FL_ENABLED | FTRACE_FL_TOUCHED;
2297 			if (flag & FTRACE_FL_REGS) {
2298 				if (rec->flags & FTRACE_FL_REGS)
2299 					rec->flags |= FTRACE_FL_REGS_EN;
2300 				else
2301 					rec->flags &= ~FTRACE_FL_REGS_EN;
2302 			}
2303 			if (flag & FTRACE_FL_TRAMP) {
2304 				if (rec->flags & FTRACE_FL_TRAMP)
2305 					rec->flags |= FTRACE_FL_TRAMP_EN;
2306 				else
2307 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2308 			}
2309 
2310 			/* Keep track of anything that modifies the function */
2311 			if (rec->flags & (FTRACE_FL_DIRECT | FTRACE_FL_IPMODIFY))
2312 				rec->flags |= FTRACE_FL_MODIFIED;
2313 
2314 			if (flag & FTRACE_FL_DIRECT) {
2315 				/*
2316 				 * If there's only one user (direct_ops helper)
2317 				 * then we can call the direct function
2318 				 * directly (no ftrace trampoline).
2319 				 */
2320 				if (ftrace_rec_count(rec) == 1) {
2321 					if (rec->flags & FTRACE_FL_DIRECT)
2322 						rec->flags |= FTRACE_FL_DIRECT_EN;
2323 					else
2324 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2325 				} else {
2326 					/*
2327 					 * Can only call directly if there's
2328 					 * only one callback to the function.
2329 					 */
2330 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2331 				}
2332 			}
2333 
2334 			if (flag & FTRACE_FL_CALL_OPS) {
2335 				if (ftrace_rec_count(rec) == 1) {
2336 					if (rec->flags & FTRACE_FL_CALL_OPS)
2337 						rec->flags |= FTRACE_FL_CALL_OPS_EN;
2338 					else
2339 						rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2340 				} else {
2341 					/*
2342 					 * Can only call directly if there's
2343 					 * only one set of associated ops.
2344 					 */
2345 					rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2346 				}
2347 			}
2348 		}
2349 
2350 		/*
2351 		 * If this record is being updated from a nop, then
2352 		 *   return UPDATE_MAKE_CALL.
2353 		 * Otherwise,
2354 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2355 		 *   from the save regs, to a non-save regs function or
2356 		 *   vice versa, or from a trampoline call.
2357 		 */
2358 		if (flag & FTRACE_FL_ENABLED) {
2359 			ftrace_bug_type = FTRACE_BUG_CALL;
2360 			return FTRACE_UPDATE_MAKE_CALL;
2361 		}
2362 
2363 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2364 		return FTRACE_UPDATE_MODIFY_CALL;
2365 	}
2366 
2367 	if (update) {
2368 		/* If there's no more users, clear all flags */
2369 		if (!ftrace_rec_count(rec))
2370 			rec->flags &= FTRACE_NOCLEAR_FLAGS;
2371 		else
2372 			/*
2373 			 * Just disable the record, but keep the ops TRAMP
2374 			 * and REGS states. The _EN flags must be disabled though.
2375 			 */
2376 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2377 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN |
2378 					FTRACE_FL_CALL_OPS_EN);
2379 	}
2380 
2381 	ftrace_bug_type = FTRACE_BUG_NOP;
2382 	return FTRACE_UPDATE_MAKE_NOP;
2383 }
2384 
2385 /**
2386  * ftrace_update_record - set a record that now is tracing or not
2387  * @rec: the record to update
2388  * @enable: set to true if the record is tracing, false to force disable
2389  *
2390  * The records that represent all functions that can be traced need
2391  * to be updated when tracing has been enabled.
2392  */
2393 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2394 {
2395 	return ftrace_check_record(rec, enable, true);
2396 }
2397 
2398 /**
2399  * ftrace_test_record - check if the record has been enabled or not
2400  * @rec: the record to test
2401  * @enable: set to true to check if enabled, false if it is disabled
2402  *
2403  * The arch code may need to test if a record is already set to
2404  * tracing to determine how to modify the function code that it
2405  * represents.
2406  */
2407 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2408 {
2409 	return ftrace_check_record(rec, enable, false);
2410 }
2411 
2412 static struct ftrace_ops *
2413 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2414 {
2415 	struct ftrace_ops *op;
2416 	unsigned long ip = rec->ip;
2417 
2418 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2419 
2420 		if (!op->trampoline)
2421 			continue;
2422 
2423 		if (hash_contains_ip(ip, op->func_hash))
2424 			return op;
2425 	} while_for_each_ftrace_op(op);
2426 
2427 	return NULL;
2428 }
2429 
2430 static struct ftrace_ops *
2431 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2432 {
2433 	struct ftrace_ops *op;
2434 	unsigned long ip = rec->ip;
2435 
2436 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2437 
2438 		if (op == op_exclude || !op->trampoline)
2439 			continue;
2440 
2441 		if (hash_contains_ip(ip, op->func_hash))
2442 			return op;
2443 	} while_for_each_ftrace_op(op);
2444 
2445 	return NULL;
2446 }
2447 
2448 static struct ftrace_ops *
2449 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2450 			   struct ftrace_ops *op)
2451 {
2452 	unsigned long ip = rec->ip;
2453 
2454 	while_for_each_ftrace_op(op) {
2455 
2456 		if (!op->trampoline)
2457 			continue;
2458 
2459 		if (hash_contains_ip(ip, op->func_hash))
2460 			return op;
2461 	}
2462 
2463 	return NULL;
2464 }
2465 
2466 static struct ftrace_ops *
2467 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2468 {
2469 	struct ftrace_ops *op;
2470 	unsigned long ip = rec->ip;
2471 
2472 	/*
2473 	 * Need to check removed ops first.
2474 	 * If they are being removed, and this rec has a tramp,
2475 	 * and this rec is in the ops list, then it would be the
2476 	 * one with the tramp.
2477 	 */
2478 	if (removed_ops) {
2479 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2480 			return removed_ops;
2481 	}
2482 
2483 	/*
2484 	 * Need to find the current trampoline for a rec.
2485 	 * Now, a trampoline is only attached to a rec if there
2486 	 * was a single 'ops' attached to it. But this can be called
2487 	 * when we are adding another op to the rec or removing the
2488 	 * current one. Thus, if the op is being added, we can
2489 	 * ignore it because it hasn't attached itself to the rec
2490 	 * yet.
2491 	 *
2492 	 * If an ops is being modified (hooking to different functions)
2493 	 * then we don't care about the new functions that are being
2494 	 * added, just the old ones (that are probably being removed).
2495 	 *
2496 	 * If we are adding an ops to a function that already is using
2497 	 * a trampoline, it needs to be removed (trampolines are only
2498 	 * for single ops connected), then an ops that is not being
2499 	 * modified also needs to be checked.
2500 	 */
2501 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2502 
2503 		if (!op->trampoline)
2504 			continue;
2505 
2506 		/*
2507 		 * If the ops is being added, it hasn't gotten to
2508 		 * the point to be removed from this tree yet.
2509 		 */
2510 		if (op->flags & FTRACE_OPS_FL_ADDING)
2511 			continue;
2512 
2513 
2514 		/*
2515 		 * If the ops is being modified and is in the old
2516 		 * hash, then it is probably being removed from this
2517 		 * function.
2518 		 */
2519 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2520 		    hash_contains_ip(ip, &op->old_hash))
2521 			return op;
2522 		/*
2523 		 * If the ops is not being added or modified, and it's
2524 		 * in its normal filter hash, then this must be the one
2525 		 * we want!
2526 		 */
2527 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2528 		    hash_contains_ip(ip, op->func_hash))
2529 			return op;
2530 
2531 	} while_for_each_ftrace_op(op);
2532 
2533 	return NULL;
2534 }
2535 
2536 static struct ftrace_ops *
2537 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2538 {
2539 	struct ftrace_ops *op;
2540 	unsigned long ip = rec->ip;
2541 
2542 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2543 		/* pass rec in as regs to have non-NULL val */
2544 		if (hash_contains_ip(ip, op->func_hash))
2545 			return op;
2546 	} while_for_each_ftrace_op(op);
2547 
2548 	return NULL;
2549 }
2550 
2551 struct ftrace_ops *
2552 ftrace_find_unique_ops(struct dyn_ftrace *rec)
2553 {
2554 	struct ftrace_ops *op, *found = NULL;
2555 	unsigned long ip = rec->ip;
2556 
2557 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2558 
2559 		if (hash_contains_ip(ip, op->func_hash)) {
2560 			if (found)
2561 				return NULL;
2562 			found = op;
2563 		}
2564 
2565 	} while_for_each_ftrace_op(op);
2566 
2567 	return found;
2568 }
2569 
2570 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2571 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2572 static struct ftrace_hash __rcu *direct_functions = EMPTY_HASH;
2573 static DEFINE_MUTEX(direct_mutex);
2574 
2575 /*
2576  * Search the direct_functions hash to see if the given instruction pointer
2577  * has a direct caller attached to it.
2578  */
2579 unsigned long ftrace_find_rec_direct(unsigned long ip)
2580 {
2581 	struct ftrace_func_entry *entry;
2582 
2583 	entry = __ftrace_lookup_ip(direct_functions, ip);
2584 	if (!entry)
2585 		return 0;
2586 
2587 	return entry->direct;
2588 }
2589 
2590 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2591 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2592 {
2593 	unsigned long addr = READ_ONCE(ops->direct_call);
2594 
2595 	if (!addr)
2596 		return;
2597 
2598 	arch_ftrace_set_direct_caller(fregs, addr);
2599 }
2600 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2601 
2602 /**
2603  * ftrace_get_addr_new - Get the call address to set to
2604  * @rec:  The ftrace record descriptor
2605  *
2606  * If the record has the FTRACE_FL_REGS set, that means that it
2607  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2608  * is not set, then it wants to convert to the normal callback.
2609  *
2610  * Returns: the address of the trampoline to set to
2611  */
2612 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2613 {
2614 	struct ftrace_ops *ops;
2615 	unsigned long addr;
2616 
2617 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2618 	    (ftrace_rec_count(rec) == 1)) {
2619 		addr = ftrace_find_rec_direct(rec->ip);
2620 		if (addr)
2621 			return addr;
2622 		WARN_ON_ONCE(1);
2623 	}
2624 
2625 	/* Trampolines take precedence over regs */
2626 	if (rec->flags & FTRACE_FL_TRAMP) {
2627 		ops = ftrace_find_tramp_ops_new(rec);
2628 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2629 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2630 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2631 			/* Ftrace is shutting down, return anything */
2632 			return (unsigned long)FTRACE_ADDR;
2633 		}
2634 		return ops->trampoline;
2635 	}
2636 
2637 	if (rec->flags & FTRACE_FL_REGS)
2638 		return (unsigned long)FTRACE_REGS_ADDR;
2639 	else
2640 		return (unsigned long)FTRACE_ADDR;
2641 }
2642 
2643 /**
2644  * ftrace_get_addr_curr - Get the call address that is already there
2645  * @rec:  The ftrace record descriptor
2646  *
2647  * The FTRACE_FL_REGS_EN is set when the record already points to
2648  * a function that saves all the regs. Basically the '_EN' version
2649  * represents the current state of the function.
2650  *
2651  * Returns: the address of the trampoline that is currently being called
2652  */
2653 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2654 {
2655 	struct ftrace_ops *ops;
2656 	unsigned long addr;
2657 
2658 	/* Direct calls take precedence over trampolines */
2659 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2660 		addr = ftrace_find_rec_direct(rec->ip);
2661 		if (addr)
2662 			return addr;
2663 		WARN_ON_ONCE(1);
2664 	}
2665 
2666 	/* Trampolines take precedence over regs */
2667 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2668 		ops = ftrace_find_tramp_ops_curr(rec);
2669 		if (FTRACE_WARN_ON(!ops)) {
2670 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2671 				(void *)rec->ip, (void *)rec->ip);
2672 			/* Ftrace is shutting down, return anything */
2673 			return (unsigned long)FTRACE_ADDR;
2674 		}
2675 		return ops->trampoline;
2676 	}
2677 
2678 	if (rec->flags & FTRACE_FL_REGS_EN)
2679 		return (unsigned long)FTRACE_REGS_ADDR;
2680 	else
2681 		return (unsigned long)FTRACE_ADDR;
2682 }
2683 
2684 static int
2685 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2686 {
2687 	unsigned long ftrace_old_addr;
2688 	unsigned long ftrace_addr;
2689 	int ret;
2690 
2691 	ftrace_addr = ftrace_get_addr_new(rec);
2692 
2693 	/* This needs to be done before we call ftrace_update_record */
2694 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2695 
2696 	ret = ftrace_update_record(rec, enable);
2697 
2698 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2699 
2700 	switch (ret) {
2701 	case FTRACE_UPDATE_IGNORE:
2702 		return 0;
2703 
2704 	case FTRACE_UPDATE_MAKE_CALL:
2705 		ftrace_bug_type = FTRACE_BUG_CALL;
2706 		return ftrace_make_call(rec, ftrace_addr);
2707 
2708 	case FTRACE_UPDATE_MAKE_NOP:
2709 		ftrace_bug_type = FTRACE_BUG_NOP;
2710 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2711 
2712 	case FTRACE_UPDATE_MODIFY_CALL:
2713 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2714 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2715 	}
2716 
2717 	return -1; /* unknown ftrace bug */
2718 }
2719 
2720 void __weak ftrace_replace_code(int mod_flags)
2721 {
2722 	struct dyn_ftrace *rec;
2723 	struct ftrace_page *pg;
2724 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2725 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2726 	int failed;
2727 
2728 	if (unlikely(ftrace_disabled))
2729 		return;
2730 
2731 	do_for_each_ftrace_rec(pg, rec) {
2732 
2733 		if (skip_record(rec))
2734 			continue;
2735 
2736 		failed = __ftrace_replace_code(rec, enable);
2737 		if (failed) {
2738 			ftrace_bug(failed, rec);
2739 			/* Stop processing */
2740 			return;
2741 		}
2742 		if (schedulable)
2743 			cond_resched();
2744 	} while_for_each_ftrace_rec();
2745 }
2746 
2747 struct ftrace_rec_iter {
2748 	struct ftrace_page	*pg;
2749 	int			index;
2750 };
2751 
2752 /**
2753  * ftrace_rec_iter_start - start up iterating over traced functions
2754  *
2755  * Returns: an iterator handle that is used to iterate over all
2756  * the records that represent address locations where functions
2757  * are traced.
2758  *
2759  * May return NULL if no records are available.
2760  */
2761 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2762 {
2763 	/*
2764 	 * We only use a single iterator.
2765 	 * Protected by the ftrace_lock mutex.
2766 	 */
2767 	static struct ftrace_rec_iter ftrace_rec_iter;
2768 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2769 
2770 	iter->pg = ftrace_pages_start;
2771 	iter->index = 0;
2772 
2773 	/* Could have empty pages */
2774 	while (iter->pg && !iter->pg->index)
2775 		iter->pg = iter->pg->next;
2776 
2777 	if (!iter->pg)
2778 		return NULL;
2779 
2780 	return iter;
2781 }
2782 
2783 /**
2784  * ftrace_rec_iter_next - get the next record to process.
2785  * @iter: The handle to the iterator.
2786  *
2787  * Returns: the next iterator after the given iterator @iter.
2788  */
2789 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2790 {
2791 	iter->index++;
2792 
2793 	if (iter->index >= iter->pg->index) {
2794 		iter->pg = iter->pg->next;
2795 		iter->index = 0;
2796 
2797 		/* Could have empty pages */
2798 		while (iter->pg && !iter->pg->index)
2799 			iter->pg = iter->pg->next;
2800 	}
2801 
2802 	if (!iter->pg)
2803 		return NULL;
2804 
2805 	return iter;
2806 }
2807 
2808 /**
2809  * ftrace_rec_iter_record - get the record at the iterator location
2810  * @iter: The current iterator location
2811  *
2812  * Returns: the record that the current @iter is at.
2813  */
2814 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2815 {
2816 	return &iter->pg->records[iter->index];
2817 }
2818 
2819 static int
2820 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2821 {
2822 	int ret;
2823 
2824 	if (unlikely(ftrace_disabled))
2825 		return 0;
2826 
2827 	ret = ftrace_init_nop(mod, rec);
2828 	if (ret) {
2829 		ftrace_bug_type = FTRACE_BUG_INIT;
2830 		ftrace_bug(ret, rec);
2831 		return 0;
2832 	}
2833 	return 1;
2834 }
2835 
2836 /*
2837  * archs can override this function if they must do something
2838  * before the modifying code is performed.
2839  */
2840 void __weak ftrace_arch_code_modify_prepare(void)
2841 {
2842 }
2843 
2844 /*
2845  * archs can override this function if they must do something
2846  * after the modifying code is performed.
2847  */
2848 void __weak ftrace_arch_code_modify_post_process(void)
2849 {
2850 }
2851 
2852 static int update_ftrace_func(ftrace_func_t func)
2853 {
2854 	static ftrace_func_t save_func;
2855 
2856 	/* Avoid updating if it hasn't changed */
2857 	if (func == save_func)
2858 		return 0;
2859 
2860 	save_func = func;
2861 
2862 	return ftrace_update_ftrace_func(func);
2863 }
2864 
2865 void ftrace_modify_all_code(int command)
2866 {
2867 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2868 	int mod_flags = 0;
2869 	int err = 0;
2870 
2871 	if (command & FTRACE_MAY_SLEEP)
2872 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2873 
2874 	/*
2875 	 * If the ftrace_caller calls a ftrace_ops func directly,
2876 	 * we need to make sure that it only traces functions it
2877 	 * expects to trace. When doing the switch of functions,
2878 	 * we need to update to the ftrace_ops_list_func first
2879 	 * before the transition between old and new calls are set,
2880 	 * as the ftrace_ops_list_func will check the ops hashes
2881 	 * to make sure the ops are having the right functions
2882 	 * traced.
2883 	 */
2884 	if (update) {
2885 		err = update_ftrace_func(ftrace_ops_list_func);
2886 		if (FTRACE_WARN_ON(err))
2887 			return;
2888 	}
2889 
2890 	if (command & FTRACE_UPDATE_CALLS)
2891 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2892 	else if (command & FTRACE_DISABLE_CALLS)
2893 		ftrace_replace_code(mod_flags);
2894 
2895 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2896 		function_trace_op = set_function_trace_op;
2897 		smp_wmb();
2898 		/* If irqs are disabled, we are in stop machine */
2899 		if (!irqs_disabled())
2900 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2901 		err = update_ftrace_func(ftrace_trace_function);
2902 		if (FTRACE_WARN_ON(err))
2903 			return;
2904 	}
2905 
2906 	if (command & FTRACE_START_FUNC_RET)
2907 		err = ftrace_enable_ftrace_graph_caller();
2908 	else if (command & FTRACE_STOP_FUNC_RET)
2909 		err = ftrace_disable_ftrace_graph_caller();
2910 	FTRACE_WARN_ON(err);
2911 }
2912 
2913 static int __ftrace_modify_code(void *data)
2914 {
2915 	int *command = data;
2916 
2917 	ftrace_modify_all_code(*command);
2918 
2919 	return 0;
2920 }
2921 
2922 /**
2923  * ftrace_run_stop_machine - go back to the stop machine method
2924  * @command: The command to tell ftrace what to do
2925  *
2926  * If an arch needs to fall back to the stop machine method, the
2927  * it can call this function.
2928  */
2929 void ftrace_run_stop_machine(int command)
2930 {
2931 	stop_machine(__ftrace_modify_code, &command, NULL);
2932 }
2933 
2934 /**
2935  * arch_ftrace_update_code - modify the code to trace or not trace
2936  * @command: The command that needs to be done
2937  *
2938  * Archs can override this function if it does not need to
2939  * run stop_machine() to modify code.
2940  */
2941 void __weak arch_ftrace_update_code(int command)
2942 {
2943 	ftrace_run_stop_machine(command);
2944 }
2945 
2946 static void ftrace_run_update_code(int command)
2947 {
2948 	ftrace_arch_code_modify_prepare();
2949 
2950 	/*
2951 	 * By default we use stop_machine() to modify the code.
2952 	 * But archs can do what ever they want as long as it
2953 	 * is safe. The stop_machine() is the safest, but also
2954 	 * produces the most overhead.
2955 	 */
2956 	arch_ftrace_update_code(command);
2957 
2958 	ftrace_arch_code_modify_post_process();
2959 }
2960 
2961 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2962 				   struct ftrace_ops_hash *old_hash)
2963 {
2964 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2965 	ops->old_hash.filter_hash = old_hash->filter_hash;
2966 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2967 	ftrace_run_update_code(command);
2968 	ops->old_hash.filter_hash = NULL;
2969 	ops->old_hash.notrace_hash = NULL;
2970 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2971 }
2972 
2973 static ftrace_func_t saved_ftrace_func;
2974 static int ftrace_start_up;
2975 
2976 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2977 {
2978 }
2979 
2980 /* List of trace_ops that have allocated trampolines */
2981 static LIST_HEAD(ftrace_ops_trampoline_list);
2982 
2983 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2984 {
2985 	lockdep_assert_held(&ftrace_lock);
2986 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2987 }
2988 
2989 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2990 {
2991 	lockdep_assert_held(&ftrace_lock);
2992 	list_del_rcu(&ops->list);
2993 	synchronize_rcu();
2994 }
2995 
2996 /*
2997  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2998  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2999  * not a module.
3000  */
3001 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
3002 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
3003 
3004 static void ftrace_trampoline_free(struct ftrace_ops *ops)
3005 {
3006 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
3007 	    ops->trampoline) {
3008 		/*
3009 		 * Record the text poke event before the ksymbol unregister
3010 		 * event.
3011 		 */
3012 		perf_event_text_poke((void *)ops->trampoline,
3013 				     (void *)ops->trampoline,
3014 				     ops->trampoline_size, NULL, 0);
3015 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
3016 				   ops->trampoline, ops->trampoline_size,
3017 				   true, FTRACE_TRAMPOLINE_SYM);
3018 		/* Remove from kallsyms after the perf events */
3019 		ftrace_remove_trampoline_from_kallsyms(ops);
3020 	}
3021 
3022 	arch_ftrace_trampoline_free(ops);
3023 }
3024 
3025 static void ftrace_startup_enable(int command)
3026 {
3027 	if (saved_ftrace_func != ftrace_trace_function) {
3028 		saved_ftrace_func = ftrace_trace_function;
3029 		command |= FTRACE_UPDATE_TRACE_FUNC;
3030 	}
3031 
3032 	if (!command || !ftrace_enabled)
3033 		return;
3034 
3035 	ftrace_run_update_code(command);
3036 }
3037 
3038 static void ftrace_startup_all(int command)
3039 {
3040 	update_all_ops = true;
3041 	ftrace_startup_enable(command);
3042 	update_all_ops = false;
3043 }
3044 
3045 int ftrace_startup(struct ftrace_ops *ops, int command)
3046 {
3047 	int ret;
3048 
3049 	if (unlikely(ftrace_disabled))
3050 		return -ENODEV;
3051 
3052 	ret = __register_ftrace_function(ops);
3053 	if (ret)
3054 		return ret;
3055 
3056 	ftrace_start_up++;
3057 
3058 	/*
3059 	 * Note that ftrace probes uses this to start up
3060 	 * and modify functions it will probe. But we still
3061 	 * set the ADDING flag for modification, as probes
3062 	 * do not have trampolines. If they add them in the
3063 	 * future, then the probes will need to distinguish
3064 	 * between adding and updating probes.
3065 	 */
3066 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
3067 
3068 	ret = ftrace_hash_ipmodify_enable(ops);
3069 	if (ret < 0) {
3070 		/* Rollback registration process */
3071 		__unregister_ftrace_function(ops);
3072 		ftrace_start_up--;
3073 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3074 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
3075 			ftrace_trampoline_free(ops);
3076 		return ret;
3077 	}
3078 
3079 	if (ftrace_hash_rec_enable(ops))
3080 		command |= FTRACE_UPDATE_CALLS;
3081 
3082 	ftrace_startup_enable(command);
3083 
3084 	/*
3085 	 * If ftrace is in an undefined state, we just remove ops from list
3086 	 * to prevent the NULL pointer, instead of totally rolling it back and
3087 	 * free trampoline, because those actions could cause further damage.
3088 	 */
3089 	if (unlikely(ftrace_disabled)) {
3090 		__unregister_ftrace_function(ops);
3091 		return -ENODEV;
3092 	}
3093 
3094 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
3095 
3096 	return 0;
3097 }
3098 
3099 int ftrace_shutdown(struct ftrace_ops *ops, int command)
3100 {
3101 	int ret;
3102 
3103 	if (unlikely(ftrace_disabled))
3104 		return -ENODEV;
3105 
3106 	ret = __unregister_ftrace_function(ops);
3107 	if (ret)
3108 		return ret;
3109 
3110 	ftrace_start_up--;
3111 	/*
3112 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
3113 	 * critical but the ftrace_call callers may be never nopped again after
3114 	 * further ftrace uses.
3115 	 */
3116 	WARN_ON_ONCE(ftrace_start_up < 0);
3117 
3118 	/* Disabling ipmodify never fails */
3119 	ftrace_hash_ipmodify_disable(ops);
3120 
3121 	if (ftrace_hash_rec_disable(ops))
3122 		command |= FTRACE_UPDATE_CALLS;
3123 
3124 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3125 
3126 	if (saved_ftrace_func != ftrace_trace_function) {
3127 		saved_ftrace_func = ftrace_trace_function;
3128 		command |= FTRACE_UPDATE_TRACE_FUNC;
3129 	}
3130 
3131 	if (!command || !ftrace_enabled)
3132 		goto out;
3133 
3134 	/*
3135 	 * If the ops uses a trampoline, then it needs to be
3136 	 * tested first on update.
3137 	 */
3138 	ops->flags |= FTRACE_OPS_FL_REMOVING;
3139 	removed_ops = ops;
3140 
3141 	/* The trampoline logic checks the old hashes */
3142 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
3143 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
3144 
3145 	ftrace_run_update_code(command);
3146 
3147 	/*
3148 	 * If there's no more ops registered with ftrace, run a
3149 	 * sanity check to make sure all rec flags are cleared.
3150 	 */
3151 	if (rcu_dereference_protected(ftrace_ops_list,
3152 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
3153 		struct ftrace_page *pg;
3154 		struct dyn_ftrace *rec;
3155 
3156 		do_for_each_ftrace_rec(pg, rec) {
3157 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_NOCLEAR_FLAGS))
3158 				pr_warn("  %pS flags:%lx\n",
3159 					(void *)rec->ip, rec->flags);
3160 		} while_for_each_ftrace_rec();
3161 	}
3162 
3163 	ops->old_hash.filter_hash = NULL;
3164 	ops->old_hash.notrace_hash = NULL;
3165 
3166 	removed_ops = NULL;
3167 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
3168 
3169 out:
3170 	/*
3171 	 * Dynamic ops may be freed, we must make sure that all
3172 	 * callers are done before leaving this function.
3173 	 */
3174 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
3175 		/*
3176 		 * We need to do a hard force of sched synchronization.
3177 		 * This is because we use preempt_disable() to do RCU, but
3178 		 * the function tracers can be called where RCU is not watching
3179 		 * (like before user_exit()). We can not rely on the RCU
3180 		 * infrastructure to do the synchronization, thus we must do it
3181 		 * ourselves.
3182 		 */
3183 		synchronize_rcu_tasks_rude();
3184 
3185 		/*
3186 		 * When the kernel is preemptive, tasks can be preempted
3187 		 * while on a ftrace trampoline. Just scheduling a task on
3188 		 * a CPU is not good enough to flush them. Calling
3189 		 * synchronize_rcu_tasks() will wait for those tasks to
3190 		 * execute and either schedule voluntarily or enter user space.
3191 		 */
3192 		synchronize_rcu_tasks();
3193 
3194 		ftrace_trampoline_free(ops);
3195 	}
3196 
3197 	return 0;
3198 }
3199 
3200 /* Simply make a copy of @src and return it */
3201 static struct ftrace_hash *copy_hash(struct ftrace_hash *src)
3202 {
3203 	if (ftrace_hash_empty(src))
3204 		return EMPTY_HASH;
3205 
3206 	return alloc_and_copy_ftrace_hash(src->size_bits, src);
3207 }
3208 
3209 /*
3210  * Append @new_hash entries to @hash:
3211  *
3212  *  If @hash is the EMPTY_HASH then it traces all functions and nothing
3213  *  needs to be done.
3214  *
3215  *  If @new_hash is the EMPTY_HASH, then make *hash the EMPTY_HASH so
3216  *  that it traces everything.
3217  *
3218  *  Otherwise, go through all of @new_hash and add anything that @hash
3219  *  doesn't already have, to @hash.
3220  *
3221  *  The filter_hash updates uses just the append_hash() function
3222  *  and the notrace_hash does not.
3223  */
3224 static int append_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash,
3225 		       int size_bits)
3226 {
3227 	struct ftrace_func_entry *entry;
3228 	int size;
3229 	int i;
3230 
3231 	if (*hash) {
3232 		/* An empty hash does everything */
3233 		if (ftrace_hash_empty(*hash))
3234 			return 0;
3235 	} else {
3236 		*hash = alloc_ftrace_hash(size_bits);
3237 		if (!*hash)
3238 			return -ENOMEM;
3239 	}
3240 
3241 	/* If new_hash has everything make hash have everything */
3242 	if (ftrace_hash_empty(new_hash)) {
3243 		free_ftrace_hash(*hash);
3244 		*hash = EMPTY_HASH;
3245 		return 0;
3246 	}
3247 
3248 	size = 1 << new_hash->size_bits;
3249 	for (i = 0; i < size; i++) {
3250 		hlist_for_each_entry(entry, &new_hash->buckets[i], hlist) {
3251 			/* Only add if not already in hash */
3252 			if (!__ftrace_lookup_ip(*hash, entry->ip) &&
3253 			    add_hash_entry(*hash, entry->ip) == NULL)
3254 				return -ENOMEM;
3255 		}
3256 	}
3257 	return 0;
3258 }
3259 
3260 /*
3261  * Remove functions from @hash that are in @notrace_hash
3262  */
3263 static void remove_hash(struct ftrace_hash *hash, struct ftrace_hash *notrace_hash)
3264 {
3265 	struct ftrace_func_entry *entry;
3266 	struct hlist_node *tmp;
3267 	int size;
3268 	int i;
3269 
3270 	/* If the notrace hash is empty, there's nothing to do */
3271 	if (ftrace_hash_empty(notrace_hash))
3272 		return;
3273 
3274 	size = 1 << hash->size_bits;
3275 	for (i = 0; i < size; i++) {
3276 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
3277 			if (!__ftrace_lookup_ip(notrace_hash, entry->ip))
3278 				continue;
3279 			remove_hash_entry(hash, entry);
3280 			kfree(entry);
3281 		}
3282 	}
3283 }
3284 
3285 /*
3286  * Add to @hash only those that are in both @new_hash1 and @new_hash2
3287  *
3288  * The notrace_hash updates uses just the intersect_hash() function
3289  * and the filter_hash does not.
3290  */
3291 static int intersect_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash1,
3292 			  struct ftrace_hash *new_hash2)
3293 {
3294 	struct ftrace_func_entry *entry;
3295 	int size;
3296 	int i;
3297 
3298 	/*
3299 	 * If new_hash1 or new_hash2 is the EMPTY_HASH then make the hash
3300 	 * empty as well as empty for notrace means none are notraced.
3301 	 */
3302 	if (ftrace_hash_empty(new_hash1) || ftrace_hash_empty(new_hash2)) {
3303 		free_ftrace_hash(*hash);
3304 		*hash = EMPTY_HASH;
3305 		return 0;
3306 	}
3307 
3308 	size = 1 << new_hash1->size_bits;
3309 	for (i = 0; i < size; i++) {
3310 		hlist_for_each_entry(entry, &new_hash1->buckets[i], hlist) {
3311 			/* Only add if in both @new_hash1 and @new_hash2 */
3312 			if (__ftrace_lookup_ip(new_hash2, entry->ip) &&
3313 			    add_hash_entry(*hash, entry->ip) == NULL)
3314 				return -ENOMEM;
3315 		}
3316 	}
3317 	/* If nothing intersects, make it the empty set */
3318 	if (ftrace_hash_empty(*hash)) {
3319 		free_ftrace_hash(*hash);
3320 		*hash = EMPTY_HASH;
3321 	}
3322 	return 0;
3323 }
3324 
3325 static bool ops_equal(struct ftrace_hash *A, struct ftrace_hash *B)
3326 {
3327 	struct ftrace_func_entry *entry;
3328 	int size;
3329 	int i;
3330 
3331 	if (ftrace_hash_empty(A))
3332 		return ftrace_hash_empty(B);
3333 
3334 	if (ftrace_hash_empty(B))
3335 		return ftrace_hash_empty(A);
3336 
3337 	if (A->count != B->count)
3338 		return false;
3339 
3340 	size = 1 << A->size_bits;
3341 	for (i = 0; i < size; i++) {
3342 		hlist_for_each_entry(entry, &A->buckets[i], hlist) {
3343 			if (!__ftrace_lookup_ip(B, entry->ip))
3344 				return false;
3345 		}
3346 	}
3347 
3348 	return true;
3349 }
3350 
3351 static void ftrace_ops_update_code(struct ftrace_ops *ops,
3352 				   struct ftrace_ops_hash *old_hash);
3353 
3354 static int __ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
3355 					     struct ftrace_hash **orig_hash,
3356 					     struct ftrace_hash *hash,
3357 					     int enable)
3358 {
3359 	struct ftrace_ops_hash old_hash_ops;
3360 	struct ftrace_hash *old_hash;
3361 	int ret;
3362 
3363 	old_hash = *orig_hash;
3364 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
3365 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
3366 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
3367 	if (!ret) {
3368 		ftrace_ops_update_code(ops, &old_hash_ops);
3369 		free_ftrace_hash_rcu(old_hash);
3370 	}
3371 	return ret;
3372 }
3373 
3374 static int ftrace_update_ops(struct ftrace_ops *ops, struct ftrace_hash *filter_hash,
3375 			     struct ftrace_hash *notrace_hash)
3376 {
3377 	int ret;
3378 
3379 	if (!ops_equal(filter_hash, ops->func_hash->filter_hash)) {
3380 		ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->filter_hash,
3381 							filter_hash, 1);
3382 		if (ret < 0)
3383 			return ret;
3384 	}
3385 
3386 	if (!ops_equal(notrace_hash, ops->func_hash->notrace_hash)) {
3387 		ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->notrace_hash,
3388 							notrace_hash, 0);
3389 		if (ret < 0)
3390 			return ret;
3391 	}
3392 
3393 	return 0;
3394 }
3395 
3396 static int add_first_hash(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash,
3397 			  struct ftrace_ops_hash *func_hash)
3398 {
3399 	/* If the filter hash is not empty, simply remove the nohash from it */
3400 	if (!ftrace_hash_empty(func_hash->filter_hash)) {
3401 		*filter_hash = copy_hash(func_hash->filter_hash);
3402 		if (!*filter_hash)
3403 			return -ENOMEM;
3404 		remove_hash(*filter_hash, func_hash->notrace_hash);
3405 		*notrace_hash = EMPTY_HASH;
3406 
3407 	} else {
3408 		*notrace_hash = copy_hash(func_hash->notrace_hash);
3409 		if (!*notrace_hash)
3410 			return -ENOMEM;
3411 		*filter_hash = EMPTY_HASH;
3412 	}
3413 	return 0;
3414 }
3415 
3416 static int add_next_hash(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash,
3417 			 struct ftrace_ops_hash *ops_hash, struct ftrace_ops_hash *subops_hash)
3418 {
3419 	int size_bits;
3420 	int ret;
3421 
3422 	/* If the subops trace all functions so must the main ops */
3423 	if (ftrace_hash_empty(ops_hash->filter_hash) ||
3424 	    ftrace_hash_empty(subops_hash->filter_hash)) {
3425 		*filter_hash = EMPTY_HASH;
3426 	} else {
3427 		/*
3428 		 * The main ops filter hash is not empty, so its
3429 		 * notrace_hash had better be, as the notrace hash
3430 		 * is only used for empty main filter hashes.
3431 		 */
3432 		WARN_ON_ONCE(!ftrace_hash_empty(ops_hash->notrace_hash));
3433 
3434 		size_bits = max(ops_hash->filter_hash->size_bits,
3435 				subops_hash->filter_hash->size_bits);
3436 
3437 		/* Copy the subops hash */
3438 		*filter_hash = alloc_and_copy_ftrace_hash(size_bits, subops_hash->filter_hash);
3439 		if (!*filter_hash)
3440 			return -ENOMEM;
3441 		/* Remove any notrace functions from the copy */
3442 		remove_hash(*filter_hash, subops_hash->notrace_hash);
3443 
3444 		ret = append_hash(filter_hash, ops_hash->filter_hash,
3445 				  size_bits);
3446 		if (ret < 0) {
3447 			free_ftrace_hash(*filter_hash);
3448 			*filter_hash = EMPTY_HASH;
3449 			return ret;
3450 		}
3451 	}
3452 
3453 	/*
3454 	 * Only process notrace hashes if the main filter hash is empty
3455 	 * (tracing all functions), otherwise the filter hash will just
3456 	 * remove the notrace hash functions, and the notrace hash is
3457 	 * not needed.
3458 	 */
3459 	if (ftrace_hash_empty(*filter_hash)) {
3460 		/*
3461 		 * Intersect the notrace functions. That is, if two
3462 		 * subops are not tracing a set of functions, the
3463 		 * main ops will only not trace the functions that are
3464 		 * in both subops, but has to trace the functions that
3465 		 * are only notrace in one of the subops, for the other
3466 		 * subops to be able to trace them.
3467 		 */
3468 		size_bits = max(ops_hash->notrace_hash->size_bits,
3469 				subops_hash->notrace_hash->size_bits);
3470 		*notrace_hash = alloc_ftrace_hash(size_bits);
3471 		if (!*notrace_hash)
3472 			return -ENOMEM;
3473 
3474 		ret = intersect_hash(notrace_hash, ops_hash->notrace_hash,
3475 				     subops_hash->notrace_hash);
3476 		if (ret < 0) {
3477 			free_ftrace_hash(*notrace_hash);
3478 			*notrace_hash = EMPTY_HASH;
3479 			return ret;
3480 		}
3481 	}
3482 	return 0;
3483 }
3484 
3485 /**
3486  * ftrace_startup_subops - enable tracing for subops of an ops
3487  * @ops: Manager ops (used to pick all the functions of its subops)
3488  * @subops: A new ops to add to @ops
3489  * @command: Extra commands to use to enable tracing
3490  *
3491  * The @ops is a manager @ops that has the filter that includes all the functions
3492  * that its list of subops are tracing. Adding a new @subops will add the
3493  * functions of @subops to @ops.
3494  */
3495 int ftrace_startup_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command)
3496 {
3497 	struct ftrace_hash *filter_hash = EMPTY_HASH;
3498 	struct ftrace_hash *notrace_hash = EMPTY_HASH;
3499 	struct ftrace_hash *save_filter_hash;
3500 	struct ftrace_hash *save_notrace_hash;
3501 	int ret;
3502 
3503 	if (unlikely(ftrace_disabled))
3504 		return -ENODEV;
3505 
3506 	ftrace_ops_init(ops);
3507 	ftrace_ops_init(subops);
3508 
3509 	if (WARN_ON_ONCE(subops->flags & FTRACE_OPS_FL_ENABLED))
3510 		return -EBUSY;
3511 
3512 	/* Make everything canonical (Just in case!) */
3513 	if (!ops->func_hash->filter_hash)
3514 		ops->func_hash->filter_hash = EMPTY_HASH;
3515 	if (!ops->func_hash->notrace_hash)
3516 		ops->func_hash->notrace_hash = EMPTY_HASH;
3517 	if (!subops->func_hash->filter_hash)
3518 		subops->func_hash->filter_hash = EMPTY_HASH;
3519 	if (!subops->func_hash->notrace_hash)
3520 		subops->func_hash->notrace_hash = EMPTY_HASH;
3521 
3522 	/* For the first subops to ops just enable it normally */
3523 	if (list_empty(&ops->subop_list)) {
3524 
3525 		/* The ops was empty, should have empty hashes */
3526 		WARN_ON_ONCE(!ftrace_hash_empty(ops->func_hash->filter_hash));
3527 		WARN_ON_ONCE(!ftrace_hash_empty(ops->func_hash->notrace_hash));
3528 
3529 		ret = add_first_hash(&filter_hash, &notrace_hash, subops->func_hash);
3530 		if (ret < 0)
3531 			return ret;
3532 
3533 		save_filter_hash = ops->func_hash->filter_hash;
3534 		save_notrace_hash = ops->func_hash->notrace_hash;
3535 
3536 		ops->func_hash->filter_hash = filter_hash;
3537 		ops->func_hash->notrace_hash = notrace_hash;
3538 		list_add(&subops->list, &ops->subop_list);
3539 		ret = ftrace_startup(ops, command);
3540 		if (ret < 0) {
3541 			list_del(&subops->list);
3542 			ops->func_hash->filter_hash = save_filter_hash;
3543 			ops->func_hash->notrace_hash = save_notrace_hash;
3544 			free_ftrace_hash(filter_hash);
3545 			free_ftrace_hash(notrace_hash);
3546 		} else {
3547 			free_ftrace_hash(save_filter_hash);
3548 			free_ftrace_hash(save_notrace_hash);
3549 			subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP;
3550 			subops->managed = ops;
3551 		}
3552 		return ret;
3553 	}
3554 
3555 	/*
3556 	 * Here there's already something attached. Here are the rules:
3557 	 *   If the new subops and main ops filter hashes are not empty:
3558 	 *     o Make a copy of the subops filter hash
3559 	 *     o Remove all functions in the nohash from it.
3560 	 *     o Add in the main hash filter functions
3561 	 *     o Remove any of these functions from the main notrace hash
3562 	 */
3563 
3564 	ret = add_next_hash(&filter_hash, &notrace_hash, ops->func_hash, subops->func_hash);
3565 	if (ret < 0)
3566 		return ret;
3567 
3568 	list_add(&subops->list, &ops->subop_list);
3569 
3570 	ret = ftrace_update_ops(ops, filter_hash, notrace_hash);
3571 	free_ftrace_hash(filter_hash);
3572 	free_ftrace_hash(notrace_hash);
3573 	if (ret < 0) {
3574 		list_del(&subops->list);
3575 	} else {
3576 		subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP;
3577 		subops->managed = ops;
3578 	}
3579 	return ret;
3580 }
3581 
3582 static int rebuild_hashes(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash,
3583 			  struct ftrace_ops *ops)
3584 {
3585 	struct ftrace_ops_hash temp_hash;
3586 	struct ftrace_ops *subops;
3587 	bool first = true;
3588 	int ret;
3589 
3590 	temp_hash.filter_hash = EMPTY_HASH;
3591 	temp_hash.notrace_hash = EMPTY_HASH;
3592 
3593 	list_for_each_entry(subops, &ops->subop_list, list) {
3594 		*filter_hash = EMPTY_HASH;
3595 		*notrace_hash = EMPTY_HASH;
3596 
3597 		if (first) {
3598 			ret = add_first_hash(filter_hash, notrace_hash, subops->func_hash);
3599 			if (ret < 0)
3600 				return ret;
3601 			first = false;
3602 		} else {
3603 			ret = add_next_hash(filter_hash, notrace_hash,
3604 					    &temp_hash, subops->func_hash);
3605 			if (ret < 0) {
3606 				free_ftrace_hash(temp_hash.filter_hash);
3607 				free_ftrace_hash(temp_hash.notrace_hash);
3608 				return ret;
3609 			}
3610 		}
3611 
3612 		free_ftrace_hash(temp_hash.filter_hash);
3613 		free_ftrace_hash(temp_hash.notrace_hash);
3614 
3615 		temp_hash.filter_hash = *filter_hash;
3616 		temp_hash.notrace_hash = *notrace_hash;
3617 	}
3618 	return 0;
3619 }
3620 
3621 /**
3622  * ftrace_shutdown_subops - Remove a subops from a manager ops
3623  * @ops: A manager ops to remove @subops from
3624  * @subops: The subops to remove from @ops
3625  * @command: Any extra command flags to add to modifying the text
3626  *
3627  * Removes the functions being traced by the @subops from @ops. Note, it
3628  * will not affect functions that are being traced by other subops that
3629  * still exist in @ops.
3630  *
3631  * If the last subops is removed from @ops, then @ops is shutdown normally.
3632  */
3633 int ftrace_shutdown_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command)
3634 {
3635 	struct ftrace_hash *filter_hash = EMPTY_HASH;
3636 	struct ftrace_hash *notrace_hash = EMPTY_HASH;
3637 	int ret;
3638 
3639 	if (unlikely(ftrace_disabled))
3640 		return -ENODEV;
3641 
3642 	if (WARN_ON_ONCE(!(subops->flags & FTRACE_OPS_FL_ENABLED)))
3643 		return -EINVAL;
3644 
3645 	list_del(&subops->list);
3646 
3647 	if (list_empty(&ops->subop_list)) {
3648 		/* Last one, just disable the current ops */
3649 
3650 		ret = ftrace_shutdown(ops, command);
3651 		if (ret < 0) {
3652 			list_add(&subops->list, &ops->subop_list);
3653 			return ret;
3654 		}
3655 
3656 		subops->flags &= ~FTRACE_OPS_FL_ENABLED;
3657 
3658 		free_ftrace_hash(ops->func_hash->filter_hash);
3659 		free_ftrace_hash(ops->func_hash->notrace_hash);
3660 		ops->func_hash->filter_hash = EMPTY_HASH;
3661 		ops->func_hash->notrace_hash = EMPTY_HASH;
3662 		subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP);
3663 		subops->managed = NULL;
3664 
3665 		return 0;
3666 	}
3667 
3668 	/* Rebuild the hashes without subops */
3669 	ret = rebuild_hashes(&filter_hash, &notrace_hash, ops);
3670 	if (ret < 0)
3671 		return ret;
3672 
3673 	ret = ftrace_update_ops(ops, filter_hash, notrace_hash);
3674 	if (ret < 0) {
3675 		list_add(&subops->list, &ops->subop_list);
3676 	} else {
3677 		subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP);
3678 		subops->managed = NULL;
3679 	}
3680 	free_ftrace_hash(filter_hash);
3681 	free_ftrace_hash(notrace_hash);
3682 	return ret;
3683 }
3684 
3685 static int ftrace_hash_move_and_update_subops(struct ftrace_ops *subops,
3686 					      struct ftrace_hash **orig_subhash,
3687 					      struct ftrace_hash *hash)
3688 {
3689 	struct ftrace_ops *ops = subops->managed;
3690 	struct ftrace_hash *notrace_hash;
3691 	struct ftrace_hash *filter_hash;
3692 	struct ftrace_hash *save_hash;
3693 	struct ftrace_hash *new_hash;
3694 	int ret;
3695 
3696 	/* Manager ops can not be subops (yet) */
3697 	if (WARN_ON_ONCE(!ops || ops->flags & FTRACE_OPS_FL_SUBOP))
3698 		return -EINVAL;
3699 
3700 	/* Move the new hash over to the subops hash */
3701 	save_hash = *orig_subhash;
3702 	*orig_subhash = __ftrace_hash_move(hash);
3703 	if (!*orig_subhash) {
3704 		*orig_subhash = save_hash;
3705 		return -ENOMEM;
3706 	}
3707 
3708 	ret = rebuild_hashes(&filter_hash, &notrace_hash, ops);
3709 	if (!ret) {
3710 		ret = ftrace_update_ops(ops, filter_hash, notrace_hash);
3711 		free_ftrace_hash(filter_hash);
3712 		free_ftrace_hash(notrace_hash);
3713 	}
3714 
3715 	if (ret) {
3716 		/* Put back the original hash */
3717 		new_hash = *orig_subhash;
3718 		*orig_subhash = save_hash;
3719 		free_ftrace_hash_rcu(new_hash);
3720 	} else {
3721 		free_ftrace_hash_rcu(save_hash);
3722 	}
3723 	return ret;
3724 }
3725 
3726 
3727 u64			ftrace_update_time;
3728 u64			ftrace_total_mod_time;
3729 unsigned long		ftrace_update_tot_cnt;
3730 unsigned long		ftrace_number_of_pages;
3731 unsigned long		ftrace_number_of_groups;
3732 
3733 static inline int ops_traces_mod(struct ftrace_ops *ops)
3734 {
3735 	/*
3736 	 * Filter_hash being empty will default to trace module.
3737 	 * But notrace hash requires a test of individual module functions.
3738 	 */
3739 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3740 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3741 }
3742 
3743 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3744 {
3745 	bool init_nop = ftrace_need_init_nop();
3746 	struct ftrace_page *pg;
3747 	struct dyn_ftrace *p;
3748 	u64 start, stop, update_time;
3749 	unsigned long update_cnt = 0;
3750 	unsigned long rec_flags = 0;
3751 	int i;
3752 
3753 	start = ftrace_now(raw_smp_processor_id());
3754 
3755 	/*
3756 	 * When a module is loaded, this function is called to convert
3757 	 * the calls to mcount in its text to nops, and also to create
3758 	 * an entry in the ftrace data. Now, if ftrace is activated
3759 	 * after this call, but before the module sets its text to
3760 	 * read-only, the modification of enabling ftrace can fail if
3761 	 * the read-only is done while ftrace is converting the calls.
3762 	 * To prevent this, the module's records are set as disabled
3763 	 * and will be enabled after the call to set the module's text
3764 	 * to read-only.
3765 	 */
3766 	if (mod)
3767 		rec_flags |= FTRACE_FL_DISABLED;
3768 
3769 	for (pg = new_pgs; pg; pg = pg->next) {
3770 
3771 		for (i = 0; i < pg->index; i++) {
3772 
3773 			/* If something went wrong, bail without enabling anything */
3774 			if (unlikely(ftrace_disabled))
3775 				return -1;
3776 
3777 			p = &pg->records[i];
3778 			p->flags = rec_flags;
3779 
3780 			/*
3781 			 * Do the initial record conversion from mcount jump
3782 			 * to the NOP instructions.
3783 			 */
3784 			if (init_nop && !ftrace_nop_initialize(mod, p))
3785 				break;
3786 
3787 			update_cnt++;
3788 		}
3789 	}
3790 
3791 	stop = ftrace_now(raw_smp_processor_id());
3792 	update_time = stop - start;
3793 	if (mod)
3794 		ftrace_total_mod_time += update_time;
3795 	else
3796 		ftrace_update_time = update_time;
3797 	ftrace_update_tot_cnt += update_cnt;
3798 
3799 	return 0;
3800 }
3801 
3802 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3803 {
3804 	int order;
3805 	int pages;
3806 	int cnt;
3807 
3808 	if (WARN_ON(!count))
3809 		return -EINVAL;
3810 
3811 	/* We want to fill as much as possible, with no empty pages */
3812 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3813 	order = fls(pages) - 1;
3814 
3815  again:
3816 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3817 
3818 	if (!pg->records) {
3819 		/* if we can't allocate this size, try something smaller */
3820 		if (!order)
3821 			return -ENOMEM;
3822 		order--;
3823 		goto again;
3824 	}
3825 
3826 	ftrace_number_of_pages += 1 << order;
3827 	ftrace_number_of_groups++;
3828 
3829 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3830 	pg->order = order;
3831 
3832 	if (cnt > count)
3833 		cnt = count;
3834 
3835 	return cnt;
3836 }
3837 
3838 static void ftrace_free_pages(struct ftrace_page *pages)
3839 {
3840 	struct ftrace_page *pg = pages;
3841 
3842 	while (pg) {
3843 		if (pg->records) {
3844 			free_pages((unsigned long)pg->records, pg->order);
3845 			ftrace_number_of_pages -= 1 << pg->order;
3846 		}
3847 		pages = pg->next;
3848 		kfree(pg);
3849 		pg = pages;
3850 		ftrace_number_of_groups--;
3851 	}
3852 }
3853 
3854 static struct ftrace_page *
3855 ftrace_allocate_pages(unsigned long num_to_init)
3856 {
3857 	struct ftrace_page *start_pg;
3858 	struct ftrace_page *pg;
3859 	int cnt;
3860 
3861 	if (!num_to_init)
3862 		return NULL;
3863 
3864 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3865 	if (!pg)
3866 		return NULL;
3867 
3868 	/*
3869 	 * Try to allocate as much as possible in one continues
3870 	 * location that fills in all of the space. We want to
3871 	 * waste as little space as possible.
3872 	 */
3873 	for (;;) {
3874 		cnt = ftrace_allocate_records(pg, num_to_init);
3875 		if (cnt < 0)
3876 			goto free_pages;
3877 
3878 		num_to_init -= cnt;
3879 		if (!num_to_init)
3880 			break;
3881 
3882 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3883 		if (!pg->next)
3884 			goto free_pages;
3885 
3886 		pg = pg->next;
3887 	}
3888 
3889 	return start_pg;
3890 
3891  free_pages:
3892 	ftrace_free_pages(start_pg);
3893 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3894 	return NULL;
3895 }
3896 
3897 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3898 
3899 struct ftrace_iterator {
3900 	loff_t				pos;
3901 	loff_t				func_pos;
3902 	loff_t				mod_pos;
3903 	struct ftrace_page		*pg;
3904 	struct dyn_ftrace		*func;
3905 	struct ftrace_func_probe	*probe;
3906 	struct ftrace_func_entry	*probe_entry;
3907 	struct trace_parser		parser;
3908 	struct ftrace_hash		*hash;
3909 	struct ftrace_ops		*ops;
3910 	struct trace_array		*tr;
3911 	struct list_head		*mod_list;
3912 	int				pidx;
3913 	int				idx;
3914 	unsigned			flags;
3915 };
3916 
3917 static void *
3918 t_probe_next(struct seq_file *m, loff_t *pos)
3919 {
3920 	struct ftrace_iterator *iter = m->private;
3921 	struct trace_array *tr = iter->ops->private;
3922 	struct list_head *func_probes;
3923 	struct ftrace_hash *hash;
3924 	struct list_head *next;
3925 	struct hlist_node *hnd = NULL;
3926 	struct hlist_head *hhd;
3927 	int size;
3928 
3929 	(*pos)++;
3930 	iter->pos = *pos;
3931 
3932 	if (!tr)
3933 		return NULL;
3934 
3935 	func_probes = &tr->func_probes;
3936 	if (list_empty(func_probes))
3937 		return NULL;
3938 
3939 	if (!iter->probe) {
3940 		next = func_probes->next;
3941 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3942 	}
3943 
3944 	if (iter->probe_entry)
3945 		hnd = &iter->probe_entry->hlist;
3946 
3947 	hash = iter->probe->ops.func_hash->filter_hash;
3948 
3949 	/*
3950 	 * A probe being registered may temporarily have an empty hash
3951 	 * and it's at the end of the func_probes list.
3952 	 */
3953 	if (!hash || hash == EMPTY_HASH)
3954 		return NULL;
3955 
3956 	size = 1 << hash->size_bits;
3957 
3958  retry:
3959 	if (iter->pidx >= size) {
3960 		if (iter->probe->list.next == func_probes)
3961 			return NULL;
3962 		next = iter->probe->list.next;
3963 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3964 		hash = iter->probe->ops.func_hash->filter_hash;
3965 		size = 1 << hash->size_bits;
3966 		iter->pidx = 0;
3967 	}
3968 
3969 	hhd = &hash->buckets[iter->pidx];
3970 
3971 	if (hlist_empty(hhd)) {
3972 		iter->pidx++;
3973 		hnd = NULL;
3974 		goto retry;
3975 	}
3976 
3977 	if (!hnd)
3978 		hnd = hhd->first;
3979 	else {
3980 		hnd = hnd->next;
3981 		if (!hnd) {
3982 			iter->pidx++;
3983 			goto retry;
3984 		}
3985 	}
3986 
3987 	if (WARN_ON_ONCE(!hnd))
3988 		return NULL;
3989 
3990 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3991 
3992 	return iter;
3993 }
3994 
3995 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3996 {
3997 	struct ftrace_iterator *iter = m->private;
3998 	void *p = NULL;
3999 	loff_t l;
4000 
4001 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
4002 		return NULL;
4003 
4004 	if (iter->mod_pos > *pos)
4005 		return NULL;
4006 
4007 	iter->probe = NULL;
4008 	iter->probe_entry = NULL;
4009 	iter->pidx = 0;
4010 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
4011 		p = t_probe_next(m, &l);
4012 		if (!p)
4013 			break;
4014 	}
4015 	if (!p)
4016 		return NULL;
4017 
4018 	/* Only set this if we have an item */
4019 	iter->flags |= FTRACE_ITER_PROBE;
4020 
4021 	return iter;
4022 }
4023 
4024 static int
4025 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
4026 {
4027 	struct ftrace_func_entry *probe_entry;
4028 	struct ftrace_probe_ops *probe_ops;
4029 	struct ftrace_func_probe *probe;
4030 
4031 	probe = iter->probe;
4032 	probe_entry = iter->probe_entry;
4033 
4034 	if (WARN_ON_ONCE(!probe || !probe_entry))
4035 		return -EIO;
4036 
4037 	probe_ops = probe->probe_ops;
4038 
4039 	if (probe_ops->print)
4040 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
4041 
4042 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
4043 		   (void *)probe_ops->func);
4044 
4045 	return 0;
4046 }
4047 
4048 static void *
4049 t_mod_next(struct seq_file *m, loff_t *pos)
4050 {
4051 	struct ftrace_iterator *iter = m->private;
4052 	struct trace_array *tr = iter->tr;
4053 
4054 	(*pos)++;
4055 	iter->pos = *pos;
4056 
4057 	iter->mod_list = iter->mod_list->next;
4058 
4059 	if (iter->mod_list == &tr->mod_trace ||
4060 	    iter->mod_list == &tr->mod_notrace) {
4061 		iter->flags &= ~FTRACE_ITER_MOD;
4062 		return NULL;
4063 	}
4064 
4065 	iter->mod_pos = *pos;
4066 
4067 	return iter;
4068 }
4069 
4070 static void *t_mod_start(struct seq_file *m, loff_t *pos)
4071 {
4072 	struct ftrace_iterator *iter = m->private;
4073 	void *p = NULL;
4074 	loff_t l;
4075 
4076 	if (iter->func_pos > *pos)
4077 		return NULL;
4078 
4079 	iter->mod_pos = iter->func_pos;
4080 
4081 	/* probes are only available if tr is set */
4082 	if (!iter->tr)
4083 		return NULL;
4084 
4085 	for (l = 0; l <= (*pos - iter->func_pos); ) {
4086 		p = t_mod_next(m, &l);
4087 		if (!p)
4088 			break;
4089 	}
4090 	if (!p) {
4091 		iter->flags &= ~FTRACE_ITER_MOD;
4092 		return t_probe_start(m, pos);
4093 	}
4094 
4095 	/* Only set this if we have an item */
4096 	iter->flags |= FTRACE_ITER_MOD;
4097 
4098 	return iter;
4099 }
4100 
4101 static int
4102 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
4103 {
4104 	struct ftrace_mod_load *ftrace_mod;
4105 	struct trace_array *tr = iter->tr;
4106 
4107 	if (WARN_ON_ONCE(!iter->mod_list) ||
4108 			 iter->mod_list == &tr->mod_trace ||
4109 			 iter->mod_list == &tr->mod_notrace)
4110 		return -EIO;
4111 
4112 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
4113 
4114 	if (ftrace_mod->func)
4115 		seq_printf(m, "%s", ftrace_mod->func);
4116 	else
4117 		seq_putc(m, '*');
4118 
4119 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
4120 
4121 	return 0;
4122 }
4123 
4124 static void *
4125 t_func_next(struct seq_file *m, loff_t *pos)
4126 {
4127 	struct ftrace_iterator *iter = m->private;
4128 	struct dyn_ftrace *rec = NULL;
4129 
4130 	(*pos)++;
4131 
4132  retry:
4133 	if (iter->idx >= iter->pg->index) {
4134 		if (iter->pg->next) {
4135 			iter->pg = iter->pg->next;
4136 			iter->idx = 0;
4137 			goto retry;
4138 		}
4139 	} else {
4140 		rec = &iter->pg->records[iter->idx++];
4141 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
4142 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
4143 
4144 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
4145 		     !(rec->flags & FTRACE_FL_ENABLED)) ||
4146 
4147 		    ((iter->flags & FTRACE_ITER_TOUCHED) &&
4148 		     !(rec->flags & FTRACE_FL_TOUCHED))) {
4149 
4150 			rec = NULL;
4151 			goto retry;
4152 		}
4153 	}
4154 
4155 	if (!rec)
4156 		return NULL;
4157 
4158 	iter->pos = iter->func_pos = *pos;
4159 	iter->func = rec;
4160 
4161 	return iter;
4162 }
4163 
4164 static void *
4165 t_next(struct seq_file *m, void *v, loff_t *pos)
4166 {
4167 	struct ftrace_iterator *iter = m->private;
4168 	loff_t l = *pos; /* t_probe_start() must use original pos */
4169 	void *ret;
4170 
4171 	if (unlikely(ftrace_disabled))
4172 		return NULL;
4173 
4174 	if (iter->flags & FTRACE_ITER_PROBE)
4175 		return t_probe_next(m, pos);
4176 
4177 	if (iter->flags & FTRACE_ITER_MOD)
4178 		return t_mod_next(m, pos);
4179 
4180 	if (iter->flags & FTRACE_ITER_PRINTALL) {
4181 		/* next must increment pos, and t_probe_start does not */
4182 		(*pos)++;
4183 		return t_mod_start(m, &l);
4184 	}
4185 
4186 	ret = t_func_next(m, pos);
4187 
4188 	if (!ret)
4189 		return t_mod_start(m, &l);
4190 
4191 	return ret;
4192 }
4193 
4194 static void reset_iter_read(struct ftrace_iterator *iter)
4195 {
4196 	iter->pos = 0;
4197 	iter->func_pos = 0;
4198 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
4199 }
4200 
4201 static void *t_start(struct seq_file *m, loff_t *pos)
4202 {
4203 	struct ftrace_iterator *iter = m->private;
4204 	void *p = NULL;
4205 	loff_t l;
4206 
4207 	mutex_lock(&ftrace_lock);
4208 
4209 	if (unlikely(ftrace_disabled))
4210 		return NULL;
4211 
4212 	/*
4213 	 * If an lseek was done, then reset and start from beginning.
4214 	 */
4215 	if (*pos < iter->pos)
4216 		reset_iter_read(iter);
4217 
4218 	/*
4219 	 * For set_ftrace_filter reading, if we have the filter
4220 	 * off, we can short cut and just print out that all
4221 	 * functions are enabled.
4222 	 */
4223 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
4224 	    ftrace_hash_empty(iter->hash)) {
4225 		iter->func_pos = 1; /* Account for the message */
4226 		if (*pos > 0)
4227 			return t_mod_start(m, pos);
4228 		iter->flags |= FTRACE_ITER_PRINTALL;
4229 		/* reset in case of seek/pread */
4230 		iter->flags &= ~FTRACE_ITER_PROBE;
4231 		return iter;
4232 	}
4233 
4234 	if (iter->flags & FTRACE_ITER_MOD)
4235 		return t_mod_start(m, pos);
4236 
4237 	/*
4238 	 * Unfortunately, we need to restart at ftrace_pages_start
4239 	 * every time we let go of the ftrace_mutex. This is because
4240 	 * those pointers can change without the lock.
4241 	 */
4242 	iter->pg = ftrace_pages_start;
4243 	iter->idx = 0;
4244 	for (l = 0; l <= *pos; ) {
4245 		p = t_func_next(m, &l);
4246 		if (!p)
4247 			break;
4248 	}
4249 
4250 	if (!p)
4251 		return t_mod_start(m, pos);
4252 
4253 	return iter;
4254 }
4255 
4256 static void t_stop(struct seq_file *m, void *p)
4257 {
4258 	mutex_unlock(&ftrace_lock);
4259 }
4260 
4261 void * __weak
4262 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
4263 {
4264 	return NULL;
4265 }
4266 
4267 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
4268 				struct dyn_ftrace *rec)
4269 {
4270 	void *ptr;
4271 
4272 	ptr = arch_ftrace_trampoline_func(ops, rec);
4273 	if (ptr)
4274 		seq_printf(m, " ->%pS", ptr);
4275 }
4276 
4277 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4278 /*
4279  * Weak functions can still have an mcount/fentry that is saved in
4280  * the __mcount_loc section. These can be detected by having a
4281  * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the
4282  * symbol found by kallsyms is not the function that the mcount/fentry
4283  * is part of. The offset is much greater in these cases.
4284  *
4285  * Test the record to make sure that the ip points to a valid kallsyms
4286  * and if not, mark it disabled.
4287  */
4288 static int test_for_valid_rec(struct dyn_ftrace *rec)
4289 {
4290 	char str[KSYM_SYMBOL_LEN];
4291 	unsigned long offset;
4292 	const char *ret;
4293 
4294 	ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str);
4295 
4296 	/* Weak functions can cause invalid addresses */
4297 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
4298 		rec->flags |= FTRACE_FL_DISABLED;
4299 		return 0;
4300 	}
4301 	return 1;
4302 }
4303 
4304 static struct workqueue_struct *ftrace_check_wq __initdata;
4305 static struct work_struct ftrace_check_work __initdata;
4306 
4307 /*
4308  * Scan all the mcount/fentry entries to make sure they are valid.
4309  */
4310 static __init void ftrace_check_work_func(struct work_struct *work)
4311 {
4312 	struct ftrace_page *pg;
4313 	struct dyn_ftrace *rec;
4314 
4315 	mutex_lock(&ftrace_lock);
4316 	do_for_each_ftrace_rec(pg, rec) {
4317 		test_for_valid_rec(rec);
4318 	} while_for_each_ftrace_rec();
4319 	mutex_unlock(&ftrace_lock);
4320 }
4321 
4322 static int __init ftrace_check_for_weak_functions(void)
4323 {
4324 	INIT_WORK(&ftrace_check_work, ftrace_check_work_func);
4325 
4326 	ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0);
4327 
4328 	queue_work(ftrace_check_wq, &ftrace_check_work);
4329 	return 0;
4330 }
4331 
4332 static int __init ftrace_check_sync(void)
4333 {
4334 	/* Make sure the ftrace_check updates are finished */
4335 	if (ftrace_check_wq)
4336 		destroy_workqueue(ftrace_check_wq);
4337 	return 0;
4338 }
4339 
4340 late_initcall_sync(ftrace_check_sync);
4341 subsys_initcall(ftrace_check_for_weak_functions);
4342 
4343 static int print_rec(struct seq_file *m, unsigned long ip)
4344 {
4345 	unsigned long offset;
4346 	char str[KSYM_SYMBOL_LEN];
4347 	char *modname;
4348 	const char *ret;
4349 
4350 	ret = kallsyms_lookup(ip, NULL, &offset, &modname, str);
4351 	/* Weak functions can cause invalid addresses */
4352 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
4353 		snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld",
4354 			 FTRACE_INVALID_FUNCTION, offset);
4355 		ret = NULL;
4356 	}
4357 
4358 	seq_puts(m, str);
4359 	if (modname)
4360 		seq_printf(m, " [%s]", modname);
4361 	return ret == NULL ? -1 : 0;
4362 }
4363 #else
4364 static inline int test_for_valid_rec(struct dyn_ftrace *rec)
4365 {
4366 	return 1;
4367 }
4368 
4369 static inline int print_rec(struct seq_file *m, unsigned long ip)
4370 {
4371 	seq_printf(m, "%ps", (void *)ip);
4372 	return 0;
4373 }
4374 #endif
4375 
4376 static void print_subops(struct seq_file *m, struct ftrace_ops *ops, struct dyn_ftrace *rec)
4377 {
4378 	struct ftrace_ops *subops;
4379 	bool first = true;
4380 
4381 	list_for_each_entry(subops, &ops->subop_list, list) {
4382 		if (!((subops->flags & FTRACE_OPS_FL_ENABLED) &&
4383 		      hash_contains_ip(rec->ip, subops->func_hash)))
4384 			continue;
4385 		if (first) {
4386 			seq_printf(m, "\tsubops:");
4387 			first = false;
4388 		}
4389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
4390 		if (subops->flags & FTRACE_OPS_FL_GRAPH) {
4391 			struct fgraph_ops *gops;
4392 
4393 			gops = container_of(subops, struct fgraph_ops, ops);
4394 			seq_printf(m, " {ent:%pS ret:%pS}",
4395 				   (void *)gops->entryfunc,
4396 				   (void *)gops->retfunc);
4397 			continue;
4398 		}
4399 #endif
4400 		if (subops->trampoline) {
4401 			seq_printf(m, " {%pS (%pS)}",
4402 				   (void *)subops->trampoline,
4403 				   (void *)subops->func);
4404 			add_trampoline_func(m, subops, rec);
4405 		} else {
4406 			seq_printf(m, " {%pS}",
4407 				   (void *)subops->func);
4408 		}
4409 	}
4410 }
4411 
4412 static int t_show(struct seq_file *m, void *v)
4413 {
4414 	struct ftrace_iterator *iter = m->private;
4415 	struct dyn_ftrace *rec;
4416 
4417 	if (iter->flags & FTRACE_ITER_PROBE)
4418 		return t_probe_show(m, iter);
4419 
4420 	if (iter->flags & FTRACE_ITER_MOD)
4421 		return t_mod_show(m, iter);
4422 
4423 	if (iter->flags & FTRACE_ITER_PRINTALL) {
4424 		if (iter->flags & FTRACE_ITER_NOTRACE)
4425 			seq_puts(m, "#### no functions disabled ####\n");
4426 		else
4427 			seq_puts(m, "#### all functions enabled ####\n");
4428 		return 0;
4429 	}
4430 
4431 	rec = iter->func;
4432 
4433 	if (!rec)
4434 		return 0;
4435 
4436 	if (iter->flags & FTRACE_ITER_ADDRS)
4437 		seq_printf(m, "%lx ", rec->ip);
4438 
4439 	if (print_rec(m, rec->ip)) {
4440 		/* This should only happen when a rec is disabled */
4441 		WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED));
4442 		seq_putc(m, '\n');
4443 		return 0;
4444 	}
4445 
4446 	if (iter->flags & (FTRACE_ITER_ENABLED | FTRACE_ITER_TOUCHED)) {
4447 		struct ftrace_ops *ops;
4448 
4449 		seq_printf(m, " (%ld)%s%s%s%s%s",
4450 			   ftrace_rec_count(rec),
4451 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
4452 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
4453 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ",
4454 			   rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ",
4455 			   rec->flags & FTRACE_FL_MODIFIED ? " M " : "   ");
4456 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
4457 			ops = ftrace_find_tramp_ops_any(rec);
4458 			if (ops) {
4459 				do {
4460 					seq_printf(m, "\ttramp: %pS (%pS)",
4461 						   (void *)ops->trampoline,
4462 						   (void *)ops->func);
4463 					add_trampoline_func(m, ops, rec);
4464 					print_subops(m, ops, rec);
4465 					ops = ftrace_find_tramp_ops_next(rec, ops);
4466 				} while (ops);
4467 			} else
4468 				seq_puts(m, "\ttramp: ERROR!");
4469 		} else {
4470 			add_trampoline_func(m, NULL, rec);
4471 		}
4472 		if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
4473 			ops = ftrace_find_unique_ops(rec);
4474 			if (ops) {
4475 				seq_printf(m, "\tops: %pS (%pS)",
4476 					   ops, ops->func);
4477 				print_subops(m, ops, rec);
4478 			} else {
4479 				seq_puts(m, "\tops: ERROR!");
4480 			}
4481 		}
4482 		if (rec->flags & FTRACE_FL_DIRECT) {
4483 			unsigned long direct;
4484 
4485 			direct = ftrace_find_rec_direct(rec->ip);
4486 			if (direct)
4487 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
4488 		}
4489 	}
4490 
4491 	seq_putc(m, '\n');
4492 
4493 	return 0;
4494 }
4495 
4496 static const struct seq_operations show_ftrace_seq_ops = {
4497 	.start = t_start,
4498 	.next = t_next,
4499 	.stop = t_stop,
4500 	.show = t_show,
4501 };
4502 
4503 static int
4504 ftrace_avail_open(struct inode *inode, struct file *file)
4505 {
4506 	struct ftrace_iterator *iter;
4507 	int ret;
4508 
4509 	ret = security_locked_down(LOCKDOWN_TRACEFS);
4510 	if (ret)
4511 		return ret;
4512 
4513 	if (unlikely(ftrace_disabled))
4514 		return -ENODEV;
4515 
4516 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4517 	if (!iter)
4518 		return -ENOMEM;
4519 
4520 	iter->pg = ftrace_pages_start;
4521 	iter->ops = &global_ops;
4522 
4523 	return 0;
4524 }
4525 
4526 static int
4527 ftrace_enabled_open(struct inode *inode, struct file *file)
4528 {
4529 	struct ftrace_iterator *iter;
4530 
4531 	/*
4532 	 * This shows us what functions are currently being
4533 	 * traced and by what. Not sure if we want lockdown
4534 	 * to hide such critical information for an admin.
4535 	 * Although, perhaps it can show information we don't
4536 	 * want people to see, but if something is tracing
4537 	 * something, we probably want to know about it.
4538 	 */
4539 
4540 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4541 	if (!iter)
4542 		return -ENOMEM;
4543 
4544 	iter->pg = ftrace_pages_start;
4545 	iter->flags = FTRACE_ITER_ENABLED;
4546 	iter->ops = &global_ops;
4547 
4548 	return 0;
4549 }
4550 
4551 static int
4552 ftrace_touched_open(struct inode *inode, struct file *file)
4553 {
4554 	struct ftrace_iterator *iter;
4555 
4556 	/*
4557 	 * This shows us what functions have ever been enabled
4558 	 * (traced, direct, patched, etc). Not sure if we want lockdown
4559 	 * to hide such critical information for an admin.
4560 	 * Although, perhaps it can show information we don't
4561 	 * want people to see, but if something had traced
4562 	 * something, we probably want to know about it.
4563 	 */
4564 
4565 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4566 	if (!iter)
4567 		return -ENOMEM;
4568 
4569 	iter->pg = ftrace_pages_start;
4570 	iter->flags = FTRACE_ITER_TOUCHED;
4571 	iter->ops = &global_ops;
4572 
4573 	return 0;
4574 }
4575 
4576 static int
4577 ftrace_avail_addrs_open(struct inode *inode, struct file *file)
4578 {
4579 	struct ftrace_iterator *iter;
4580 	int ret;
4581 
4582 	ret = security_locked_down(LOCKDOWN_TRACEFS);
4583 	if (ret)
4584 		return ret;
4585 
4586 	if (unlikely(ftrace_disabled))
4587 		return -ENODEV;
4588 
4589 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
4590 	if (!iter)
4591 		return -ENOMEM;
4592 
4593 	iter->pg = ftrace_pages_start;
4594 	iter->flags = FTRACE_ITER_ADDRS;
4595 	iter->ops = &global_ops;
4596 
4597 	return 0;
4598 }
4599 
4600 /**
4601  * ftrace_regex_open - initialize function tracer filter files
4602  * @ops: The ftrace_ops that hold the hash filters
4603  * @flag: The type of filter to process
4604  * @inode: The inode, usually passed in to your open routine
4605  * @file: The file, usually passed in to your open routine
4606  *
4607  * ftrace_regex_open() initializes the filter files for the
4608  * @ops. Depending on @flag it may process the filter hash or
4609  * the notrace hash of @ops. With this called from the open
4610  * routine, you can use ftrace_filter_write() for the write
4611  * routine if @flag has FTRACE_ITER_FILTER set, or
4612  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
4613  * tracing_lseek() should be used as the lseek routine, and
4614  * release must call ftrace_regex_release().
4615  *
4616  * Returns: 0 on success or a negative errno value on failure
4617  */
4618 int
4619 ftrace_regex_open(struct ftrace_ops *ops, int flag,
4620 		  struct inode *inode, struct file *file)
4621 {
4622 	struct ftrace_iterator *iter;
4623 	struct ftrace_hash *hash;
4624 	struct list_head *mod_head;
4625 	struct trace_array *tr = ops->private;
4626 	int ret = -ENOMEM;
4627 
4628 	ftrace_ops_init(ops);
4629 
4630 	if (unlikely(ftrace_disabled))
4631 		return -ENODEV;
4632 
4633 	if (tracing_check_open_get_tr(tr))
4634 		return -ENODEV;
4635 
4636 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
4637 	if (!iter)
4638 		goto out;
4639 
4640 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
4641 		goto out;
4642 
4643 	iter->ops = ops;
4644 	iter->flags = flag;
4645 	iter->tr = tr;
4646 
4647 	mutex_lock(&ops->func_hash->regex_lock);
4648 
4649 	if (flag & FTRACE_ITER_NOTRACE) {
4650 		hash = ops->func_hash->notrace_hash;
4651 		mod_head = tr ? &tr->mod_notrace : NULL;
4652 	} else {
4653 		hash = ops->func_hash->filter_hash;
4654 		mod_head = tr ? &tr->mod_trace : NULL;
4655 	}
4656 
4657 	iter->mod_list = mod_head;
4658 
4659 	if (file->f_mode & FMODE_WRITE) {
4660 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
4661 
4662 		if (file->f_flags & O_TRUNC) {
4663 			iter->hash = alloc_ftrace_hash(size_bits);
4664 			clear_ftrace_mod_list(mod_head);
4665 	        } else {
4666 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
4667 		}
4668 
4669 		if (!iter->hash) {
4670 			trace_parser_put(&iter->parser);
4671 			goto out_unlock;
4672 		}
4673 	} else
4674 		iter->hash = hash;
4675 
4676 	ret = 0;
4677 
4678 	if (file->f_mode & FMODE_READ) {
4679 		iter->pg = ftrace_pages_start;
4680 
4681 		ret = seq_open(file, &show_ftrace_seq_ops);
4682 		if (!ret) {
4683 			struct seq_file *m = file->private_data;
4684 			m->private = iter;
4685 		} else {
4686 			/* Failed */
4687 			free_ftrace_hash(iter->hash);
4688 			trace_parser_put(&iter->parser);
4689 		}
4690 	} else
4691 		file->private_data = iter;
4692 
4693  out_unlock:
4694 	mutex_unlock(&ops->func_hash->regex_lock);
4695 
4696  out:
4697 	if (ret) {
4698 		kfree(iter);
4699 		if (tr)
4700 			trace_array_put(tr);
4701 	}
4702 
4703 	return ret;
4704 }
4705 
4706 static int
4707 ftrace_filter_open(struct inode *inode, struct file *file)
4708 {
4709 	struct ftrace_ops *ops = inode->i_private;
4710 
4711 	/* Checks for tracefs lockdown */
4712 	return ftrace_regex_open(ops,
4713 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
4714 			inode, file);
4715 }
4716 
4717 static int
4718 ftrace_notrace_open(struct inode *inode, struct file *file)
4719 {
4720 	struct ftrace_ops *ops = inode->i_private;
4721 
4722 	/* Checks for tracefs lockdown */
4723 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
4724 				 inode, file);
4725 }
4726 
4727 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
4728 struct ftrace_glob {
4729 	char *search;
4730 	unsigned len;
4731 	int type;
4732 };
4733 
4734 /*
4735  * If symbols in an architecture don't correspond exactly to the user-visible
4736  * name of what they represent, it is possible to define this function to
4737  * perform the necessary adjustments.
4738 */
4739 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
4740 {
4741 	return str;
4742 }
4743 
4744 static int ftrace_match(char *str, struct ftrace_glob *g)
4745 {
4746 	int matched = 0;
4747 	int slen;
4748 
4749 	str = arch_ftrace_match_adjust(str, g->search);
4750 
4751 	switch (g->type) {
4752 	case MATCH_FULL:
4753 		if (strcmp(str, g->search) == 0)
4754 			matched = 1;
4755 		break;
4756 	case MATCH_FRONT_ONLY:
4757 		if (strncmp(str, g->search, g->len) == 0)
4758 			matched = 1;
4759 		break;
4760 	case MATCH_MIDDLE_ONLY:
4761 		if (strstr(str, g->search))
4762 			matched = 1;
4763 		break;
4764 	case MATCH_END_ONLY:
4765 		slen = strlen(str);
4766 		if (slen >= g->len &&
4767 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
4768 			matched = 1;
4769 		break;
4770 	case MATCH_GLOB:
4771 		if (glob_match(g->search, str))
4772 			matched = 1;
4773 		break;
4774 	}
4775 
4776 	return matched;
4777 }
4778 
4779 static int
4780 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
4781 {
4782 	struct ftrace_func_entry *entry;
4783 	int ret = 0;
4784 
4785 	entry = ftrace_lookup_ip(hash, rec->ip);
4786 	if (clear_filter) {
4787 		/* Do nothing if it doesn't exist */
4788 		if (!entry)
4789 			return 0;
4790 
4791 		free_hash_entry(hash, entry);
4792 	} else {
4793 		/* Do nothing if it exists */
4794 		if (entry)
4795 			return 0;
4796 		if (add_hash_entry(hash, rec->ip) == NULL)
4797 			ret = -ENOMEM;
4798 	}
4799 	return ret;
4800 }
4801 
4802 static int
4803 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
4804 		 int clear_filter)
4805 {
4806 	long index;
4807 	struct ftrace_page *pg;
4808 	struct dyn_ftrace *rec;
4809 
4810 	/* The index starts at 1 */
4811 	if (kstrtoul(func_g->search, 0, &index) || --index < 0)
4812 		return 0;
4813 
4814 	do_for_each_ftrace_rec(pg, rec) {
4815 		if (pg->index <= index) {
4816 			index -= pg->index;
4817 			/* this is a double loop, break goes to the next page */
4818 			break;
4819 		}
4820 		rec = &pg->records[index];
4821 		enter_record(hash, rec, clear_filter);
4822 		return 1;
4823 	} while_for_each_ftrace_rec();
4824 	return 0;
4825 }
4826 
4827 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4828 static int lookup_ip(unsigned long ip, char **modname, char *str)
4829 {
4830 	unsigned long offset;
4831 
4832 	kallsyms_lookup(ip, NULL, &offset, modname, str);
4833 	if (offset > FTRACE_MCOUNT_MAX_OFFSET)
4834 		return -1;
4835 	return 0;
4836 }
4837 #else
4838 static int lookup_ip(unsigned long ip, char **modname, char *str)
4839 {
4840 	kallsyms_lookup(ip, NULL, NULL, modname, str);
4841 	return 0;
4842 }
4843 #endif
4844 
4845 static int
4846 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
4847 		struct ftrace_glob *mod_g, int exclude_mod)
4848 {
4849 	char str[KSYM_SYMBOL_LEN];
4850 	char *modname;
4851 
4852 	if (lookup_ip(rec->ip, &modname, str)) {
4853 		/* This should only happen when a rec is disabled */
4854 		WARN_ON_ONCE(system_state == SYSTEM_RUNNING &&
4855 			     !(rec->flags & FTRACE_FL_DISABLED));
4856 		return 0;
4857 	}
4858 
4859 	if (mod_g) {
4860 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
4861 
4862 		/* blank module name to match all modules */
4863 		if (!mod_g->len) {
4864 			/* blank module globbing: modname xor exclude_mod */
4865 			if (!exclude_mod != !modname)
4866 				goto func_match;
4867 			return 0;
4868 		}
4869 
4870 		/*
4871 		 * exclude_mod is set to trace everything but the given
4872 		 * module. If it is set and the module matches, then
4873 		 * return 0. If it is not set, and the module doesn't match
4874 		 * also return 0. Otherwise, check the function to see if
4875 		 * that matches.
4876 		 */
4877 		if (!mod_matches == !exclude_mod)
4878 			return 0;
4879 func_match:
4880 		/* blank search means to match all funcs in the mod */
4881 		if (!func_g->len)
4882 			return 1;
4883 	}
4884 
4885 	return ftrace_match(str, func_g);
4886 }
4887 
4888 static int
4889 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4890 {
4891 	struct ftrace_page *pg;
4892 	struct dyn_ftrace *rec;
4893 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4894 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4895 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4896 	int exclude_mod = 0;
4897 	int found = 0;
4898 	int ret;
4899 	int clear_filter = 0;
4900 
4901 	if (func) {
4902 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4903 						 &clear_filter);
4904 		func_g.len = strlen(func_g.search);
4905 	}
4906 
4907 	if (mod) {
4908 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4909 				&mod_g.search, &exclude_mod);
4910 		mod_g.len = strlen(mod_g.search);
4911 	}
4912 
4913 	guard(mutex)(&ftrace_lock);
4914 
4915 	if (unlikely(ftrace_disabled))
4916 		return 0;
4917 
4918 	if (func_g.type == MATCH_INDEX)
4919 		return add_rec_by_index(hash, &func_g, clear_filter);
4920 
4921 	do_for_each_ftrace_rec(pg, rec) {
4922 
4923 		if (rec->flags & FTRACE_FL_DISABLED)
4924 			continue;
4925 
4926 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4927 			ret = enter_record(hash, rec, clear_filter);
4928 			if (ret < 0)
4929 				return ret;
4930 			found = 1;
4931 		}
4932 		cond_resched();
4933 	} while_for_each_ftrace_rec();
4934 
4935 	return found;
4936 }
4937 
4938 static int
4939 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4940 {
4941 	return match_records(hash, buff, len, NULL);
4942 }
4943 
4944 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4945 				   struct ftrace_ops_hash *old_hash)
4946 {
4947 	struct ftrace_ops *op;
4948 
4949 	if (!ftrace_enabled)
4950 		return;
4951 
4952 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4953 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4954 		return;
4955 	}
4956 
4957 	/*
4958 	 * If this is the shared global_ops filter, then we need to
4959 	 * check if there is another ops that shares it, is enabled.
4960 	 * If so, we still need to run the modify code.
4961 	 */
4962 	if (ops->func_hash != &global_ops.local_hash)
4963 		return;
4964 
4965 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4966 		if (op->func_hash == &global_ops.local_hash &&
4967 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4968 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4969 			/* Only need to do this once */
4970 			return;
4971 		}
4972 	} while_for_each_ftrace_op(op);
4973 }
4974 
4975 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4976 					   struct ftrace_hash **orig_hash,
4977 					   struct ftrace_hash *hash,
4978 					   int enable)
4979 {
4980 	if (ops->flags & FTRACE_OPS_FL_SUBOP)
4981 		return ftrace_hash_move_and_update_subops(ops, orig_hash, hash);
4982 
4983 	/*
4984 	 * If this ops is not enabled, it could be sharing its filters
4985 	 * with a subop. If that's the case, update the subop instead of
4986 	 * this ops. Shared filters are only allowed to have one ops set
4987 	 * at a time, and if we update the ops that is not enabled,
4988 	 * it will not affect subops that share it.
4989 	 */
4990 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) {
4991 		struct ftrace_ops *op;
4992 
4993 		/* Check if any other manager subops maps to this hash */
4994 		do_for_each_ftrace_op(op, ftrace_ops_list) {
4995 			struct ftrace_ops *subops;
4996 
4997 			list_for_each_entry(subops, &op->subop_list, list) {
4998 				if ((subops->flags & FTRACE_OPS_FL_ENABLED) &&
4999 				     subops->func_hash == ops->func_hash) {
5000 					return ftrace_hash_move_and_update_subops(subops, orig_hash, hash);
5001 				}
5002 			}
5003 		} while_for_each_ftrace_op(op);
5004 	}
5005 
5006 	return __ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5007 }
5008 
5009 static int cache_mod(struct trace_array *tr,
5010 		     const char *func, char *module, int enable)
5011 {
5012 	struct ftrace_mod_load *ftrace_mod, *n;
5013 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
5014 
5015 	guard(mutex)(&ftrace_lock);
5016 
5017 	/* We do not cache inverse filters */
5018 	if (func[0] == '!') {
5019 		int ret = -EINVAL;
5020 
5021 		func++;
5022 
5023 		/* Look to remove this hash */
5024 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
5025 			if (strcmp(ftrace_mod->module, module) != 0)
5026 				continue;
5027 
5028 			/* no func matches all */
5029 			if (strcmp(func, "*") == 0 ||
5030 			    (ftrace_mod->func &&
5031 			     strcmp(ftrace_mod->func, func) == 0)) {
5032 				ret = 0;
5033 				free_ftrace_mod(ftrace_mod);
5034 				continue;
5035 			}
5036 		}
5037 		return ret;
5038 	}
5039 
5040 	/* We only care about modules that have not been loaded yet */
5041 	if (module_exists(module))
5042 		return -EINVAL;
5043 
5044 	/* Save this string off, and execute it when the module is loaded */
5045 	return ftrace_add_mod(tr, func, module, enable);
5046 }
5047 
5048 #ifdef CONFIG_MODULES
5049 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
5050 			     char *mod, bool enable)
5051 {
5052 	struct ftrace_mod_load *ftrace_mod, *n;
5053 	struct ftrace_hash **orig_hash, *new_hash;
5054 	LIST_HEAD(process_mods);
5055 	char *func;
5056 
5057 	mutex_lock(&ops->func_hash->regex_lock);
5058 
5059 	if (enable)
5060 		orig_hash = &ops->func_hash->filter_hash;
5061 	else
5062 		orig_hash = &ops->func_hash->notrace_hash;
5063 
5064 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
5065 					      *orig_hash);
5066 	if (!new_hash)
5067 		goto out; /* warn? */
5068 
5069 	mutex_lock(&ftrace_lock);
5070 
5071 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
5072 
5073 		if (strcmp(ftrace_mod->module, mod) != 0)
5074 			continue;
5075 
5076 		if (ftrace_mod->func)
5077 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
5078 		else
5079 			func = kstrdup("*", GFP_KERNEL);
5080 
5081 		if (!func) /* warn? */
5082 			continue;
5083 
5084 		list_move(&ftrace_mod->list, &process_mods);
5085 
5086 		/* Use the newly allocated func, as it may be "*" */
5087 		kfree(ftrace_mod->func);
5088 		ftrace_mod->func = func;
5089 	}
5090 
5091 	mutex_unlock(&ftrace_lock);
5092 
5093 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
5094 
5095 		func = ftrace_mod->func;
5096 
5097 		/* Grabs ftrace_lock, which is why we have this extra step */
5098 		match_records(new_hash, func, strlen(func), mod);
5099 		free_ftrace_mod(ftrace_mod);
5100 	}
5101 
5102 	if (enable && list_empty(head))
5103 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
5104 
5105 	mutex_lock(&ftrace_lock);
5106 
5107 	ftrace_hash_move_and_update_ops(ops, orig_hash,
5108 					      new_hash, enable);
5109 	mutex_unlock(&ftrace_lock);
5110 
5111  out:
5112 	mutex_unlock(&ops->func_hash->regex_lock);
5113 
5114 	free_ftrace_hash(new_hash);
5115 }
5116 
5117 static void process_cached_mods(const char *mod_name)
5118 {
5119 	struct trace_array *tr;
5120 	char *mod;
5121 
5122 	mod = kstrdup(mod_name, GFP_KERNEL);
5123 	if (!mod)
5124 		return;
5125 
5126 	mutex_lock(&trace_types_lock);
5127 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
5128 		if (!list_empty(&tr->mod_trace))
5129 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
5130 		if (!list_empty(&tr->mod_notrace))
5131 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
5132 	}
5133 	mutex_unlock(&trace_types_lock);
5134 
5135 	kfree(mod);
5136 }
5137 #endif
5138 
5139 /*
5140  * We register the module command as a template to show others how
5141  * to register the a command as well.
5142  */
5143 
5144 static int
5145 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
5146 		    char *func_orig, char *cmd, char *module, int enable)
5147 {
5148 	char *func;
5149 	int ret;
5150 
5151 	if (!tr)
5152 		return -ENODEV;
5153 
5154 	/* match_records() modifies func, and we need the original */
5155 	func = kstrdup(func_orig, GFP_KERNEL);
5156 	if (!func)
5157 		return -ENOMEM;
5158 
5159 	/*
5160 	 * cmd == 'mod' because we only registered this func
5161 	 * for the 'mod' ftrace_func_command.
5162 	 * But if you register one func with multiple commands,
5163 	 * you can tell which command was used by the cmd
5164 	 * parameter.
5165 	 */
5166 	ret = match_records(hash, func, strlen(func), module);
5167 	kfree(func);
5168 
5169 	if (!ret)
5170 		return cache_mod(tr, func_orig, module, enable);
5171 	if (ret < 0)
5172 		return ret;
5173 	return 0;
5174 }
5175 
5176 static struct ftrace_func_command ftrace_mod_cmd = {
5177 	.name			= "mod",
5178 	.func			= ftrace_mod_callback,
5179 };
5180 
5181 static int __init ftrace_mod_cmd_init(void)
5182 {
5183 	return register_ftrace_command(&ftrace_mod_cmd);
5184 }
5185 core_initcall(ftrace_mod_cmd_init);
5186 
5187 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
5188 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
5189 {
5190 	struct ftrace_probe_ops *probe_ops;
5191 	struct ftrace_func_probe *probe;
5192 
5193 	probe = container_of(op, struct ftrace_func_probe, ops);
5194 	probe_ops = probe->probe_ops;
5195 
5196 	/*
5197 	 * Disable preemption for these calls to prevent a RCU grace
5198 	 * period. This syncs the hash iteration and freeing of items
5199 	 * on the hash. rcu_read_lock is too dangerous here.
5200 	 */
5201 	preempt_disable_notrace();
5202 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
5203 	preempt_enable_notrace();
5204 }
5205 
5206 struct ftrace_func_map {
5207 	struct ftrace_func_entry	entry;
5208 	void				*data;
5209 };
5210 
5211 /*
5212  * Note, ftrace_func_mapper is freed by free_ftrace_hash(&mapper->hash).
5213  * The hash field must be the first field.
5214  */
5215 struct ftrace_func_mapper {
5216 	struct ftrace_hash		hash;	/* Must be first! */
5217 };
5218 
5219 /**
5220  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
5221  *
5222  * Returns: a ftrace_func_mapper descriptor that can be used to map ips to data.
5223  */
5224 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
5225 {
5226 	struct ftrace_hash *hash;
5227 
5228 	/*
5229 	 * The mapper is simply a ftrace_hash, but since the entries
5230 	 * in the hash are not ftrace_func_entry type, we define it
5231 	 * as a separate structure.
5232 	 */
5233 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5234 	return (struct ftrace_func_mapper *)hash;
5235 }
5236 
5237 /**
5238  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
5239  * @mapper: The mapper that has the ip maps
5240  * @ip: the instruction pointer to find the data for
5241  *
5242  * Returns: the data mapped to @ip if found otherwise NULL. The return
5243  * is actually the address of the mapper data pointer. The address is
5244  * returned for use cases where the data is no bigger than a long, and
5245  * the user can use the data pointer as its data instead of having to
5246  * allocate more memory for the reference.
5247  */
5248 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
5249 				  unsigned long ip)
5250 {
5251 	struct ftrace_func_entry *entry;
5252 	struct ftrace_func_map *map;
5253 
5254 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5255 	if (!entry)
5256 		return NULL;
5257 
5258 	map = (struct ftrace_func_map *)entry;
5259 	return &map->data;
5260 }
5261 
5262 /**
5263  * ftrace_func_mapper_add_ip - Map some data to an ip
5264  * @mapper: The mapper that has the ip maps
5265  * @ip: The instruction pointer address to map @data to
5266  * @data: The data to map to @ip
5267  *
5268  * Returns: 0 on success otherwise an error.
5269  */
5270 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
5271 			      unsigned long ip, void *data)
5272 {
5273 	struct ftrace_func_entry *entry;
5274 	struct ftrace_func_map *map;
5275 
5276 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5277 	if (entry)
5278 		return -EBUSY;
5279 
5280 	map = kmalloc(sizeof(*map), GFP_KERNEL);
5281 	if (!map)
5282 		return -ENOMEM;
5283 
5284 	map->entry.ip = ip;
5285 	map->data = data;
5286 
5287 	__add_hash_entry(&mapper->hash, &map->entry);
5288 
5289 	return 0;
5290 }
5291 
5292 /**
5293  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
5294  * @mapper: The mapper that has the ip maps
5295  * @ip: The instruction pointer address to remove the data from
5296  *
5297  * Returns: the data if it is found, otherwise NULL.
5298  * Note, if the data pointer is used as the data itself, (see
5299  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
5300  * if the data pointer was set to zero.
5301  */
5302 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
5303 				   unsigned long ip)
5304 {
5305 	struct ftrace_func_entry *entry;
5306 	struct ftrace_func_map *map;
5307 	void *data;
5308 
5309 	entry = ftrace_lookup_ip(&mapper->hash, ip);
5310 	if (!entry)
5311 		return NULL;
5312 
5313 	map = (struct ftrace_func_map *)entry;
5314 	data = map->data;
5315 
5316 	remove_hash_entry(&mapper->hash, entry);
5317 	kfree(entry);
5318 
5319 	return data;
5320 }
5321 
5322 /**
5323  * free_ftrace_func_mapper - free a mapping of ips and data
5324  * @mapper: The mapper that has the ip maps
5325  * @free_func: A function to be called on each data item.
5326  *
5327  * This is used to free the function mapper. The @free_func is optional
5328  * and can be used if the data needs to be freed as well.
5329  */
5330 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
5331 			     ftrace_mapper_func free_func)
5332 {
5333 	struct ftrace_func_entry *entry;
5334 	struct ftrace_func_map *map;
5335 	struct hlist_head *hhd;
5336 	int size, i;
5337 
5338 	if (!mapper)
5339 		return;
5340 
5341 	if (free_func && mapper->hash.count) {
5342 		size = 1 << mapper->hash.size_bits;
5343 		for (i = 0; i < size; i++) {
5344 			hhd = &mapper->hash.buckets[i];
5345 			hlist_for_each_entry(entry, hhd, hlist) {
5346 				map = (struct ftrace_func_map *)entry;
5347 				free_func(map);
5348 			}
5349 		}
5350 	}
5351 	/* This also frees the mapper itself */
5352 	free_ftrace_hash(&mapper->hash);
5353 }
5354 
5355 static void release_probe(struct ftrace_func_probe *probe)
5356 {
5357 	struct ftrace_probe_ops *probe_ops;
5358 
5359 	guard(mutex)(&ftrace_lock);
5360 
5361 	WARN_ON(probe->ref <= 0);
5362 
5363 	/* Subtract the ref that was used to protect this instance */
5364 	probe->ref--;
5365 
5366 	if (!probe->ref) {
5367 		probe_ops = probe->probe_ops;
5368 		/*
5369 		 * Sending zero as ip tells probe_ops to free
5370 		 * the probe->data itself
5371 		 */
5372 		if (probe_ops->free)
5373 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
5374 		list_del(&probe->list);
5375 		kfree(probe);
5376 	}
5377 }
5378 
5379 static void acquire_probe_locked(struct ftrace_func_probe *probe)
5380 {
5381 	/*
5382 	 * Add one ref to keep it from being freed when releasing the
5383 	 * ftrace_lock mutex.
5384 	 */
5385 	probe->ref++;
5386 }
5387 
5388 int
5389 register_ftrace_function_probe(char *glob, struct trace_array *tr,
5390 			       struct ftrace_probe_ops *probe_ops,
5391 			       void *data)
5392 {
5393 	struct ftrace_func_probe *probe = NULL, *iter;
5394 	struct ftrace_func_entry *entry;
5395 	struct ftrace_hash **orig_hash;
5396 	struct ftrace_hash *old_hash;
5397 	struct ftrace_hash *hash;
5398 	int count = 0;
5399 	int size;
5400 	int ret;
5401 	int i;
5402 
5403 	if (WARN_ON(!tr))
5404 		return -EINVAL;
5405 
5406 	/* We do not support '!' for function probes */
5407 	if (WARN_ON(glob[0] == '!'))
5408 		return -EINVAL;
5409 
5410 
5411 	mutex_lock(&ftrace_lock);
5412 	/* Check if the probe_ops is already registered */
5413 	list_for_each_entry(iter, &tr->func_probes, list) {
5414 		if (iter->probe_ops == probe_ops) {
5415 			probe = iter;
5416 			break;
5417 		}
5418 	}
5419 	if (!probe) {
5420 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
5421 		if (!probe) {
5422 			mutex_unlock(&ftrace_lock);
5423 			return -ENOMEM;
5424 		}
5425 		probe->probe_ops = probe_ops;
5426 		probe->ops.func = function_trace_probe_call;
5427 		probe->tr = tr;
5428 		ftrace_ops_init(&probe->ops);
5429 		list_add(&probe->list, &tr->func_probes);
5430 	}
5431 
5432 	acquire_probe_locked(probe);
5433 
5434 	mutex_unlock(&ftrace_lock);
5435 
5436 	/*
5437 	 * Note, there's a small window here that the func_hash->filter_hash
5438 	 * may be NULL or empty. Need to be careful when reading the loop.
5439 	 */
5440 	mutex_lock(&probe->ops.func_hash->regex_lock);
5441 
5442 	orig_hash = &probe->ops.func_hash->filter_hash;
5443 	old_hash = *orig_hash;
5444 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
5445 
5446 	if (!hash) {
5447 		ret = -ENOMEM;
5448 		goto out;
5449 	}
5450 
5451 	ret = ftrace_match_records(hash, glob, strlen(glob));
5452 
5453 	/* Nothing found? */
5454 	if (!ret)
5455 		ret = -EINVAL;
5456 
5457 	if (ret < 0)
5458 		goto out;
5459 
5460 	size = 1 << hash->size_bits;
5461 	for (i = 0; i < size; i++) {
5462 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5463 			if (ftrace_lookup_ip(old_hash, entry->ip))
5464 				continue;
5465 			/*
5466 			 * The caller might want to do something special
5467 			 * for each function we find. We call the callback
5468 			 * to give the caller an opportunity to do so.
5469 			 */
5470 			if (probe_ops->init) {
5471 				ret = probe_ops->init(probe_ops, tr,
5472 						      entry->ip, data,
5473 						      &probe->data);
5474 				if (ret < 0) {
5475 					if (probe_ops->free && count)
5476 						probe_ops->free(probe_ops, tr,
5477 								0, probe->data);
5478 					probe->data = NULL;
5479 					goto out;
5480 				}
5481 			}
5482 			count++;
5483 		}
5484 	}
5485 
5486 	mutex_lock(&ftrace_lock);
5487 
5488 	if (!count) {
5489 		/* Nothing was added? */
5490 		ret = -EINVAL;
5491 		goto out_unlock;
5492 	}
5493 
5494 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
5495 					      hash, 1);
5496 	if (ret < 0)
5497 		goto err_unlock;
5498 
5499 	/* One ref for each new function traced */
5500 	probe->ref += count;
5501 
5502 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
5503 		ret = ftrace_startup(&probe->ops, 0);
5504 
5505  out_unlock:
5506 	mutex_unlock(&ftrace_lock);
5507 
5508 	if (!ret)
5509 		ret = count;
5510  out:
5511 	mutex_unlock(&probe->ops.func_hash->regex_lock);
5512 	free_ftrace_hash(hash);
5513 
5514 	release_probe(probe);
5515 
5516 	return ret;
5517 
5518  err_unlock:
5519 	if (!probe_ops->free || !count)
5520 		goto out_unlock;
5521 
5522 	/* Failed to do the move, need to call the free functions */
5523 	for (i = 0; i < size; i++) {
5524 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5525 			if (ftrace_lookup_ip(old_hash, entry->ip))
5526 				continue;
5527 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
5528 		}
5529 	}
5530 	goto out_unlock;
5531 }
5532 
5533 int
5534 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
5535 				      struct ftrace_probe_ops *probe_ops)
5536 {
5537 	struct ftrace_func_probe *probe = NULL, *iter;
5538 	struct ftrace_ops_hash old_hash_ops;
5539 	struct ftrace_func_entry *entry;
5540 	struct ftrace_glob func_g;
5541 	struct ftrace_hash **orig_hash;
5542 	struct ftrace_hash *old_hash;
5543 	struct ftrace_hash *hash = NULL;
5544 	struct hlist_node *tmp;
5545 	struct hlist_head hhd;
5546 	char str[KSYM_SYMBOL_LEN];
5547 	int count = 0;
5548 	int i, ret = -ENODEV;
5549 	int size;
5550 
5551 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
5552 		func_g.search = NULL;
5553 	else {
5554 		int not;
5555 
5556 		func_g.type = filter_parse_regex(glob, strlen(glob),
5557 						 &func_g.search, &not);
5558 		func_g.len = strlen(func_g.search);
5559 
5560 		/* we do not support '!' for function probes */
5561 		if (WARN_ON(not))
5562 			return -EINVAL;
5563 	}
5564 
5565 	mutex_lock(&ftrace_lock);
5566 	/* Check if the probe_ops is already registered */
5567 	list_for_each_entry(iter, &tr->func_probes, list) {
5568 		if (iter->probe_ops == probe_ops) {
5569 			probe = iter;
5570 			break;
5571 		}
5572 	}
5573 	if (!probe)
5574 		goto err_unlock_ftrace;
5575 
5576 	ret = -EINVAL;
5577 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
5578 		goto err_unlock_ftrace;
5579 
5580 	acquire_probe_locked(probe);
5581 
5582 	mutex_unlock(&ftrace_lock);
5583 
5584 	mutex_lock(&probe->ops.func_hash->regex_lock);
5585 
5586 	orig_hash = &probe->ops.func_hash->filter_hash;
5587 	old_hash = *orig_hash;
5588 
5589 	if (ftrace_hash_empty(old_hash))
5590 		goto out_unlock;
5591 
5592 	old_hash_ops.filter_hash = old_hash;
5593 	/* Probes only have filters */
5594 	old_hash_ops.notrace_hash = NULL;
5595 
5596 	ret = -ENOMEM;
5597 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
5598 	if (!hash)
5599 		goto out_unlock;
5600 
5601 	INIT_HLIST_HEAD(&hhd);
5602 
5603 	size = 1 << hash->size_bits;
5604 	for (i = 0; i < size; i++) {
5605 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
5606 
5607 			if (func_g.search) {
5608 				kallsyms_lookup(entry->ip, NULL, NULL,
5609 						NULL, str);
5610 				if (!ftrace_match(str, &func_g))
5611 					continue;
5612 			}
5613 			count++;
5614 			remove_hash_entry(hash, entry);
5615 			hlist_add_head(&entry->hlist, &hhd);
5616 		}
5617 	}
5618 
5619 	/* Nothing found? */
5620 	if (!count) {
5621 		ret = -EINVAL;
5622 		goto out_unlock;
5623 	}
5624 
5625 	mutex_lock(&ftrace_lock);
5626 
5627 	WARN_ON(probe->ref < count);
5628 
5629 	probe->ref -= count;
5630 
5631 	if (ftrace_hash_empty(hash))
5632 		ftrace_shutdown(&probe->ops, 0);
5633 
5634 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
5635 					      hash, 1);
5636 
5637 	/* still need to update the function call sites */
5638 	if (ftrace_enabled && !ftrace_hash_empty(hash))
5639 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
5640 				       &old_hash_ops);
5641 	synchronize_rcu();
5642 
5643 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
5644 		hlist_del(&entry->hlist);
5645 		if (probe_ops->free)
5646 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
5647 		kfree(entry);
5648 	}
5649 	mutex_unlock(&ftrace_lock);
5650 
5651  out_unlock:
5652 	mutex_unlock(&probe->ops.func_hash->regex_lock);
5653 	free_ftrace_hash(hash);
5654 
5655 	release_probe(probe);
5656 
5657 	return ret;
5658 
5659  err_unlock_ftrace:
5660 	mutex_unlock(&ftrace_lock);
5661 	return ret;
5662 }
5663 
5664 void clear_ftrace_function_probes(struct trace_array *tr)
5665 {
5666 	struct ftrace_func_probe *probe, *n;
5667 
5668 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
5669 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
5670 }
5671 
5672 static LIST_HEAD(ftrace_commands);
5673 static DEFINE_MUTEX(ftrace_cmd_mutex);
5674 
5675 /*
5676  * Currently we only register ftrace commands from __init, so mark this
5677  * __init too.
5678  */
5679 __init int register_ftrace_command(struct ftrace_func_command *cmd)
5680 {
5681 	struct ftrace_func_command *p;
5682 
5683 	guard(mutex)(&ftrace_cmd_mutex);
5684 	list_for_each_entry(p, &ftrace_commands, list) {
5685 		if (strcmp(cmd->name, p->name) == 0)
5686 			return -EBUSY;
5687 	}
5688 	list_add(&cmd->list, &ftrace_commands);
5689 
5690 	return 0;
5691 }
5692 
5693 /*
5694  * Currently we only unregister ftrace commands from __init, so mark
5695  * this __init too.
5696  */
5697 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
5698 {
5699 	struct ftrace_func_command *p, *n;
5700 
5701 	guard(mutex)(&ftrace_cmd_mutex);
5702 
5703 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
5704 		if (strcmp(cmd->name, p->name) == 0) {
5705 			list_del_init(&p->list);
5706 			return 0;
5707 		}
5708 	}
5709 
5710 	return -ENODEV;
5711 }
5712 
5713 static int ftrace_process_regex(struct ftrace_iterator *iter,
5714 				char *buff, int len, int enable)
5715 {
5716 	struct ftrace_hash *hash = iter->hash;
5717 	struct trace_array *tr = iter->ops->private;
5718 	char *func, *command, *next = buff;
5719 	struct ftrace_func_command *p;
5720 	int ret;
5721 
5722 	func = strsep(&next, ":");
5723 
5724 	if (!next) {
5725 		ret = ftrace_match_records(hash, func, len);
5726 		if (!ret)
5727 			ret = -EINVAL;
5728 		if (ret < 0)
5729 			return ret;
5730 		return 0;
5731 	}
5732 
5733 	/* command found */
5734 
5735 	command = strsep(&next, ":");
5736 
5737 	guard(mutex)(&ftrace_cmd_mutex);
5738 
5739 	list_for_each_entry(p, &ftrace_commands, list) {
5740 		if (strcmp(p->name, command) == 0)
5741 			return p->func(tr, hash, func, command, next, enable);
5742 	}
5743 
5744 	return -EINVAL;
5745 }
5746 
5747 static ssize_t
5748 ftrace_regex_write(struct file *file, const char __user *ubuf,
5749 		   size_t cnt, loff_t *ppos, int enable)
5750 {
5751 	struct ftrace_iterator *iter;
5752 	struct trace_parser *parser;
5753 	ssize_t ret, read;
5754 
5755 	if (!cnt)
5756 		return 0;
5757 
5758 	if (file->f_mode & FMODE_READ) {
5759 		struct seq_file *m = file->private_data;
5760 		iter = m->private;
5761 	} else
5762 		iter = file->private_data;
5763 
5764 	if (unlikely(ftrace_disabled))
5765 		return -ENODEV;
5766 
5767 	/* iter->hash is a local copy, so we don't need regex_lock */
5768 
5769 	parser = &iter->parser;
5770 	read = trace_get_user(parser, ubuf, cnt, ppos);
5771 
5772 	if (read >= 0 && trace_parser_loaded(parser) &&
5773 	    !trace_parser_cont(parser)) {
5774 		ret = ftrace_process_regex(iter, parser->buffer,
5775 					   parser->idx, enable);
5776 		trace_parser_clear(parser);
5777 		if (ret < 0)
5778 			return ret;
5779 	}
5780 
5781 	return read;
5782 }
5783 
5784 ssize_t
5785 ftrace_filter_write(struct file *file, const char __user *ubuf,
5786 		    size_t cnt, loff_t *ppos)
5787 {
5788 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
5789 }
5790 
5791 ssize_t
5792 ftrace_notrace_write(struct file *file, const char __user *ubuf,
5793 		     size_t cnt, loff_t *ppos)
5794 {
5795 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
5796 }
5797 
5798 static int
5799 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
5800 {
5801 	struct ftrace_func_entry *entry;
5802 
5803 	ip = ftrace_location(ip);
5804 	if (!ip)
5805 		return -EINVAL;
5806 
5807 	if (remove) {
5808 		entry = ftrace_lookup_ip(hash, ip);
5809 		if (!entry)
5810 			return -ENOENT;
5811 		free_hash_entry(hash, entry);
5812 		return 0;
5813 	} else if (__ftrace_lookup_ip(hash, ip) != NULL) {
5814 		/* Already exists */
5815 		return 0;
5816 	}
5817 
5818 	entry = add_hash_entry(hash, ip);
5819 	return entry ? 0 :  -ENOMEM;
5820 }
5821 
5822 static int
5823 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips,
5824 		  unsigned int cnt, int remove)
5825 {
5826 	unsigned int i;
5827 	int err;
5828 
5829 	for (i = 0; i < cnt; i++) {
5830 		err = __ftrace_match_addr(hash, ips[i], remove);
5831 		if (err) {
5832 			/*
5833 			 * This expects the @hash is a temporary hash and if this
5834 			 * fails the caller must free the @hash.
5835 			 */
5836 			return err;
5837 		}
5838 	}
5839 	return 0;
5840 }
5841 
5842 static int
5843 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
5844 		unsigned long *ips, unsigned int cnt,
5845 		int remove, int reset, int enable, char *mod)
5846 {
5847 	struct ftrace_hash **orig_hash;
5848 	struct ftrace_hash *hash;
5849 	int ret;
5850 
5851 	if (unlikely(ftrace_disabled))
5852 		return -ENODEV;
5853 
5854 	mutex_lock(&ops->func_hash->regex_lock);
5855 
5856 	if (enable)
5857 		orig_hash = &ops->func_hash->filter_hash;
5858 	else
5859 		orig_hash = &ops->func_hash->notrace_hash;
5860 
5861 	if (reset)
5862 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5863 	else
5864 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
5865 
5866 	if (!hash) {
5867 		ret = -ENOMEM;
5868 		goto out_regex_unlock;
5869 	}
5870 
5871 	if (buf && !match_records(hash, buf, len, mod)) {
5872 		/* If this was for a module and nothing was enabled, flag it */
5873 		if (mod)
5874 			(*orig_hash)->flags |= FTRACE_HASH_FL_MOD;
5875 
5876 		/*
5877 		 * Even if it is a mod, return error to let caller know
5878 		 * nothing was added
5879 		 */
5880 		ret = -EINVAL;
5881 		goto out_regex_unlock;
5882 	}
5883 	if (ips) {
5884 		ret = ftrace_match_addr(hash, ips, cnt, remove);
5885 		if (ret < 0)
5886 			goto out_regex_unlock;
5887 	}
5888 
5889 	mutex_lock(&ftrace_lock);
5890 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5891 	mutex_unlock(&ftrace_lock);
5892 
5893  out_regex_unlock:
5894 	mutex_unlock(&ops->func_hash->regex_lock);
5895 
5896 	free_ftrace_hash(hash);
5897 	return ret;
5898 }
5899 
5900 static int
5901 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt,
5902 		int remove, int reset, int enable)
5903 {
5904 	return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable, NULL);
5905 }
5906 
5907 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5908 
5909 static int register_ftrace_function_nolock(struct ftrace_ops *ops);
5910 
5911 /*
5912  * If there are multiple ftrace_ops, use SAVE_REGS by default, so that direct
5913  * call will be jumped from ftrace_regs_caller. Only if the architecture does
5914  * not support ftrace_regs_caller but direct_call, use SAVE_ARGS so that it
5915  * jumps from ftrace_caller for multiple ftrace_ops.
5916  */
5917 #ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_REGS
5918 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_ARGS)
5919 #else
5920 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS)
5921 #endif
5922 
5923 static int check_direct_multi(struct ftrace_ops *ops)
5924 {
5925 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5926 		return -EINVAL;
5927 	if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS)
5928 		return -EINVAL;
5929 	return 0;
5930 }
5931 
5932 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr)
5933 {
5934 	struct ftrace_func_entry *entry, *del;
5935 	int size, i;
5936 
5937 	size = 1 << hash->size_bits;
5938 	for (i = 0; i < size; i++) {
5939 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5940 			del = __ftrace_lookup_ip(direct_functions, entry->ip);
5941 			if (del && del->direct == addr) {
5942 				remove_hash_entry(direct_functions, del);
5943 				kfree(del);
5944 			}
5945 		}
5946 	}
5947 }
5948 
5949 static void register_ftrace_direct_cb(struct rcu_head *rhp)
5950 {
5951 	struct ftrace_hash *fhp = container_of(rhp, struct ftrace_hash, rcu);
5952 
5953 	free_ftrace_hash(fhp);
5954 }
5955 
5956 /**
5957  * register_ftrace_direct - Call a custom trampoline directly
5958  * for multiple functions registered in @ops
5959  * @ops: The address of the struct ftrace_ops object
5960  * @addr: The address of the trampoline to call at @ops functions
5961  *
5962  * This is used to connect a direct calls to @addr from the nop locations
5963  * of the functions registered in @ops (with by ftrace_set_filter_ip
5964  * function).
5965  *
5966  * The location that it calls (@addr) must be able to handle a direct call,
5967  * and save the parameters of the function being traced, and restore them
5968  * (or inject new ones if needed), before returning.
5969  *
5970  * Returns:
5971  *  0 on success
5972  *  -EINVAL  - The @ops object was already registered with this call or
5973  *             when there are no functions in @ops object.
5974  *  -EBUSY   - Another direct function is already attached (there can be only one)
5975  *  -ENODEV  - @ip does not point to a ftrace nop location (or not supported)
5976  *  -ENOMEM  - There was an allocation failure.
5977  */
5978 int register_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
5979 {
5980 	struct ftrace_hash *hash, *new_hash = NULL, *free_hash = NULL;
5981 	struct ftrace_func_entry *entry, *new;
5982 	int err = -EBUSY, size, i;
5983 
5984 	if (ops->func || ops->trampoline)
5985 		return -EINVAL;
5986 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5987 		return -EINVAL;
5988 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
5989 		return -EINVAL;
5990 
5991 	hash = ops->func_hash->filter_hash;
5992 	if (ftrace_hash_empty(hash))
5993 		return -EINVAL;
5994 
5995 	mutex_lock(&direct_mutex);
5996 
5997 	/* Make sure requested entries are not already registered.. */
5998 	size = 1 << hash->size_bits;
5999 	for (i = 0; i < size; i++) {
6000 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
6001 			if (ftrace_find_rec_direct(entry->ip))
6002 				goto out_unlock;
6003 		}
6004 	}
6005 
6006 	err = -ENOMEM;
6007 
6008 	/* Make a copy hash to place the new and the old entries in */
6009 	size = hash->count + direct_functions->count;
6010 	size = fls(size);
6011 	if (size > FTRACE_HASH_MAX_BITS)
6012 		size = FTRACE_HASH_MAX_BITS;
6013 	new_hash = alloc_ftrace_hash(size);
6014 	if (!new_hash)
6015 		goto out_unlock;
6016 
6017 	/* Now copy over the existing direct entries */
6018 	size = 1 << direct_functions->size_bits;
6019 	for (i = 0; i < size; i++) {
6020 		hlist_for_each_entry(entry, &direct_functions->buckets[i], hlist) {
6021 			new = add_hash_entry(new_hash, entry->ip);
6022 			if (!new)
6023 				goto out_unlock;
6024 			new->direct = entry->direct;
6025 		}
6026 	}
6027 
6028 	/* ... and add the new entries */
6029 	size = 1 << hash->size_bits;
6030 	for (i = 0; i < size; i++) {
6031 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
6032 			new = add_hash_entry(new_hash, entry->ip);
6033 			if (!new)
6034 				goto out_unlock;
6035 			/* Update both the copy and the hash entry */
6036 			new->direct = addr;
6037 			entry->direct = addr;
6038 		}
6039 	}
6040 
6041 	free_hash = direct_functions;
6042 	rcu_assign_pointer(direct_functions, new_hash);
6043 	new_hash = NULL;
6044 
6045 	ops->func = call_direct_funcs;
6046 	ops->flags = MULTI_FLAGS;
6047 	ops->trampoline = FTRACE_REGS_ADDR;
6048 	ops->direct_call = addr;
6049 
6050 	err = register_ftrace_function_nolock(ops);
6051 
6052  out_unlock:
6053 	mutex_unlock(&direct_mutex);
6054 
6055 	if (free_hash && free_hash != EMPTY_HASH)
6056 		call_rcu_tasks(&free_hash->rcu, register_ftrace_direct_cb);
6057 
6058 	if (new_hash)
6059 		free_ftrace_hash(new_hash);
6060 
6061 	return err;
6062 }
6063 EXPORT_SYMBOL_GPL(register_ftrace_direct);
6064 
6065 /**
6066  * unregister_ftrace_direct - Remove calls to custom trampoline
6067  * previously registered by register_ftrace_direct for @ops object.
6068  * @ops: The address of the struct ftrace_ops object
6069  * @addr: The address of the direct function that is called by the @ops functions
6070  * @free_filters: Set to true to remove all filters for the ftrace_ops, false otherwise
6071  *
6072  * This is used to remove a direct calls to @addr from the nop locations
6073  * of the functions registered in @ops (with by ftrace_set_filter_ip
6074  * function).
6075  *
6076  * Returns:
6077  *  0 on success
6078  *  -EINVAL - The @ops object was not properly registered.
6079  */
6080 int unregister_ftrace_direct(struct ftrace_ops *ops, unsigned long addr,
6081 			     bool free_filters)
6082 {
6083 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
6084 	int err;
6085 
6086 	if (check_direct_multi(ops))
6087 		return -EINVAL;
6088 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6089 		return -EINVAL;
6090 
6091 	mutex_lock(&direct_mutex);
6092 	err = unregister_ftrace_function(ops);
6093 	remove_direct_functions_hash(hash, addr);
6094 	mutex_unlock(&direct_mutex);
6095 
6096 	/* cleanup for possible another register call */
6097 	ops->func = NULL;
6098 	ops->trampoline = 0;
6099 
6100 	if (free_filters)
6101 		ftrace_free_filter(ops);
6102 	return err;
6103 }
6104 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
6105 
6106 static int
6107 __modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
6108 {
6109 	struct ftrace_hash *hash;
6110 	struct ftrace_func_entry *entry, *iter;
6111 	static struct ftrace_ops tmp_ops = {
6112 		.func		= ftrace_stub,
6113 		.flags		= FTRACE_OPS_FL_STUB,
6114 	};
6115 	int i, size;
6116 	int err;
6117 
6118 	lockdep_assert_held_once(&direct_mutex);
6119 
6120 	/* Enable the tmp_ops to have the same functions as the direct ops */
6121 	ftrace_ops_init(&tmp_ops);
6122 	tmp_ops.func_hash = ops->func_hash;
6123 	tmp_ops.direct_call = addr;
6124 
6125 	err = register_ftrace_function_nolock(&tmp_ops);
6126 	if (err)
6127 		return err;
6128 
6129 	/*
6130 	 * Now the ftrace_ops_list_func() is called to do the direct callers.
6131 	 * We can safely change the direct functions attached to each entry.
6132 	 */
6133 	mutex_lock(&ftrace_lock);
6134 
6135 	hash = ops->func_hash->filter_hash;
6136 	size = 1 << hash->size_bits;
6137 	for (i = 0; i < size; i++) {
6138 		hlist_for_each_entry(iter, &hash->buckets[i], hlist) {
6139 			entry = __ftrace_lookup_ip(direct_functions, iter->ip);
6140 			if (!entry)
6141 				continue;
6142 			entry->direct = addr;
6143 		}
6144 	}
6145 	/* Prevent store tearing if a trampoline concurrently accesses the value */
6146 	WRITE_ONCE(ops->direct_call, addr);
6147 
6148 	mutex_unlock(&ftrace_lock);
6149 
6150 	/* Removing the tmp_ops will add the updated direct callers to the functions */
6151 	unregister_ftrace_function(&tmp_ops);
6152 
6153 	return err;
6154 }
6155 
6156 /**
6157  * modify_ftrace_direct_nolock - Modify an existing direct 'multi' call
6158  * to call something else
6159  * @ops: The address of the struct ftrace_ops object
6160  * @addr: The address of the new trampoline to call at @ops functions
6161  *
6162  * This is used to unregister currently registered direct caller and
6163  * register new one @addr on functions registered in @ops object.
6164  *
6165  * Note there's window between ftrace_shutdown and ftrace_startup calls
6166  * where there will be no callbacks called.
6167  *
6168  * Caller should already have direct_mutex locked, so we don't lock
6169  * direct_mutex here.
6170  *
6171  * Returns: zero on success. Non zero on error, which includes:
6172  *  -EINVAL - The @ops object was not properly registered.
6173  */
6174 int modify_ftrace_direct_nolock(struct ftrace_ops *ops, unsigned long addr)
6175 {
6176 	if (check_direct_multi(ops))
6177 		return -EINVAL;
6178 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6179 		return -EINVAL;
6180 
6181 	return __modify_ftrace_direct(ops, addr);
6182 }
6183 EXPORT_SYMBOL_GPL(modify_ftrace_direct_nolock);
6184 
6185 /**
6186  * modify_ftrace_direct - Modify an existing direct 'multi' call
6187  * to call something else
6188  * @ops: The address of the struct ftrace_ops object
6189  * @addr: The address of the new trampoline to call at @ops functions
6190  *
6191  * This is used to unregister currently registered direct caller and
6192  * register new one @addr on functions registered in @ops object.
6193  *
6194  * Note there's window between ftrace_shutdown and ftrace_startup calls
6195  * where there will be no callbacks called.
6196  *
6197  * Returns: zero on success. Non zero on error, which includes:
6198  *  -EINVAL - The @ops object was not properly registered.
6199  */
6200 int modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr)
6201 {
6202 	int err;
6203 
6204 	if (check_direct_multi(ops))
6205 		return -EINVAL;
6206 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6207 		return -EINVAL;
6208 
6209 	mutex_lock(&direct_mutex);
6210 	err = __modify_ftrace_direct(ops, addr);
6211 	mutex_unlock(&direct_mutex);
6212 	return err;
6213 }
6214 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
6215 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
6216 
6217 /**
6218  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
6219  * @ops: the ops to set the filter with
6220  * @ip: the address to add to or remove from the filter.
6221  * @remove: non zero to remove the ip from the filter
6222  * @reset: non zero to reset all filters before applying this filter.
6223  *
6224  * Filters denote which functions should be enabled when tracing is enabled
6225  * If @ip is NULL, it fails to update filter.
6226  *
6227  * This can allocate memory which must be freed before @ops can be freed,
6228  * either by removing each filtered addr or by using
6229  * ftrace_free_filter(@ops).
6230  */
6231 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
6232 			 int remove, int reset)
6233 {
6234 	ftrace_ops_init(ops);
6235 	return ftrace_set_addr(ops, &ip, 1, remove, reset, 1);
6236 }
6237 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
6238 
6239 /**
6240  * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses
6241  * @ops: the ops to set the filter with
6242  * @ips: the array of addresses to add to or remove from the filter.
6243  * @cnt: the number of addresses in @ips
6244  * @remove: non zero to remove ips from the filter
6245  * @reset: non zero to reset all filters before applying this filter.
6246  *
6247  * Filters denote which functions should be enabled when tracing is enabled
6248  * If @ips array or any ip specified within is NULL , it fails to update filter.
6249  *
6250  * This can allocate memory which must be freed before @ops can be freed,
6251  * either by removing each filtered addr or by using
6252  * ftrace_free_filter(@ops).
6253 */
6254 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
6255 			  unsigned int cnt, int remove, int reset)
6256 {
6257 	ftrace_ops_init(ops);
6258 	return ftrace_set_addr(ops, ips, cnt, remove, reset, 1);
6259 }
6260 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips);
6261 
6262 /**
6263  * ftrace_ops_set_global_filter - setup ops to use global filters
6264  * @ops: the ops which will use the global filters
6265  *
6266  * ftrace users who need global function trace filtering should call this.
6267  * It can set the global filter only if ops were not initialized before.
6268  */
6269 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
6270 {
6271 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
6272 		return;
6273 
6274 	ftrace_ops_init(ops);
6275 	ops->func_hash = &global_ops.local_hash;
6276 }
6277 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
6278 
6279 static int
6280 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
6281 		 int reset, int enable)
6282 {
6283 	char *mod = NULL, *func, *command, *next = buf;
6284 	char *tmp __free(kfree) = NULL;
6285 	struct trace_array *tr = ops->private;
6286 	int ret;
6287 
6288 	func = strsep(&next, ":");
6289 
6290 	/* This can also handle :mod: parsing */
6291 	if (next) {
6292 		if (!tr)
6293 			return -EINVAL;
6294 
6295 		command = strsep(&next, ":");
6296 		if (strcmp(command, "mod") != 0)
6297 			return -EINVAL;
6298 
6299 		mod = next;
6300 		len = command - func;
6301 		/* Save the original func as ftrace_set_hash() can modify it */
6302 		tmp = kstrdup(func, GFP_KERNEL);
6303 	}
6304 
6305 	ret = ftrace_set_hash(ops, func, len, NULL, 0, 0, reset, enable, mod);
6306 
6307 	if (tr && mod && ret < 0) {
6308 		/* Did tmp fail to allocate? */
6309 		if (!tmp)
6310 			return -ENOMEM;
6311 		ret = cache_mod(tr, tmp, mod, enable);
6312 	}
6313 
6314 	return ret;
6315 }
6316 
6317 /**
6318  * ftrace_set_filter - set a function to filter on in ftrace
6319  * @ops: the ops to set the filter with
6320  * @buf: the string that holds the function filter text.
6321  * @len: the length of the string.
6322  * @reset: non-zero to reset all filters before applying this filter.
6323  *
6324  * Filters denote which functions should be enabled when tracing is enabled.
6325  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6326  *
6327  * This can allocate memory which must be freed before @ops can be freed,
6328  * either by removing each filtered addr or by using
6329  * ftrace_free_filter(@ops).
6330  */
6331 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
6332 		       int len, int reset)
6333 {
6334 	ftrace_ops_init(ops);
6335 	return ftrace_set_regex(ops, buf, len, reset, 1);
6336 }
6337 EXPORT_SYMBOL_GPL(ftrace_set_filter);
6338 
6339 /**
6340  * ftrace_set_notrace - set a function to not trace in ftrace
6341  * @ops: the ops to set the notrace filter with
6342  * @buf: the string that holds the function notrace text.
6343  * @len: the length of the string.
6344  * @reset: non-zero to reset all filters before applying this filter.
6345  *
6346  * Notrace Filters denote which functions should not be enabled when tracing
6347  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6348  * for tracing.
6349  *
6350  * This can allocate memory which must be freed before @ops can be freed,
6351  * either by removing each filtered addr or by using
6352  * ftrace_free_filter(@ops).
6353  */
6354 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
6355 			int len, int reset)
6356 {
6357 	ftrace_ops_init(ops);
6358 	return ftrace_set_regex(ops, buf, len, reset, 0);
6359 }
6360 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
6361 /**
6362  * ftrace_set_global_filter - set a function to filter on with global tracers
6363  * @buf: the string that holds the function filter text.
6364  * @len: the length of the string.
6365  * @reset: non-zero to reset all filters before applying this filter.
6366  *
6367  * Filters denote which functions should be enabled when tracing is enabled.
6368  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6369  */
6370 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
6371 {
6372 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
6373 }
6374 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
6375 
6376 /**
6377  * ftrace_set_global_notrace - set a function to not trace with global tracers
6378  * @buf: the string that holds the function notrace text.
6379  * @len: the length of the string.
6380  * @reset: non-zero to reset all filters before applying this filter.
6381  *
6382  * Notrace Filters denote which functions should not be enabled when tracing
6383  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6384  * for tracing.
6385  */
6386 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
6387 {
6388 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
6389 }
6390 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
6391 
6392 /*
6393  * command line interface to allow users to set filters on boot up.
6394  */
6395 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
6396 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6397 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
6398 
6399 /* Used by function selftest to not test if filter is set */
6400 bool ftrace_filter_param __initdata;
6401 
6402 static int __init set_ftrace_notrace(char *str)
6403 {
6404 	ftrace_filter_param = true;
6405 	strscpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
6406 	return 1;
6407 }
6408 __setup("ftrace_notrace=", set_ftrace_notrace);
6409 
6410 static int __init set_ftrace_filter(char *str)
6411 {
6412 	ftrace_filter_param = true;
6413 	strscpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
6414 	return 1;
6415 }
6416 __setup("ftrace_filter=", set_ftrace_filter);
6417 
6418 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6419 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
6420 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6421 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
6422 
6423 static int __init set_graph_function(char *str)
6424 {
6425 	strscpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
6426 	return 1;
6427 }
6428 __setup("ftrace_graph_filter=", set_graph_function);
6429 
6430 static int __init set_graph_notrace_function(char *str)
6431 {
6432 	strscpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
6433 	return 1;
6434 }
6435 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
6436 
6437 static int __init set_graph_max_depth_function(char *str)
6438 {
6439 	if (!str || kstrtouint(str, 0, &fgraph_max_depth))
6440 		return 0;
6441 	return 1;
6442 }
6443 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
6444 
6445 static void __init set_ftrace_early_graph(char *buf, int enable)
6446 {
6447 	int ret;
6448 	char *func;
6449 	struct ftrace_hash *hash;
6450 
6451 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
6452 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
6453 		return;
6454 
6455 	while (buf) {
6456 		func = strsep(&buf, ",");
6457 		/* we allow only one expression at a time */
6458 		ret = ftrace_graph_set_hash(hash, func);
6459 		if (ret)
6460 			printk(KERN_DEBUG "ftrace: function %s not "
6461 					  "traceable\n", func);
6462 	}
6463 
6464 	if (enable)
6465 		ftrace_graph_hash = hash;
6466 	else
6467 		ftrace_graph_notrace_hash = hash;
6468 }
6469 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6470 
6471 void __init
6472 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
6473 {
6474 	char *func;
6475 
6476 	ftrace_ops_init(ops);
6477 
6478 	/* The trace_array is needed for caching module function filters */
6479 	if (!ops->private) {
6480 		struct trace_array *tr = trace_get_global_array();
6481 
6482 		ops->private = tr;
6483 		ftrace_init_trace_array(tr);
6484 	}
6485 
6486 	while (buf) {
6487 		func = strsep(&buf, ",");
6488 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
6489 	}
6490 }
6491 
6492 static void __init set_ftrace_early_filters(void)
6493 {
6494 	if (ftrace_filter_buf[0])
6495 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
6496 	if (ftrace_notrace_buf[0])
6497 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
6498 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6499 	if (ftrace_graph_buf[0])
6500 		set_ftrace_early_graph(ftrace_graph_buf, 1);
6501 	if (ftrace_graph_notrace_buf[0])
6502 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
6503 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6504 }
6505 
6506 int ftrace_regex_release(struct inode *inode, struct file *file)
6507 {
6508 	struct seq_file *m = (struct seq_file *)file->private_data;
6509 	struct ftrace_iterator *iter;
6510 	struct ftrace_hash **orig_hash;
6511 	struct trace_parser *parser;
6512 	int filter_hash;
6513 
6514 	if (file->f_mode & FMODE_READ) {
6515 		iter = m->private;
6516 		seq_release(inode, file);
6517 	} else
6518 		iter = file->private_data;
6519 
6520 	parser = &iter->parser;
6521 	if (trace_parser_loaded(parser)) {
6522 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
6523 
6524 		ftrace_process_regex(iter, parser->buffer,
6525 				     parser->idx, enable);
6526 	}
6527 
6528 	trace_parser_put(parser);
6529 
6530 	mutex_lock(&iter->ops->func_hash->regex_lock);
6531 
6532 	if (file->f_mode & FMODE_WRITE) {
6533 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
6534 
6535 		if (filter_hash) {
6536 			orig_hash = &iter->ops->func_hash->filter_hash;
6537 			if (iter->tr) {
6538 				if (list_empty(&iter->tr->mod_trace))
6539 					iter->hash->flags &= ~FTRACE_HASH_FL_MOD;
6540 				else
6541 					iter->hash->flags |= FTRACE_HASH_FL_MOD;
6542 			}
6543 		} else
6544 			orig_hash = &iter->ops->func_hash->notrace_hash;
6545 
6546 		mutex_lock(&ftrace_lock);
6547 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
6548 						      iter->hash, filter_hash);
6549 		mutex_unlock(&ftrace_lock);
6550 	} else {
6551 		/* For read only, the hash is the ops hash */
6552 		iter->hash = NULL;
6553 	}
6554 
6555 	mutex_unlock(&iter->ops->func_hash->regex_lock);
6556 	free_ftrace_hash(iter->hash);
6557 	if (iter->tr)
6558 		trace_array_put(iter->tr);
6559 	kfree(iter);
6560 
6561 	return 0;
6562 }
6563 
6564 static const struct file_operations ftrace_avail_fops = {
6565 	.open = ftrace_avail_open,
6566 	.read = seq_read,
6567 	.llseek = seq_lseek,
6568 	.release = seq_release_private,
6569 };
6570 
6571 static const struct file_operations ftrace_enabled_fops = {
6572 	.open = ftrace_enabled_open,
6573 	.read = seq_read,
6574 	.llseek = seq_lseek,
6575 	.release = seq_release_private,
6576 };
6577 
6578 static const struct file_operations ftrace_touched_fops = {
6579 	.open = ftrace_touched_open,
6580 	.read = seq_read,
6581 	.llseek = seq_lseek,
6582 	.release = seq_release_private,
6583 };
6584 
6585 static const struct file_operations ftrace_avail_addrs_fops = {
6586 	.open = ftrace_avail_addrs_open,
6587 	.read = seq_read,
6588 	.llseek = seq_lseek,
6589 	.release = seq_release_private,
6590 };
6591 
6592 static const struct file_operations ftrace_filter_fops = {
6593 	.open = ftrace_filter_open,
6594 	.read = seq_read,
6595 	.write = ftrace_filter_write,
6596 	.llseek = tracing_lseek,
6597 	.release = ftrace_regex_release,
6598 };
6599 
6600 static const struct file_operations ftrace_notrace_fops = {
6601 	.open = ftrace_notrace_open,
6602 	.read = seq_read,
6603 	.write = ftrace_notrace_write,
6604 	.llseek = tracing_lseek,
6605 	.release = ftrace_regex_release,
6606 };
6607 
6608 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6609 
6610 static DEFINE_MUTEX(graph_lock);
6611 
6612 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
6613 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
6614 
6615 enum graph_filter_type {
6616 	GRAPH_FILTER_NOTRACE	= 0,
6617 	GRAPH_FILTER_FUNCTION,
6618 };
6619 
6620 #define FTRACE_GRAPH_EMPTY	((void *)1)
6621 
6622 struct ftrace_graph_data {
6623 	struct ftrace_hash		*hash;
6624 	struct ftrace_func_entry	*entry;
6625 	int				idx;   /* for hash table iteration */
6626 	enum graph_filter_type		type;
6627 	struct ftrace_hash		*new_hash;
6628 	const struct seq_operations	*seq_ops;
6629 	struct trace_parser		parser;
6630 };
6631 
6632 static void *
6633 __g_next(struct seq_file *m, loff_t *pos)
6634 {
6635 	struct ftrace_graph_data *fgd = m->private;
6636 	struct ftrace_func_entry *entry = fgd->entry;
6637 	struct hlist_head *head;
6638 	int i, idx = fgd->idx;
6639 
6640 	if (*pos >= fgd->hash->count)
6641 		return NULL;
6642 
6643 	if (entry) {
6644 		hlist_for_each_entry_continue(entry, hlist) {
6645 			fgd->entry = entry;
6646 			return entry;
6647 		}
6648 
6649 		idx++;
6650 	}
6651 
6652 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
6653 		head = &fgd->hash->buckets[i];
6654 		hlist_for_each_entry(entry, head, hlist) {
6655 			fgd->entry = entry;
6656 			fgd->idx = i;
6657 			return entry;
6658 		}
6659 	}
6660 	return NULL;
6661 }
6662 
6663 static void *
6664 g_next(struct seq_file *m, void *v, loff_t *pos)
6665 {
6666 	(*pos)++;
6667 	return __g_next(m, pos);
6668 }
6669 
6670 static void *g_start(struct seq_file *m, loff_t *pos)
6671 {
6672 	struct ftrace_graph_data *fgd = m->private;
6673 
6674 	mutex_lock(&graph_lock);
6675 
6676 	if (fgd->type == GRAPH_FILTER_FUNCTION)
6677 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6678 					lockdep_is_held(&graph_lock));
6679 	else
6680 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6681 					lockdep_is_held(&graph_lock));
6682 
6683 	/* Nothing, tell g_show to print all functions are enabled */
6684 	if (ftrace_hash_empty(fgd->hash) && !*pos)
6685 		return FTRACE_GRAPH_EMPTY;
6686 
6687 	fgd->idx = 0;
6688 	fgd->entry = NULL;
6689 	return __g_next(m, pos);
6690 }
6691 
6692 static void g_stop(struct seq_file *m, void *p)
6693 {
6694 	mutex_unlock(&graph_lock);
6695 }
6696 
6697 static int g_show(struct seq_file *m, void *v)
6698 {
6699 	struct ftrace_func_entry *entry = v;
6700 
6701 	if (!entry)
6702 		return 0;
6703 
6704 	if (entry == FTRACE_GRAPH_EMPTY) {
6705 		struct ftrace_graph_data *fgd = m->private;
6706 
6707 		if (fgd->type == GRAPH_FILTER_FUNCTION)
6708 			seq_puts(m, "#### all functions enabled ####\n");
6709 		else
6710 			seq_puts(m, "#### no functions disabled ####\n");
6711 		return 0;
6712 	}
6713 
6714 	seq_printf(m, "%ps\n", (void *)entry->ip);
6715 
6716 	return 0;
6717 }
6718 
6719 static const struct seq_operations ftrace_graph_seq_ops = {
6720 	.start = g_start,
6721 	.next = g_next,
6722 	.stop = g_stop,
6723 	.show = g_show,
6724 };
6725 
6726 static int
6727 __ftrace_graph_open(struct inode *inode, struct file *file,
6728 		    struct ftrace_graph_data *fgd)
6729 {
6730 	int ret;
6731 	struct ftrace_hash *new_hash = NULL;
6732 
6733 	ret = security_locked_down(LOCKDOWN_TRACEFS);
6734 	if (ret)
6735 		return ret;
6736 
6737 	if (file->f_mode & FMODE_WRITE) {
6738 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
6739 
6740 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
6741 			return -ENOMEM;
6742 
6743 		if (file->f_flags & O_TRUNC)
6744 			new_hash = alloc_ftrace_hash(size_bits);
6745 		else
6746 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
6747 							      fgd->hash);
6748 		if (!new_hash) {
6749 			ret = -ENOMEM;
6750 			goto out;
6751 		}
6752 	}
6753 
6754 	if (file->f_mode & FMODE_READ) {
6755 		ret = seq_open(file, &ftrace_graph_seq_ops);
6756 		if (!ret) {
6757 			struct seq_file *m = file->private_data;
6758 			m->private = fgd;
6759 		} else {
6760 			/* Failed */
6761 			free_ftrace_hash(new_hash);
6762 			new_hash = NULL;
6763 		}
6764 	} else
6765 		file->private_data = fgd;
6766 
6767 out:
6768 	if (ret < 0 && file->f_mode & FMODE_WRITE)
6769 		trace_parser_put(&fgd->parser);
6770 
6771 	fgd->new_hash = new_hash;
6772 
6773 	/*
6774 	 * All uses of fgd->hash must be taken with the graph_lock
6775 	 * held. The graph_lock is going to be released, so force
6776 	 * fgd->hash to be reinitialized when it is taken again.
6777 	 */
6778 	fgd->hash = NULL;
6779 
6780 	return ret;
6781 }
6782 
6783 static int
6784 ftrace_graph_open(struct inode *inode, struct file *file)
6785 {
6786 	struct ftrace_graph_data *fgd;
6787 	int ret;
6788 
6789 	if (unlikely(ftrace_disabled))
6790 		return -ENODEV;
6791 
6792 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6793 	if (fgd == NULL)
6794 		return -ENOMEM;
6795 
6796 	mutex_lock(&graph_lock);
6797 
6798 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6799 					lockdep_is_held(&graph_lock));
6800 	fgd->type = GRAPH_FILTER_FUNCTION;
6801 	fgd->seq_ops = &ftrace_graph_seq_ops;
6802 
6803 	ret = __ftrace_graph_open(inode, file, fgd);
6804 	if (ret < 0)
6805 		kfree(fgd);
6806 
6807 	mutex_unlock(&graph_lock);
6808 	return ret;
6809 }
6810 
6811 static int
6812 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
6813 {
6814 	struct ftrace_graph_data *fgd;
6815 	int ret;
6816 
6817 	if (unlikely(ftrace_disabled))
6818 		return -ENODEV;
6819 
6820 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6821 	if (fgd == NULL)
6822 		return -ENOMEM;
6823 
6824 	mutex_lock(&graph_lock);
6825 
6826 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6827 					lockdep_is_held(&graph_lock));
6828 	fgd->type = GRAPH_FILTER_NOTRACE;
6829 	fgd->seq_ops = &ftrace_graph_seq_ops;
6830 
6831 	ret = __ftrace_graph_open(inode, file, fgd);
6832 	if (ret < 0)
6833 		kfree(fgd);
6834 
6835 	mutex_unlock(&graph_lock);
6836 	return ret;
6837 }
6838 
6839 static int
6840 ftrace_graph_release(struct inode *inode, struct file *file)
6841 {
6842 	struct ftrace_graph_data *fgd;
6843 	struct ftrace_hash *old_hash, *new_hash;
6844 	struct trace_parser *parser;
6845 	int ret = 0;
6846 
6847 	if (file->f_mode & FMODE_READ) {
6848 		struct seq_file *m = file->private_data;
6849 
6850 		fgd = m->private;
6851 		seq_release(inode, file);
6852 	} else {
6853 		fgd = file->private_data;
6854 	}
6855 
6856 
6857 	if (file->f_mode & FMODE_WRITE) {
6858 
6859 		parser = &fgd->parser;
6860 
6861 		if (trace_parser_loaded((parser))) {
6862 			ret = ftrace_graph_set_hash(fgd->new_hash,
6863 						    parser->buffer);
6864 		}
6865 
6866 		trace_parser_put(parser);
6867 
6868 		new_hash = __ftrace_hash_move(fgd->new_hash);
6869 		if (!new_hash) {
6870 			ret = -ENOMEM;
6871 			goto out;
6872 		}
6873 
6874 		mutex_lock(&graph_lock);
6875 
6876 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
6877 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
6878 					lockdep_is_held(&graph_lock));
6879 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
6880 		} else {
6881 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6882 					lockdep_is_held(&graph_lock));
6883 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
6884 		}
6885 
6886 		mutex_unlock(&graph_lock);
6887 
6888 		/*
6889 		 * We need to do a hard force of sched synchronization.
6890 		 * This is because we use preempt_disable() to do RCU, but
6891 		 * the function tracers can be called where RCU is not watching
6892 		 * (like before user_exit()). We can not rely on the RCU
6893 		 * infrastructure to do the synchronization, thus we must do it
6894 		 * ourselves.
6895 		 */
6896 		if (old_hash != EMPTY_HASH)
6897 			synchronize_rcu_tasks_rude();
6898 
6899 		free_ftrace_hash(old_hash);
6900 	}
6901 
6902  out:
6903 	free_ftrace_hash(fgd->new_hash);
6904 	kfree(fgd);
6905 
6906 	return ret;
6907 }
6908 
6909 static int
6910 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6911 {
6912 	struct ftrace_glob func_g;
6913 	struct dyn_ftrace *rec;
6914 	struct ftrace_page *pg;
6915 	struct ftrace_func_entry *entry;
6916 	int fail = 1;
6917 	int not;
6918 
6919 	/* decode regex */
6920 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6921 					 &func_g.search, &not);
6922 
6923 	func_g.len = strlen(func_g.search);
6924 
6925 	guard(mutex)(&ftrace_lock);
6926 
6927 	if (unlikely(ftrace_disabled))
6928 		return -ENODEV;
6929 
6930 	do_for_each_ftrace_rec(pg, rec) {
6931 
6932 		if (rec->flags & FTRACE_FL_DISABLED)
6933 			continue;
6934 
6935 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6936 			entry = ftrace_lookup_ip(hash, rec->ip);
6937 
6938 			if (!not) {
6939 				fail = 0;
6940 
6941 				if (entry)
6942 					continue;
6943 				if (add_hash_entry(hash, rec->ip) == NULL)
6944 					return 0;
6945 			} else {
6946 				if (entry) {
6947 					free_hash_entry(hash, entry);
6948 					fail = 0;
6949 				}
6950 			}
6951 		}
6952 		cond_resched();
6953 	} while_for_each_ftrace_rec();
6954 
6955 	return fail ? -EINVAL : 0;
6956 }
6957 
6958 static ssize_t
6959 ftrace_graph_write(struct file *file, const char __user *ubuf,
6960 		   size_t cnt, loff_t *ppos)
6961 {
6962 	ssize_t read, ret = 0;
6963 	struct ftrace_graph_data *fgd = file->private_data;
6964 	struct trace_parser *parser;
6965 
6966 	if (!cnt)
6967 		return 0;
6968 
6969 	/* Read mode uses seq functions */
6970 	if (file->f_mode & FMODE_READ) {
6971 		struct seq_file *m = file->private_data;
6972 		fgd = m->private;
6973 	}
6974 
6975 	parser = &fgd->parser;
6976 
6977 	read = trace_get_user(parser, ubuf, cnt, ppos);
6978 
6979 	if (read >= 0 && trace_parser_loaded(parser) &&
6980 	    !trace_parser_cont(parser)) {
6981 
6982 		ret = ftrace_graph_set_hash(fgd->new_hash,
6983 					    parser->buffer);
6984 		trace_parser_clear(parser);
6985 	}
6986 
6987 	if (!ret)
6988 		ret = read;
6989 
6990 	return ret;
6991 }
6992 
6993 static const struct file_operations ftrace_graph_fops = {
6994 	.open		= ftrace_graph_open,
6995 	.read		= seq_read,
6996 	.write		= ftrace_graph_write,
6997 	.llseek		= tracing_lseek,
6998 	.release	= ftrace_graph_release,
6999 };
7000 
7001 static const struct file_operations ftrace_graph_notrace_fops = {
7002 	.open		= ftrace_graph_notrace_open,
7003 	.read		= seq_read,
7004 	.write		= ftrace_graph_write,
7005 	.llseek		= tracing_lseek,
7006 	.release	= ftrace_graph_release,
7007 };
7008 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
7009 
7010 void ftrace_create_filter_files(struct ftrace_ops *ops,
7011 				struct dentry *parent)
7012 {
7013 
7014 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
7015 			  ops, &ftrace_filter_fops);
7016 
7017 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
7018 			  ops, &ftrace_notrace_fops);
7019 }
7020 
7021 /*
7022  * The name "destroy_filter_files" is really a misnomer. Although
7023  * in the future, it may actually delete the files, but this is
7024  * really intended to make sure the ops passed in are disabled
7025  * and that when this function returns, the caller is free to
7026  * free the ops.
7027  *
7028  * The "destroy" name is only to match the "create" name that this
7029  * should be paired with.
7030  */
7031 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
7032 {
7033 	mutex_lock(&ftrace_lock);
7034 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
7035 		ftrace_shutdown(ops, 0);
7036 	ops->flags |= FTRACE_OPS_FL_DELETED;
7037 	ftrace_free_filter(ops);
7038 	mutex_unlock(&ftrace_lock);
7039 }
7040 
7041 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
7042 {
7043 
7044 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
7045 			d_tracer, NULL, &ftrace_avail_fops);
7046 
7047 	trace_create_file("available_filter_functions_addrs", TRACE_MODE_READ,
7048 			d_tracer, NULL, &ftrace_avail_addrs_fops);
7049 
7050 	trace_create_file("enabled_functions", TRACE_MODE_READ,
7051 			d_tracer, NULL, &ftrace_enabled_fops);
7052 
7053 	trace_create_file("touched_functions", TRACE_MODE_READ,
7054 			d_tracer, NULL, &ftrace_touched_fops);
7055 
7056 	ftrace_create_filter_files(&global_ops, d_tracer);
7057 
7058 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
7059 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
7060 				    NULL,
7061 				    &ftrace_graph_fops);
7062 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
7063 				    NULL,
7064 				    &ftrace_graph_notrace_fops);
7065 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
7066 
7067 	return 0;
7068 }
7069 
7070 static int ftrace_cmp_ips(const void *a, const void *b)
7071 {
7072 	const unsigned long *ipa = a;
7073 	const unsigned long *ipb = b;
7074 
7075 	if (*ipa > *ipb)
7076 		return 1;
7077 	if (*ipa < *ipb)
7078 		return -1;
7079 	return 0;
7080 }
7081 
7082 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST
7083 static void test_is_sorted(unsigned long *start, unsigned long count)
7084 {
7085 	int i;
7086 
7087 	for (i = 1; i < count; i++) {
7088 		if (WARN(start[i - 1] > start[i],
7089 			 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i,
7090 			 (void *)start[i - 1], start[i - 1],
7091 			 (void *)start[i], start[i]))
7092 			break;
7093 	}
7094 	if (i == count)
7095 		pr_info("ftrace section at %px sorted properly\n", start);
7096 }
7097 #else
7098 static void test_is_sorted(unsigned long *start, unsigned long count)
7099 {
7100 }
7101 #endif
7102 
7103 static int ftrace_process_locs(struct module *mod,
7104 			       unsigned long *start,
7105 			       unsigned long *end)
7106 {
7107 	struct ftrace_page *pg_unuse = NULL;
7108 	struct ftrace_page *start_pg;
7109 	struct ftrace_page *pg;
7110 	struct dyn_ftrace *rec;
7111 	unsigned long skipped = 0;
7112 	unsigned long count;
7113 	unsigned long *p;
7114 	unsigned long addr;
7115 	unsigned long flags = 0; /* Shut up gcc */
7116 	unsigned long pages;
7117 	int ret = -ENOMEM;
7118 
7119 	count = end - start;
7120 
7121 	if (!count)
7122 		return 0;
7123 
7124 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
7125 
7126 	/*
7127 	 * Sorting mcount in vmlinux at build time depend on
7128 	 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in
7129 	 * modules can not be sorted at build time.
7130 	 */
7131 	if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) {
7132 		sort(start, count, sizeof(*start),
7133 		     ftrace_cmp_ips, NULL);
7134 	} else {
7135 		test_is_sorted(start, count);
7136 	}
7137 
7138 	start_pg = ftrace_allocate_pages(count);
7139 	if (!start_pg)
7140 		return -ENOMEM;
7141 
7142 	mutex_lock(&ftrace_lock);
7143 
7144 	/*
7145 	 * Core and each module needs their own pages, as
7146 	 * modules will free them when they are removed.
7147 	 * Force a new page to be allocated for modules.
7148 	 */
7149 	if (!mod) {
7150 		WARN_ON(ftrace_pages || ftrace_pages_start);
7151 		/* First initialization */
7152 		ftrace_pages = ftrace_pages_start = start_pg;
7153 	} else {
7154 		if (!ftrace_pages)
7155 			goto out;
7156 
7157 		if (WARN_ON(ftrace_pages->next)) {
7158 			/* Hmm, we have free pages? */
7159 			while (ftrace_pages->next)
7160 				ftrace_pages = ftrace_pages->next;
7161 		}
7162 
7163 		ftrace_pages->next = start_pg;
7164 	}
7165 
7166 	p = start;
7167 	pg = start_pg;
7168 	while (p < end) {
7169 		unsigned long end_offset;
7170 
7171 		addr = *p++;
7172 
7173 		/*
7174 		 * Some architecture linkers will pad between
7175 		 * the different mcount_loc sections of different
7176 		 * object files to satisfy alignments.
7177 		 * Skip any NULL pointers.
7178 		 */
7179 		if (!addr) {
7180 			skipped++;
7181 			continue;
7182 		}
7183 
7184 		/*
7185 		 * If this is core kernel, make sure the address is in core
7186 		 * or inittext, as weak functions get zeroed and KASLR can
7187 		 * move them to something other than zero. It just will not
7188 		 * move it to an area where kernel text is.
7189 		 */
7190 		if (!mod && !(is_kernel_text(addr) || is_kernel_inittext(addr))) {
7191 			skipped++;
7192 			continue;
7193 		}
7194 
7195 		addr = ftrace_call_adjust(addr);
7196 
7197 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
7198 		if (end_offset > PAGE_SIZE << pg->order) {
7199 			/* We should have allocated enough */
7200 			if (WARN_ON(!pg->next))
7201 				break;
7202 			pg = pg->next;
7203 		}
7204 
7205 		rec = &pg->records[pg->index++];
7206 		rec->ip = addr;
7207 	}
7208 
7209 	if (pg->next) {
7210 		pg_unuse = pg->next;
7211 		pg->next = NULL;
7212 	}
7213 
7214 	/* Assign the last page to ftrace_pages */
7215 	ftrace_pages = pg;
7216 
7217 	/*
7218 	 * We only need to disable interrupts on start up
7219 	 * because we are modifying code that an interrupt
7220 	 * may execute, and the modification is not atomic.
7221 	 * But for modules, nothing runs the code we modify
7222 	 * until we are finished with it, and there's no
7223 	 * reason to cause large interrupt latencies while we do it.
7224 	 */
7225 	if (!mod)
7226 		local_irq_save(flags);
7227 	ftrace_update_code(mod, start_pg);
7228 	if (!mod)
7229 		local_irq_restore(flags);
7230 	ret = 0;
7231  out:
7232 	mutex_unlock(&ftrace_lock);
7233 
7234 	/* We should have used all pages unless we skipped some */
7235 	if (pg_unuse) {
7236 		unsigned long pg_remaining, remaining = 0;
7237 		unsigned long skip;
7238 
7239 		/* Count the number of entries unused and compare it to skipped. */
7240 		pg_remaining = (ENTRIES_PER_PAGE << pg->order) - pg->index;
7241 
7242 		if (!WARN(skipped < pg_remaining, "Extra allocated pages for ftrace")) {
7243 
7244 			skip = skipped - pg_remaining;
7245 
7246 			for (pg = pg_unuse; pg; pg = pg->next)
7247 				remaining += 1 << pg->order;
7248 
7249 			pages -= remaining;
7250 
7251 			skip = DIV_ROUND_UP(skip, ENTRIES_PER_PAGE);
7252 
7253 			/*
7254 			 * Check to see if the number of pages remaining would
7255 			 * just fit the number of entries skipped.
7256 			 */
7257 			WARN(skip != remaining, "Extra allocated pages for ftrace: %lu with %lu skipped",
7258 			     remaining, skipped);
7259 		}
7260 		/* Need to synchronize with ftrace_location_range() */
7261 		synchronize_rcu();
7262 		ftrace_free_pages(pg_unuse);
7263 	}
7264 
7265 	if (!mod) {
7266 		count -= skipped;
7267 		pr_info("ftrace: allocating %ld entries in %ld pages\n",
7268 			count, pages);
7269 	}
7270 
7271 	return ret;
7272 }
7273 
7274 struct ftrace_mod_func {
7275 	struct list_head	list;
7276 	char			*name;
7277 	unsigned long		ip;
7278 	unsigned int		size;
7279 };
7280 
7281 struct ftrace_mod_map {
7282 	struct rcu_head		rcu;
7283 	struct list_head	list;
7284 	struct module		*mod;
7285 	unsigned long		start_addr;
7286 	unsigned long		end_addr;
7287 	struct list_head	funcs;
7288 	unsigned int		num_funcs;
7289 };
7290 
7291 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
7292 					 unsigned long *value, char *type,
7293 					 char *name, char *module_name,
7294 					 int *exported)
7295 {
7296 	struct ftrace_ops *op;
7297 
7298 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
7299 		if (!op->trampoline || symnum--)
7300 			continue;
7301 		*value = op->trampoline;
7302 		*type = 't';
7303 		strscpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
7304 		strscpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
7305 		*exported = 0;
7306 		return 0;
7307 	}
7308 
7309 	return -ERANGE;
7310 }
7311 
7312 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES)
7313 /*
7314  * Check if the current ops references the given ip.
7315  *
7316  * If the ops traces all functions, then it was already accounted for.
7317  * If the ops does not trace the current record function, skip it.
7318  * If the ops ignores the function via notrace filter, skip it.
7319  */
7320 static bool
7321 ops_references_ip(struct ftrace_ops *ops, unsigned long ip)
7322 {
7323 	/* If ops isn't enabled, ignore it */
7324 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
7325 		return false;
7326 
7327 	/* If ops traces all then it includes this function */
7328 	if (ops_traces_mod(ops))
7329 		return true;
7330 
7331 	/* The function must be in the filter */
7332 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
7333 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip))
7334 		return false;
7335 
7336 	/* If in notrace hash, we ignore it too */
7337 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip))
7338 		return false;
7339 
7340 	return true;
7341 }
7342 #endif
7343 
7344 #ifdef CONFIG_MODULES
7345 
7346 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
7347 
7348 static LIST_HEAD(ftrace_mod_maps);
7349 
7350 static int referenced_filters(struct dyn_ftrace *rec)
7351 {
7352 	struct ftrace_ops *ops;
7353 	int cnt = 0;
7354 
7355 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
7356 		if (ops_references_ip(ops, rec->ip)) {
7357 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
7358 				continue;
7359 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
7360 				continue;
7361 			cnt++;
7362 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
7363 				rec->flags |= FTRACE_FL_REGS;
7364 			if (cnt == 1 && ops->trampoline)
7365 				rec->flags |= FTRACE_FL_TRAMP;
7366 			else
7367 				rec->flags &= ~FTRACE_FL_TRAMP;
7368 		}
7369 	}
7370 
7371 	return cnt;
7372 }
7373 
7374 static void
7375 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
7376 {
7377 	struct ftrace_func_entry *entry;
7378 	struct dyn_ftrace *rec;
7379 	int i;
7380 
7381 	if (ftrace_hash_empty(hash))
7382 		return;
7383 
7384 	for (i = 0; i < pg->index; i++) {
7385 		rec = &pg->records[i];
7386 		entry = __ftrace_lookup_ip(hash, rec->ip);
7387 		/*
7388 		 * Do not allow this rec to match again.
7389 		 * Yeah, it may waste some memory, but will be removed
7390 		 * if/when the hash is modified again.
7391 		 */
7392 		if (entry)
7393 			entry->ip = 0;
7394 	}
7395 }
7396 
7397 /* Clear any records from hashes */
7398 static void clear_mod_from_hashes(struct ftrace_page *pg)
7399 {
7400 	struct trace_array *tr;
7401 
7402 	mutex_lock(&trace_types_lock);
7403 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7404 		if (!tr->ops || !tr->ops->func_hash)
7405 			continue;
7406 		mutex_lock(&tr->ops->func_hash->regex_lock);
7407 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
7408 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
7409 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7410 	}
7411 	mutex_unlock(&trace_types_lock);
7412 }
7413 
7414 static void ftrace_free_mod_map(struct rcu_head *rcu)
7415 {
7416 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
7417 	struct ftrace_mod_func *mod_func;
7418 	struct ftrace_mod_func *n;
7419 
7420 	/* All the contents of mod_map are now not visible to readers */
7421 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
7422 		kfree(mod_func->name);
7423 		list_del(&mod_func->list);
7424 		kfree(mod_func);
7425 	}
7426 
7427 	kfree(mod_map);
7428 }
7429 
7430 void ftrace_release_mod(struct module *mod)
7431 {
7432 	struct ftrace_mod_map *mod_map;
7433 	struct ftrace_mod_map *n;
7434 	struct dyn_ftrace *rec;
7435 	struct ftrace_page **last_pg;
7436 	struct ftrace_page *tmp_page = NULL;
7437 	struct ftrace_page *pg;
7438 
7439 	mutex_lock(&ftrace_lock);
7440 
7441 	/*
7442 	 * To avoid the UAF problem after the module is unloaded, the
7443 	 * 'mod_map' resource needs to be released unconditionally.
7444 	 */
7445 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
7446 		if (mod_map->mod == mod) {
7447 			list_del_rcu(&mod_map->list);
7448 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
7449 			break;
7450 		}
7451 	}
7452 
7453 	if (ftrace_disabled)
7454 		goto out_unlock;
7455 
7456 	/*
7457 	 * Each module has its own ftrace_pages, remove
7458 	 * them from the list.
7459 	 */
7460 	last_pg = &ftrace_pages_start;
7461 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
7462 		rec = &pg->records[0];
7463 		if (within_module(rec->ip, mod)) {
7464 			/*
7465 			 * As core pages are first, the first
7466 			 * page should never be a module page.
7467 			 */
7468 			if (WARN_ON(pg == ftrace_pages_start))
7469 				goto out_unlock;
7470 
7471 			/* Check if we are deleting the last page */
7472 			if (pg == ftrace_pages)
7473 				ftrace_pages = next_to_ftrace_page(last_pg);
7474 
7475 			ftrace_update_tot_cnt -= pg->index;
7476 			*last_pg = pg->next;
7477 
7478 			pg->next = tmp_page;
7479 			tmp_page = pg;
7480 		} else
7481 			last_pg = &pg->next;
7482 	}
7483  out_unlock:
7484 	mutex_unlock(&ftrace_lock);
7485 
7486 	/* Need to synchronize with ftrace_location_range() */
7487 	if (tmp_page)
7488 		synchronize_rcu();
7489 	for (pg = tmp_page; pg; pg = tmp_page) {
7490 
7491 		/* Needs to be called outside of ftrace_lock */
7492 		clear_mod_from_hashes(pg);
7493 
7494 		if (pg->records) {
7495 			free_pages((unsigned long)pg->records, pg->order);
7496 			ftrace_number_of_pages -= 1 << pg->order;
7497 		}
7498 		tmp_page = pg->next;
7499 		kfree(pg);
7500 		ftrace_number_of_groups--;
7501 	}
7502 }
7503 
7504 void ftrace_module_enable(struct module *mod)
7505 {
7506 	struct dyn_ftrace *rec;
7507 	struct ftrace_page *pg;
7508 
7509 	mutex_lock(&ftrace_lock);
7510 
7511 	if (ftrace_disabled)
7512 		goto out_unlock;
7513 
7514 	/*
7515 	 * If the tracing is enabled, go ahead and enable the record.
7516 	 *
7517 	 * The reason not to enable the record immediately is the
7518 	 * inherent check of ftrace_make_nop/ftrace_make_call for
7519 	 * correct previous instructions.  Making first the NOP
7520 	 * conversion puts the module to the correct state, thus
7521 	 * passing the ftrace_make_call check.
7522 	 *
7523 	 * We also delay this to after the module code already set the
7524 	 * text to read-only, as we now need to set it back to read-write
7525 	 * so that we can modify the text.
7526 	 */
7527 	if (ftrace_start_up)
7528 		ftrace_arch_code_modify_prepare();
7529 
7530 	do_for_each_ftrace_rec(pg, rec) {
7531 		int cnt;
7532 		/*
7533 		 * do_for_each_ftrace_rec() is a double loop.
7534 		 * module text shares the pg. If a record is
7535 		 * not part of this module, then skip this pg,
7536 		 * which the "break" will do.
7537 		 */
7538 		if (!within_module(rec->ip, mod))
7539 			break;
7540 
7541 		/* Weak functions should still be ignored */
7542 		if (!test_for_valid_rec(rec)) {
7543 			/* Clear all other flags. Should not be enabled anyway */
7544 			rec->flags = FTRACE_FL_DISABLED;
7545 			continue;
7546 		}
7547 
7548 		cnt = 0;
7549 
7550 		/*
7551 		 * When adding a module, we need to check if tracers are
7552 		 * currently enabled and if they are, and can trace this record,
7553 		 * we need to enable the module functions as well as update the
7554 		 * reference counts for those function records.
7555 		 */
7556 		if (ftrace_start_up)
7557 			cnt += referenced_filters(rec);
7558 
7559 		rec->flags &= ~FTRACE_FL_DISABLED;
7560 		rec->flags += cnt;
7561 
7562 		if (ftrace_start_up && cnt) {
7563 			int failed = __ftrace_replace_code(rec, 1);
7564 			if (failed) {
7565 				ftrace_bug(failed, rec);
7566 				goto out_loop;
7567 			}
7568 		}
7569 
7570 	} while_for_each_ftrace_rec();
7571 
7572  out_loop:
7573 	if (ftrace_start_up)
7574 		ftrace_arch_code_modify_post_process();
7575 
7576  out_unlock:
7577 	mutex_unlock(&ftrace_lock);
7578 
7579 	process_cached_mods(mod->name);
7580 }
7581 
7582 void ftrace_module_init(struct module *mod)
7583 {
7584 	int ret;
7585 
7586 	if (ftrace_disabled || !mod->num_ftrace_callsites)
7587 		return;
7588 
7589 	ret = ftrace_process_locs(mod, mod->ftrace_callsites,
7590 				  mod->ftrace_callsites + mod->num_ftrace_callsites);
7591 	if (ret)
7592 		pr_warn("ftrace: failed to allocate entries for module '%s' functions\n",
7593 			mod->name);
7594 }
7595 
7596 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7597 				struct dyn_ftrace *rec)
7598 {
7599 	struct ftrace_mod_func *mod_func;
7600 	unsigned long symsize;
7601 	unsigned long offset;
7602 	char str[KSYM_SYMBOL_LEN];
7603 	char *modname;
7604 	const char *ret;
7605 
7606 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
7607 	if (!ret)
7608 		return;
7609 
7610 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
7611 	if (!mod_func)
7612 		return;
7613 
7614 	mod_func->name = kstrdup(str, GFP_KERNEL);
7615 	if (!mod_func->name) {
7616 		kfree(mod_func);
7617 		return;
7618 	}
7619 
7620 	mod_func->ip = rec->ip - offset;
7621 	mod_func->size = symsize;
7622 
7623 	mod_map->num_funcs++;
7624 
7625 	list_add_rcu(&mod_func->list, &mod_map->funcs);
7626 }
7627 
7628 static struct ftrace_mod_map *
7629 allocate_ftrace_mod_map(struct module *mod,
7630 			unsigned long start, unsigned long end)
7631 {
7632 	struct ftrace_mod_map *mod_map;
7633 
7634 	if (ftrace_disabled)
7635 		return NULL;
7636 
7637 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
7638 	if (!mod_map)
7639 		return NULL;
7640 
7641 	mod_map->mod = mod;
7642 	mod_map->start_addr = start;
7643 	mod_map->end_addr = end;
7644 	mod_map->num_funcs = 0;
7645 
7646 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
7647 
7648 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
7649 
7650 	return mod_map;
7651 }
7652 
7653 static int
7654 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
7655 			   unsigned long addr, unsigned long *size,
7656 			   unsigned long *off, char *sym)
7657 {
7658 	struct ftrace_mod_func *found_func =  NULL;
7659 	struct ftrace_mod_func *mod_func;
7660 
7661 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7662 		if (addr >= mod_func->ip &&
7663 		    addr < mod_func->ip + mod_func->size) {
7664 			found_func = mod_func;
7665 			break;
7666 		}
7667 	}
7668 
7669 	if (found_func) {
7670 		if (size)
7671 			*size = found_func->size;
7672 		if (off)
7673 			*off = addr - found_func->ip;
7674 		return strscpy(sym, found_func->name, KSYM_NAME_LEN);
7675 	}
7676 
7677 	return 0;
7678 }
7679 
7680 int
7681 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
7682 		   unsigned long *off, char **modname, char *sym)
7683 {
7684 	struct ftrace_mod_map *mod_map;
7685 	int ret = 0;
7686 
7687 	/* mod_map is freed via call_rcu() */
7688 	preempt_disable();
7689 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7690 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
7691 		if (ret) {
7692 			if (modname)
7693 				*modname = mod_map->mod->name;
7694 			break;
7695 		}
7696 	}
7697 	preempt_enable();
7698 
7699 	return ret;
7700 }
7701 
7702 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7703 			   char *type, char *name,
7704 			   char *module_name, int *exported)
7705 {
7706 	struct ftrace_mod_map *mod_map;
7707 	struct ftrace_mod_func *mod_func;
7708 	int ret;
7709 
7710 	preempt_disable();
7711 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7712 
7713 		if (symnum >= mod_map->num_funcs) {
7714 			symnum -= mod_map->num_funcs;
7715 			continue;
7716 		}
7717 
7718 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7719 			if (symnum > 1) {
7720 				symnum--;
7721 				continue;
7722 			}
7723 
7724 			*value = mod_func->ip;
7725 			*type = 'T';
7726 			strscpy(name, mod_func->name, KSYM_NAME_LEN);
7727 			strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
7728 			*exported = 1;
7729 			preempt_enable();
7730 			return 0;
7731 		}
7732 		WARN_ON(1);
7733 		break;
7734 	}
7735 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7736 					    module_name, exported);
7737 	preempt_enable();
7738 	return ret;
7739 }
7740 
7741 #else
7742 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7743 				struct dyn_ftrace *rec) { }
7744 static inline struct ftrace_mod_map *
7745 allocate_ftrace_mod_map(struct module *mod,
7746 			unsigned long start, unsigned long end)
7747 {
7748 	return NULL;
7749 }
7750 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7751 			   char *type, char *name, char *module_name,
7752 			   int *exported)
7753 {
7754 	int ret;
7755 
7756 	preempt_disable();
7757 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7758 					    module_name, exported);
7759 	preempt_enable();
7760 	return ret;
7761 }
7762 #endif /* CONFIG_MODULES */
7763 
7764 struct ftrace_init_func {
7765 	struct list_head list;
7766 	unsigned long ip;
7767 };
7768 
7769 /* Clear any init ips from hashes */
7770 static void
7771 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
7772 {
7773 	struct ftrace_func_entry *entry;
7774 
7775 	entry = ftrace_lookup_ip(hash, func->ip);
7776 	/*
7777 	 * Do not allow this rec to match again.
7778 	 * Yeah, it may waste some memory, but will be removed
7779 	 * if/when the hash is modified again.
7780 	 */
7781 	if (entry)
7782 		entry->ip = 0;
7783 }
7784 
7785 static void
7786 clear_func_from_hashes(struct ftrace_init_func *func)
7787 {
7788 	struct trace_array *tr;
7789 
7790 	mutex_lock(&trace_types_lock);
7791 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7792 		if (!tr->ops || !tr->ops->func_hash)
7793 			continue;
7794 		mutex_lock(&tr->ops->func_hash->regex_lock);
7795 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
7796 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
7797 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7798 	}
7799 	mutex_unlock(&trace_types_lock);
7800 }
7801 
7802 static void add_to_clear_hash_list(struct list_head *clear_list,
7803 				   struct dyn_ftrace *rec)
7804 {
7805 	struct ftrace_init_func *func;
7806 
7807 	func = kmalloc(sizeof(*func), GFP_KERNEL);
7808 	if (!func) {
7809 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
7810 		return;
7811 	}
7812 
7813 	func->ip = rec->ip;
7814 	list_add(&func->list, clear_list);
7815 }
7816 
7817 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
7818 {
7819 	unsigned long start = (unsigned long)(start_ptr);
7820 	unsigned long end = (unsigned long)(end_ptr);
7821 	struct ftrace_page **last_pg = &ftrace_pages_start;
7822 	struct ftrace_page *tmp_page = NULL;
7823 	struct ftrace_page *pg;
7824 	struct dyn_ftrace *rec;
7825 	struct dyn_ftrace key;
7826 	struct ftrace_mod_map *mod_map = NULL;
7827 	struct ftrace_init_func *func, *func_next;
7828 	LIST_HEAD(clear_hash);
7829 
7830 	key.ip = start;
7831 	key.flags = end;	/* overload flags, as it is unsigned long */
7832 
7833 	mutex_lock(&ftrace_lock);
7834 
7835 	/*
7836 	 * If we are freeing module init memory, then check if
7837 	 * any tracer is active. If so, we need to save a mapping of
7838 	 * the module functions being freed with the address.
7839 	 */
7840 	if (mod && ftrace_ops_list != &ftrace_list_end)
7841 		mod_map = allocate_ftrace_mod_map(mod, start, end);
7842 
7843 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
7844 		if (end < pg->records[0].ip ||
7845 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
7846 			continue;
7847  again:
7848 		rec = bsearch(&key, pg->records, pg->index,
7849 			      sizeof(struct dyn_ftrace),
7850 			      ftrace_cmp_recs);
7851 		if (!rec)
7852 			continue;
7853 
7854 		/* rec will be cleared from hashes after ftrace_lock unlock */
7855 		add_to_clear_hash_list(&clear_hash, rec);
7856 
7857 		if (mod_map)
7858 			save_ftrace_mod_rec(mod_map, rec);
7859 
7860 		pg->index--;
7861 		ftrace_update_tot_cnt--;
7862 		if (!pg->index) {
7863 			*last_pg = pg->next;
7864 			pg->next = tmp_page;
7865 			tmp_page = pg;
7866 			pg = container_of(last_pg, struct ftrace_page, next);
7867 			if (!(*last_pg))
7868 				ftrace_pages = pg;
7869 			continue;
7870 		}
7871 		memmove(rec, rec + 1,
7872 			(pg->index - (rec - pg->records)) * sizeof(*rec));
7873 		/* More than one function may be in this block */
7874 		goto again;
7875 	}
7876 	mutex_unlock(&ftrace_lock);
7877 
7878 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
7879 		clear_func_from_hashes(func);
7880 		kfree(func);
7881 	}
7882 	/* Need to synchronize with ftrace_location_range() */
7883 	if (tmp_page) {
7884 		synchronize_rcu();
7885 		ftrace_free_pages(tmp_page);
7886 	}
7887 }
7888 
7889 void __init ftrace_free_init_mem(void)
7890 {
7891 	void *start = (void *)(&__init_begin);
7892 	void *end = (void *)(&__init_end);
7893 
7894 	ftrace_boot_snapshot();
7895 
7896 	ftrace_free_mem(NULL, start, end);
7897 }
7898 
7899 int __init __weak ftrace_dyn_arch_init(void)
7900 {
7901 	return 0;
7902 }
7903 
7904 void __init ftrace_init(void)
7905 {
7906 	extern unsigned long __start_mcount_loc[];
7907 	extern unsigned long __stop_mcount_loc[];
7908 	unsigned long count, flags;
7909 	int ret;
7910 
7911 	local_irq_save(flags);
7912 	ret = ftrace_dyn_arch_init();
7913 	local_irq_restore(flags);
7914 	if (ret)
7915 		goto failed;
7916 
7917 	count = __stop_mcount_loc - __start_mcount_loc;
7918 	if (!count) {
7919 		pr_info("ftrace: No functions to be traced?\n");
7920 		goto failed;
7921 	}
7922 
7923 	ret = ftrace_process_locs(NULL,
7924 				  __start_mcount_loc,
7925 				  __stop_mcount_loc);
7926 	if (ret) {
7927 		pr_warn("ftrace: failed to allocate entries for functions\n");
7928 		goto failed;
7929 	}
7930 
7931 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
7932 		ftrace_number_of_pages, ftrace_number_of_groups);
7933 
7934 	last_ftrace_enabled = ftrace_enabled = 1;
7935 
7936 	set_ftrace_early_filters();
7937 
7938 	return;
7939  failed:
7940 	ftrace_disabled = 1;
7941 }
7942 
7943 /* Do nothing if arch does not support this */
7944 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
7945 {
7946 }
7947 
7948 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7949 {
7950 	unsigned long trampoline = ops->trampoline;
7951 
7952 	arch_ftrace_update_trampoline(ops);
7953 	if (ops->trampoline && ops->trampoline != trampoline &&
7954 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
7955 		/* Add to kallsyms before the perf events */
7956 		ftrace_add_trampoline_to_kallsyms(ops);
7957 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
7958 				   ops->trampoline, ops->trampoline_size, false,
7959 				   FTRACE_TRAMPOLINE_SYM);
7960 		/*
7961 		 * Record the perf text poke event after the ksymbol register
7962 		 * event.
7963 		 */
7964 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
7965 				     (void *)ops->trampoline,
7966 				     ops->trampoline_size);
7967 	}
7968 }
7969 
7970 void ftrace_init_trace_array(struct trace_array *tr)
7971 {
7972 	if (tr->flags & TRACE_ARRAY_FL_MOD_INIT)
7973 		return;
7974 
7975 	INIT_LIST_HEAD(&tr->func_probes);
7976 	INIT_LIST_HEAD(&tr->mod_trace);
7977 	INIT_LIST_HEAD(&tr->mod_notrace);
7978 
7979 	tr->flags |= TRACE_ARRAY_FL_MOD_INIT;
7980 }
7981 #else
7982 
7983 struct ftrace_ops global_ops = {
7984 	.func			= ftrace_stub,
7985 	.flags			= FTRACE_OPS_FL_INITIALIZED |
7986 				  FTRACE_OPS_FL_PID,
7987 };
7988 
7989 static int __init ftrace_nodyn_init(void)
7990 {
7991 	ftrace_enabled = 1;
7992 	return 0;
7993 }
7994 core_initcall(ftrace_nodyn_init);
7995 
7996 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
7997 static inline void ftrace_startup_all(int command) { }
7998 
7999 static void ftrace_update_trampoline(struct ftrace_ops *ops)
8000 {
8001 }
8002 
8003 #endif /* CONFIG_DYNAMIC_FTRACE */
8004 
8005 __init void ftrace_init_global_array_ops(struct trace_array *tr)
8006 {
8007 	tr->ops = &global_ops;
8008 	if (!global_ops.private)
8009 		global_ops.private = tr;
8010 	ftrace_init_trace_array(tr);
8011 	init_array_fgraph_ops(tr, tr->ops);
8012 }
8013 
8014 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
8015 {
8016 	/* If we filter on pids, update to use the pid function */
8017 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
8018 		if (WARN_ON(tr->ops->func != ftrace_stub))
8019 			printk("ftrace ops had %pS for function\n",
8020 			       tr->ops->func);
8021 	}
8022 	tr->ops->func = func;
8023 	tr->ops->private = tr;
8024 }
8025 
8026 void ftrace_reset_array_ops(struct trace_array *tr)
8027 {
8028 	tr->ops->func = ftrace_stub;
8029 }
8030 
8031 static nokprobe_inline void
8032 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
8033 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
8034 {
8035 	struct pt_regs *regs = ftrace_get_regs(fregs);
8036 	struct ftrace_ops *op;
8037 	int bit;
8038 
8039 	/*
8040 	 * The ftrace_test_and_set_recursion() will disable preemption,
8041 	 * which is required since some of the ops may be dynamically
8042 	 * allocated, they must be freed after a synchronize_rcu().
8043 	 */
8044 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
8045 	if (bit < 0)
8046 		return;
8047 
8048 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8049 		/* Stub functions don't need to be called nor tested */
8050 		if (op->flags & FTRACE_OPS_FL_STUB)
8051 			continue;
8052 		/*
8053 		 * Check the following for each ops before calling their func:
8054 		 *  if RCU flag is set, then rcu_is_watching() must be true
8055 		 *  Otherwise test if the ip matches the ops filter
8056 		 *
8057 		 * If any of the above fails then the op->func() is not executed.
8058 		 */
8059 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
8060 		    ftrace_ops_test(op, ip, regs)) {
8061 			if (FTRACE_WARN_ON(!op->func)) {
8062 				pr_warn("op=%p %pS\n", op, op);
8063 				goto out;
8064 			}
8065 			op->func(ip, parent_ip, op, fregs);
8066 		}
8067 	} while_for_each_ftrace_op(op);
8068 out:
8069 	trace_clear_recursion(bit);
8070 }
8071 
8072 /*
8073  * Some archs only support passing ip and parent_ip. Even though
8074  * the list function ignores the op parameter, we do not want any
8075  * C side effects, where a function is called without the caller
8076  * sending a third parameter.
8077  * Archs are to support both the regs and ftrace_ops at the same time.
8078  * If they support ftrace_ops, it is assumed they support regs.
8079  * If call backs want to use regs, they must either check for regs
8080  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
8081  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
8082  * An architecture can pass partial regs with ftrace_ops and still
8083  * set the ARCH_SUPPORTS_FTRACE_OPS.
8084  *
8085  * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be
8086  * arch_ftrace_ops_list_func.
8087  */
8088 #if ARCH_SUPPORTS_FTRACE_OPS
8089 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
8090 			       struct ftrace_ops *op, struct ftrace_regs *fregs)
8091 {
8092 	kmsan_unpoison_memory(fregs, ftrace_regs_size());
8093 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
8094 }
8095 #else
8096 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip)
8097 {
8098 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
8099 }
8100 #endif
8101 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func);
8102 
8103 /*
8104  * If there's only one function registered but it does not support
8105  * recursion, needs RCU protection, then this function will be called
8106  * by the mcount trampoline.
8107  */
8108 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
8109 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
8110 {
8111 	int bit;
8112 
8113 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
8114 	if (bit < 0)
8115 		return;
8116 
8117 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
8118 		op->func(ip, parent_ip, op, fregs);
8119 
8120 	trace_clear_recursion(bit);
8121 }
8122 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
8123 
8124 /**
8125  * ftrace_ops_get_func - get the function a trampoline should call
8126  * @ops: the ops to get the function for
8127  *
8128  * Normally the mcount trampoline will call the ops->func, but there
8129  * are times that it should not. For example, if the ops does not
8130  * have its own recursion protection, then it should call the
8131  * ftrace_ops_assist_func() instead.
8132  *
8133  * Returns: the function that the trampoline should call for @ops.
8134  */
8135 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
8136 {
8137 	/*
8138 	 * If the function does not handle recursion or needs to be RCU safe,
8139 	 * then we need to call the assist handler.
8140 	 */
8141 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
8142 			  FTRACE_OPS_FL_RCU))
8143 		return ftrace_ops_assist_func;
8144 
8145 	return ops->func;
8146 }
8147 
8148 static void
8149 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
8150 				     struct task_struct *prev,
8151 				     struct task_struct *next,
8152 				     unsigned int prev_state)
8153 {
8154 	struct trace_array *tr = data;
8155 	struct trace_pid_list *pid_list;
8156 	struct trace_pid_list *no_pid_list;
8157 
8158 	pid_list = rcu_dereference_sched(tr->function_pids);
8159 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
8160 
8161 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
8162 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8163 			       FTRACE_PID_IGNORE);
8164 	else
8165 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8166 			       next->pid);
8167 }
8168 
8169 static void
8170 ftrace_pid_follow_sched_process_fork(void *data,
8171 				     struct task_struct *self,
8172 				     struct task_struct *task)
8173 {
8174 	struct trace_pid_list *pid_list;
8175 	struct trace_array *tr = data;
8176 
8177 	pid_list = rcu_dereference_sched(tr->function_pids);
8178 	trace_filter_add_remove_task(pid_list, self, task);
8179 
8180 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8181 	trace_filter_add_remove_task(pid_list, self, task);
8182 }
8183 
8184 static void
8185 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
8186 {
8187 	struct trace_pid_list *pid_list;
8188 	struct trace_array *tr = data;
8189 
8190 	pid_list = rcu_dereference_sched(tr->function_pids);
8191 	trace_filter_add_remove_task(pid_list, NULL, task);
8192 
8193 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8194 	trace_filter_add_remove_task(pid_list, NULL, task);
8195 }
8196 
8197 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
8198 {
8199 	if (enable) {
8200 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
8201 						  tr);
8202 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
8203 						  tr);
8204 	} else {
8205 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
8206 						    tr);
8207 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
8208 						    tr);
8209 	}
8210 }
8211 
8212 static void clear_ftrace_pids(struct trace_array *tr, int type)
8213 {
8214 	struct trace_pid_list *pid_list;
8215 	struct trace_pid_list *no_pid_list;
8216 	int cpu;
8217 
8218 	pid_list = rcu_dereference_protected(tr->function_pids,
8219 					     lockdep_is_held(&ftrace_lock));
8220 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
8221 						lockdep_is_held(&ftrace_lock));
8222 
8223 	/* Make sure there's something to do */
8224 	if (!pid_type_enabled(type, pid_list, no_pid_list))
8225 		return;
8226 
8227 	/* See if the pids still need to be checked after this */
8228 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
8229 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
8230 		for_each_possible_cpu(cpu)
8231 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
8232 	}
8233 
8234 	if (type & TRACE_PIDS)
8235 		rcu_assign_pointer(tr->function_pids, NULL);
8236 
8237 	if (type & TRACE_NO_PIDS)
8238 		rcu_assign_pointer(tr->function_no_pids, NULL);
8239 
8240 	/* Wait till all users are no longer using pid filtering */
8241 	synchronize_rcu();
8242 
8243 	if ((type & TRACE_PIDS) && pid_list)
8244 		trace_pid_list_free(pid_list);
8245 
8246 	if ((type & TRACE_NO_PIDS) && no_pid_list)
8247 		trace_pid_list_free(no_pid_list);
8248 }
8249 
8250 void ftrace_clear_pids(struct trace_array *tr)
8251 {
8252 	mutex_lock(&ftrace_lock);
8253 
8254 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
8255 
8256 	mutex_unlock(&ftrace_lock);
8257 }
8258 
8259 static void ftrace_pid_reset(struct trace_array *tr, int type)
8260 {
8261 	mutex_lock(&ftrace_lock);
8262 	clear_ftrace_pids(tr, type);
8263 
8264 	ftrace_update_pid_func();
8265 	ftrace_startup_all(0);
8266 
8267 	mutex_unlock(&ftrace_lock);
8268 }
8269 
8270 /* Greater than any max PID */
8271 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
8272 
8273 static void *fpid_start(struct seq_file *m, loff_t *pos)
8274 	__acquires(RCU)
8275 {
8276 	struct trace_pid_list *pid_list;
8277 	struct trace_array *tr = m->private;
8278 
8279 	mutex_lock(&ftrace_lock);
8280 	rcu_read_lock_sched();
8281 
8282 	pid_list = rcu_dereference_sched(tr->function_pids);
8283 
8284 	if (!pid_list)
8285 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
8286 
8287 	return trace_pid_start(pid_list, pos);
8288 }
8289 
8290 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
8291 {
8292 	struct trace_array *tr = m->private;
8293 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
8294 
8295 	if (v == FTRACE_NO_PIDS) {
8296 		(*pos)++;
8297 		return NULL;
8298 	}
8299 	return trace_pid_next(pid_list, v, pos);
8300 }
8301 
8302 static void fpid_stop(struct seq_file *m, void *p)
8303 	__releases(RCU)
8304 {
8305 	rcu_read_unlock_sched();
8306 	mutex_unlock(&ftrace_lock);
8307 }
8308 
8309 static int fpid_show(struct seq_file *m, void *v)
8310 {
8311 	if (v == FTRACE_NO_PIDS) {
8312 		seq_puts(m, "no pid\n");
8313 		return 0;
8314 	}
8315 
8316 	return trace_pid_show(m, v);
8317 }
8318 
8319 static const struct seq_operations ftrace_pid_sops = {
8320 	.start = fpid_start,
8321 	.next = fpid_next,
8322 	.stop = fpid_stop,
8323 	.show = fpid_show,
8324 };
8325 
8326 static void *fnpid_start(struct seq_file *m, loff_t *pos)
8327 	__acquires(RCU)
8328 {
8329 	struct trace_pid_list *pid_list;
8330 	struct trace_array *tr = m->private;
8331 
8332 	mutex_lock(&ftrace_lock);
8333 	rcu_read_lock_sched();
8334 
8335 	pid_list = rcu_dereference_sched(tr->function_no_pids);
8336 
8337 	if (!pid_list)
8338 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
8339 
8340 	return trace_pid_start(pid_list, pos);
8341 }
8342 
8343 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
8344 {
8345 	struct trace_array *tr = m->private;
8346 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
8347 
8348 	if (v == FTRACE_NO_PIDS) {
8349 		(*pos)++;
8350 		return NULL;
8351 	}
8352 	return trace_pid_next(pid_list, v, pos);
8353 }
8354 
8355 static const struct seq_operations ftrace_no_pid_sops = {
8356 	.start = fnpid_start,
8357 	.next = fnpid_next,
8358 	.stop = fpid_stop,
8359 	.show = fpid_show,
8360 };
8361 
8362 static int pid_open(struct inode *inode, struct file *file, int type)
8363 {
8364 	const struct seq_operations *seq_ops;
8365 	struct trace_array *tr = inode->i_private;
8366 	struct seq_file *m;
8367 	int ret = 0;
8368 
8369 	ret = tracing_check_open_get_tr(tr);
8370 	if (ret)
8371 		return ret;
8372 
8373 	if ((file->f_mode & FMODE_WRITE) &&
8374 	    (file->f_flags & O_TRUNC))
8375 		ftrace_pid_reset(tr, type);
8376 
8377 	switch (type) {
8378 	case TRACE_PIDS:
8379 		seq_ops = &ftrace_pid_sops;
8380 		break;
8381 	case TRACE_NO_PIDS:
8382 		seq_ops = &ftrace_no_pid_sops;
8383 		break;
8384 	default:
8385 		trace_array_put(tr);
8386 		WARN_ON_ONCE(1);
8387 		return -EINVAL;
8388 	}
8389 
8390 	ret = seq_open(file, seq_ops);
8391 	if (ret < 0) {
8392 		trace_array_put(tr);
8393 	} else {
8394 		m = file->private_data;
8395 		/* copy tr over to seq ops */
8396 		m->private = tr;
8397 	}
8398 
8399 	return ret;
8400 }
8401 
8402 static int
8403 ftrace_pid_open(struct inode *inode, struct file *file)
8404 {
8405 	return pid_open(inode, file, TRACE_PIDS);
8406 }
8407 
8408 static int
8409 ftrace_no_pid_open(struct inode *inode, struct file *file)
8410 {
8411 	return pid_open(inode, file, TRACE_NO_PIDS);
8412 }
8413 
8414 static void ignore_task_cpu(void *data)
8415 {
8416 	struct trace_array *tr = data;
8417 	struct trace_pid_list *pid_list;
8418 	struct trace_pid_list *no_pid_list;
8419 
8420 	/*
8421 	 * This function is called by on_each_cpu() while the
8422 	 * event_mutex is held.
8423 	 */
8424 	pid_list = rcu_dereference_protected(tr->function_pids,
8425 					     mutex_is_locked(&ftrace_lock));
8426 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
8427 						mutex_is_locked(&ftrace_lock));
8428 
8429 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
8430 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8431 			       FTRACE_PID_IGNORE);
8432 	else
8433 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8434 			       current->pid);
8435 }
8436 
8437 static ssize_t
8438 pid_write(struct file *filp, const char __user *ubuf,
8439 	  size_t cnt, loff_t *ppos, int type)
8440 {
8441 	struct seq_file *m = filp->private_data;
8442 	struct trace_array *tr = m->private;
8443 	struct trace_pid_list *filtered_pids;
8444 	struct trace_pid_list *other_pids;
8445 	struct trace_pid_list *pid_list;
8446 	ssize_t ret;
8447 
8448 	if (!cnt)
8449 		return 0;
8450 
8451 	guard(mutex)(&ftrace_lock);
8452 
8453 	switch (type) {
8454 	case TRACE_PIDS:
8455 		filtered_pids = rcu_dereference_protected(tr->function_pids,
8456 					     lockdep_is_held(&ftrace_lock));
8457 		other_pids = rcu_dereference_protected(tr->function_no_pids,
8458 					     lockdep_is_held(&ftrace_lock));
8459 		break;
8460 	case TRACE_NO_PIDS:
8461 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
8462 					     lockdep_is_held(&ftrace_lock));
8463 		other_pids = rcu_dereference_protected(tr->function_pids,
8464 					     lockdep_is_held(&ftrace_lock));
8465 		break;
8466 	default:
8467 		WARN_ON_ONCE(1);
8468 		return -EINVAL;
8469 	}
8470 
8471 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
8472 	if (ret < 0)
8473 		return ret;
8474 
8475 	switch (type) {
8476 	case TRACE_PIDS:
8477 		rcu_assign_pointer(tr->function_pids, pid_list);
8478 		break;
8479 	case TRACE_NO_PIDS:
8480 		rcu_assign_pointer(tr->function_no_pids, pid_list);
8481 		break;
8482 	}
8483 
8484 
8485 	if (filtered_pids) {
8486 		synchronize_rcu();
8487 		trace_pid_list_free(filtered_pids);
8488 	} else if (pid_list && !other_pids) {
8489 		/* Register a probe to set whether to ignore the tracing of a task */
8490 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
8491 	}
8492 
8493 	/*
8494 	 * Ignoring of pids is done at task switch. But we have to
8495 	 * check for those tasks that are currently running.
8496 	 * Always do this in case a pid was appended or removed.
8497 	 */
8498 	on_each_cpu(ignore_task_cpu, tr, 1);
8499 
8500 	ftrace_update_pid_func();
8501 	ftrace_startup_all(0);
8502 
8503 	*ppos += ret;
8504 
8505 	return ret;
8506 }
8507 
8508 static ssize_t
8509 ftrace_pid_write(struct file *filp, const char __user *ubuf,
8510 		 size_t cnt, loff_t *ppos)
8511 {
8512 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
8513 }
8514 
8515 static ssize_t
8516 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
8517 		    size_t cnt, loff_t *ppos)
8518 {
8519 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
8520 }
8521 
8522 static int
8523 ftrace_pid_release(struct inode *inode, struct file *file)
8524 {
8525 	struct trace_array *tr = inode->i_private;
8526 
8527 	trace_array_put(tr);
8528 
8529 	return seq_release(inode, file);
8530 }
8531 
8532 static const struct file_operations ftrace_pid_fops = {
8533 	.open		= ftrace_pid_open,
8534 	.write		= ftrace_pid_write,
8535 	.read		= seq_read,
8536 	.llseek		= tracing_lseek,
8537 	.release	= ftrace_pid_release,
8538 };
8539 
8540 static const struct file_operations ftrace_no_pid_fops = {
8541 	.open		= ftrace_no_pid_open,
8542 	.write		= ftrace_no_pid_write,
8543 	.read		= seq_read,
8544 	.llseek		= tracing_lseek,
8545 	.release	= ftrace_pid_release,
8546 };
8547 
8548 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
8549 {
8550 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
8551 			    tr, &ftrace_pid_fops);
8552 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
8553 			  d_tracer, tr, &ftrace_no_pid_fops);
8554 }
8555 
8556 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
8557 					 struct dentry *d_tracer)
8558 {
8559 	/* Only the top level directory has the dyn_tracefs and profile */
8560 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
8561 
8562 	ftrace_init_dyn_tracefs(d_tracer);
8563 	ftrace_profile_tracefs(d_tracer);
8564 }
8565 
8566 /**
8567  * ftrace_kill - kill ftrace
8568  *
8569  * This function should be used by panic code. It stops ftrace
8570  * but in a not so nice way. If you need to simply kill ftrace
8571  * from a non-atomic section, use ftrace_kill.
8572  */
8573 void ftrace_kill(void)
8574 {
8575 	ftrace_disabled = 1;
8576 	ftrace_enabled = 0;
8577 	ftrace_trace_function = ftrace_stub;
8578 	kprobe_ftrace_kill();
8579 }
8580 
8581 /**
8582  * ftrace_is_dead - Test if ftrace is dead or not.
8583  *
8584  * Returns: 1 if ftrace is "dead", zero otherwise.
8585  */
8586 int ftrace_is_dead(void)
8587 {
8588 	return ftrace_disabled;
8589 }
8590 
8591 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
8592 /*
8593  * When registering ftrace_ops with IPMODIFY, it is necessary to make sure
8594  * it doesn't conflict with any direct ftrace_ops. If there is existing
8595  * direct ftrace_ops on a kernel function being patched, call
8596  * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing.
8597  *
8598  * @ops:     ftrace_ops being registered.
8599  *
8600  * Returns:
8601  *         0 on success;
8602  *         Negative on failure.
8603  */
8604 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8605 {
8606 	struct ftrace_func_entry *entry;
8607 	struct ftrace_hash *hash;
8608 	struct ftrace_ops *op;
8609 	int size, i, ret;
8610 
8611 	lockdep_assert_held_once(&direct_mutex);
8612 
8613 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8614 		return 0;
8615 
8616 	hash = ops->func_hash->filter_hash;
8617 	size = 1 << hash->size_bits;
8618 	for (i = 0; i < size; i++) {
8619 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8620 			unsigned long ip = entry->ip;
8621 			bool found_op = false;
8622 
8623 			mutex_lock(&ftrace_lock);
8624 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8625 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8626 					continue;
8627 				if (ops_references_ip(op, ip)) {
8628 					found_op = true;
8629 					break;
8630 				}
8631 			} while_for_each_ftrace_op(op);
8632 			mutex_unlock(&ftrace_lock);
8633 
8634 			if (found_op) {
8635 				if (!op->ops_func)
8636 					return -EBUSY;
8637 
8638 				ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER);
8639 				if (ret)
8640 					return ret;
8641 			}
8642 		}
8643 	}
8644 
8645 	return 0;
8646 }
8647 
8648 /*
8649  * Similar to prepare_direct_functions_for_ipmodify, clean up after ops
8650  * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT
8651  * ops.
8652  */
8653 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8654 {
8655 	struct ftrace_func_entry *entry;
8656 	struct ftrace_hash *hash;
8657 	struct ftrace_ops *op;
8658 	int size, i;
8659 
8660 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8661 		return;
8662 
8663 	mutex_lock(&direct_mutex);
8664 
8665 	hash = ops->func_hash->filter_hash;
8666 	size = 1 << hash->size_bits;
8667 	for (i = 0; i < size; i++) {
8668 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8669 			unsigned long ip = entry->ip;
8670 			bool found_op = false;
8671 
8672 			mutex_lock(&ftrace_lock);
8673 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8674 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8675 					continue;
8676 				if (ops_references_ip(op, ip)) {
8677 					found_op = true;
8678 					break;
8679 				}
8680 			} while_for_each_ftrace_op(op);
8681 			mutex_unlock(&ftrace_lock);
8682 
8683 			/* The cleanup is optional, ignore any errors */
8684 			if (found_op && op->ops_func)
8685 				op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER);
8686 		}
8687 	}
8688 	mutex_unlock(&direct_mutex);
8689 }
8690 
8691 #define lock_direct_mutex()	mutex_lock(&direct_mutex)
8692 #define unlock_direct_mutex()	mutex_unlock(&direct_mutex)
8693 
8694 #else  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8695 
8696 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8697 {
8698 	return 0;
8699 }
8700 
8701 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8702 {
8703 }
8704 
8705 #define lock_direct_mutex()	do { } while (0)
8706 #define unlock_direct_mutex()	do { } while (0)
8707 
8708 #endif  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8709 
8710 /*
8711  * Similar to register_ftrace_function, except we don't lock direct_mutex.
8712  */
8713 static int register_ftrace_function_nolock(struct ftrace_ops *ops)
8714 {
8715 	int ret;
8716 
8717 	ftrace_ops_init(ops);
8718 
8719 	mutex_lock(&ftrace_lock);
8720 
8721 	ret = ftrace_startup(ops, 0);
8722 
8723 	mutex_unlock(&ftrace_lock);
8724 
8725 	return ret;
8726 }
8727 
8728 /**
8729  * register_ftrace_function - register a function for profiling
8730  * @ops:	ops structure that holds the function for profiling.
8731  *
8732  * Register a function to be called by all functions in the
8733  * kernel.
8734  *
8735  * Note: @ops->func and all the functions it calls must be labeled
8736  *       with "notrace", otherwise it will go into a
8737  *       recursive loop.
8738  */
8739 int register_ftrace_function(struct ftrace_ops *ops)
8740 {
8741 	int ret;
8742 
8743 	lock_direct_mutex();
8744 	ret = prepare_direct_functions_for_ipmodify(ops);
8745 	if (ret < 0)
8746 		goto out_unlock;
8747 
8748 	ret = register_ftrace_function_nolock(ops);
8749 
8750 out_unlock:
8751 	unlock_direct_mutex();
8752 	return ret;
8753 }
8754 EXPORT_SYMBOL_GPL(register_ftrace_function);
8755 
8756 /**
8757  * unregister_ftrace_function - unregister a function for profiling.
8758  * @ops:	ops structure that holds the function to unregister
8759  *
8760  * Unregister a function that was added to be called by ftrace profiling.
8761  */
8762 int unregister_ftrace_function(struct ftrace_ops *ops)
8763 {
8764 	int ret;
8765 
8766 	mutex_lock(&ftrace_lock);
8767 	ret = ftrace_shutdown(ops, 0);
8768 	mutex_unlock(&ftrace_lock);
8769 
8770 	cleanup_direct_functions_after_ipmodify(ops);
8771 	return ret;
8772 }
8773 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
8774 
8775 static int symbols_cmp(const void *a, const void *b)
8776 {
8777 	const char **str_a = (const char **) a;
8778 	const char **str_b = (const char **) b;
8779 
8780 	return strcmp(*str_a, *str_b);
8781 }
8782 
8783 struct kallsyms_data {
8784 	unsigned long *addrs;
8785 	const char **syms;
8786 	size_t cnt;
8787 	size_t found;
8788 };
8789 
8790 /* This function gets called for all kernel and module symbols
8791  * and returns 1 in case we resolved all the requested symbols,
8792  * 0 otherwise.
8793  */
8794 static int kallsyms_callback(void *data, const char *name, unsigned long addr)
8795 {
8796 	struct kallsyms_data *args = data;
8797 	const char **sym;
8798 	int idx;
8799 
8800 	sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp);
8801 	if (!sym)
8802 		return 0;
8803 
8804 	idx = sym - args->syms;
8805 	if (args->addrs[idx])
8806 		return 0;
8807 
8808 	if (!ftrace_location(addr))
8809 		return 0;
8810 
8811 	args->addrs[idx] = addr;
8812 	args->found++;
8813 	return args->found == args->cnt ? 1 : 0;
8814 }
8815 
8816 /**
8817  * ftrace_lookup_symbols - Lookup addresses for array of symbols
8818  *
8819  * @sorted_syms: array of symbols pointers symbols to resolve,
8820  * must be alphabetically sorted
8821  * @cnt: number of symbols/addresses in @syms/@addrs arrays
8822  * @addrs: array for storing resulting addresses
8823  *
8824  * This function looks up addresses for array of symbols provided in
8825  * @syms array (must be alphabetically sorted) and stores them in
8826  * @addrs array, which needs to be big enough to store at least @cnt
8827  * addresses.
8828  *
8829  * Returns: 0 if all provided symbols are found, -ESRCH otherwise.
8830  */
8831 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
8832 {
8833 	struct kallsyms_data args;
8834 	int found_all;
8835 
8836 	memset(addrs, 0, sizeof(*addrs) * cnt);
8837 	args.addrs = addrs;
8838 	args.syms = sorted_syms;
8839 	args.cnt = cnt;
8840 	args.found = 0;
8841 
8842 	found_all = kallsyms_on_each_symbol(kallsyms_callback, &args);
8843 	if (found_all)
8844 		return 0;
8845 	found_all = module_kallsyms_on_each_symbol(NULL, kallsyms_callback, &args);
8846 	return found_all ? 0 : -ESRCH;
8847 }
8848 
8849 #ifdef CONFIG_SYSCTL
8850 
8851 #ifdef CONFIG_DYNAMIC_FTRACE
8852 static void ftrace_startup_sysctl(void)
8853 {
8854 	int command;
8855 
8856 	if (unlikely(ftrace_disabled))
8857 		return;
8858 
8859 	/* Force update next time */
8860 	saved_ftrace_func = NULL;
8861 	/* ftrace_start_up is true if we want ftrace running */
8862 	if (ftrace_start_up) {
8863 		command = FTRACE_UPDATE_CALLS;
8864 		if (ftrace_graph_active)
8865 			command |= FTRACE_START_FUNC_RET;
8866 		ftrace_startup_enable(command);
8867 	}
8868 }
8869 
8870 static void ftrace_shutdown_sysctl(void)
8871 {
8872 	int command;
8873 
8874 	if (unlikely(ftrace_disabled))
8875 		return;
8876 
8877 	/* ftrace_start_up is true if ftrace is running */
8878 	if (ftrace_start_up) {
8879 		command = FTRACE_DISABLE_CALLS;
8880 		if (ftrace_graph_active)
8881 			command |= FTRACE_STOP_FUNC_RET;
8882 		ftrace_run_update_code(command);
8883 	}
8884 }
8885 #else
8886 # define ftrace_startup_sysctl()       do { } while (0)
8887 # define ftrace_shutdown_sysctl()      do { } while (0)
8888 #endif /* CONFIG_DYNAMIC_FTRACE */
8889 
8890 static bool is_permanent_ops_registered(void)
8891 {
8892 	struct ftrace_ops *op;
8893 
8894 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8895 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
8896 			return true;
8897 	} while_for_each_ftrace_op(op);
8898 
8899 	return false;
8900 }
8901 
8902 static int
8903 ftrace_enable_sysctl(const struct ctl_table *table, int write,
8904 		     void *buffer, size_t *lenp, loff_t *ppos)
8905 {
8906 	int ret;
8907 
8908 	guard(mutex)(&ftrace_lock);
8909 
8910 	if (unlikely(ftrace_disabled))
8911 		return -ENODEV;
8912 
8913 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8914 
8915 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
8916 		return ret;
8917 
8918 	if (ftrace_enabled) {
8919 
8920 		/* we are starting ftrace again */
8921 		if (rcu_dereference_protected(ftrace_ops_list,
8922 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
8923 			update_ftrace_function();
8924 
8925 		ftrace_startup_sysctl();
8926 
8927 	} else {
8928 		if (is_permanent_ops_registered()) {
8929 			ftrace_enabled = true;
8930 			return -EBUSY;
8931 		}
8932 
8933 		/* stopping ftrace calls (just send to ftrace_stub) */
8934 		ftrace_trace_function = ftrace_stub;
8935 
8936 		ftrace_shutdown_sysctl();
8937 	}
8938 
8939 	last_ftrace_enabled = !!ftrace_enabled;
8940 	return 0;
8941 }
8942 
8943 static const struct ctl_table ftrace_sysctls[] = {
8944 	{
8945 		.procname       = "ftrace_enabled",
8946 		.data           = &ftrace_enabled,
8947 		.maxlen         = sizeof(int),
8948 		.mode           = 0644,
8949 		.proc_handler   = ftrace_enable_sysctl,
8950 	},
8951 };
8952 
8953 static int __init ftrace_sysctl_init(void)
8954 {
8955 	register_sysctl_init("kernel", ftrace_sysctls);
8956 	return 0;
8957 }
8958 late_initcall(ftrace_sysctl_init);
8959 #endif
8960