1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 /* Flags that do not get reset */ 49 #define FTRACE_NOCLEAR_FLAGS (FTRACE_FL_DISABLED | FTRACE_FL_TOUCHED | \ 50 FTRACE_FL_MODIFIED) 51 52 #define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__" 53 54 #define FTRACE_WARN_ON(cond) \ 55 ({ \ 56 int ___r = cond; \ 57 if (WARN_ON(___r)) \ 58 ftrace_kill(); \ 59 ___r; \ 60 }) 61 62 #define FTRACE_WARN_ON_ONCE(cond) \ 63 ({ \ 64 int ___r = cond; \ 65 if (WARN_ON_ONCE(___r)) \ 66 ftrace_kill(); \ 67 ___r; \ 68 }) 69 70 /* hash bits for specific function selection */ 71 #define FTRACE_HASH_DEFAULT_BITS 10 72 #define FTRACE_HASH_MAX_BITS 12 73 74 #ifdef CONFIG_DYNAMIC_FTRACE 75 #define INIT_OPS_HASH(opsname) \ 76 .func_hash = &opsname.local_hash, \ 77 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), \ 78 .subop_list = LIST_HEAD_INIT(opsname.subop_list), 79 #else 80 #define INIT_OPS_HASH(opsname) 81 #endif 82 83 enum { 84 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 85 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 86 }; 87 88 struct ftrace_ops ftrace_list_end __read_mostly = { 89 .func = ftrace_stub, 90 .flags = FTRACE_OPS_FL_STUB, 91 INIT_OPS_HASH(ftrace_list_end) 92 }; 93 94 /* ftrace_enabled is a method to turn ftrace on or off */ 95 int ftrace_enabled __read_mostly; 96 static int __maybe_unused last_ftrace_enabled; 97 98 /* Current function tracing op */ 99 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 100 /* What to set function_trace_op to */ 101 static struct ftrace_ops *set_function_trace_op; 102 103 bool ftrace_pids_enabled(struct ftrace_ops *ops) 104 { 105 struct trace_array *tr; 106 107 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 108 return false; 109 110 tr = ops->private; 111 112 return tr->function_pids != NULL || tr->function_no_pids != NULL; 113 } 114 115 static void ftrace_update_trampoline(struct ftrace_ops *ops); 116 117 /* 118 * ftrace_disabled is set when an anomaly is discovered. 119 * ftrace_disabled is much stronger than ftrace_enabled. 120 */ 121 static int ftrace_disabled __read_mostly; 122 123 DEFINE_MUTEX(ftrace_lock); 124 125 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = (struct ftrace_ops __rcu *)&ftrace_list_end; 126 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 127 struct ftrace_ops global_ops; 128 129 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */ 130 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 131 struct ftrace_ops *op, struct ftrace_regs *fregs); 132 133 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS 134 /* 135 * Stub used to invoke the list ops without requiring a separate trampoline. 136 */ 137 const struct ftrace_ops ftrace_list_ops = { 138 .func = ftrace_ops_list_func, 139 .flags = FTRACE_OPS_FL_STUB, 140 }; 141 142 static void ftrace_ops_nop_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, 144 struct ftrace_regs *fregs) 145 { 146 /* do nothing */ 147 } 148 149 /* 150 * Stub used when a call site is disabled. May be called transiently by threads 151 * which have made it into ftrace_caller but haven't yet recovered the ops at 152 * the point the call site is disabled. 153 */ 154 const struct ftrace_ops ftrace_nop_ops = { 155 .func = ftrace_ops_nop_func, 156 .flags = FTRACE_OPS_FL_STUB, 157 }; 158 #endif 159 160 static inline void ftrace_ops_init(struct ftrace_ops *ops) 161 { 162 #ifdef CONFIG_DYNAMIC_FTRACE 163 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 164 mutex_init(&ops->local_hash.regex_lock); 165 INIT_LIST_HEAD(&ops->subop_list); 166 ops->func_hash = &ops->local_hash; 167 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 168 } 169 #endif 170 } 171 172 /* Call this function for when a callback filters on set_ftrace_pid */ 173 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 174 struct ftrace_ops *op, struct ftrace_regs *fregs) 175 { 176 struct trace_array *tr = op->private; 177 int pid; 178 179 if (tr) { 180 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 181 if (pid == FTRACE_PID_IGNORE) 182 return; 183 if (pid != FTRACE_PID_TRACE && 184 pid != current->pid) 185 return; 186 } 187 188 op->saved_func(ip, parent_ip, op, fregs); 189 } 190 191 void ftrace_sync_ipi(void *data) 192 { 193 /* Probably not needed, but do it anyway */ 194 smp_rmb(); 195 } 196 197 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 198 { 199 /* 200 * If this is a dynamic or RCU ops, or we force list func, 201 * then it needs to call the list anyway. 202 */ 203 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 204 FTRACE_FORCE_LIST_FUNC) 205 return ftrace_ops_list_func; 206 207 return ftrace_ops_get_func(ops); 208 } 209 210 static void update_ftrace_function(void) 211 { 212 ftrace_func_t func; 213 214 /* 215 * Prepare the ftrace_ops that the arch callback will use. 216 * If there's only one ftrace_ops registered, the ftrace_ops_list 217 * will point to the ops we want. 218 */ 219 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 220 lockdep_is_held(&ftrace_lock)); 221 222 /* If there's no ftrace_ops registered, just call the stub function */ 223 if (set_function_trace_op == &ftrace_list_end) { 224 func = ftrace_stub; 225 226 /* 227 * If we are at the end of the list and this ops is 228 * recursion safe and not dynamic and the arch supports passing ops, 229 * then have the mcount trampoline call the function directly. 230 */ 231 } else if (rcu_dereference_protected(ftrace_ops_list->next, 232 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 233 func = ftrace_ops_get_list_func(ftrace_ops_list); 234 235 } else { 236 /* Just use the default ftrace_ops */ 237 set_function_trace_op = &ftrace_list_end; 238 func = ftrace_ops_list_func; 239 } 240 241 /* If there's no change, then do nothing more here */ 242 if (ftrace_trace_function == func) 243 return; 244 245 /* 246 * If we are using the list function, it doesn't care 247 * about the function_trace_ops. 248 */ 249 if (func == ftrace_ops_list_func) { 250 ftrace_trace_function = func; 251 /* 252 * Don't even bother setting function_trace_ops, 253 * it would be racy to do so anyway. 254 */ 255 return; 256 } 257 258 #ifndef CONFIG_DYNAMIC_FTRACE 259 /* 260 * For static tracing, we need to be a bit more careful. 261 * The function change takes affect immediately. Thus, 262 * we need to coordinate the setting of the function_trace_ops 263 * with the setting of the ftrace_trace_function. 264 * 265 * Set the function to the list ops, which will call the 266 * function we want, albeit indirectly, but it handles the 267 * ftrace_ops and doesn't depend on function_trace_op. 268 */ 269 ftrace_trace_function = ftrace_ops_list_func; 270 /* 271 * Make sure all CPUs see this. Yes this is slow, but static 272 * tracing is slow and nasty to have enabled. 273 */ 274 synchronize_rcu_tasks_rude(); 275 /* Now all cpus are using the list ops. */ 276 function_trace_op = set_function_trace_op; 277 /* Make sure the function_trace_op is visible on all CPUs */ 278 smp_wmb(); 279 /* Nasty way to force a rmb on all cpus */ 280 smp_call_function(ftrace_sync_ipi, NULL, 1); 281 /* OK, we are all set to update the ftrace_trace_function now! */ 282 #endif /* !CONFIG_DYNAMIC_FTRACE */ 283 284 ftrace_trace_function = func; 285 } 286 287 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 288 struct ftrace_ops *ops) 289 { 290 rcu_assign_pointer(ops->next, *list); 291 292 /* 293 * We are entering ops into the list but another 294 * CPU might be walking that list. We need to make sure 295 * the ops->next pointer is valid before another CPU sees 296 * the ops pointer included into the list. 297 */ 298 rcu_assign_pointer(*list, ops); 299 } 300 301 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 302 struct ftrace_ops *ops) 303 { 304 struct ftrace_ops **p; 305 306 /* 307 * If we are removing the last function, then simply point 308 * to the ftrace_stub. 309 */ 310 if (rcu_dereference_protected(*list, 311 lockdep_is_held(&ftrace_lock)) == ops && 312 rcu_dereference_protected(ops->next, 313 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 314 rcu_assign_pointer(*list, &ftrace_list_end); 315 return 0; 316 } 317 318 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 319 if (*p == ops) 320 break; 321 322 if (*p != ops) 323 return -1; 324 325 *p = (*p)->next; 326 return 0; 327 } 328 329 static void ftrace_update_trampoline(struct ftrace_ops *ops); 330 331 int __register_ftrace_function(struct ftrace_ops *ops) 332 { 333 if (ops->flags & FTRACE_OPS_FL_DELETED) 334 return -EINVAL; 335 336 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 337 return -EBUSY; 338 339 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 340 /* 341 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 342 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 343 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 344 */ 345 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 346 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 347 return -EINVAL; 348 349 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 350 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 351 #endif 352 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 353 return -EBUSY; 354 355 if (!is_kernel_core_data((unsigned long)ops)) 356 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 357 358 add_ftrace_ops(&ftrace_ops_list, ops); 359 360 /* Always save the function, and reset at unregistering */ 361 ops->saved_func = ops->func; 362 363 if (ftrace_pids_enabled(ops)) 364 ops->func = ftrace_pid_func; 365 366 ftrace_update_trampoline(ops); 367 368 if (ftrace_enabled) 369 update_ftrace_function(); 370 371 return 0; 372 } 373 374 int __unregister_ftrace_function(struct ftrace_ops *ops) 375 { 376 int ret; 377 378 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 379 return -EBUSY; 380 381 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 382 383 if (ret < 0) 384 return ret; 385 386 if (ftrace_enabled) 387 update_ftrace_function(); 388 389 ops->func = ops->saved_func; 390 391 return 0; 392 } 393 394 static void ftrace_update_pid_func(void) 395 { 396 struct ftrace_ops *op; 397 398 /* Only do something if we are tracing something */ 399 if (ftrace_trace_function == ftrace_stub) 400 return; 401 402 do_for_each_ftrace_op(op, ftrace_ops_list) { 403 if (op->flags & FTRACE_OPS_FL_PID) { 404 op->func = ftrace_pids_enabled(op) ? 405 ftrace_pid_func : op->saved_func; 406 ftrace_update_trampoline(op); 407 } 408 } while_for_each_ftrace_op(op); 409 410 fgraph_update_pid_func(); 411 412 update_ftrace_function(); 413 } 414 415 #ifdef CONFIG_FUNCTION_PROFILER 416 struct ftrace_profile { 417 struct hlist_node node; 418 unsigned long ip; 419 unsigned long counter; 420 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 421 unsigned long long time; 422 unsigned long long time_squared; 423 #endif 424 }; 425 426 struct ftrace_profile_page { 427 struct ftrace_profile_page *next; 428 unsigned long index; 429 struct ftrace_profile records[]; 430 }; 431 432 struct ftrace_profile_stat { 433 atomic_t disabled; 434 struct hlist_head *hash; 435 struct ftrace_profile_page *pages; 436 struct ftrace_profile_page *start; 437 struct tracer_stat stat; 438 }; 439 440 #define PROFILE_RECORDS_SIZE \ 441 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 442 443 #define PROFILES_PER_PAGE \ 444 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 445 446 static int ftrace_profile_enabled __read_mostly; 447 448 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 449 static DEFINE_MUTEX(ftrace_profile_lock); 450 451 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 452 453 #define FTRACE_PROFILE_HASH_BITS 10 454 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 455 456 static void * 457 function_stat_next(void *v, int idx) 458 { 459 struct ftrace_profile *rec = v; 460 struct ftrace_profile_page *pg; 461 462 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 463 464 again: 465 if (idx != 0) 466 rec++; 467 468 if ((void *)rec >= (void *)&pg->records[pg->index]) { 469 pg = pg->next; 470 if (!pg) 471 return NULL; 472 rec = &pg->records[0]; 473 if (!rec->counter) 474 goto again; 475 } 476 477 return rec; 478 } 479 480 static void *function_stat_start(struct tracer_stat *trace) 481 { 482 struct ftrace_profile_stat *stat = 483 container_of(trace, struct ftrace_profile_stat, stat); 484 485 if (!stat || !stat->start) 486 return NULL; 487 488 return function_stat_next(&stat->start->records[0], 0); 489 } 490 491 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 492 /* function graph compares on total time */ 493 static int function_stat_cmp(const void *p1, const void *p2) 494 { 495 const struct ftrace_profile *a = p1; 496 const struct ftrace_profile *b = p2; 497 498 if (a->time < b->time) 499 return -1; 500 if (a->time > b->time) 501 return 1; 502 else 503 return 0; 504 } 505 #else 506 /* not function graph compares against hits */ 507 static int function_stat_cmp(const void *p1, const void *p2) 508 { 509 const struct ftrace_profile *a = p1; 510 const struct ftrace_profile *b = p2; 511 512 if (a->counter < b->counter) 513 return -1; 514 if (a->counter > b->counter) 515 return 1; 516 else 517 return 0; 518 } 519 #endif 520 521 static int function_stat_headers(struct seq_file *m) 522 { 523 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 524 seq_puts(m, " Function " 525 "Hit Time Avg s^2\n" 526 " -------- " 527 "--- ---- --- ---\n"); 528 #else 529 seq_puts(m, " Function Hit\n" 530 " -------- ---\n"); 531 #endif 532 return 0; 533 } 534 535 static int function_stat_show(struct seq_file *m, void *v) 536 { 537 struct ftrace_profile *rec = v; 538 char str[KSYM_SYMBOL_LEN]; 539 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 540 static struct trace_seq s; 541 unsigned long long avg; 542 unsigned long long stddev; 543 unsigned long long stddev_denom; 544 #endif 545 guard(mutex)(&ftrace_profile_lock); 546 547 /* we raced with function_profile_reset() */ 548 if (unlikely(rec->counter == 0)) 549 return -EBUSY; 550 551 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 552 avg = div64_ul(rec->time, rec->counter); 553 if (tracing_thresh && (avg < tracing_thresh)) 554 return 0; 555 #endif 556 557 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 558 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 559 560 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 561 seq_puts(m, " "); 562 563 /* 564 * Variance formula: 565 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 566 * Maybe Welford's method is better here? 567 * Divide only by 1000 for ns^2 -> us^2 conversion. 568 * trace_print_graph_duration will divide by 1000 again. 569 */ 570 stddev = 0; 571 stddev_denom = rec->counter * (rec->counter - 1) * 1000; 572 if (stddev_denom) { 573 stddev = rec->counter * rec->time_squared - 574 rec->time * rec->time; 575 stddev = div64_ul(stddev, stddev_denom); 576 } 577 578 trace_seq_init(&s); 579 trace_print_graph_duration(rec->time, &s); 580 trace_seq_puts(&s, " "); 581 trace_print_graph_duration(avg, &s); 582 trace_seq_puts(&s, " "); 583 trace_print_graph_duration(stddev, &s); 584 trace_print_seq(m, &s); 585 #endif 586 seq_putc(m, '\n'); 587 588 return 0; 589 } 590 591 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 592 { 593 struct ftrace_profile_page *pg; 594 595 pg = stat->pages = stat->start; 596 597 while (pg) { 598 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 599 pg->index = 0; 600 pg = pg->next; 601 } 602 603 memset(stat->hash, 0, 604 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 605 } 606 607 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 608 { 609 struct ftrace_profile_page *pg; 610 int functions; 611 int pages; 612 int i; 613 614 /* If we already allocated, do nothing */ 615 if (stat->pages) 616 return 0; 617 618 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 619 if (!stat->pages) 620 return -ENOMEM; 621 622 #ifdef CONFIG_DYNAMIC_FTRACE 623 functions = ftrace_update_tot_cnt; 624 #else 625 /* 626 * We do not know the number of functions that exist because 627 * dynamic tracing is what counts them. With past experience 628 * we have around 20K functions. That should be more than enough. 629 * It is highly unlikely we will execute every function in 630 * the kernel. 631 */ 632 functions = 20000; 633 #endif 634 635 pg = stat->start = stat->pages; 636 637 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 638 639 for (i = 1; i < pages; i++) { 640 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 641 if (!pg->next) 642 goto out_free; 643 pg = pg->next; 644 } 645 646 return 0; 647 648 out_free: 649 pg = stat->start; 650 while (pg) { 651 unsigned long tmp = (unsigned long)pg; 652 653 pg = pg->next; 654 free_page(tmp); 655 } 656 657 stat->pages = NULL; 658 stat->start = NULL; 659 660 return -ENOMEM; 661 } 662 663 static int ftrace_profile_init_cpu(int cpu) 664 { 665 struct ftrace_profile_stat *stat; 666 int size; 667 668 stat = &per_cpu(ftrace_profile_stats, cpu); 669 670 if (stat->hash) { 671 /* If the profile is already created, simply reset it */ 672 ftrace_profile_reset(stat); 673 return 0; 674 } 675 676 /* 677 * We are profiling all functions, but usually only a few thousand 678 * functions are hit. We'll make a hash of 1024 items. 679 */ 680 size = FTRACE_PROFILE_HASH_SIZE; 681 682 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 683 684 if (!stat->hash) 685 return -ENOMEM; 686 687 /* Preallocate the function profiling pages */ 688 if (ftrace_profile_pages_init(stat) < 0) { 689 kfree(stat->hash); 690 stat->hash = NULL; 691 return -ENOMEM; 692 } 693 694 return 0; 695 } 696 697 static int ftrace_profile_init(void) 698 { 699 int cpu; 700 int ret = 0; 701 702 for_each_possible_cpu(cpu) { 703 ret = ftrace_profile_init_cpu(cpu); 704 if (ret) 705 break; 706 } 707 708 return ret; 709 } 710 711 /* interrupts must be disabled */ 712 static struct ftrace_profile * 713 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 714 { 715 struct ftrace_profile *rec; 716 struct hlist_head *hhd; 717 unsigned long key; 718 719 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 720 hhd = &stat->hash[key]; 721 722 if (hlist_empty(hhd)) 723 return NULL; 724 725 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 726 if (rec->ip == ip) 727 return rec; 728 } 729 730 return NULL; 731 } 732 733 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 734 struct ftrace_profile *rec) 735 { 736 unsigned long key; 737 738 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 739 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 740 } 741 742 /* 743 * The memory is already allocated, this simply finds a new record to use. 744 */ 745 static struct ftrace_profile * 746 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 747 { 748 struct ftrace_profile *rec = NULL; 749 750 /* prevent recursion (from NMIs) */ 751 if (atomic_inc_return(&stat->disabled) != 1) 752 goto out; 753 754 /* 755 * Try to find the function again since an NMI 756 * could have added it 757 */ 758 rec = ftrace_find_profiled_func(stat, ip); 759 if (rec) 760 goto out; 761 762 if (stat->pages->index == PROFILES_PER_PAGE) { 763 if (!stat->pages->next) 764 goto out; 765 stat->pages = stat->pages->next; 766 } 767 768 rec = &stat->pages->records[stat->pages->index++]; 769 rec->ip = ip; 770 ftrace_add_profile(stat, rec); 771 772 out: 773 atomic_dec(&stat->disabled); 774 775 return rec; 776 } 777 778 static void 779 function_profile_call(unsigned long ip, unsigned long parent_ip, 780 struct ftrace_ops *ops, struct ftrace_regs *fregs) 781 { 782 struct ftrace_profile_stat *stat; 783 struct ftrace_profile *rec; 784 785 if (!ftrace_profile_enabled) 786 return; 787 788 guard(preempt_notrace)(); 789 790 stat = this_cpu_ptr(&ftrace_profile_stats); 791 if (!stat->hash || !ftrace_profile_enabled) 792 return; 793 794 rec = ftrace_find_profiled_func(stat, ip); 795 if (!rec) { 796 rec = ftrace_profile_alloc(stat, ip); 797 if (!rec) 798 return; 799 } 800 801 rec->counter++; 802 } 803 804 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 805 static bool fgraph_graph_time = true; 806 807 void ftrace_graph_graph_time_control(bool enable) 808 { 809 fgraph_graph_time = enable; 810 } 811 812 struct profile_fgraph_data { 813 unsigned long long calltime; 814 unsigned long long subtime; 815 unsigned long long sleeptime; 816 }; 817 818 static int profile_graph_entry(struct ftrace_graph_ent *trace, 819 struct fgraph_ops *gops, 820 struct ftrace_regs *fregs) 821 { 822 struct profile_fgraph_data *profile_data; 823 824 function_profile_call(trace->func, 0, NULL, NULL); 825 826 /* If function graph is shutting down, ret_stack can be NULL */ 827 if (!current->ret_stack) 828 return 0; 829 830 profile_data = fgraph_reserve_data(gops->idx, sizeof(*profile_data)); 831 if (!profile_data) 832 return 0; 833 834 profile_data->subtime = 0; 835 profile_data->sleeptime = current->ftrace_sleeptime; 836 profile_data->calltime = trace_clock_local(); 837 838 return 1; 839 } 840 841 static void profile_graph_return(struct ftrace_graph_ret *trace, 842 struct fgraph_ops *gops, 843 struct ftrace_regs *fregs) 844 { 845 struct profile_fgraph_data *profile_data; 846 struct ftrace_profile_stat *stat; 847 unsigned long long calltime; 848 unsigned long long rettime = trace_clock_local(); 849 struct ftrace_profile *rec; 850 int size; 851 852 guard(preempt_notrace)(); 853 854 stat = this_cpu_ptr(&ftrace_profile_stats); 855 if (!stat->hash || !ftrace_profile_enabled) 856 return; 857 858 profile_data = fgraph_retrieve_data(gops->idx, &size); 859 860 /* If the calltime was zero'd ignore it */ 861 if (!profile_data || !profile_data->calltime) 862 return; 863 864 calltime = rettime - profile_data->calltime; 865 866 if (!fgraph_sleep_time) { 867 if (current->ftrace_sleeptime) 868 calltime -= current->ftrace_sleeptime - profile_data->sleeptime; 869 } 870 871 if (!fgraph_graph_time) { 872 struct profile_fgraph_data *parent_data; 873 874 /* Append this call time to the parent time to subtract */ 875 parent_data = fgraph_retrieve_parent_data(gops->idx, &size, 1); 876 if (parent_data) 877 parent_data->subtime += calltime; 878 879 if (profile_data->subtime && profile_data->subtime < calltime) 880 calltime -= profile_data->subtime; 881 else 882 calltime = 0; 883 } 884 885 rec = ftrace_find_profiled_func(stat, trace->func); 886 if (rec) { 887 rec->time += calltime; 888 rec->time_squared += calltime * calltime; 889 } 890 } 891 892 static struct fgraph_ops fprofiler_ops = { 893 .entryfunc = &profile_graph_entry, 894 .retfunc = &profile_graph_return, 895 }; 896 897 static int register_ftrace_profiler(void) 898 { 899 ftrace_ops_set_global_filter(&fprofiler_ops.ops); 900 return register_ftrace_graph(&fprofiler_ops); 901 } 902 903 static void unregister_ftrace_profiler(void) 904 { 905 unregister_ftrace_graph(&fprofiler_ops); 906 } 907 #else 908 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 909 .func = function_profile_call, 910 }; 911 912 static int register_ftrace_profiler(void) 913 { 914 ftrace_ops_set_global_filter(&ftrace_profile_ops); 915 return register_ftrace_function(&ftrace_profile_ops); 916 } 917 918 static void unregister_ftrace_profiler(void) 919 { 920 unregister_ftrace_function(&ftrace_profile_ops); 921 } 922 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 923 924 static ssize_t 925 ftrace_profile_write(struct file *filp, const char __user *ubuf, 926 size_t cnt, loff_t *ppos) 927 { 928 unsigned long val; 929 int ret; 930 931 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 932 if (ret) 933 return ret; 934 935 val = !!val; 936 937 guard(mutex)(&ftrace_profile_lock); 938 if (ftrace_profile_enabled ^ val) { 939 if (val) { 940 ret = ftrace_profile_init(); 941 if (ret < 0) 942 return ret; 943 944 ret = register_ftrace_profiler(); 945 if (ret < 0) 946 return ret; 947 ftrace_profile_enabled = 1; 948 } else { 949 ftrace_profile_enabled = 0; 950 /* 951 * unregister_ftrace_profiler calls stop_machine 952 * so this acts like an synchronize_rcu. 953 */ 954 unregister_ftrace_profiler(); 955 } 956 } 957 958 *ppos += cnt; 959 960 return cnt; 961 } 962 963 static ssize_t 964 ftrace_profile_read(struct file *filp, char __user *ubuf, 965 size_t cnt, loff_t *ppos) 966 { 967 char buf[64]; /* big enough to hold a number */ 968 int r; 969 970 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 971 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 972 } 973 974 static const struct file_operations ftrace_profile_fops = { 975 .open = tracing_open_generic, 976 .read = ftrace_profile_read, 977 .write = ftrace_profile_write, 978 .llseek = default_llseek, 979 }; 980 981 /* used to initialize the real stat files */ 982 static struct tracer_stat function_stats __initdata = { 983 .name = "functions", 984 .stat_start = function_stat_start, 985 .stat_next = function_stat_next, 986 .stat_cmp = function_stat_cmp, 987 .stat_headers = function_stat_headers, 988 .stat_show = function_stat_show 989 }; 990 991 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 992 { 993 struct ftrace_profile_stat *stat; 994 char *name; 995 int ret; 996 int cpu; 997 998 for_each_possible_cpu(cpu) { 999 stat = &per_cpu(ftrace_profile_stats, cpu); 1000 1001 name = kasprintf(GFP_KERNEL, "function%d", cpu); 1002 if (!name) { 1003 /* 1004 * The files created are permanent, if something happens 1005 * we still do not free memory. 1006 */ 1007 WARN(1, 1008 "Could not allocate stat file for cpu %d\n", 1009 cpu); 1010 return; 1011 } 1012 stat->stat = function_stats; 1013 stat->stat.name = name; 1014 ret = register_stat_tracer(&stat->stat); 1015 if (ret) { 1016 WARN(1, 1017 "Could not register function stat for cpu %d\n", 1018 cpu); 1019 kfree(name); 1020 return; 1021 } 1022 } 1023 1024 trace_create_file("function_profile_enabled", 1025 TRACE_MODE_WRITE, d_tracer, NULL, 1026 &ftrace_profile_fops); 1027 } 1028 1029 #else /* CONFIG_FUNCTION_PROFILER */ 1030 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1031 { 1032 } 1033 #endif /* CONFIG_FUNCTION_PROFILER */ 1034 1035 #ifdef CONFIG_DYNAMIC_FTRACE 1036 1037 static struct ftrace_ops *removed_ops; 1038 1039 /* 1040 * Set when doing a global update, like enabling all recs or disabling them. 1041 * It is not set when just updating a single ftrace_ops. 1042 */ 1043 static bool update_all_ops; 1044 1045 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1046 # error Dynamic ftrace depends on MCOUNT_RECORD 1047 #endif 1048 1049 struct ftrace_func_probe { 1050 struct ftrace_probe_ops *probe_ops; 1051 struct ftrace_ops ops; 1052 struct trace_array *tr; 1053 struct list_head list; 1054 void *data; 1055 int ref; 1056 }; 1057 1058 /* 1059 * We make these constant because no one should touch them, 1060 * but they are used as the default "empty hash", to avoid allocating 1061 * it all the time. These are in a read only section such that if 1062 * anyone does try to modify it, it will cause an exception. 1063 */ 1064 static const struct hlist_head empty_buckets[1]; 1065 static const struct ftrace_hash empty_hash = { 1066 .buckets = (struct hlist_head *)empty_buckets, 1067 }; 1068 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1069 1070 struct ftrace_ops global_ops = { 1071 .func = ftrace_stub, 1072 .local_hash.notrace_hash = EMPTY_HASH, 1073 .local_hash.filter_hash = EMPTY_HASH, 1074 INIT_OPS_HASH(global_ops) 1075 .flags = FTRACE_OPS_FL_INITIALIZED | 1076 FTRACE_OPS_FL_PID, 1077 }; 1078 1079 /* 1080 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1081 */ 1082 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1083 { 1084 struct ftrace_ops *op = NULL; 1085 1086 /* 1087 * Some of the ops may be dynamically allocated, 1088 * they are freed after a synchronize_rcu(). 1089 */ 1090 preempt_disable_notrace(); 1091 1092 do_for_each_ftrace_op(op, ftrace_ops_list) { 1093 /* 1094 * This is to check for dynamically allocated trampolines. 1095 * Trampolines that are in kernel text will have 1096 * core_kernel_text() return true. 1097 */ 1098 if (op->trampoline && op->trampoline_size) 1099 if (addr >= op->trampoline && 1100 addr < op->trampoline + op->trampoline_size) { 1101 preempt_enable_notrace(); 1102 return op; 1103 } 1104 } while_for_each_ftrace_op(op); 1105 preempt_enable_notrace(); 1106 1107 return NULL; 1108 } 1109 1110 /* 1111 * This is used by __kernel_text_address() to return true if the 1112 * address is on a dynamically allocated trampoline that would 1113 * not return true for either core_kernel_text() or 1114 * is_module_text_address(). 1115 */ 1116 bool is_ftrace_trampoline(unsigned long addr) 1117 { 1118 return ftrace_ops_trampoline(addr) != NULL; 1119 } 1120 1121 struct ftrace_page { 1122 struct ftrace_page *next; 1123 struct dyn_ftrace *records; 1124 int index; 1125 int order; 1126 }; 1127 1128 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1129 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1130 1131 static struct ftrace_page *ftrace_pages_start; 1132 static struct ftrace_page *ftrace_pages; 1133 1134 static __always_inline unsigned long 1135 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1136 { 1137 if (hash->size_bits > 0) 1138 return hash_long(ip, hash->size_bits); 1139 1140 return 0; 1141 } 1142 1143 /* Only use this function if ftrace_hash_empty() has already been tested */ 1144 static __always_inline struct ftrace_func_entry * 1145 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1146 { 1147 unsigned long key; 1148 struct ftrace_func_entry *entry; 1149 struct hlist_head *hhd; 1150 1151 key = ftrace_hash_key(hash, ip); 1152 hhd = &hash->buckets[key]; 1153 1154 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1155 if (entry->ip == ip) 1156 return entry; 1157 } 1158 return NULL; 1159 } 1160 1161 /** 1162 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1163 * @hash: The hash to look at 1164 * @ip: The instruction pointer to test 1165 * 1166 * Search a given @hash to see if a given instruction pointer (@ip) 1167 * exists in it. 1168 * 1169 * Returns: the entry that holds the @ip if found. NULL otherwise. 1170 */ 1171 struct ftrace_func_entry * 1172 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1173 { 1174 if (ftrace_hash_empty(hash)) 1175 return NULL; 1176 1177 return __ftrace_lookup_ip(hash, ip); 1178 } 1179 1180 static void __add_hash_entry(struct ftrace_hash *hash, 1181 struct ftrace_func_entry *entry) 1182 { 1183 struct hlist_head *hhd; 1184 unsigned long key; 1185 1186 key = ftrace_hash_key(hash, entry->ip); 1187 hhd = &hash->buckets[key]; 1188 hlist_add_head(&entry->hlist, hhd); 1189 hash->count++; 1190 } 1191 1192 static struct ftrace_func_entry * 1193 add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1194 { 1195 struct ftrace_func_entry *entry; 1196 1197 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1198 if (!entry) 1199 return NULL; 1200 1201 entry->ip = ip; 1202 __add_hash_entry(hash, entry); 1203 1204 return entry; 1205 } 1206 1207 static void 1208 free_hash_entry(struct ftrace_hash *hash, 1209 struct ftrace_func_entry *entry) 1210 { 1211 hlist_del(&entry->hlist); 1212 kfree(entry); 1213 hash->count--; 1214 } 1215 1216 static void 1217 remove_hash_entry(struct ftrace_hash *hash, 1218 struct ftrace_func_entry *entry) 1219 { 1220 hlist_del_rcu(&entry->hlist); 1221 hash->count--; 1222 } 1223 1224 static void ftrace_hash_clear(struct ftrace_hash *hash) 1225 { 1226 struct hlist_head *hhd; 1227 struct hlist_node *tn; 1228 struct ftrace_func_entry *entry; 1229 int size = 1 << hash->size_bits; 1230 int i; 1231 1232 if (!hash->count) 1233 return; 1234 1235 for (i = 0; i < size; i++) { 1236 hhd = &hash->buckets[i]; 1237 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1238 free_hash_entry(hash, entry); 1239 } 1240 FTRACE_WARN_ON(hash->count); 1241 } 1242 1243 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1244 { 1245 list_del(&ftrace_mod->list); 1246 kfree(ftrace_mod->module); 1247 kfree(ftrace_mod->func); 1248 kfree(ftrace_mod); 1249 } 1250 1251 static void clear_ftrace_mod_list(struct list_head *head) 1252 { 1253 struct ftrace_mod_load *p, *n; 1254 1255 /* stack tracer isn't supported yet */ 1256 if (!head) 1257 return; 1258 1259 mutex_lock(&ftrace_lock); 1260 list_for_each_entry_safe(p, n, head, list) 1261 free_ftrace_mod(p); 1262 mutex_unlock(&ftrace_lock); 1263 } 1264 1265 static void free_ftrace_hash(struct ftrace_hash *hash) 1266 { 1267 if (!hash || hash == EMPTY_HASH) 1268 return; 1269 ftrace_hash_clear(hash); 1270 kfree(hash->buckets); 1271 kfree(hash); 1272 } 1273 1274 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1275 { 1276 struct ftrace_hash *hash; 1277 1278 hash = container_of(rcu, struct ftrace_hash, rcu); 1279 free_ftrace_hash(hash); 1280 } 1281 1282 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1283 { 1284 if (!hash || hash == EMPTY_HASH) 1285 return; 1286 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1287 } 1288 1289 /** 1290 * ftrace_free_filter - remove all filters for an ftrace_ops 1291 * @ops: the ops to remove the filters from 1292 */ 1293 void ftrace_free_filter(struct ftrace_ops *ops) 1294 { 1295 ftrace_ops_init(ops); 1296 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 1297 return; 1298 free_ftrace_hash(ops->func_hash->filter_hash); 1299 free_ftrace_hash(ops->func_hash->notrace_hash); 1300 ops->func_hash->filter_hash = EMPTY_HASH; 1301 ops->func_hash->notrace_hash = EMPTY_HASH; 1302 } 1303 EXPORT_SYMBOL_GPL(ftrace_free_filter); 1304 1305 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1306 { 1307 struct ftrace_hash *hash; 1308 int size; 1309 1310 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1311 if (!hash) 1312 return NULL; 1313 1314 size = 1 << size_bits; 1315 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1316 1317 if (!hash->buckets) { 1318 kfree(hash); 1319 return NULL; 1320 } 1321 1322 hash->size_bits = size_bits; 1323 1324 return hash; 1325 } 1326 1327 /* Used to save filters on functions for modules not loaded yet */ 1328 static int ftrace_add_mod(struct trace_array *tr, 1329 const char *func, const char *module, 1330 int enable) 1331 { 1332 struct ftrace_mod_load *ftrace_mod; 1333 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1334 1335 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1336 if (!ftrace_mod) 1337 return -ENOMEM; 1338 1339 INIT_LIST_HEAD(&ftrace_mod->list); 1340 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1341 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1342 ftrace_mod->enable = enable; 1343 1344 if (!ftrace_mod->func || !ftrace_mod->module) 1345 goto out_free; 1346 1347 list_add(&ftrace_mod->list, mod_head); 1348 1349 return 0; 1350 1351 out_free: 1352 free_ftrace_mod(ftrace_mod); 1353 1354 return -ENOMEM; 1355 } 1356 1357 static struct ftrace_hash * 1358 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1359 { 1360 struct ftrace_func_entry *entry; 1361 struct ftrace_hash *new_hash; 1362 int size; 1363 int i; 1364 1365 new_hash = alloc_ftrace_hash(size_bits); 1366 if (!new_hash) 1367 return NULL; 1368 1369 if (hash) 1370 new_hash->flags = hash->flags; 1371 1372 /* Empty hash? */ 1373 if (ftrace_hash_empty(hash)) 1374 return new_hash; 1375 1376 size = 1 << hash->size_bits; 1377 for (i = 0; i < size; i++) { 1378 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1379 if (add_hash_entry(new_hash, entry->ip) == NULL) 1380 goto free_hash; 1381 } 1382 } 1383 1384 FTRACE_WARN_ON(new_hash->count != hash->count); 1385 1386 return new_hash; 1387 1388 free_hash: 1389 free_ftrace_hash(new_hash); 1390 return NULL; 1391 } 1392 1393 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops); 1394 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops); 1395 1396 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1397 struct ftrace_hash *new_hash); 1398 1399 /* 1400 * Allocate a new hash and remove entries from @src and move them to the new hash. 1401 * On success, the @src hash will be empty and should be freed. 1402 */ 1403 static struct ftrace_hash *__move_hash(struct ftrace_hash *src, int size) 1404 { 1405 struct ftrace_func_entry *entry; 1406 struct ftrace_hash *new_hash; 1407 struct hlist_head *hhd; 1408 struct hlist_node *tn; 1409 int bits = 0; 1410 int i; 1411 1412 /* 1413 * Use around half the size (max bit of it), but 1414 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1415 */ 1416 bits = fls(size / 2); 1417 1418 /* Don't allocate too much */ 1419 if (bits > FTRACE_HASH_MAX_BITS) 1420 bits = FTRACE_HASH_MAX_BITS; 1421 1422 new_hash = alloc_ftrace_hash(bits); 1423 if (!new_hash) 1424 return NULL; 1425 1426 new_hash->flags = src->flags; 1427 1428 size = 1 << src->size_bits; 1429 for (i = 0; i < size; i++) { 1430 hhd = &src->buckets[i]; 1431 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1432 remove_hash_entry(src, entry); 1433 __add_hash_entry(new_hash, entry); 1434 } 1435 } 1436 return new_hash; 1437 } 1438 1439 /* Move the @src entries to a newly allocated hash */ 1440 static struct ftrace_hash * 1441 __ftrace_hash_move(struct ftrace_hash *src) 1442 { 1443 int size = src->count; 1444 1445 /* 1446 * If the new source is empty, just return the empty_hash. 1447 */ 1448 if (ftrace_hash_empty(src)) 1449 return EMPTY_HASH; 1450 1451 return __move_hash(src, size); 1452 } 1453 1454 /** 1455 * ftrace_hash_move - move a new hash to a filter and do updates 1456 * @ops: The ops with the hash that @dst points to 1457 * @enable: True if for the filter hash, false for the notrace hash 1458 * @dst: Points to the @ops hash that should be updated 1459 * @src: The hash to update @dst with 1460 * 1461 * This is called when an ftrace_ops hash is being updated and the 1462 * the kernel needs to reflect this. Note, this only updates the kernel 1463 * function callbacks if the @ops is enabled (not to be confused with 1464 * @enable above). If the @ops is enabled, its hash determines what 1465 * callbacks get called. This function gets called when the @ops hash 1466 * is updated and it requires new callbacks. 1467 * 1468 * On success the elements of @src is moved to @dst, and @dst is updated 1469 * properly, as well as the functions determined by the @ops hashes 1470 * are now calling the @ops callback function. 1471 * 1472 * Regardless of return type, @src should be freed with free_ftrace_hash(). 1473 */ 1474 static int 1475 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1476 struct ftrace_hash **dst, struct ftrace_hash *src) 1477 { 1478 struct ftrace_hash *new_hash; 1479 int ret; 1480 1481 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1482 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1483 return -EINVAL; 1484 1485 new_hash = __ftrace_hash_move(src); 1486 if (!new_hash) 1487 return -ENOMEM; 1488 1489 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1490 if (enable) { 1491 /* IPMODIFY should be updated only when filter_hash updating */ 1492 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1493 if (ret < 0) { 1494 free_ftrace_hash(new_hash); 1495 return ret; 1496 } 1497 } 1498 1499 /* 1500 * Remove the current set, update the hash and add 1501 * them back. 1502 */ 1503 ftrace_hash_rec_disable_modify(ops); 1504 1505 rcu_assign_pointer(*dst, new_hash); 1506 1507 ftrace_hash_rec_enable_modify(ops); 1508 1509 return 0; 1510 } 1511 1512 static bool hash_contains_ip(unsigned long ip, 1513 struct ftrace_ops_hash *hash) 1514 { 1515 /* 1516 * The function record is a match if it exists in the filter 1517 * hash and not in the notrace hash. Note, an empty hash is 1518 * considered a match for the filter hash, but an empty 1519 * notrace hash is considered not in the notrace hash. 1520 */ 1521 return (ftrace_hash_empty(hash->filter_hash) || 1522 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1523 (ftrace_hash_empty(hash->notrace_hash) || 1524 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1525 } 1526 1527 /* 1528 * Test the hashes for this ops to see if we want to call 1529 * the ops->func or not. 1530 * 1531 * It's a match if the ip is in the ops->filter_hash or 1532 * the filter_hash does not exist or is empty, 1533 * AND 1534 * the ip is not in the ops->notrace_hash. 1535 * 1536 * This needs to be called with preemption disabled as 1537 * the hashes are freed with call_rcu(). 1538 */ 1539 int 1540 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1541 { 1542 struct ftrace_ops_hash hash; 1543 int ret; 1544 1545 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1546 /* 1547 * There's a small race when adding ops that the ftrace handler 1548 * that wants regs, may be called without them. We can not 1549 * allow that handler to be called if regs is NULL. 1550 */ 1551 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1552 return 0; 1553 #endif 1554 1555 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1556 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1557 1558 if (hash_contains_ip(ip, &hash)) 1559 ret = 1; 1560 else 1561 ret = 0; 1562 1563 return ret; 1564 } 1565 1566 /* 1567 * This is a double for. Do not use 'break' to break out of the loop, 1568 * you must use a goto. 1569 */ 1570 #define do_for_each_ftrace_rec(pg, rec) \ 1571 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1572 int _____i; \ 1573 for (_____i = 0; _____i < pg->index; _____i++) { \ 1574 rec = &pg->records[_____i]; 1575 1576 #define while_for_each_ftrace_rec() \ 1577 } \ 1578 } 1579 1580 1581 static int ftrace_cmp_recs(const void *a, const void *b) 1582 { 1583 const struct dyn_ftrace *key = a; 1584 const struct dyn_ftrace *rec = b; 1585 1586 if (key->flags < rec->ip) 1587 return -1; 1588 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1589 return 1; 1590 return 0; 1591 } 1592 1593 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1594 { 1595 struct ftrace_page *pg; 1596 struct dyn_ftrace *rec = NULL; 1597 struct dyn_ftrace key; 1598 1599 key.ip = start; 1600 key.flags = end; /* overload flags, as it is unsigned long */ 1601 1602 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1603 if (pg->index == 0 || 1604 end < pg->records[0].ip || 1605 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1606 continue; 1607 rec = bsearch(&key, pg->records, pg->index, 1608 sizeof(struct dyn_ftrace), 1609 ftrace_cmp_recs); 1610 if (rec) 1611 break; 1612 } 1613 return rec; 1614 } 1615 1616 /** 1617 * ftrace_location_range - return the first address of a traced location 1618 * if it touches the given ip range 1619 * @start: start of range to search. 1620 * @end: end of range to search (inclusive). @end points to the last byte 1621 * to check. 1622 * 1623 * Returns: rec->ip if the related ftrace location is a least partly within 1624 * the given address range. That is, the first address of the instruction 1625 * that is either a NOP or call to the function tracer. It checks the ftrace 1626 * internal tables to determine if the address belongs or not. 1627 */ 1628 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1629 { 1630 struct dyn_ftrace *rec; 1631 unsigned long ip = 0; 1632 1633 rcu_read_lock(); 1634 rec = lookup_rec(start, end); 1635 if (rec) 1636 ip = rec->ip; 1637 rcu_read_unlock(); 1638 1639 return ip; 1640 } 1641 1642 /** 1643 * ftrace_location - return the ftrace location 1644 * @ip: the instruction pointer to check 1645 * 1646 * Returns: 1647 * * If @ip matches the ftrace location, return @ip. 1648 * * If @ip matches sym+0, return sym's ftrace location. 1649 * * Otherwise, return 0. 1650 */ 1651 unsigned long ftrace_location(unsigned long ip) 1652 { 1653 unsigned long loc; 1654 unsigned long offset; 1655 unsigned long size; 1656 1657 loc = ftrace_location_range(ip, ip); 1658 if (!loc) { 1659 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1660 return 0; 1661 1662 /* map sym+0 to __fentry__ */ 1663 if (!offset) 1664 loc = ftrace_location_range(ip, ip + size - 1); 1665 } 1666 return loc; 1667 } 1668 1669 /** 1670 * ftrace_text_reserved - return true if range contains an ftrace location 1671 * @start: start of range to search 1672 * @end: end of range to search (inclusive). @end points to the last byte to check. 1673 * 1674 * Returns: 1 if @start and @end contains a ftrace location. 1675 * That is, the instruction that is either a NOP or call to 1676 * the function tracer. It checks the ftrace internal tables to 1677 * determine if the address belongs or not. 1678 */ 1679 int ftrace_text_reserved(const void *start, const void *end) 1680 { 1681 unsigned long ret; 1682 1683 ret = ftrace_location_range((unsigned long)start, 1684 (unsigned long)end); 1685 1686 return (int)!!ret; 1687 } 1688 1689 /* Test if ops registered to this rec needs regs */ 1690 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1691 { 1692 struct ftrace_ops *ops; 1693 bool keep_regs = false; 1694 1695 for (ops = ftrace_ops_list; 1696 ops != &ftrace_list_end; ops = ops->next) { 1697 /* pass rec in as regs to have non-NULL val */ 1698 if (ftrace_ops_test(ops, rec->ip, rec)) { 1699 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1700 keep_regs = true; 1701 break; 1702 } 1703 } 1704 } 1705 1706 return keep_regs; 1707 } 1708 1709 static struct ftrace_ops * 1710 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1711 static struct ftrace_ops * 1712 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1713 static struct ftrace_ops * 1714 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1715 1716 static bool skip_record(struct dyn_ftrace *rec) 1717 { 1718 /* 1719 * At boot up, weak functions are set to disable. Function tracing 1720 * can be enabled before they are, and they still need to be disabled now. 1721 * If the record is disabled, still continue if it is marked as already 1722 * enabled (this is needed to keep the accounting working). 1723 */ 1724 return rec->flags & FTRACE_FL_DISABLED && 1725 !(rec->flags & FTRACE_FL_ENABLED); 1726 } 1727 1728 /* 1729 * This is the main engine to the ftrace updates to the dyn_ftrace records. 1730 * 1731 * It will iterate through all the available ftrace functions 1732 * (the ones that ftrace can have callbacks to) and set the flags 1733 * in the associated dyn_ftrace records. 1734 * 1735 * @inc: If true, the functions associated to @ops are added to 1736 * the dyn_ftrace records, otherwise they are removed. 1737 */ 1738 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1739 bool inc) 1740 { 1741 struct ftrace_hash *hash; 1742 struct ftrace_hash *notrace_hash; 1743 struct ftrace_page *pg; 1744 struct dyn_ftrace *rec; 1745 bool update = false; 1746 int count = 0; 1747 int all = false; 1748 1749 /* Only update if the ops has been registered */ 1750 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1751 return false; 1752 1753 /* 1754 * If the count is zero, we update all records. 1755 * Otherwise we just update the items in the hash. 1756 */ 1757 hash = ops->func_hash->filter_hash; 1758 notrace_hash = ops->func_hash->notrace_hash; 1759 if (ftrace_hash_empty(hash)) 1760 all = true; 1761 1762 do_for_each_ftrace_rec(pg, rec) { 1763 int in_notrace_hash = 0; 1764 int in_hash = 0; 1765 int match = 0; 1766 1767 if (skip_record(rec)) 1768 continue; 1769 1770 if (all) { 1771 /* 1772 * Only the filter_hash affects all records. 1773 * Update if the record is not in the notrace hash. 1774 */ 1775 if (!notrace_hash || !ftrace_lookup_ip(notrace_hash, rec->ip)) 1776 match = 1; 1777 } else { 1778 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1779 in_notrace_hash = !!ftrace_lookup_ip(notrace_hash, rec->ip); 1780 1781 /* 1782 * We want to match all functions that are in the hash but 1783 * not in the other hash. 1784 */ 1785 if (in_hash && !in_notrace_hash) 1786 match = 1; 1787 } 1788 if (!match) 1789 continue; 1790 1791 if (inc) { 1792 rec->flags++; 1793 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1794 return false; 1795 1796 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1797 rec->flags |= FTRACE_FL_DIRECT; 1798 1799 /* 1800 * If there's only a single callback registered to a 1801 * function, and the ops has a trampoline registered 1802 * for it, then we can call it directly. 1803 */ 1804 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1805 rec->flags |= FTRACE_FL_TRAMP; 1806 else 1807 /* 1808 * If we are adding another function callback 1809 * to this function, and the previous had a 1810 * custom trampoline in use, then we need to go 1811 * back to the default trampoline. 1812 */ 1813 rec->flags &= ~FTRACE_FL_TRAMP; 1814 1815 /* 1816 * If any ops wants regs saved for this function 1817 * then all ops will get saved regs. 1818 */ 1819 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1820 rec->flags |= FTRACE_FL_REGS; 1821 } else { 1822 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1823 return false; 1824 rec->flags--; 1825 1826 /* 1827 * Only the internal direct_ops should have the 1828 * DIRECT flag set. Thus, if it is removing a 1829 * function, then that function should no longer 1830 * be direct. 1831 */ 1832 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1833 rec->flags &= ~FTRACE_FL_DIRECT; 1834 1835 /* 1836 * If the rec had REGS enabled and the ops that is 1837 * being removed had REGS set, then see if there is 1838 * still any ops for this record that wants regs. 1839 * If not, we can stop recording them. 1840 */ 1841 if (ftrace_rec_count(rec) > 0 && 1842 rec->flags & FTRACE_FL_REGS && 1843 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1844 if (!test_rec_ops_needs_regs(rec)) 1845 rec->flags &= ~FTRACE_FL_REGS; 1846 } 1847 1848 /* 1849 * The TRAMP needs to be set only if rec count 1850 * is decremented to one, and the ops that is 1851 * left has a trampoline. As TRAMP can only be 1852 * enabled if there is only a single ops attached 1853 * to it. 1854 */ 1855 if (ftrace_rec_count(rec) == 1 && 1856 ftrace_find_tramp_ops_any_other(rec, ops)) 1857 rec->flags |= FTRACE_FL_TRAMP; 1858 else 1859 rec->flags &= ~FTRACE_FL_TRAMP; 1860 1861 /* 1862 * flags will be cleared in ftrace_check_record() 1863 * if rec count is zero. 1864 */ 1865 } 1866 1867 /* 1868 * If the rec has a single associated ops, and ops->func can be 1869 * called directly, allow the call site to call via the ops. 1870 */ 1871 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS) && 1872 ftrace_rec_count(rec) == 1 && 1873 ftrace_ops_get_func(ops) == ops->func) 1874 rec->flags |= FTRACE_FL_CALL_OPS; 1875 else 1876 rec->flags &= ~FTRACE_FL_CALL_OPS; 1877 1878 count++; 1879 1880 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1881 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1882 1883 /* Shortcut, if we handled all records, we are done. */ 1884 if (!all && count == hash->count) 1885 return update; 1886 } while_for_each_ftrace_rec(); 1887 1888 return update; 1889 } 1890 1891 /* 1892 * This is called when an ops is removed from tracing. It will decrement 1893 * the counters of the dyn_ftrace records for all the functions that 1894 * the @ops attached to. 1895 */ 1896 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops) 1897 { 1898 return __ftrace_hash_rec_update(ops, false); 1899 } 1900 1901 /* 1902 * This is called when an ops is added to tracing. It will increment 1903 * the counters of the dyn_ftrace records for all the functions that 1904 * the @ops attached to. 1905 */ 1906 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops) 1907 { 1908 return __ftrace_hash_rec_update(ops, true); 1909 } 1910 1911 /* 1912 * This function will update what functions @ops traces when its filter 1913 * changes. 1914 * 1915 * The @inc states if the @ops callbacks are going to be added or removed. 1916 * When one of the @ops hashes are updated to a "new_hash" the dyn_ftrace 1917 * records are update via: 1918 * 1919 * ftrace_hash_rec_disable_modify(ops); 1920 * ops->hash = new_hash 1921 * ftrace_hash_rec_enable_modify(ops); 1922 * 1923 * Where the @ops is removed from all the records it is tracing using 1924 * its old hash. The @ops hash is updated to the new hash, and then 1925 * the @ops is added back to the records so that it is tracing all 1926 * the new functions. 1927 */ 1928 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, bool inc) 1929 { 1930 struct ftrace_ops *op; 1931 1932 __ftrace_hash_rec_update(ops, inc); 1933 1934 if (ops->func_hash != &global_ops.local_hash) 1935 return; 1936 1937 /* 1938 * If the ops shares the global_ops hash, then we need to update 1939 * all ops that are enabled and use this hash. 1940 */ 1941 do_for_each_ftrace_op(op, ftrace_ops_list) { 1942 /* Already done */ 1943 if (op == ops) 1944 continue; 1945 if (op->func_hash == &global_ops.local_hash) 1946 __ftrace_hash_rec_update(op, inc); 1947 } while_for_each_ftrace_op(op); 1948 } 1949 1950 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops) 1951 { 1952 ftrace_hash_rec_update_modify(ops, false); 1953 } 1954 1955 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops) 1956 { 1957 ftrace_hash_rec_update_modify(ops, true); 1958 } 1959 1960 /* 1961 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1962 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1963 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1964 * Note that old_hash and new_hash has below meanings 1965 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1966 * - If the hash is EMPTY_HASH, it hits nothing 1967 * - Anything else hits the recs which match the hash entries. 1968 * 1969 * DIRECT ops does not have IPMODIFY flag, but we still need to check it 1970 * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call 1971 * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with 1972 * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate 1973 * the return value to the caller and eventually to the owner of the DIRECT 1974 * ops. 1975 */ 1976 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1977 struct ftrace_hash *old_hash, 1978 struct ftrace_hash *new_hash) 1979 { 1980 struct ftrace_page *pg; 1981 struct dyn_ftrace *rec, *end = NULL; 1982 int in_old, in_new; 1983 bool is_ipmodify, is_direct; 1984 1985 /* Only update if the ops has been registered */ 1986 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1987 return 0; 1988 1989 is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY; 1990 is_direct = ops->flags & FTRACE_OPS_FL_DIRECT; 1991 1992 /* neither IPMODIFY nor DIRECT, skip */ 1993 if (!is_ipmodify && !is_direct) 1994 return 0; 1995 1996 if (WARN_ON_ONCE(is_ipmodify && is_direct)) 1997 return 0; 1998 1999 /* 2000 * Since the IPMODIFY and DIRECT are very address sensitive 2001 * actions, we do not allow ftrace_ops to set all functions to new 2002 * hash. 2003 */ 2004 if (!new_hash || !old_hash) 2005 return -EINVAL; 2006 2007 /* Update rec->flags */ 2008 do_for_each_ftrace_rec(pg, rec) { 2009 2010 if (rec->flags & FTRACE_FL_DISABLED) 2011 continue; 2012 2013 /* We need to update only differences of filter_hash */ 2014 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 2015 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 2016 if (in_old == in_new) 2017 continue; 2018 2019 if (in_new) { 2020 if (rec->flags & FTRACE_FL_IPMODIFY) { 2021 int ret; 2022 2023 /* Cannot have two ipmodify on same rec */ 2024 if (is_ipmodify) 2025 goto rollback; 2026 2027 FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT); 2028 2029 /* 2030 * Another ops with IPMODIFY is already 2031 * attached. We are now attaching a direct 2032 * ops. Run SHARE_IPMODIFY_SELF, to check 2033 * whether sharing is supported. 2034 */ 2035 if (!ops->ops_func) 2036 return -EBUSY; 2037 ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF); 2038 if (ret) 2039 return ret; 2040 } else if (is_ipmodify) { 2041 rec->flags |= FTRACE_FL_IPMODIFY; 2042 } 2043 } else if (is_ipmodify) { 2044 rec->flags &= ~FTRACE_FL_IPMODIFY; 2045 } 2046 } while_for_each_ftrace_rec(); 2047 2048 return 0; 2049 2050 rollback: 2051 end = rec; 2052 2053 /* Roll back what we did above */ 2054 do_for_each_ftrace_rec(pg, rec) { 2055 2056 if (rec->flags & FTRACE_FL_DISABLED) 2057 continue; 2058 2059 if (rec == end) 2060 return -EBUSY; 2061 2062 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 2063 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 2064 if (in_old == in_new) 2065 continue; 2066 2067 if (in_new) 2068 rec->flags &= ~FTRACE_FL_IPMODIFY; 2069 else 2070 rec->flags |= FTRACE_FL_IPMODIFY; 2071 } while_for_each_ftrace_rec(); 2072 2073 return -EBUSY; 2074 } 2075 2076 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 2077 { 2078 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2079 2080 if (ftrace_hash_empty(hash)) 2081 hash = NULL; 2082 2083 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 2084 } 2085 2086 /* Disabling always succeeds */ 2087 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 2088 { 2089 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2090 2091 if (ftrace_hash_empty(hash)) 2092 hash = NULL; 2093 2094 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 2095 } 2096 2097 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 2098 struct ftrace_hash *new_hash) 2099 { 2100 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 2101 2102 if (ftrace_hash_empty(old_hash)) 2103 old_hash = NULL; 2104 2105 if (ftrace_hash_empty(new_hash)) 2106 new_hash = NULL; 2107 2108 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 2109 } 2110 2111 static void print_ip_ins(const char *fmt, const unsigned char *p) 2112 { 2113 char ins[MCOUNT_INSN_SIZE]; 2114 2115 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 2116 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 2117 return; 2118 } 2119 2120 printk(KERN_CONT "%s", fmt); 2121 pr_cont("%*phC", MCOUNT_INSN_SIZE, ins); 2122 } 2123 2124 enum ftrace_bug_type ftrace_bug_type; 2125 const void *ftrace_expected; 2126 2127 static void print_bug_type(void) 2128 { 2129 switch (ftrace_bug_type) { 2130 case FTRACE_BUG_UNKNOWN: 2131 break; 2132 case FTRACE_BUG_INIT: 2133 pr_info("Initializing ftrace call sites\n"); 2134 break; 2135 case FTRACE_BUG_NOP: 2136 pr_info("Setting ftrace call site to NOP\n"); 2137 break; 2138 case FTRACE_BUG_CALL: 2139 pr_info("Setting ftrace call site to call ftrace function\n"); 2140 break; 2141 case FTRACE_BUG_UPDATE: 2142 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2143 break; 2144 } 2145 } 2146 2147 /** 2148 * ftrace_bug - report and shutdown function tracer 2149 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2150 * @rec: The record that failed 2151 * 2152 * The arch code that enables or disables the function tracing 2153 * can call ftrace_bug() when it has detected a problem in 2154 * modifying the code. @failed should be one of either: 2155 * EFAULT - if the problem happens on reading the @ip address 2156 * EINVAL - if what is read at @ip is not what was expected 2157 * EPERM - if the problem happens on writing to the @ip address 2158 */ 2159 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2160 { 2161 unsigned long ip = rec ? rec->ip : 0; 2162 2163 pr_info("------------[ ftrace bug ]------------\n"); 2164 2165 switch (failed) { 2166 case -EFAULT: 2167 pr_info("ftrace faulted on modifying "); 2168 print_ip_sym(KERN_INFO, ip); 2169 break; 2170 case -EINVAL: 2171 pr_info("ftrace failed to modify "); 2172 print_ip_sym(KERN_INFO, ip); 2173 print_ip_ins(" actual: ", (unsigned char *)ip); 2174 pr_cont("\n"); 2175 if (ftrace_expected) { 2176 print_ip_ins(" expected: ", ftrace_expected); 2177 pr_cont("\n"); 2178 } 2179 break; 2180 case -EPERM: 2181 pr_info("ftrace faulted on writing "); 2182 print_ip_sym(KERN_INFO, ip); 2183 break; 2184 default: 2185 pr_info("ftrace faulted on unknown error "); 2186 print_ip_sym(KERN_INFO, ip); 2187 } 2188 print_bug_type(); 2189 if (rec) { 2190 struct ftrace_ops *ops = NULL; 2191 2192 pr_info("ftrace record flags: %lx\n", rec->flags); 2193 pr_cont(" (%ld)%s%s", ftrace_rec_count(rec), 2194 rec->flags & FTRACE_FL_REGS ? " R" : " ", 2195 rec->flags & FTRACE_FL_CALL_OPS ? " O" : " "); 2196 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2197 ops = ftrace_find_tramp_ops_any(rec); 2198 if (ops) { 2199 do { 2200 pr_cont("\ttramp: %pS (%pS)", 2201 (void *)ops->trampoline, 2202 (void *)ops->func); 2203 ops = ftrace_find_tramp_ops_next(rec, ops); 2204 } while (ops); 2205 } else 2206 pr_cont("\ttramp: ERROR!"); 2207 2208 } 2209 ip = ftrace_get_addr_curr(rec); 2210 pr_cont("\n expected tramp: %lx\n", ip); 2211 } 2212 2213 FTRACE_WARN_ON_ONCE(1); 2214 } 2215 2216 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2217 { 2218 unsigned long flag = 0UL; 2219 2220 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2221 2222 if (skip_record(rec)) 2223 return FTRACE_UPDATE_IGNORE; 2224 2225 /* 2226 * If we are updating calls: 2227 * 2228 * If the record has a ref count, then we need to enable it 2229 * because someone is using it. 2230 * 2231 * Otherwise we make sure its disabled. 2232 * 2233 * If we are disabling calls, then disable all records that 2234 * are enabled. 2235 */ 2236 if (enable && ftrace_rec_count(rec)) 2237 flag = FTRACE_FL_ENABLED; 2238 2239 /* 2240 * If enabling and the REGS flag does not match the REGS_EN, or 2241 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2242 * this record. Set flags to fail the compare against ENABLED. 2243 * Same for direct calls. 2244 */ 2245 if (flag) { 2246 if (!(rec->flags & FTRACE_FL_REGS) != 2247 !(rec->flags & FTRACE_FL_REGS_EN)) 2248 flag |= FTRACE_FL_REGS; 2249 2250 if (!(rec->flags & FTRACE_FL_TRAMP) != 2251 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2252 flag |= FTRACE_FL_TRAMP; 2253 2254 /* 2255 * Direct calls are special, as count matters. 2256 * We must test the record for direct, if the 2257 * DIRECT and DIRECT_EN do not match, but only 2258 * if the count is 1. That's because, if the 2259 * count is something other than one, we do not 2260 * want the direct enabled (it will be done via the 2261 * direct helper). But if DIRECT_EN is set, and 2262 * the count is not one, we need to clear it. 2263 * 2264 */ 2265 if (ftrace_rec_count(rec) == 1) { 2266 if (!(rec->flags & FTRACE_FL_DIRECT) != 2267 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2268 flag |= FTRACE_FL_DIRECT; 2269 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2270 flag |= FTRACE_FL_DIRECT; 2271 } 2272 2273 /* 2274 * Ops calls are special, as count matters. 2275 * As with direct calls, they must only be enabled when count 2276 * is one, otherwise they'll be handled via the list ops. 2277 */ 2278 if (ftrace_rec_count(rec) == 1) { 2279 if (!(rec->flags & FTRACE_FL_CALL_OPS) != 2280 !(rec->flags & FTRACE_FL_CALL_OPS_EN)) 2281 flag |= FTRACE_FL_CALL_OPS; 2282 } else if (rec->flags & FTRACE_FL_CALL_OPS_EN) { 2283 flag |= FTRACE_FL_CALL_OPS; 2284 } 2285 } 2286 2287 /* If the state of this record hasn't changed, then do nothing */ 2288 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2289 return FTRACE_UPDATE_IGNORE; 2290 2291 if (flag) { 2292 /* Save off if rec is being enabled (for return value) */ 2293 flag ^= rec->flags & FTRACE_FL_ENABLED; 2294 2295 if (update) { 2296 rec->flags |= FTRACE_FL_ENABLED | FTRACE_FL_TOUCHED; 2297 if (flag & FTRACE_FL_REGS) { 2298 if (rec->flags & FTRACE_FL_REGS) 2299 rec->flags |= FTRACE_FL_REGS_EN; 2300 else 2301 rec->flags &= ~FTRACE_FL_REGS_EN; 2302 } 2303 if (flag & FTRACE_FL_TRAMP) { 2304 if (rec->flags & FTRACE_FL_TRAMP) 2305 rec->flags |= FTRACE_FL_TRAMP_EN; 2306 else 2307 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2308 } 2309 2310 /* Keep track of anything that modifies the function */ 2311 if (rec->flags & (FTRACE_FL_DIRECT | FTRACE_FL_IPMODIFY)) 2312 rec->flags |= FTRACE_FL_MODIFIED; 2313 2314 if (flag & FTRACE_FL_DIRECT) { 2315 /* 2316 * If there's only one user (direct_ops helper) 2317 * then we can call the direct function 2318 * directly (no ftrace trampoline). 2319 */ 2320 if (ftrace_rec_count(rec) == 1) { 2321 if (rec->flags & FTRACE_FL_DIRECT) 2322 rec->flags |= FTRACE_FL_DIRECT_EN; 2323 else 2324 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2325 } else { 2326 /* 2327 * Can only call directly if there's 2328 * only one callback to the function. 2329 */ 2330 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2331 } 2332 } 2333 2334 if (flag & FTRACE_FL_CALL_OPS) { 2335 if (ftrace_rec_count(rec) == 1) { 2336 if (rec->flags & FTRACE_FL_CALL_OPS) 2337 rec->flags |= FTRACE_FL_CALL_OPS_EN; 2338 else 2339 rec->flags &= ~FTRACE_FL_CALL_OPS_EN; 2340 } else { 2341 /* 2342 * Can only call directly if there's 2343 * only one set of associated ops. 2344 */ 2345 rec->flags &= ~FTRACE_FL_CALL_OPS_EN; 2346 } 2347 } 2348 } 2349 2350 /* 2351 * If this record is being updated from a nop, then 2352 * return UPDATE_MAKE_CALL. 2353 * Otherwise, 2354 * return UPDATE_MODIFY_CALL to tell the caller to convert 2355 * from the save regs, to a non-save regs function or 2356 * vice versa, or from a trampoline call. 2357 */ 2358 if (flag & FTRACE_FL_ENABLED) { 2359 ftrace_bug_type = FTRACE_BUG_CALL; 2360 return FTRACE_UPDATE_MAKE_CALL; 2361 } 2362 2363 ftrace_bug_type = FTRACE_BUG_UPDATE; 2364 return FTRACE_UPDATE_MODIFY_CALL; 2365 } 2366 2367 if (update) { 2368 /* If there's no more users, clear all flags */ 2369 if (!ftrace_rec_count(rec)) 2370 rec->flags &= FTRACE_NOCLEAR_FLAGS; 2371 else 2372 /* 2373 * Just disable the record, but keep the ops TRAMP 2374 * and REGS states. The _EN flags must be disabled though. 2375 */ 2376 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2377 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN | 2378 FTRACE_FL_CALL_OPS_EN); 2379 } 2380 2381 ftrace_bug_type = FTRACE_BUG_NOP; 2382 return FTRACE_UPDATE_MAKE_NOP; 2383 } 2384 2385 /** 2386 * ftrace_update_record - set a record that now is tracing or not 2387 * @rec: the record to update 2388 * @enable: set to true if the record is tracing, false to force disable 2389 * 2390 * The records that represent all functions that can be traced need 2391 * to be updated when tracing has been enabled. 2392 */ 2393 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2394 { 2395 return ftrace_check_record(rec, enable, true); 2396 } 2397 2398 /** 2399 * ftrace_test_record - check if the record has been enabled or not 2400 * @rec: the record to test 2401 * @enable: set to true to check if enabled, false if it is disabled 2402 * 2403 * The arch code may need to test if a record is already set to 2404 * tracing to determine how to modify the function code that it 2405 * represents. 2406 */ 2407 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2408 { 2409 return ftrace_check_record(rec, enable, false); 2410 } 2411 2412 static struct ftrace_ops * 2413 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2414 { 2415 struct ftrace_ops *op; 2416 unsigned long ip = rec->ip; 2417 2418 do_for_each_ftrace_op(op, ftrace_ops_list) { 2419 2420 if (!op->trampoline) 2421 continue; 2422 2423 if (hash_contains_ip(ip, op->func_hash)) 2424 return op; 2425 } while_for_each_ftrace_op(op); 2426 2427 return NULL; 2428 } 2429 2430 static struct ftrace_ops * 2431 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2432 { 2433 struct ftrace_ops *op; 2434 unsigned long ip = rec->ip; 2435 2436 do_for_each_ftrace_op(op, ftrace_ops_list) { 2437 2438 if (op == op_exclude || !op->trampoline) 2439 continue; 2440 2441 if (hash_contains_ip(ip, op->func_hash)) 2442 return op; 2443 } while_for_each_ftrace_op(op); 2444 2445 return NULL; 2446 } 2447 2448 static struct ftrace_ops * 2449 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2450 struct ftrace_ops *op) 2451 { 2452 unsigned long ip = rec->ip; 2453 2454 while_for_each_ftrace_op(op) { 2455 2456 if (!op->trampoline) 2457 continue; 2458 2459 if (hash_contains_ip(ip, op->func_hash)) 2460 return op; 2461 } 2462 2463 return NULL; 2464 } 2465 2466 static struct ftrace_ops * 2467 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2468 { 2469 struct ftrace_ops *op; 2470 unsigned long ip = rec->ip; 2471 2472 /* 2473 * Need to check removed ops first. 2474 * If they are being removed, and this rec has a tramp, 2475 * and this rec is in the ops list, then it would be the 2476 * one with the tramp. 2477 */ 2478 if (removed_ops) { 2479 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2480 return removed_ops; 2481 } 2482 2483 /* 2484 * Need to find the current trampoline for a rec. 2485 * Now, a trampoline is only attached to a rec if there 2486 * was a single 'ops' attached to it. But this can be called 2487 * when we are adding another op to the rec or removing the 2488 * current one. Thus, if the op is being added, we can 2489 * ignore it because it hasn't attached itself to the rec 2490 * yet. 2491 * 2492 * If an ops is being modified (hooking to different functions) 2493 * then we don't care about the new functions that are being 2494 * added, just the old ones (that are probably being removed). 2495 * 2496 * If we are adding an ops to a function that already is using 2497 * a trampoline, it needs to be removed (trampolines are only 2498 * for single ops connected), then an ops that is not being 2499 * modified also needs to be checked. 2500 */ 2501 do_for_each_ftrace_op(op, ftrace_ops_list) { 2502 2503 if (!op->trampoline) 2504 continue; 2505 2506 /* 2507 * If the ops is being added, it hasn't gotten to 2508 * the point to be removed from this tree yet. 2509 */ 2510 if (op->flags & FTRACE_OPS_FL_ADDING) 2511 continue; 2512 2513 2514 /* 2515 * If the ops is being modified and is in the old 2516 * hash, then it is probably being removed from this 2517 * function. 2518 */ 2519 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2520 hash_contains_ip(ip, &op->old_hash)) 2521 return op; 2522 /* 2523 * If the ops is not being added or modified, and it's 2524 * in its normal filter hash, then this must be the one 2525 * we want! 2526 */ 2527 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2528 hash_contains_ip(ip, op->func_hash)) 2529 return op; 2530 2531 } while_for_each_ftrace_op(op); 2532 2533 return NULL; 2534 } 2535 2536 static struct ftrace_ops * 2537 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2538 { 2539 struct ftrace_ops *op; 2540 unsigned long ip = rec->ip; 2541 2542 do_for_each_ftrace_op(op, ftrace_ops_list) { 2543 /* pass rec in as regs to have non-NULL val */ 2544 if (hash_contains_ip(ip, op->func_hash)) 2545 return op; 2546 } while_for_each_ftrace_op(op); 2547 2548 return NULL; 2549 } 2550 2551 struct ftrace_ops * 2552 ftrace_find_unique_ops(struct dyn_ftrace *rec) 2553 { 2554 struct ftrace_ops *op, *found = NULL; 2555 unsigned long ip = rec->ip; 2556 2557 do_for_each_ftrace_op(op, ftrace_ops_list) { 2558 2559 if (hash_contains_ip(ip, op->func_hash)) { 2560 if (found) 2561 return NULL; 2562 found = op; 2563 } 2564 2565 } while_for_each_ftrace_op(op); 2566 2567 return found; 2568 } 2569 2570 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2571 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2572 static struct ftrace_hash __rcu *direct_functions = EMPTY_HASH; 2573 static DEFINE_MUTEX(direct_mutex); 2574 2575 /* 2576 * Search the direct_functions hash to see if the given instruction pointer 2577 * has a direct caller attached to it. 2578 */ 2579 unsigned long ftrace_find_rec_direct(unsigned long ip) 2580 { 2581 struct ftrace_func_entry *entry; 2582 2583 entry = __ftrace_lookup_ip(direct_functions, ip); 2584 if (!entry) 2585 return 0; 2586 2587 return entry->direct; 2588 } 2589 2590 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2591 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2592 { 2593 unsigned long addr = READ_ONCE(ops->direct_call); 2594 2595 if (!addr) 2596 return; 2597 2598 arch_ftrace_set_direct_caller(fregs, addr); 2599 } 2600 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2601 2602 /** 2603 * ftrace_get_addr_new - Get the call address to set to 2604 * @rec: The ftrace record descriptor 2605 * 2606 * If the record has the FTRACE_FL_REGS set, that means that it 2607 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2608 * is not set, then it wants to convert to the normal callback. 2609 * 2610 * Returns: the address of the trampoline to set to 2611 */ 2612 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2613 { 2614 struct ftrace_ops *ops; 2615 unsigned long addr; 2616 2617 if ((rec->flags & FTRACE_FL_DIRECT) && 2618 (ftrace_rec_count(rec) == 1)) { 2619 addr = ftrace_find_rec_direct(rec->ip); 2620 if (addr) 2621 return addr; 2622 WARN_ON_ONCE(1); 2623 } 2624 2625 /* Trampolines take precedence over regs */ 2626 if (rec->flags & FTRACE_FL_TRAMP) { 2627 ops = ftrace_find_tramp_ops_new(rec); 2628 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2629 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2630 (void *)rec->ip, (void *)rec->ip, rec->flags); 2631 /* Ftrace is shutting down, return anything */ 2632 return (unsigned long)FTRACE_ADDR; 2633 } 2634 return ops->trampoline; 2635 } 2636 2637 if (rec->flags & FTRACE_FL_REGS) 2638 return (unsigned long)FTRACE_REGS_ADDR; 2639 else 2640 return (unsigned long)FTRACE_ADDR; 2641 } 2642 2643 /** 2644 * ftrace_get_addr_curr - Get the call address that is already there 2645 * @rec: The ftrace record descriptor 2646 * 2647 * The FTRACE_FL_REGS_EN is set when the record already points to 2648 * a function that saves all the regs. Basically the '_EN' version 2649 * represents the current state of the function. 2650 * 2651 * Returns: the address of the trampoline that is currently being called 2652 */ 2653 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2654 { 2655 struct ftrace_ops *ops; 2656 unsigned long addr; 2657 2658 /* Direct calls take precedence over trampolines */ 2659 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2660 addr = ftrace_find_rec_direct(rec->ip); 2661 if (addr) 2662 return addr; 2663 WARN_ON_ONCE(1); 2664 } 2665 2666 /* Trampolines take precedence over regs */ 2667 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2668 ops = ftrace_find_tramp_ops_curr(rec); 2669 if (FTRACE_WARN_ON(!ops)) { 2670 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2671 (void *)rec->ip, (void *)rec->ip); 2672 /* Ftrace is shutting down, return anything */ 2673 return (unsigned long)FTRACE_ADDR; 2674 } 2675 return ops->trampoline; 2676 } 2677 2678 if (rec->flags & FTRACE_FL_REGS_EN) 2679 return (unsigned long)FTRACE_REGS_ADDR; 2680 else 2681 return (unsigned long)FTRACE_ADDR; 2682 } 2683 2684 static int 2685 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2686 { 2687 unsigned long ftrace_old_addr; 2688 unsigned long ftrace_addr; 2689 int ret; 2690 2691 ftrace_addr = ftrace_get_addr_new(rec); 2692 2693 /* This needs to be done before we call ftrace_update_record */ 2694 ftrace_old_addr = ftrace_get_addr_curr(rec); 2695 2696 ret = ftrace_update_record(rec, enable); 2697 2698 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2699 2700 switch (ret) { 2701 case FTRACE_UPDATE_IGNORE: 2702 return 0; 2703 2704 case FTRACE_UPDATE_MAKE_CALL: 2705 ftrace_bug_type = FTRACE_BUG_CALL; 2706 return ftrace_make_call(rec, ftrace_addr); 2707 2708 case FTRACE_UPDATE_MAKE_NOP: 2709 ftrace_bug_type = FTRACE_BUG_NOP; 2710 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2711 2712 case FTRACE_UPDATE_MODIFY_CALL: 2713 ftrace_bug_type = FTRACE_BUG_UPDATE; 2714 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2715 } 2716 2717 return -1; /* unknown ftrace bug */ 2718 } 2719 2720 void __weak ftrace_replace_code(int mod_flags) 2721 { 2722 struct dyn_ftrace *rec; 2723 struct ftrace_page *pg; 2724 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2725 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2726 int failed; 2727 2728 if (unlikely(ftrace_disabled)) 2729 return; 2730 2731 do_for_each_ftrace_rec(pg, rec) { 2732 2733 if (skip_record(rec)) 2734 continue; 2735 2736 failed = __ftrace_replace_code(rec, enable); 2737 if (failed) { 2738 ftrace_bug(failed, rec); 2739 /* Stop processing */ 2740 return; 2741 } 2742 if (schedulable) 2743 cond_resched(); 2744 } while_for_each_ftrace_rec(); 2745 } 2746 2747 struct ftrace_rec_iter { 2748 struct ftrace_page *pg; 2749 int index; 2750 }; 2751 2752 /** 2753 * ftrace_rec_iter_start - start up iterating over traced functions 2754 * 2755 * Returns: an iterator handle that is used to iterate over all 2756 * the records that represent address locations where functions 2757 * are traced. 2758 * 2759 * May return NULL if no records are available. 2760 */ 2761 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2762 { 2763 /* 2764 * We only use a single iterator. 2765 * Protected by the ftrace_lock mutex. 2766 */ 2767 static struct ftrace_rec_iter ftrace_rec_iter; 2768 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2769 2770 iter->pg = ftrace_pages_start; 2771 iter->index = 0; 2772 2773 /* Could have empty pages */ 2774 while (iter->pg && !iter->pg->index) 2775 iter->pg = iter->pg->next; 2776 2777 if (!iter->pg) 2778 return NULL; 2779 2780 return iter; 2781 } 2782 2783 /** 2784 * ftrace_rec_iter_next - get the next record to process. 2785 * @iter: The handle to the iterator. 2786 * 2787 * Returns: the next iterator after the given iterator @iter. 2788 */ 2789 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2790 { 2791 iter->index++; 2792 2793 if (iter->index >= iter->pg->index) { 2794 iter->pg = iter->pg->next; 2795 iter->index = 0; 2796 2797 /* Could have empty pages */ 2798 while (iter->pg && !iter->pg->index) 2799 iter->pg = iter->pg->next; 2800 } 2801 2802 if (!iter->pg) 2803 return NULL; 2804 2805 return iter; 2806 } 2807 2808 /** 2809 * ftrace_rec_iter_record - get the record at the iterator location 2810 * @iter: The current iterator location 2811 * 2812 * Returns: the record that the current @iter is at. 2813 */ 2814 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2815 { 2816 return &iter->pg->records[iter->index]; 2817 } 2818 2819 static int 2820 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2821 { 2822 int ret; 2823 2824 if (unlikely(ftrace_disabled)) 2825 return 0; 2826 2827 ret = ftrace_init_nop(mod, rec); 2828 if (ret) { 2829 ftrace_bug_type = FTRACE_BUG_INIT; 2830 ftrace_bug(ret, rec); 2831 return 0; 2832 } 2833 return 1; 2834 } 2835 2836 /* 2837 * archs can override this function if they must do something 2838 * before the modifying code is performed. 2839 */ 2840 void __weak ftrace_arch_code_modify_prepare(void) 2841 { 2842 } 2843 2844 /* 2845 * archs can override this function if they must do something 2846 * after the modifying code is performed. 2847 */ 2848 void __weak ftrace_arch_code_modify_post_process(void) 2849 { 2850 } 2851 2852 static int update_ftrace_func(ftrace_func_t func) 2853 { 2854 static ftrace_func_t save_func; 2855 2856 /* Avoid updating if it hasn't changed */ 2857 if (func == save_func) 2858 return 0; 2859 2860 save_func = func; 2861 2862 return ftrace_update_ftrace_func(func); 2863 } 2864 2865 void ftrace_modify_all_code(int command) 2866 { 2867 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2868 int mod_flags = 0; 2869 int err = 0; 2870 2871 if (command & FTRACE_MAY_SLEEP) 2872 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2873 2874 /* 2875 * If the ftrace_caller calls a ftrace_ops func directly, 2876 * we need to make sure that it only traces functions it 2877 * expects to trace. When doing the switch of functions, 2878 * we need to update to the ftrace_ops_list_func first 2879 * before the transition between old and new calls are set, 2880 * as the ftrace_ops_list_func will check the ops hashes 2881 * to make sure the ops are having the right functions 2882 * traced. 2883 */ 2884 if (update) { 2885 err = update_ftrace_func(ftrace_ops_list_func); 2886 if (FTRACE_WARN_ON(err)) 2887 return; 2888 } 2889 2890 if (command & FTRACE_UPDATE_CALLS) 2891 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2892 else if (command & FTRACE_DISABLE_CALLS) 2893 ftrace_replace_code(mod_flags); 2894 2895 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2896 function_trace_op = set_function_trace_op; 2897 smp_wmb(); 2898 /* If irqs are disabled, we are in stop machine */ 2899 if (!irqs_disabled()) 2900 smp_call_function(ftrace_sync_ipi, NULL, 1); 2901 err = update_ftrace_func(ftrace_trace_function); 2902 if (FTRACE_WARN_ON(err)) 2903 return; 2904 } 2905 2906 if (command & FTRACE_START_FUNC_RET) 2907 err = ftrace_enable_ftrace_graph_caller(); 2908 else if (command & FTRACE_STOP_FUNC_RET) 2909 err = ftrace_disable_ftrace_graph_caller(); 2910 FTRACE_WARN_ON(err); 2911 } 2912 2913 static int __ftrace_modify_code(void *data) 2914 { 2915 int *command = data; 2916 2917 ftrace_modify_all_code(*command); 2918 2919 return 0; 2920 } 2921 2922 /** 2923 * ftrace_run_stop_machine - go back to the stop machine method 2924 * @command: The command to tell ftrace what to do 2925 * 2926 * If an arch needs to fall back to the stop machine method, the 2927 * it can call this function. 2928 */ 2929 void ftrace_run_stop_machine(int command) 2930 { 2931 stop_machine(__ftrace_modify_code, &command, NULL); 2932 } 2933 2934 /** 2935 * arch_ftrace_update_code - modify the code to trace or not trace 2936 * @command: The command that needs to be done 2937 * 2938 * Archs can override this function if it does not need to 2939 * run stop_machine() to modify code. 2940 */ 2941 void __weak arch_ftrace_update_code(int command) 2942 { 2943 ftrace_run_stop_machine(command); 2944 } 2945 2946 static void ftrace_run_update_code(int command) 2947 { 2948 ftrace_arch_code_modify_prepare(); 2949 2950 /* 2951 * By default we use stop_machine() to modify the code. 2952 * But archs can do what ever they want as long as it 2953 * is safe. The stop_machine() is the safest, but also 2954 * produces the most overhead. 2955 */ 2956 arch_ftrace_update_code(command); 2957 2958 ftrace_arch_code_modify_post_process(); 2959 } 2960 2961 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2962 struct ftrace_ops_hash *old_hash) 2963 { 2964 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2965 ops->old_hash.filter_hash = old_hash->filter_hash; 2966 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2967 ftrace_run_update_code(command); 2968 ops->old_hash.filter_hash = NULL; 2969 ops->old_hash.notrace_hash = NULL; 2970 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2971 } 2972 2973 static ftrace_func_t saved_ftrace_func; 2974 static int ftrace_start_up; 2975 2976 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2977 { 2978 } 2979 2980 /* List of trace_ops that have allocated trampolines */ 2981 static LIST_HEAD(ftrace_ops_trampoline_list); 2982 2983 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2984 { 2985 lockdep_assert_held(&ftrace_lock); 2986 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2987 } 2988 2989 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2990 { 2991 lockdep_assert_held(&ftrace_lock); 2992 list_del_rcu(&ops->list); 2993 synchronize_rcu(); 2994 } 2995 2996 /* 2997 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2998 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2999 * not a module. 3000 */ 3001 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 3002 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 3003 3004 static void ftrace_trampoline_free(struct ftrace_ops *ops) 3005 { 3006 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 3007 ops->trampoline) { 3008 /* 3009 * Record the text poke event before the ksymbol unregister 3010 * event. 3011 */ 3012 perf_event_text_poke((void *)ops->trampoline, 3013 (void *)ops->trampoline, 3014 ops->trampoline_size, NULL, 0); 3015 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 3016 ops->trampoline, ops->trampoline_size, 3017 true, FTRACE_TRAMPOLINE_SYM); 3018 /* Remove from kallsyms after the perf events */ 3019 ftrace_remove_trampoline_from_kallsyms(ops); 3020 } 3021 3022 arch_ftrace_trampoline_free(ops); 3023 } 3024 3025 static void ftrace_startup_enable(int command) 3026 { 3027 if (saved_ftrace_func != ftrace_trace_function) { 3028 saved_ftrace_func = ftrace_trace_function; 3029 command |= FTRACE_UPDATE_TRACE_FUNC; 3030 } 3031 3032 if (!command || !ftrace_enabled) 3033 return; 3034 3035 ftrace_run_update_code(command); 3036 } 3037 3038 static void ftrace_startup_all(int command) 3039 { 3040 update_all_ops = true; 3041 ftrace_startup_enable(command); 3042 update_all_ops = false; 3043 } 3044 3045 int ftrace_startup(struct ftrace_ops *ops, int command) 3046 { 3047 int ret; 3048 3049 if (unlikely(ftrace_disabled)) 3050 return -ENODEV; 3051 3052 ret = __register_ftrace_function(ops); 3053 if (ret) 3054 return ret; 3055 3056 ftrace_start_up++; 3057 3058 /* 3059 * Note that ftrace probes uses this to start up 3060 * and modify functions it will probe. But we still 3061 * set the ADDING flag for modification, as probes 3062 * do not have trampolines. If they add them in the 3063 * future, then the probes will need to distinguish 3064 * between adding and updating probes. 3065 */ 3066 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 3067 3068 ret = ftrace_hash_ipmodify_enable(ops); 3069 if (ret < 0) { 3070 /* Rollback registration process */ 3071 __unregister_ftrace_function(ops); 3072 ftrace_start_up--; 3073 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3074 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 3075 ftrace_trampoline_free(ops); 3076 return ret; 3077 } 3078 3079 if (ftrace_hash_rec_enable(ops)) 3080 command |= FTRACE_UPDATE_CALLS; 3081 3082 ftrace_startup_enable(command); 3083 3084 /* 3085 * If ftrace is in an undefined state, we just remove ops from list 3086 * to prevent the NULL pointer, instead of totally rolling it back and 3087 * free trampoline, because those actions could cause further damage. 3088 */ 3089 if (unlikely(ftrace_disabled)) { 3090 __unregister_ftrace_function(ops); 3091 return -ENODEV; 3092 } 3093 3094 ops->flags &= ~FTRACE_OPS_FL_ADDING; 3095 3096 return 0; 3097 } 3098 3099 int ftrace_shutdown(struct ftrace_ops *ops, int command) 3100 { 3101 int ret; 3102 3103 if (unlikely(ftrace_disabled)) 3104 return -ENODEV; 3105 3106 ret = __unregister_ftrace_function(ops); 3107 if (ret) 3108 return ret; 3109 3110 ftrace_start_up--; 3111 /* 3112 * Just warn in case of unbalance, no need to kill ftrace, it's not 3113 * critical but the ftrace_call callers may be never nopped again after 3114 * further ftrace uses. 3115 */ 3116 WARN_ON_ONCE(ftrace_start_up < 0); 3117 3118 /* Disabling ipmodify never fails */ 3119 ftrace_hash_ipmodify_disable(ops); 3120 3121 if (ftrace_hash_rec_disable(ops)) 3122 command |= FTRACE_UPDATE_CALLS; 3123 3124 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3125 3126 if (saved_ftrace_func != ftrace_trace_function) { 3127 saved_ftrace_func = ftrace_trace_function; 3128 command |= FTRACE_UPDATE_TRACE_FUNC; 3129 } 3130 3131 if (!command || !ftrace_enabled) 3132 goto out; 3133 3134 /* 3135 * If the ops uses a trampoline, then it needs to be 3136 * tested first on update. 3137 */ 3138 ops->flags |= FTRACE_OPS_FL_REMOVING; 3139 removed_ops = ops; 3140 3141 /* The trampoline logic checks the old hashes */ 3142 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3143 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3144 3145 ftrace_run_update_code(command); 3146 3147 /* 3148 * If there's no more ops registered with ftrace, run a 3149 * sanity check to make sure all rec flags are cleared. 3150 */ 3151 if (rcu_dereference_protected(ftrace_ops_list, 3152 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3153 struct ftrace_page *pg; 3154 struct dyn_ftrace *rec; 3155 3156 do_for_each_ftrace_rec(pg, rec) { 3157 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_NOCLEAR_FLAGS)) 3158 pr_warn(" %pS flags:%lx\n", 3159 (void *)rec->ip, rec->flags); 3160 } while_for_each_ftrace_rec(); 3161 } 3162 3163 ops->old_hash.filter_hash = NULL; 3164 ops->old_hash.notrace_hash = NULL; 3165 3166 removed_ops = NULL; 3167 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3168 3169 out: 3170 /* 3171 * Dynamic ops may be freed, we must make sure that all 3172 * callers are done before leaving this function. 3173 */ 3174 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3175 /* 3176 * We need to do a hard force of sched synchronization. 3177 * This is because we use preempt_disable() to do RCU, but 3178 * the function tracers can be called where RCU is not watching 3179 * (like before user_exit()). We can not rely on the RCU 3180 * infrastructure to do the synchronization, thus we must do it 3181 * ourselves. 3182 */ 3183 synchronize_rcu_tasks_rude(); 3184 3185 /* 3186 * When the kernel is preemptive, tasks can be preempted 3187 * while on a ftrace trampoline. Just scheduling a task on 3188 * a CPU is not good enough to flush them. Calling 3189 * synchronize_rcu_tasks() will wait for those tasks to 3190 * execute and either schedule voluntarily or enter user space. 3191 */ 3192 synchronize_rcu_tasks(); 3193 3194 ftrace_trampoline_free(ops); 3195 } 3196 3197 return 0; 3198 } 3199 3200 /* Simply make a copy of @src and return it */ 3201 static struct ftrace_hash *copy_hash(struct ftrace_hash *src) 3202 { 3203 if (ftrace_hash_empty(src)) 3204 return EMPTY_HASH; 3205 3206 return alloc_and_copy_ftrace_hash(src->size_bits, src); 3207 } 3208 3209 /* 3210 * Append @new_hash entries to @hash: 3211 * 3212 * If @hash is the EMPTY_HASH then it traces all functions and nothing 3213 * needs to be done. 3214 * 3215 * If @new_hash is the EMPTY_HASH, then make *hash the EMPTY_HASH so 3216 * that it traces everything. 3217 * 3218 * Otherwise, go through all of @new_hash and add anything that @hash 3219 * doesn't already have, to @hash. 3220 * 3221 * The filter_hash updates uses just the append_hash() function 3222 * and the notrace_hash does not. 3223 */ 3224 static int append_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash, 3225 int size_bits) 3226 { 3227 struct ftrace_func_entry *entry; 3228 int size; 3229 int i; 3230 3231 if (*hash) { 3232 /* An empty hash does everything */ 3233 if (ftrace_hash_empty(*hash)) 3234 return 0; 3235 } else { 3236 *hash = alloc_ftrace_hash(size_bits); 3237 if (!*hash) 3238 return -ENOMEM; 3239 } 3240 3241 /* If new_hash has everything make hash have everything */ 3242 if (ftrace_hash_empty(new_hash)) { 3243 free_ftrace_hash(*hash); 3244 *hash = EMPTY_HASH; 3245 return 0; 3246 } 3247 3248 size = 1 << new_hash->size_bits; 3249 for (i = 0; i < size; i++) { 3250 hlist_for_each_entry(entry, &new_hash->buckets[i], hlist) { 3251 /* Only add if not already in hash */ 3252 if (!__ftrace_lookup_ip(*hash, entry->ip) && 3253 add_hash_entry(*hash, entry->ip) == NULL) 3254 return -ENOMEM; 3255 } 3256 } 3257 return 0; 3258 } 3259 3260 /* 3261 * Remove functions from @hash that are in @notrace_hash 3262 */ 3263 static void remove_hash(struct ftrace_hash *hash, struct ftrace_hash *notrace_hash) 3264 { 3265 struct ftrace_func_entry *entry; 3266 struct hlist_node *tmp; 3267 int size; 3268 int i; 3269 3270 /* If the notrace hash is empty, there's nothing to do */ 3271 if (ftrace_hash_empty(notrace_hash)) 3272 return; 3273 3274 size = 1 << hash->size_bits; 3275 for (i = 0; i < size; i++) { 3276 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 3277 if (!__ftrace_lookup_ip(notrace_hash, entry->ip)) 3278 continue; 3279 remove_hash_entry(hash, entry); 3280 kfree(entry); 3281 } 3282 } 3283 } 3284 3285 /* 3286 * Add to @hash only those that are in both @new_hash1 and @new_hash2 3287 * 3288 * The notrace_hash updates uses just the intersect_hash() function 3289 * and the filter_hash does not. 3290 */ 3291 static int intersect_hash(struct ftrace_hash **hash, struct ftrace_hash *new_hash1, 3292 struct ftrace_hash *new_hash2) 3293 { 3294 struct ftrace_func_entry *entry; 3295 int size; 3296 int i; 3297 3298 /* 3299 * If new_hash1 or new_hash2 is the EMPTY_HASH then make the hash 3300 * empty as well as empty for notrace means none are notraced. 3301 */ 3302 if (ftrace_hash_empty(new_hash1) || ftrace_hash_empty(new_hash2)) { 3303 free_ftrace_hash(*hash); 3304 *hash = EMPTY_HASH; 3305 return 0; 3306 } 3307 3308 size = 1 << new_hash1->size_bits; 3309 for (i = 0; i < size; i++) { 3310 hlist_for_each_entry(entry, &new_hash1->buckets[i], hlist) { 3311 /* Only add if in both @new_hash1 and @new_hash2 */ 3312 if (__ftrace_lookup_ip(new_hash2, entry->ip) && 3313 add_hash_entry(*hash, entry->ip) == NULL) 3314 return -ENOMEM; 3315 } 3316 } 3317 /* If nothing intersects, make it the empty set */ 3318 if (ftrace_hash_empty(*hash)) { 3319 free_ftrace_hash(*hash); 3320 *hash = EMPTY_HASH; 3321 } 3322 return 0; 3323 } 3324 3325 static bool ops_equal(struct ftrace_hash *A, struct ftrace_hash *B) 3326 { 3327 struct ftrace_func_entry *entry; 3328 int size; 3329 int i; 3330 3331 if (ftrace_hash_empty(A)) 3332 return ftrace_hash_empty(B); 3333 3334 if (ftrace_hash_empty(B)) 3335 return ftrace_hash_empty(A); 3336 3337 if (A->count != B->count) 3338 return false; 3339 3340 size = 1 << A->size_bits; 3341 for (i = 0; i < size; i++) { 3342 hlist_for_each_entry(entry, &A->buckets[i], hlist) { 3343 if (!__ftrace_lookup_ip(B, entry->ip)) 3344 return false; 3345 } 3346 } 3347 3348 return true; 3349 } 3350 3351 static void ftrace_ops_update_code(struct ftrace_ops *ops, 3352 struct ftrace_ops_hash *old_hash); 3353 3354 static int __ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 3355 struct ftrace_hash **orig_hash, 3356 struct ftrace_hash *hash, 3357 int enable) 3358 { 3359 struct ftrace_ops_hash old_hash_ops; 3360 struct ftrace_hash *old_hash; 3361 int ret; 3362 3363 old_hash = *orig_hash; 3364 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 3365 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 3366 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 3367 if (!ret) { 3368 ftrace_ops_update_code(ops, &old_hash_ops); 3369 free_ftrace_hash_rcu(old_hash); 3370 } 3371 return ret; 3372 } 3373 3374 static int ftrace_update_ops(struct ftrace_ops *ops, struct ftrace_hash *filter_hash, 3375 struct ftrace_hash *notrace_hash) 3376 { 3377 int ret; 3378 3379 if (!ops_equal(filter_hash, ops->func_hash->filter_hash)) { 3380 ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->filter_hash, 3381 filter_hash, 1); 3382 if (ret < 0) 3383 return ret; 3384 } 3385 3386 if (!ops_equal(notrace_hash, ops->func_hash->notrace_hash)) { 3387 ret = __ftrace_hash_move_and_update_ops(ops, &ops->func_hash->notrace_hash, 3388 notrace_hash, 0); 3389 if (ret < 0) 3390 return ret; 3391 } 3392 3393 return 0; 3394 } 3395 3396 static int add_first_hash(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash, 3397 struct ftrace_ops_hash *func_hash) 3398 { 3399 /* If the filter hash is not empty, simply remove the nohash from it */ 3400 if (!ftrace_hash_empty(func_hash->filter_hash)) { 3401 *filter_hash = copy_hash(func_hash->filter_hash); 3402 if (!*filter_hash) 3403 return -ENOMEM; 3404 remove_hash(*filter_hash, func_hash->notrace_hash); 3405 *notrace_hash = EMPTY_HASH; 3406 3407 } else { 3408 *notrace_hash = copy_hash(func_hash->notrace_hash); 3409 if (!*notrace_hash) 3410 return -ENOMEM; 3411 *filter_hash = EMPTY_HASH; 3412 } 3413 return 0; 3414 } 3415 3416 static int add_next_hash(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash, 3417 struct ftrace_ops_hash *ops_hash, struct ftrace_ops_hash *subops_hash) 3418 { 3419 int size_bits; 3420 int ret; 3421 3422 /* If the subops trace all functions so must the main ops */ 3423 if (ftrace_hash_empty(ops_hash->filter_hash) || 3424 ftrace_hash_empty(subops_hash->filter_hash)) { 3425 *filter_hash = EMPTY_HASH; 3426 } else { 3427 /* 3428 * The main ops filter hash is not empty, so its 3429 * notrace_hash had better be, as the notrace hash 3430 * is only used for empty main filter hashes. 3431 */ 3432 WARN_ON_ONCE(!ftrace_hash_empty(ops_hash->notrace_hash)); 3433 3434 size_bits = max(ops_hash->filter_hash->size_bits, 3435 subops_hash->filter_hash->size_bits); 3436 3437 /* Copy the subops hash */ 3438 *filter_hash = alloc_and_copy_ftrace_hash(size_bits, subops_hash->filter_hash); 3439 if (!*filter_hash) 3440 return -ENOMEM; 3441 /* Remove any notrace functions from the copy */ 3442 remove_hash(*filter_hash, subops_hash->notrace_hash); 3443 3444 ret = append_hash(filter_hash, ops_hash->filter_hash, 3445 size_bits); 3446 if (ret < 0) { 3447 free_ftrace_hash(*filter_hash); 3448 *filter_hash = EMPTY_HASH; 3449 return ret; 3450 } 3451 } 3452 3453 /* 3454 * Only process notrace hashes if the main filter hash is empty 3455 * (tracing all functions), otherwise the filter hash will just 3456 * remove the notrace hash functions, and the notrace hash is 3457 * not needed. 3458 */ 3459 if (ftrace_hash_empty(*filter_hash)) { 3460 /* 3461 * Intersect the notrace functions. That is, if two 3462 * subops are not tracing a set of functions, the 3463 * main ops will only not trace the functions that are 3464 * in both subops, but has to trace the functions that 3465 * are only notrace in one of the subops, for the other 3466 * subops to be able to trace them. 3467 */ 3468 size_bits = max(ops_hash->notrace_hash->size_bits, 3469 subops_hash->notrace_hash->size_bits); 3470 *notrace_hash = alloc_ftrace_hash(size_bits); 3471 if (!*notrace_hash) 3472 return -ENOMEM; 3473 3474 ret = intersect_hash(notrace_hash, ops_hash->notrace_hash, 3475 subops_hash->notrace_hash); 3476 if (ret < 0) { 3477 free_ftrace_hash(*notrace_hash); 3478 *notrace_hash = EMPTY_HASH; 3479 return ret; 3480 } 3481 } 3482 return 0; 3483 } 3484 3485 /** 3486 * ftrace_startup_subops - enable tracing for subops of an ops 3487 * @ops: Manager ops (used to pick all the functions of its subops) 3488 * @subops: A new ops to add to @ops 3489 * @command: Extra commands to use to enable tracing 3490 * 3491 * The @ops is a manager @ops that has the filter that includes all the functions 3492 * that its list of subops are tracing. Adding a new @subops will add the 3493 * functions of @subops to @ops. 3494 */ 3495 int ftrace_startup_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command) 3496 { 3497 struct ftrace_hash *filter_hash = EMPTY_HASH; 3498 struct ftrace_hash *notrace_hash = EMPTY_HASH; 3499 struct ftrace_hash *save_filter_hash; 3500 struct ftrace_hash *save_notrace_hash; 3501 int ret; 3502 3503 if (unlikely(ftrace_disabled)) 3504 return -ENODEV; 3505 3506 ftrace_ops_init(ops); 3507 ftrace_ops_init(subops); 3508 3509 if (WARN_ON_ONCE(subops->flags & FTRACE_OPS_FL_ENABLED)) 3510 return -EBUSY; 3511 3512 /* Make everything canonical (Just in case!) */ 3513 if (!ops->func_hash->filter_hash) 3514 ops->func_hash->filter_hash = EMPTY_HASH; 3515 if (!ops->func_hash->notrace_hash) 3516 ops->func_hash->notrace_hash = EMPTY_HASH; 3517 if (!subops->func_hash->filter_hash) 3518 subops->func_hash->filter_hash = EMPTY_HASH; 3519 if (!subops->func_hash->notrace_hash) 3520 subops->func_hash->notrace_hash = EMPTY_HASH; 3521 3522 /* For the first subops to ops just enable it normally */ 3523 if (list_empty(&ops->subop_list)) { 3524 3525 /* The ops was empty, should have empty hashes */ 3526 WARN_ON_ONCE(!ftrace_hash_empty(ops->func_hash->filter_hash)); 3527 WARN_ON_ONCE(!ftrace_hash_empty(ops->func_hash->notrace_hash)); 3528 3529 ret = add_first_hash(&filter_hash, ¬race_hash, subops->func_hash); 3530 if (ret < 0) 3531 return ret; 3532 3533 save_filter_hash = ops->func_hash->filter_hash; 3534 save_notrace_hash = ops->func_hash->notrace_hash; 3535 3536 ops->func_hash->filter_hash = filter_hash; 3537 ops->func_hash->notrace_hash = notrace_hash; 3538 list_add(&subops->list, &ops->subop_list); 3539 ret = ftrace_startup(ops, command); 3540 if (ret < 0) { 3541 list_del(&subops->list); 3542 ops->func_hash->filter_hash = save_filter_hash; 3543 ops->func_hash->notrace_hash = save_notrace_hash; 3544 free_ftrace_hash(filter_hash); 3545 free_ftrace_hash(notrace_hash); 3546 } else { 3547 free_ftrace_hash(save_filter_hash); 3548 free_ftrace_hash(save_notrace_hash); 3549 subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP; 3550 subops->managed = ops; 3551 } 3552 return ret; 3553 } 3554 3555 /* 3556 * Here there's already something attached. Here are the rules: 3557 * If the new subops and main ops filter hashes are not empty: 3558 * o Make a copy of the subops filter hash 3559 * o Remove all functions in the nohash from it. 3560 * o Add in the main hash filter functions 3561 * o Remove any of these functions from the main notrace hash 3562 */ 3563 3564 ret = add_next_hash(&filter_hash, ¬race_hash, ops->func_hash, subops->func_hash); 3565 if (ret < 0) 3566 return ret; 3567 3568 list_add(&subops->list, &ops->subop_list); 3569 3570 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3571 free_ftrace_hash(filter_hash); 3572 free_ftrace_hash(notrace_hash); 3573 if (ret < 0) { 3574 list_del(&subops->list); 3575 } else { 3576 subops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP; 3577 subops->managed = ops; 3578 } 3579 return ret; 3580 } 3581 3582 static int rebuild_hashes(struct ftrace_hash **filter_hash, struct ftrace_hash **notrace_hash, 3583 struct ftrace_ops *ops) 3584 { 3585 struct ftrace_ops_hash temp_hash; 3586 struct ftrace_ops *subops; 3587 bool first = true; 3588 int ret; 3589 3590 temp_hash.filter_hash = EMPTY_HASH; 3591 temp_hash.notrace_hash = EMPTY_HASH; 3592 3593 list_for_each_entry(subops, &ops->subop_list, list) { 3594 *filter_hash = EMPTY_HASH; 3595 *notrace_hash = EMPTY_HASH; 3596 3597 if (first) { 3598 ret = add_first_hash(filter_hash, notrace_hash, subops->func_hash); 3599 if (ret < 0) 3600 return ret; 3601 first = false; 3602 } else { 3603 ret = add_next_hash(filter_hash, notrace_hash, 3604 &temp_hash, subops->func_hash); 3605 if (ret < 0) { 3606 free_ftrace_hash(temp_hash.filter_hash); 3607 free_ftrace_hash(temp_hash.notrace_hash); 3608 return ret; 3609 } 3610 } 3611 3612 free_ftrace_hash(temp_hash.filter_hash); 3613 free_ftrace_hash(temp_hash.notrace_hash); 3614 3615 temp_hash.filter_hash = *filter_hash; 3616 temp_hash.notrace_hash = *notrace_hash; 3617 } 3618 return 0; 3619 } 3620 3621 /** 3622 * ftrace_shutdown_subops - Remove a subops from a manager ops 3623 * @ops: A manager ops to remove @subops from 3624 * @subops: The subops to remove from @ops 3625 * @command: Any extra command flags to add to modifying the text 3626 * 3627 * Removes the functions being traced by the @subops from @ops. Note, it 3628 * will not affect functions that are being traced by other subops that 3629 * still exist in @ops. 3630 * 3631 * If the last subops is removed from @ops, then @ops is shutdown normally. 3632 */ 3633 int ftrace_shutdown_subops(struct ftrace_ops *ops, struct ftrace_ops *subops, int command) 3634 { 3635 struct ftrace_hash *filter_hash = EMPTY_HASH; 3636 struct ftrace_hash *notrace_hash = EMPTY_HASH; 3637 int ret; 3638 3639 if (unlikely(ftrace_disabled)) 3640 return -ENODEV; 3641 3642 if (WARN_ON_ONCE(!(subops->flags & FTRACE_OPS_FL_ENABLED))) 3643 return -EINVAL; 3644 3645 list_del(&subops->list); 3646 3647 if (list_empty(&ops->subop_list)) { 3648 /* Last one, just disable the current ops */ 3649 3650 ret = ftrace_shutdown(ops, command); 3651 if (ret < 0) { 3652 list_add(&subops->list, &ops->subop_list); 3653 return ret; 3654 } 3655 3656 subops->flags &= ~FTRACE_OPS_FL_ENABLED; 3657 3658 free_ftrace_hash(ops->func_hash->filter_hash); 3659 free_ftrace_hash(ops->func_hash->notrace_hash); 3660 ops->func_hash->filter_hash = EMPTY_HASH; 3661 ops->func_hash->notrace_hash = EMPTY_HASH; 3662 subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP); 3663 subops->managed = NULL; 3664 3665 return 0; 3666 } 3667 3668 /* Rebuild the hashes without subops */ 3669 ret = rebuild_hashes(&filter_hash, ¬race_hash, ops); 3670 if (ret < 0) 3671 return ret; 3672 3673 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3674 if (ret < 0) { 3675 list_add(&subops->list, &ops->subop_list); 3676 } else { 3677 subops->flags &= ~(FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_SUBOP); 3678 subops->managed = NULL; 3679 } 3680 free_ftrace_hash(filter_hash); 3681 free_ftrace_hash(notrace_hash); 3682 return ret; 3683 } 3684 3685 static int ftrace_hash_move_and_update_subops(struct ftrace_ops *subops, 3686 struct ftrace_hash **orig_subhash, 3687 struct ftrace_hash *hash) 3688 { 3689 struct ftrace_ops *ops = subops->managed; 3690 struct ftrace_hash *notrace_hash; 3691 struct ftrace_hash *filter_hash; 3692 struct ftrace_hash *save_hash; 3693 struct ftrace_hash *new_hash; 3694 int ret; 3695 3696 /* Manager ops can not be subops (yet) */ 3697 if (WARN_ON_ONCE(!ops || ops->flags & FTRACE_OPS_FL_SUBOP)) 3698 return -EINVAL; 3699 3700 /* Move the new hash over to the subops hash */ 3701 save_hash = *orig_subhash; 3702 *orig_subhash = __ftrace_hash_move(hash); 3703 if (!*orig_subhash) { 3704 *orig_subhash = save_hash; 3705 return -ENOMEM; 3706 } 3707 3708 ret = rebuild_hashes(&filter_hash, ¬race_hash, ops); 3709 if (!ret) { 3710 ret = ftrace_update_ops(ops, filter_hash, notrace_hash); 3711 free_ftrace_hash(filter_hash); 3712 free_ftrace_hash(notrace_hash); 3713 } 3714 3715 if (ret) { 3716 /* Put back the original hash */ 3717 new_hash = *orig_subhash; 3718 *orig_subhash = save_hash; 3719 free_ftrace_hash_rcu(new_hash); 3720 } else { 3721 free_ftrace_hash_rcu(save_hash); 3722 } 3723 return ret; 3724 } 3725 3726 3727 u64 ftrace_update_time; 3728 u64 ftrace_total_mod_time; 3729 unsigned long ftrace_update_tot_cnt; 3730 unsigned long ftrace_number_of_pages; 3731 unsigned long ftrace_number_of_groups; 3732 3733 static inline int ops_traces_mod(struct ftrace_ops *ops) 3734 { 3735 /* 3736 * Filter_hash being empty will default to trace module. 3737 * But notrace hash requires a test of individual module functions. 3738 */ 3739 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3740 ftrace_hash_empty(ops->func_hash->notrace_hash); 3741 } 3742 3743 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3744 { 3745 bool init_nop = ftrace_need_init_nop(); 3746 struct ftrace_page *pg; 3747 struct dyn_ftrace *p; 3748 u64 start, stop, update_time; 3749 unsigned long update_cnt = 0; 3750 unsigned long rec_flags = 0; 3751 int i; 3752 3753 start = ftrace_now(raw_smp_processor_id()); 3754 3755 /* 3756 * When a module is loaded, this function is called to convert 3757 * the calls to mcount in its text to nops, and also to create 3758 * an entry in the ftrace data. Now, if ftrace is activated 3759 * after this call, but before the module sets its text to 3760 * read-only, the modification of enabling ftrace can fail if 3761 * the read-only is done while ftrace is converting the calls. 3762 * To prevent this, the module's records are set as disabled 3763 * and will be enabled after the call to set the module's text 3764 * to read-only. 3765 */ 3766 if (mod) 3767 rec_flags |= FTRACE_FL_DISABLED; 3768 3769 for (pg = new_pgs; pg; pg = pg->next) { 3770 3771 for (i = 0; i < pg->index; i++) { 3772 3773 /* If something went wrong, bail without enabling anything */ 3774 if (unlikely(ftrace_disabled)) 3775 return -1; 3776 3777 p = &pg->records[i]; 3778 p->flags = rec_flags; 3779 3780 /* 3781 * Do the initial record conversion from mcount jump 3782 * to the NOP instructions. 3783 */ 3784 if (init_nop && !ftrace_nop_initialize(mod, p)) 3785 break; 3786 3787 update_cnt++; 3788 } 3789 } 3790 3791 stop = ftrace_now(raw_smp_processor_id()); 3792 update_time = stop - start; 3793 if (mod) 3794 ftrace_total_mod_time += update_time; 3795 else 3796 ftrace_update_time = update_time; 3797 ftrace_update_tot_cnt += update_cnt; 3798 3799 return 0; 3800 } 3801 3802 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3803 { 3804 int order; 3805 int pages; 3806 int cnt; 3807 3808 if (WARN_ON(!count)) 3809 return -EINVAL; 3810 3811 /* We want to fill as much as possible, with no empty pages */ 3812 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3813 order = fls(pages) - 1; 3814 3815 again: 3816 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3817 3818 if (!pg->records) { 3819 /* if we can't allocate this size, try something smaller */ 3820 if (!order) 3821 return -ENOMEM; 3822 order--; 3823 goto again; 3824 } 3825 3826 ftrace_number_of_pages += 1 << order; 3827 ftrace_number_of_groups++; 3828 3829 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3830 pg->order = order; 3831 3832 if (cnt > count) 3833 cnt = count; 3834 3835 return cnt; 3836 } 3837 3838 static void ftrace_free_pages(struct ftrace_page *pages) 3839 { 3840 struct ftrace_page *pg = pages; 3841 3842 while (pg) { 3843 if (pg->records) { 3844 free_pages((unsigned long)pg->records, pg->order); 3845 ftrace_number_of_pages -= 1 << pg->order; 3846 } 3847 pages = pg->next; 3848 kfree(pg); 3849 pg = pages; 3850 ftrace_number_of_groups--; 3851 } 3852 } 3853 3854 static struct ftrace_page * 3855 ftrace_allocate_pages(unsigned long num_to_init) 3856 { 3857 struct ftrace_page *start_pg; 3858 struct ftrace_page *pg; 3859 int cnt; 3860 3861 if (!num_to_init) 3862 return NULL; 3863 3864 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3865 if (!pg) 3866 return NULL; 3867 3868 /* 3869 * Try to allocate as much as possible in one continues 3870 * location that fills in all of the space. We want to 3871 * waste as little space as possible. 3872 */ 3873 for (;;) { 3874 cnt = ftrace_allocate_records(pg, num_to_init); 3875 if (cnt < 0) 3876 goto free_pages; 3877 3878 num_to_init -= cnt; 3879 if (!num_to_init) 3880 break; 3881 3882 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3883 if (!pg->next) 3884 goto free_pages; 3885 3886 pg = pg->next; 3887 } 3888 3889 return start_pg; 3890 3891 free_pages: 3892 ftrace_free_pages(start_pg); 3893 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3894 return NULL; 3895 } 3896 3897 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3898 3899 struct ftrace_iterator { 3900 loff_t pos; 3901 loff_t func_pos; 3902 loff_t mod_pos; 3903 struct ftrace_page *pg; 3904 struct dyn_ftrace *func; 3905 struct ftrace_func_probe *probe; 3906 struct ftrace_func_entry *probe_entry; 3907 struct trace_parser parser; 3908 struct ftrace_hash *hash; 3909 struct ftrace_ops *ops; 3910 struct trace_array *tr; 3911 struct list_head *mod_list; 3912 int pidx; 3913 int idx; 3914 unsigned flags; 3915 }; 3916 3917 static void * 3918 t_probe_next(struct seq_file *m, loff_t *pos) 3919 { 3920 struct ftrace_iterator *iter = m->private; 3921 struct trace_array *tr = iter->ops->private; 3922 struct list_head *func_probes; 3923 struct ftrace_hash *hash; 3924 struct list_head *next; 3925 struct hlist_node *hnd = NULL; 3926 struct hlist_head *hhd; 3927 int size; 3928 3929 (*pos)++; 3930 iter->pos = *pos; 3931 3932 if (!tr) 3933 return NULL; 3934 3935 func_probes = &tr->func_probes; 3936 if (list_empty(func_probes)) 3937 return NULL; 3938 3939 if (!iter->probe) { 3940 next = func_probes->next; 3941 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3942 } 3943 3944 if (iter->probe_entry) 3945 hnd = &iter->probe_entry->hlist; 3946 3947 hash = iter->probe->ops.func_hash->filter_hash; 3948 3949 /* 3950 * A probe being registered may temporarily have an empty hash 3951 * and it's at the end of the func_probes list. 3952 */ 3953 if (!hash || hash == EMPTY_HASH) 3954 return NULL; 3955 3956 size = 1 << hash->size_bits; 3957 3958 retry: 3959 if (iter->pidx >= size) { 3960 if (iter->probe->list.next == func_probes) 3961 return NULL; 3962 next = iter->probe->list.next; 3963 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3964 hash = iter->probe->ops.func_hash->filter_hash; 3965 size = 1 << hash->size_bits; 3966 iter->pidx = 0; 3967 } 3968 3969 hhd = &hash->buckets[iter->pidx]; 3970 3971 if (hlist_empty(hhd)) { 3972 iter->pidx++; 3973 hnd = NULL; 3974 goto retry; 3975 } 3976 3977 if (!hnd) 3978 hnd = hhd->first; 3979 else { 3980 hnd = hnd->next; 3981 if (!hnd) { 3982 iter->pidx++; 3983 goto retry; 3984 } 3985 } 3986 3987 if (WARN_ON_ONCE(!hnd)) 3988 return NULL; 3989 3990 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3991 3992 return iter; 3993 } 3994 3995 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3996 { 3997 struct ftrace_iterator *iter = m->private; 3998 void *p = NULL; 3999 loff_t l; 4000 4001 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 4002 return NULL; 4003 4004 if (iter->mod_pos > *pos) 4005 return NULL; 4006 4007 iter->probe = NULL; 4008 iter->probe_entry = NULL; 4009 iter->pidx = 0; 4010 for (l = 0; l <= (*pos - iter->mod_pos); ) { 4011 p = t_probe_next(m, &l); 4012 if (!p) 4013 break; 4014 } 4015 if (!p) 4016 return NULL; 4017 4018 /* Only set this if we have an item */ 4019 iter->flags |= FTRACE_ITER_PROBE; 4020 4021 return iter; 4022 } 4023 4024 static int 4025 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 4026 { 4027 struct ftrace_func_entry *probe_entry; 4028 struct ftrace_probe_ops *probe_ops; 4029 struct ftrace_func_probe *probe; 4030 4031 probe = iter->probe; 4032 probe_entry = iter->probe_entry; 4033 4034 if (WARN_ON_ONCE(!probe || !probe_entry)) 4035 return -EIO; 4036 4037 probe_ops = probe->probe_ops; 4038 4039 if (probe_ops->print) 4040 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 4041 4042 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 4043 (void *)probe_ops->func); 4044 4045 return 0; 4046 } 4047 4048 static void * 4049 t_mod_next(struct seq_file *m, loff_t *pos) 4050 { 4051 struct ftrace_iterator *iter = m->private; 4052 struct trace_array *tr = iter->tr; 4053 4054 (*pos)++; 4055 iter->pos = *pos; 4056 4057 iter->mod_list = iter->mod_list->next; 4058 4059 if (iter->mod_list == &tr->mod_trace || 4060 iter->mod_list == &tr->mod_notrace) { 4061 iter->flags &= ~FTRACE_ITER_MOD; 4062 return NULL; 4063 } 4064 4065 iter->mod_pos = *pos; 4066 4067 return iter; 4068 } 4069 4070 static void *t_mod_start(struct seq_file *m, loff_t *pos) 4071 { 4072 struct ftrace_iterator *iter = m->private; 4073 void *p = NULL; 4074 loff_t l; 4075 4076 if (iter->func_pos > *pos) 4077 return NULL; 4078 4079 iter->mod_pos = iter->func_pos; 4080 4081 /* probes are only available if tr is set */ 4082 if (!iter->tr) 4083 return NULL; 4084 4085 for (l = 0; l <= (*pos - iter->func_pos); ) { 4086 p = t_mod_next(m, &l); 4087 if (!p) 4088 break; 4089 } 4090 if (!p) { 4091 iter->flags &= ~FTRACE_ITER_MOD; 4092 return t_probe_start(m, pos); 4093 } 4094 4095 /* Only set this if we have an item */ 4096 iter->flags |= FTRACE_ITER_MOD; 4097 4098 return iter; 4099 } 4100 4101 static int 4102 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 4103 { 4104 struct ftrace_mod_load *ftrace_mod; 4105 struct trace_array *tr = iter->tr; 4106 4107 if (WARN_ON_ONCE(!iter->mod_list) || 4108 iter->mod_list == &tr->mod_trace || 4109 iter->mod_list == &tr->mod_notrace) 4110 return -EIO; 4111 4112 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 4113 4114 if (ftrace_mod->func) 4115 seq_printf(m, "%s", ftrace_mod->func); 4116 else 4117 seq_putc(m, '*'); 4118 4119 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 4120 4121 return 0; 4122 } 4123 4124 static void * 4125 t_func_next(struct seq_file *m, loff_t *pos) 4126 { 4127 struct ftrace_iterator *iter = m->private; 4128 struct dyn_ftrace *rec = NULL; 4129 4130 (*pos)++; 4131 4132 retry: 4133 if (iter->idx >= iter->pg->index) { 4134 if (iter->pg->next) { 4135 iter->pg = iter->pg->next; 4136 iter->idx = 0; 4137 goto retry; 4138 } 4139 } else { 4140 rec = &iter->pg->records[iter->idx++]; 4141 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 4142 !ftrace_lookup_ip(iter->hash, rec->ip)) || 4143 4144 ((iter->flags & FTRACE_ITER_ENABLED) && 4145 !(rec->flags & FTRACE_FL_ENABLED)) || 4146 4147 ((iter->flags & FTRACE_ITER_TOUCHED) && 4148 !(rec->flags & FTRACE_FL_TOUCHED))) { 4149 4150 rec = NULL; 4151 goto retry; 4152 } 4153 } 4154 4155 if (!rec) 4156 return NULL; 4157 4158 iter->pos = iter->func_pos = *pos; 4159 iter->func = rec; 4160 4161 return iter; 4162 } 4163 4164 static void * 4165 t_next(struct seq_file *m, void *v, loff_t *pos) 4166 { 4167 struct ftrace_iterator *iter = m->private; 4168 loff_t l = *pos; /* t_probe_start() must use original pos */ 4169 void *ret; 4170 4171 if (unlikely(ftrace_disabled)) 4172 return NULL; 4173 4174 if (iter->flags & FTRACE_ITER_PROBE) 4175 return t_probe_next(m, pos); 4176 4177 if (iter->flags & FTRACE_ITER_MOD) 4178 return t_mod_next(m, pos); 4179 4180 if (iter->flags & FTRACE_ITER_PRINTALL) { 4181 /* next must increment pos, and t_probe_start does not */ 4182 (*pos)++; 4183 return t_mod_start(m, &l); 4184 } 4185 4186 ret = t_func_next(m, pos); 4187 4188 if (!ret) 4189 return t_mod_start(m, &l); 4190 4191 return ret; 4192 } 4193 4194 static void reset_iter_read(struct ftrace_iterator *iter) 4195 { 4196 iter->pos = 0; 4197 iter->func_pos = 0; 4198 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 4199 } 4200 4201 static void *t_start(struct seq_file *m, loff_t *pos) 4202 { 4203 struct ftrace_iterator *iter = m->private; 4204 void *p = NULL; 4205 loff_t l; 4206 4207 mutex_lock(&ftrace_lock); 4208 4209 if (unlikely(ftrace_disabled)) 4210 return NULL; 4211 4212 /* 4213 * If an lseek was done, then reset and start from beginning. 4214 */ 4215 if (*pos < iter->pos) 4216 reset_iter_read(iter); 4217 4218 /* 4219 * For set_ftrace_filter reading, if we have the filter 4220 * off, we can short cut and just print out that all 4221 * functions are enabled. 4222 */ 4223 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 4224 ftrace_hash_empty(iter->hash)) { 4225 iter->func_pos = 1; /* Account for the message */ 4226 if (*pos > 0) 4227 return t_mod_start(m, pos); 4228 iter->flags |= FTRACE_ITER_PRINTALL; 4229 /* reset in case of seek/pread */ 4230 iter->flags &= ~FTRACE_ITER_PROBE; 4231 return iter; 4232 } 4233 4234 if (iter->flags & FTRACE_ITER_MOD) 4235 return t_mod_start(m, pos); 4236 4237 /* 4238 * Unfortunately, we need to restart at ftrace_pages_start 4239 * every time we let go of the ftrace_mutex. This is because 4240 * those pointers can change without the lock. 4241 */ 4242 iter->pg = ftrace_pages_start; 4243 iter->idx = 0; 4244 for (l = 0; l <= *pos; ) { 4245 p = t_func_next(m, &l); 4246 if (!p) 4247 break; 4248 } 4249 4250 if (!p) 4251 return t_mod_start(m, pos); 4252 4253 return iter; 4254 } 4255 4256 static void t_stop(struct seq_file *m, void *p) 4257 { 4258 mutex_unlock(&ftrace_lock); 4259 } 4260 4261 void * __weak 4262 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 4263 { 4264 return NULL; 4265 } 4266 4267 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 4268 struct dyn_ftrace *rec) 4269 { 4270 void *ptr; 4271 4272 ptr = arch_ftrace_trampoline_func(ops, rec); 4273 if (ptr) 4274 seq_printf(m, " ->%pS", ptr); 4275 } 4276 4277 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4278 /* 4279 * Weak functions can still have an mcount/fentry that is saved in 4280 * the __mcount_loc section. These can be detected by having a 4281 * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the 4282 * symbol found by kallsyms is not the function that the mcount/fentry 4283 * is part of. The offset is much greater in these cases. 4284 * 4285 * Test the record to make sure that the ip points to a valid kallsyms 4286 * and if not, mark it disabled. 4287 */ 4288 static int test_for_valid_rec(struct dyn_ftrace *rec) 4289 { 4290 char str[KSYM_SYMBOL_LEN]; 4291 unsigned long offset; 4292 const char *ret; 4293 4294 ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str); 4295 4296 /* Weak functions can cause invalid addresses */ 4297 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 4298 rec->flags |= FTRACE_FL_DISABLED; 4299 return 0; 4300 } 4301 return 1; 4302 } 4303 4304 static struct workqueue_struct *ftrace_check_wq __initdata; 4305 static struct work_struct ftrace_check_work __initdata; 4306 4307 /* 4308 * Scan all the mcount/fentry entries to make sure they are valid. 4309 */ 4310 static __init void ftrace_check_work_func(struct work_struct *work) 4311 { 4312 struct ftrace_page *pg; 4313 struct dyn_ftrace *rec; 4314 4315 mutex_lock(&ftrace_lock); 4316 do_for_each_ftrace_rec(pg, rec) { 4317 test_for_valid_rec(rec); 4318 } while_for_each_ftrace_rec(); 4319 mutex_unlock(&ftrace_lock); 4320 } 4321 4322 static int __init ftrace_check_for_weak_functions(void) 4323 { 4324 INIT_WORK(&ftrace_check_work, ftrace_check_work_func); 4325 4326 ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0); 4327 4328 queue_work(ftrace_check_wq, &ftrace_check_work); 4329 return 0; 4330 } 4331 4332 static int __init ftrace_check_sync(void) 4333 { 4334 /* Make sure the ftrace_check updates are finished */ 4335 if (ftrace_check_wq) 4336 destroy_workqueue(ftrace_check_wq); 4337 return 0; 4338 } 4339 4340 late_initcall_sync(ftrace_check_sync); 4341 subsys_initcall(ftrace_check_for_weak_functions); 4342 4343 static int print_rec(struct seq_file *m, unsigned long ip) 4344 { 4345 unsigned long offset; 4346 char str[KSYM_SYMBOL_LEN]; 4347 char *modname; 4348 const char *ret; 4349 4350 ret = kallsyms_lookup(ip, NULL, &offset, &modname, str); 4351 /* Weak functions can cause invalid addresses */ 4352 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 4353 snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld", 4354 FTRACE_INVALID_FUNCTION, offset); 4355 ret = NULL; 4356 } 4357 4358 seq_puts(m, str); 4359 if (modname) 4360 seq_printf(m, " [%s]", modname); 4361 return ret == NULL ? -1 : 0; 4362 } 4363 #else 4364 static inline int test_for_valid_rec(struct dyn_ftrace *rec) 4365 { 4366 return 1; 4367 } 4368 4369 static inline int print_rec(struct seq_file *m, unsigned long ip) 4370 { 4371 seq_printf(m, "%ps", (void *)ip); 4372 return 0; 4373 } 4374 #endif 4375 4376 static void print_subops(struct seq_file *m, struct ftrace_ops *ops, struct dyn_ftrace *rec) 4377 { 4378 struct ftrace_ops *subops; 4379 bool first = true; 4380 4381 list_for_each_entry(subops, &ops->subop_list, list) { 4382 if (!((subops->flags & FTRACE_OPS_FL_ENABLED) && 4383 hash_contains_ip(rec->ip, subops->func_hash))) 4384 continue; 4385 if (first) { 4386 seq_printf(m, "\tsubops:"); 4387 first = false; 4388 } 4389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 4390 if (subops->flags & FTRACE_OPS_FL_GRAPH) { 4391 struct fgraph_ops *gops; 4392 4393 gops = container_of(subops, struct fgraph_ops, ops); 4394 seq_printf(m, " {ent:%pS ret:%pS}", 4395 (void *)gops->entryfunc, 4396 (void *)gops->retfunc); 4397 continue; 4398 } 4399 #endif 4400 if (subops->trampoline) { 4401 seq_printf(m, " {%pS (%pS)}", 4402 (void *)subops->trampoline, 4403 (void *)subops->func); 4404 add_trampoline_func(m, subops, rec); 4405 } else { 4406 seq_printf(m, " {%pS}", 4407 (void *)subops->func); 4408 } 4409 } 4410 } 4411 4412 static int t_show(struct seq_file *m, void *v) 4413 { 4414 struct ftrace_iterator *iter = m->private; 4415 struct dyn_ftrace *rec; 4416 4417 if (iter->flags & FTRACE_ITER_PROBE) 4418 return t_probe_show(m, iter); 4419 4420 if (iter->flags & FTRACE_ITER_MOD) 4421 return t_mod_show(m, iter); 4422 4423 if (iter->flags & FTRACE_ITER_PRINTALL) { 4424 if (iter->flags & FTRACE_ITER_NOTRACE) 4425 seq_puts(m, "#### no functions disabled ####\n"); 4426 else 4427 seq_puts(m, "#### all functions enabled ####\n"); 4428 return 0; 4429 } 4430 4431 rec = iter->func; 4432 4433 if (!rec) 4434 return 0; 4435 4436 if (iter->flags & FTRACE_ITER_ADDRS) 4437 seq_printf(m, "%lx ", rec->ip); 4438 4439 if (print_rec(m, rec->ip)) { 4440 /* This should only happen when a rec is disabled */ 4441 WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED)); 4442 seq_putc(m, '\n'); 4443 return 0; 4444 } 4445 4446 if (iter->flags & (FTRACE_ITER_ENABLED | FTRACE_ITER_TOUCHED)) { 4447 struct ftrace_ops *ops; 4448 4449 seq_printf(m, " (%ld)%s%s%s%s%s", 4450 ftrace_rec_count(rec), 4451 rec->flags & FTRACE_FL_REGS ? " R" : " ", 4452 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 4453 rec->flags & FTRACE_FL_DIRECT ? " D" : " ", 4454 rec->flags & FTRACE_FL_CALL_OPS ? " O" : " ", 4455 rec->flags & FTRACE_FL_MODIFIED ? " M " : " "); 4456 if (rec->flags & FTRACE_FL_TRAMP_EN) { 4457 ops = ftrace_find_tramp_ops_any(rec); 4458 if (ops) { 4459 do { 4460 seq_printf(m, "\ttramp: %pS (%pS)", 4461 (void *)ops->trampoline, 4462 (void *)ops->func); 4463 add_trampoline_func(m, ops, rec); 4464 print_subops(m, ops, rec); 4465 ops = ftrace_find_tramp_ops_next(rec, ops); 4466 } while (ops); 4467 } else 4468 seq_puts(m, "\ttramp: ERROR!"); 4469 } else { 4470 add_trampoline_func(m, NULL, rec); 4471 } 4472 if (rec->flags & FTRACE_FL_CALL_OPS_EN) { 4473 ops = ftrace_find_unique_ops(rec); 4474 if (ops) { 4475 seq_printf(m, "\tops: %pS (%pS)", 4476 ops, ops->func); 4477 print_subops(m, ops, rec); 4478 } else { 4479 seq_puts(m, "\tops: ERROR!"); 4480 } 4481 } 4482 if (rec->flags & FTRACE_FL_DIRECT) { 4483 unsigned long direct; 4484 4485 direct = ftrace_find_rec_direct(rec->ip); 4486 if (direct) 4487 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 4488 } 4489 } 4490 4491 seq_putc(m, '\n'); 4492 4493 return 0; 4494 } 4495 4496 static const struct seq_operations show_ftrace_seq_ops = { 4497 .start = t_start, 4498 .next = t_next, 4499 .stop = t_stop, 4500 .show = t_show, 4501 }; 4502 4503 static int 4504 ftrace_avail_open(struct inode *inode, struct file *file) 4505 { 4506 struct ftrace_iterator *iter; 4507 int ret; 4508 4509 ret = security_locked_down(LOCKDOWN_TRACEFS); 4510 if (ret) 4511 return ret; 4512 4513 if (unlikely(ftrace_disabled)) 4514 return -ENODEV; 4515 4516 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4517 if (!iter) 4518 return -ENOMEM; 4519 4520 iter->pg = ftrace_pages_start; 4521 iter->ops = &global_ops; 4522 4523 return 0; 4524 } 4525 4526 static int 4527 ftrace_enabled_open(struct inode *inode, struct file *file) 4528 { 4529 struct ftrace_iterator *iter; 4530 4531 /* 4532 * This shows us what functions are currently being 4533 * traced and by what. Not sure if we want lockdown 4534 * to hide such critical information for an admin. 4535 * Although, perhaps it can show information we don't 4536 * want people to see, but if something is tracing 4537 * something, we probably want to know about it. 4538 */ 4539 4540 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4541 if (!iter) 4542 return -ENOMEM; 4543 4544 iter->pg = ftrace_pages_start; 4545 iter->flags = FTRACE_ITER_ENABLED; 4546 iter->ops = &global_ops; 4547 4548 return 0; 4549 } 4550 4551 static int 4552 ftrace_touched_open(struct inode *inode, struct file *file) 4553 { 4554 struct ftrace_iterator *iter; 4555 4556 /* 4557 * This shows us what functions have ever been enabled 4558 * (traced, direct, patched, etc). Not sure if we want lockdown 4559 * to hide such critical information for an admin. 4560 * Although, perhaps it can show information we don't 4561 * want people to see, but if something had traced 4562 * something, we probably want to know about it. 4563 */ 4564 4565 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4566 if (!iter) 4567 return -ENOMEM; 4568 4569 iter->pg = ftrace_pages_start; 4570 iter->flags = FTRACE_ITER_TOUCHED; 4571 iter->ops = &global_ops; 4572 4573 return 0; 4574 } 4575 4576 static int 4577 ftrace_avail_addrs_open(struct inode *inode, struct file *file) 4578 { 4579 struct ftrace_iterator *iter; 4580 int ret; 4581 4582 ret = security_locked_down(LOCKDOWN_TRACEFS); 4583 if (ret) 4584 return ret; 4585 4586 if (unlikely(ftrace_disabled)) 4587 return -ENODEV; 4588 4589 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 4590 if (!iter) 4591 return -ENOMEM; 4592 4593 iter->pg = ftrace_pages_start; 4594 iter->flags = FTRACE_ITER_ADDRS; 4595 iter->ops = &global_ops; 4596 4597 return 0; 4598 } 4599 4600 /** 4601 * ftrace_regex_open - initialize function tracer filter files 4602 * @ops: The ftrace_ops that hold the hash filters 4603 * @flag: The type of filter to process 4604 * @inode: The inode, usually passed in to your open routine 4605 * @file: The file, usually passed in to your open routine 4606 * 4607 * ftrace_regex_open() initializes the filter files for the 4608 * @ops. Depending on @flag it may process the filter hash or 4609 * the notrace hash of @ops. With this called from the open 4610 * routine, you can use ftrace_filter_write() for the write 4611 * routine if @flag has FTRACE_ITER_FILTER set, or 4612 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 4613 * tracing_lseek() should be used as the lseek routine, and 4614 * release must call ftrace_regex_release(). 4615 * 4616 * Returns: 0 on success or a negative errno value on failure 4617 */ 4618 int 4619 ftrace_regex_open(struct ftrace_ops *ops, int flag, 4620 struct inode *inode, struct file *file) 4621 { 4622 struct ftrace_iterator *iter; 4623 struct ftrace_hash *hash; 4624 struct list_head *mod_head; 4625 struct trace_array *tr = ops->private; 4626 int ret = -ENOMEM; 4627 4628 ftrace_ops_init(ops); 4629 4630 if (unlikely(ftrace_disabled)) 4631 return -ENODEV; 4632 4633 if (tracing_check_open_get_tr(tr)) 4634 return -ENODEV; 4635 4636 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 4637 if (!iter) 4638 goto out; 4639 4640 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 4641 goto out; 4642 4643 iter->ops = ops; 4644 iter->flags = flag; 4645 iter->tr = tr; 4646 4647 mutex_lock(&ops->func_hash->regex_lock); 4648 4649 if (flag & FTRACE_ITER_NOTRACE) { 4650 hash = ops->func_hash->notrace_hash; 4651 mod_head = tr ? &tr->mod_notrace : NULL; 4652 } else { 4653 hash = ops->func_hash->filter_hash; 4654 mod_head = tr ? &tr->mod_trace : NULL; 4655 } 4656 4657 iter->mod_list = mod_head; 4658 4659 if (file->f_mode & FMODE_WRITE) { 4660 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 4661 4662 if (file->f_flags & O_TRUNC) { 4663 iter->hash = alloc_ftrace_hash(size_bits); 4664 clear_ftrace_mod_list(mod_head); 4665 } else { 4666 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 4667 } 4668 4669 if (!iter->hash) { 4670 trace_parser_put(&iter->parser); 4671 goto out_unlock; 4672 } 4673 } else 4674 iter->hash = hash; 4675 4676 ret = 0; 4677 4678 if (file->f_mode & FMODE_READ) { 4679 iter->pg = ftrace_pages_start; 4680 4681 ret = seq_open(file, &show_ftrace_seq_ops); 4682 if (!ret) { 4683 struct seq_file *m = file->private_data; 4684 m->private = iter; 4685 } else { 4686 /* Failed */ 4687 free_ftrace_hash(iter->hash); 4688 trace_parser_put(&iter->parser); 4689 } 4690 } else 4691 file->private_data = iter; 4692 4693 out_unlock: 4694 mutex_unlock(&ops->func_hash->regex_lock); 4695 4696 out: 4697 if (ret) { 4698 kfree(iter); 4699 if (tr) 4700 trace_array_put(tr); 4701 } 4702 4703 return ret; 4704 } 4705 4706 static int 4707 ftrace_filter_open(struct inode *inode, struct file *file) 4708 { 4709 struct ftrace_ops *ops = inode->i_private; 4710 4711 /* Checks for tracefs lockdown */ 4712 return ftrace_regex_open(ops, 4713 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 4714 inode, file); 4715 } 4716 4717 static int 4718 ftrace_notrace_open(struct inode *inode, struct file *file) 4719 { 4720 struct ftrace_ops *ops = inode->i_private; 4721 4722 /* Checks for tracefs lockdown */ 4723 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 4724 inode, file); 4725 } 4726 4727 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 4728 struct ftrace_glob { 4729 char *search; 4730 unsigned len; 4731 int type; 4732 }; 4733 4734 /* 4735 * If symbols in an architecture don't correspond exactly to the user-visible 4736 * name of what they represent, it is possible to define this function to 4737 * perform the necessary adjustments. 4738 */ 4739 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 4740 { 4741 return str; 4742 } 4743 4744 static int ftrace_match(char *str, struct ftrace_glob *g) 4745 { 4746 int matched = 0; 4747 int slen; 4748 4749 str = arch_ftrace_match_adjust(str, g->search); 4750 4751 switch (g->type) { 4752 case MATCH_FULL: 4753 if (strcmp(str, g->search) == 0) 4754 matched = 1; 4755 break; 4756 case MATCH_FRONT_ONLY: 4757 if (strncmp(str, g->search, g->len) == 0) 4758 matched = 1; 4759 break; 4760 case MATCH_MIDDLE_ONLY: 4761 if (strstr(str, g->search)) 4762 matched = 1; 4763 break; 4764 case MATCH_END_ONLY: 4765 slen = strlen(str); 4766 if (slen >= g->len && 4767 memcmp(str + slen - g->len, g->search, g->len) == 0) 4768 matched = 1; 4769 break; 4770 case MATCH_GLOB: 4771 if (glob_match(g->search, str)) 4772 matched = 1; 4773 break; 4774 } 4775 4776 return matched; 4777 } 4778 4779 static int 4780 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 4781 { 4782 struct ftrace_func_entry *entry; 4783 int ret = 0; 4784 4785 entry = ftrace_lookup_ip(hash, rec->ip); 4786 if (clear_filter) { 4787 /* Do nothing if it doesn't exist */ 4788 if (!entry) 4789 return 0; 4790 4791 free_hash_entry(hash, entry); 4792 } else { 4793 /* Do nothing if it exists */ 4794 if (entry) 4795 return 0; 4796 if (add_hash_entry(hash, rec->ip) == NULL) 4797 ret = -ENOMEM; 4798 } 4799 return ret; 4800 } 4801 4802 static int 4803 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 4804 int clear_filter) 4805 { 4806 long index; 4807 struct ftrace_page *pg; 4808 struct dyn_ftrace *rec; 4809 4810 /* The index starts at 1 */ 4811 if (kstrtoul(func_g->search, 0, &index) || --index < 0) 4812 return 0; 4813 4814 do_for_each_ftrace_rec(pg, rec) { 4815 if (pg->index <= index) { 4816 index -= pg->index; 4817 /* this is a double loop, break goes to the next page */ 4818 break; 4819 } 4820 rec = &pg->records[index]; 4821 enter_record(hash, rec, clear_filter); 4822 return 1; 4823 } while_for_each_ftrace_rec(); 4824 return 0; 4825 } 4826 4827 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4828 static int lookup_ip(unsigned long ip, char **modname, char *str) 4829 { 4830 unsigned long offset; 4831 4832 kallsyms_lookup(ip, NULL, &offset, modname, str); 4833 if (offset > FTRACE_MCOUNT_MAX_OFFSET) 4834 return -1; 4835 return 0; 4836 } 4837 #else 4838 static int lookup_ip(unsigned long ip, char **modname, char *str) 4839 { 4840 kallsyms_lookup(ip, NULL, NULL, modname, str); 4841 return 0; 4842 } 4843 #endif 4844 4845 static int 4846 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4847 struct ftrace_glob *mod_g, int exclude_mod) 4848 { 4849 char str[KSYM_SYMBOL_LEN]; 4850 char *modname; 4851 4852 if (lookup_ip(rec->ip, &modname, str)) { 4853 /* This should only happen when a rec is disabled */ 4854 WARN_ON_ONCE(system_state == SYSTEM_RUNNING && 4855 !(rec->flags & FTRACE_FL_DISABLED)); 4856 return 0; 4857 } 4858 4859 if (mod_g) { 4860 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4861 4862 /* blank module name to match all modules */ 4863 if (!mod_g->len) { 4864 /* blank module globbing: modname xor exclude_mod */ 4865 if (!exclude_mod != !modname) 4866 goto func_match; 4867 return 0; 4868 } 4869 4870 /* 4871 * exclude_mod is set to trace everything but the given 4872 * module. If it is set and the module matches, then 4873 * return 0. If it is not set, and the module doesn't match 4874 * also return 0. Otherwise, check the function to see if 4875 * that matches. 4876 */ 4877 if (!mod_matches == !exclude_mod) 4878 return 0; 4879 func_match: 4880 /* blank search means to match all funcs in the mod */ 4881 if (!func_g->len) 4882 return 1; 4883 } 4884 4885 return ftrace_match(str, func_g); 4886 } 4887 4888 static int 4889 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4890 { 4891 struct ftrace_page *pg; 4892 struct dyn_ftrace *rec; 4893 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4894 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4895 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4896 int exclude_mod = 0; 4897 int found = 0; 4898 int ret; 4899 int clear_filter = 0; 4900 4901 if (func) { 4902 func_g.type = filter_parse_regex(func, len, &func_g.search, 4903 &clear_filter); 4904 func_g.len = strlen(func_g.search); 4905 } 4906 4907 if (mod) { 4908 mod_g.type = filter_parse_regex(mod, strlen(mod), 4909 &mod_g.search, &exclude_mod); 4910 mod_g.len = strlen(mod_g.search); 4911 } 4912 4913 guard(mutex)(&ftrace_lock); 4914 4915 if (unlikely(ftrace_disabled)) 4916 return 0; 4917 4918 if (func_g.type == MATCH_INDEX) 4919 return add_rec_by_index(hash, &func_g, clear_filter); 4920 4921 do_for_each_ftrace_rec(pg, rec) { 4922 4923 if (rec->flags & FTRACE_FL_DISABLED) 4924 continue; 4925 4926 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4927 ret = enter_record(hash, rec, clear_filter); 4928 if (ret < 0) 4929 return ret; 4930 found = 1; 4931 } 4932 cond_resched(); 4933 } while_for_each_ftrace_rec(); 4934 4935 return found; 4936 } 4937 4938 static int 4939 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4940 { 4941 return match_records(hash, buff, len, NULL); 4942 } 4943 4944 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4945 struct ftrace_ops_hash *old_hash) 4946 { 4947 struct ftrace_ops *op; 4948 4949 if (!ftrace_enabled) 4950 return; 4951 4952 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4953 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4954 return; 4955 } 4956 4957 /* 4958 * If this is the shared global_ops filter, then we need to 4959 * check if there is another ops that shares it, is enabled. 4960 * If so, we still need to run the modify code. 4961 */ 4962 if (ops->func_hash != &global_ops.local_hash) 4963 return; 4964 4965 do_for_each_ftrace_op(op, ftrace_ops_list) { 4966 if (op->func_hash == &global_ops.local_hash && 4967 op->flags & FTRACE_OPS_FL_ENABLED) { 4968 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4969 /* Only need to do this once */ 4970 return; 4971 } 4972 } while_for_each_ftrace_op(op); 4973 } 4974 4975 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4976 struct ftrace_hash **orig_hash, 4977 struct ftrace_hash *hash, 4978 int enable) 4979 { 4980 if (ops->flags & FTRACE_OPS_FL_SUBOP) 4981 return ftrace_hash_move_and_update_subops(ops, orig_hash, hash); 4982 4983 /* 4984 * If this ops is not enabled, it could be sharing its filters 4985 * with a subop. If that's the case, update the subop instead of 4986 * this ops. Shared filters are only allowed to have one ops set 4987 * at a time, and if we update the ops that is not enabled, 4988 * it will not affect subops that share it. 4989 */ 4990 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) { 4991 struct ftrace_ops *op; 4992 4993 /* Check if any other manager subops maps to this hash */ 4994 do_for_each_ftrace_op(op, ftrace_ops_list) { 4995 struct ftrace_ops *subops; 4996 4997 list_for_each_entry(subops, &op->subop_list, list) { 4998 if ((subops->flags & FTRACE_OPS_FL_ENABLED) && 4999 subops->func_hash == ops->func_hash) { 5000 return ftrace_hash_move_and_update_subops(subops, orig_hash, hash); 5001 } 5002 } 5003 } while_for_each_ftrace_op(op); 5004 } 5005 5006 return __ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5007 } 5008 5009 static int cache_mod(struct trace_array *tr, 5010 const char *func, char *module, int enable) 5011 { 5012 struct ftrace_mod_load *ftrace_mod, *n; 5013 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 5014 5015 guard(mutex)(&ftrace_lock); 5016 5017 /* We do not cache inverse filters */ 5018 if (func[0] == '!') { 5019 int ret = -EINVAL; 5020 5021 func++; 5022 5023 /* Look to remove this hash */ 5024 list_for_each_entry_safe(ftrace_mod, n, head, list) { 5025 if (strcmp(ftrace_mod->module, module) != 0) 5026 continue; 5027 5028 /* no func matches all */ 5029 if (strcmp(func, "*") == 0 || 5030 (ftrace_mod->func && 5031 strcmp(ftrace_mod->func, func) == 0)) { 5032 ret = 0; 5033 free_ftrace_mod(ftrace_mod); 5034 continue; 5035 } 5036 } 5037 return ret; 5038 } 5039 5040 /* We only care about modules that have not been loaded yet */ 5041 if (module_exists(module)) 5042 return -EINVAL; 5043 5044 /* Save this string off, and execute it when the module is loaded */ 5045 return ftrace_add_mod(tr, func, module, enable); 5046 } 5047 5048 #ifdef CONFIG_MODULES 5049 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 5050 char *mod, bool enable) 5051 { 5052 struct ftrace_mod_load *ftrace_mod, *n; 5053 struct ftrace_hash **orig_hash, *new_hash; 5054 LIST_HEAD(process_mods); 5055 char *func; 5056 5057 mutex_lock(&ops->func_hash->regex_lock); 5058 5059 if (enable) 5060 orig_hash = &ops->func_hash->filter_hash; 5061 else 5062 orig_hash = &ops->func_hash->notrace_hash; 5063 5064 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 5065 *orig_hash); 5066 if (!new_hash) 5067 goto out; /* warn? */ 5068 5069 mutex_lock(&ftrace_lock); 5070 5071 list_for_each_entry_safe(ftrace_mod, n, head, list) { 5072 5073 if (strcmp(ftrace_mod->module, mod) != 0) 5074 continue; 5075 5076 if (ftrace_mod->func) 5077 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 5078 else 5079 func = kstrdup("*", GFP_KERNEL); 5080 5081 if (!func) /* warn? */ 5082 continue; 5083 5084 list_move(&ftrace_mod->list, &process_mods); 5085 5086 /* Use the newly allocated func, as it may be "*" */ 5087 kfree(ftrace_mod->func); 5088 ftrace_mod->func = func; 5089 } 5090 5091 mutex_unlock(&ftrace_lock); 5092 5093 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 5094 5095 func = ftrace_mod->func; 5096 5097 /* Grabs ftrace_lock, which is why we have this extra step */ 5098 match_records(new_hash, func, strlen(func), mod); 5099 free_ftrace_mod(ftrace_mod); 5100 } 5101 5102 if (enable && list_empty(head)) 5103 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 5104 5105 mutex_lock(&ftrace_lock); 5106 5107 ftrace_hash_move_and_update_ops(ops, orig_hash, 5108 new_hash, enable); 5109 mutex_unlock(&ftrace_lock); 5110 5111 out: 5112 mutex_unlock(&ops->func_hash->regex_lock); 5113 5114 free_ftrace_hash(new_hash); 5115 } 5116 5117 static void process_cached_mods(const char *mod_name) 5118 { 5119 struct trace_array *tr; 5120 char *mod; 5121 5122 mod = kstrdup(mod_name, GFP_KERNEL); 5123 if (!mod) 5124 return; 5125 5126 mutex_lock(&trace_types_lock); 5127 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 5128 if (!list_empty(&tr->mod_trace)) 5129 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 5130 if (!list_empty(&tr->mod_notrace)) 5131 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 5132 } 5133 mutex_unlock(&trace_types_lock); 5134 5135 kfree(mod); 5136 } 5137 #endif 5138 5139 /* 5140 * We register the module command as a template to show others how 5141 * to register the a command as well. 5142 */ 5143 5144 static int 5145 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 5146 char *func_orig, char *cmd, char *module, int enable) 5147 { 5148 char *func; 5149 int ret; 5150 5151 if (!tr) 5152 return -ENODEV; 5153 5154 /* match_records() modifies func, and we need the original */ 5155 func = kstrdup(func_orig, GFP_KERNEL); 5156 if (!func) 5157 return -ENOMEM; 5158 5159 /* 5160 * cmd == 'mod' because we only registered this func 5161 * for the 'mod' ftrace_func_command. 5162 * But if you register one func with multiple commands, 5163 * you can tell which command was used by the cmd 5164 * parameter. 5165 */ 5166 ret = match_records(hash, func, strlen(func), module); 5167 kfree(func); 5168 5169 if (!ret) 5170 return cache_mod(tr, func_orig, module, enable); 5171 if (ret < 0) 5172 return ret; 5173 return 0; 5174 } 5175 5176 static struct ftrace_func_command ftrace_mod_cmd = { 5177 .name = "mod", 5178 .func = ftrace_mod_callback, 5179 }; 5180 5181 static int __init ftrace_mod_cmd_init(void) 5182 { 5183 return register_ftrace_command(&ftrace_mod_cmd); 5184 } 5185 core_initcall(ftrace_mod_cmd_init); 5186 5187 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 5188 struct ftrace_ops *op, struct ftrace_regs *fregs) 5189 { 5190 struct ftrace_probe_ops *probe_ops; 5191 struct ftrace_func_probe *probe; 5192 5193 probe = container_of(op, struct ftrace_func_probe, ops); 5194 probe_ops = probe->probe_ops; 5195 5196 /* 5197 * Disable preemption for these calls to prevent a RCU grace 5198 * period. This syncs the hash iteration and freeing of items 5199 * on the hash. rcu_read_lock is too dangerous here. 5200 */ 5201 preempt_disable_notrace(); 5202 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 5203 preempt_enable_notrace(); 5204 } 5205 5206 struct ftrace_func_map { 5207 struct ftrace_func_entry entry; 5208 void *data; 5209 }; 5210 5211 /* 5212 * Note, ftrace_func_mapper is freed by free_ftrace_hash(&mapper->hash). 5213 * The hash field must be the first field. 5214 */ 5215 struct ftrace_func_mapper { 5216 struct ftrace_hash hash; /* Must be first! */ 5217 }; 5218 5219 /** 5220 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 5221 * 5222 * Returns: a ftrace_func_mapper descriptor that can be used to map ips to data. 5223 */ 5224 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 5225 { 5226 struct ftrace_hash *hash; 5227 5228 /* 5229 * The mapper is simply a ftrace_hash, but since the entries 5230 * in the hash are not ftrace_func_entry type, we define it 5231 * as a separate structure. 5232 */ 5233 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5234 return (struct ftrace_func_mapper *)hash; 5235 } 5236 5237 /** 5238 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 5239 * @mapper: The mapper that has the ip maps 5240 * @ip: the instruction pointer to find the data for 5241 * 5242 * Returns: the data mapped to @ip if found otherwise NULL. The return 5243 * is actually the address of the mapper data pointer. The address is 5244 * returned for use cases where the data is no bigger than a long, and 5245 * the user can use the data pointer as its data instead of having to 5246 * allocate more memory for the reference. 5247 */ 5248 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 5249 unsigned long ip) 5250 { 5251 struct ftrace_func_entry *entry; 5252 struct ftrace_func_map *map; 5253 5254 entry = ftrace_lookup_ip(&mapper->hash, ip); 5255 if (!entry) 5256 return NULL; 5257 5258 map = (struct ftrace_func_map *)entry; 5259 return &map->data; 5260 } 5261 5262 /** 5263 * ftrace_func_mapper_add_ip - Map some data to an ip 5264 * @mapper: The mapper that has the ip maps 5265 * @ip: The instruction pointer address to map @data to 5266 * @data: The data to map to @ip 5267 * 5268 * Returns: 0 on success otherwise an error. 5269 */ 5270 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 5271 unsigned long ip, void *data) 5272 { 5273 struct ftrace_func_entry *entry; 5274 struct ftrace_func_map *map; 5275 5276 entry = ftrace_lookup_ip(&mapper->hash, ip); 5277 if (entry) 5278 return -EBUSY; 5279 5280 map = kmalloc(sizeof(*map), GFP_KERNEL); 5281 if (!map) 5282 return -ENOMEM; 5283 5284 map->entry.ip = ip; 5285 map->data = data; 5286 5287 __add_hash_entry(&mapper->hash, &map->entry); 5288 5289 return 0; 5290 } 5291 5292 /** 5293 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 5294 * @mapper: The mapper that has the ip maps 5295 * @ip: The instruction pointer address to remove the data from 5296 * 5297 * Returns: the data if it is found, otherwise NULL. 5298 * Note, if the data pointer is used as the data itself, (see 5299 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 5300 * if the data pointer was set to zero. 5301 */ 5302 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 5303 unsigned long ip) 5304 { 5305 struct ftrace_func_entry *entry; 5306 struct ftrace_func_map *map; 5307 void *data; 5308 5309 entry = ftrace_lookup_ip(&mapper->hash, ip); 5310 if (!entry) 5311 return NULL; 5312 5313 map = (struct ftrace_func_map *)entry; 5314 data = map->data; 5315 5316 remove_hash_entry(&mapper->hash, entry); 5317 kfree(entry); 5318 5319 return data; 5320 } 5321 5322 /** 5323 * free_ftrace_func_mapper - free a mapping of ips and data 5324 * @mapper: The mapper that has the ip maps 5325 * @free_func: A function to be called on each data item. 5326 * 5327 * This is used to free the function mapper. The @free_func is optional 5328 * and can be used if the data needs to be freed as well. 5329 */ 5330 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 5331 ftrace_mapper_func free_func) 5332 { 5333 struct ftrace_func_entry *entry; 5334 struct ftrace_func_map *map; 5335 struct hlist_head *hhd; 5336 int size, i; 5337 5338 if (!mapper) 5339 return; 5340 5341 if (free_func && mapper->hash.count) { 5342 size = 1 << mapper->hash.size_bits; 5343 for (i = 0; i < size; i++) { 5344 hhd = &mapper->hash.buckets[i]; 5345 hlist_for_each_entry(entry, hhd, hlist) { 5346 map = (struct ftrace_func_map *)entry; 5347 free_func(map); 5348 } 5349 } 5350 } 5351 /* This also frees the mapper itself */ 5352 free_ftrace_hash(&mapper->hash); 5353 } 5354 5355 static void release_probe(struct ftrace_func_probe *probe) 5356 { 5357 struct ftrace_probe_ops *probe_ops; 5358 5359 guard(mutex)(&ftrace_lock); 5360 5361 WARN_ON(probe->ref <= 0); 5362 5363 /* Subtract the ref that was used to protect this instance */ 5364 probe->ref--; 5365 5366 if (!probe->ref) { 5367 probe_ops = probe->probe_ops; 5368 /* 5369 * Sending zero as ip tells probe_ops to free 5370 * the probe->data itself 5371 */ 5372 if (probe_ops->free) 5373 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 5374 list_del(&probe->list); 5375 kfree(probe); 5376 } 5377 } 5378 5379 static void acquire_probe_locked(struct ftrace_func_probe *probe) 5380 { 5381 /* 5382 * Add one ref to keep it from being freed when releasing the 5383 * ftrace_lock mutex. 5384 */ 5385 probe->ref++; 5386 } 5387 5388 int 5389 register_ftrace_function_probe(char *glob, struct trace_array *tr, 5390 struct ftrace_probe_ops *probe_ops, 5391 void *data) 5392 { 5393 struct ftrace_func_probe *probe = NULL, *iter; 5394 struct ftrace_func_entry *entry; 5395 struct ftrace_hash **orig_hash; 5396 struct ftrace_hash *old_hash; 5397 struct ftrace_hash *hash; 5398 int count = 0; 5399 int size; 5400 int ret; 5401 int i; 5402 5403 if (WARN_ON(!tr)) 5404 return -EINVAL; 5405 5406 /* We do not support '!' for function probes */ 5407 if (WARN_ON(glob[0] == '!')) 5408 return -EINVAL; 5409 5410 5411 mutex_lock(&ftrace_lock); 5412 /* Check if the probe_ops is already registered */ 5413 list_for_each_entry(iter, &tr->func_probes, list) { 5414 if (iter->probe_ops == probe_ops) { 5415 probe = iter; 5416 break; 5417 } 5418 } 5419 if (!probe) { 5420 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 5421 if (!probe) { 5422 mutex_unlock(&ftrace_lock); 5423 return -ENOMEM; 5424 } 5425 probe->probe_ops = probe_ops; 5426 probe->ops.func = function_trace_probe_call; 5427 probe->tr = tr; 5428 ftrace_ops_init(&probe->ops); 5429 list_add(&probe->list, &tr->func_probes); 5430 } 5431 5432 acquire_probe_locked(probe); 5433 5434 mutex_unlock(&ftrace_lock); 5435 5436 /* 5437 * Note, there's a small window here that the func_hash->filter_hash 5438 * may be NULL or empty. Need to be careful when reading the loop. 5439 */ 5440 mutex_lock(&probe->ops.func_hash->regex_lock); 5441 5442 orig_hash = &probe->ops.func_hash->filter_hash; 5443 old_hash = *orig_hash; 5444 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 5445 5446 if (!hash) { 5447 ret = -ENOMEM; 5448 goto out; 5449 } 5450 5451 ret = ftrace_match_records(hash, glob, strlen(glob)); 5452 5453 /* Nothing found? */ 5454 if (!ret) 5455 ret = -EINVAL; 5456 5457 if (ret < 0) 5458 goto out; 5459 5460 size = 1 << hash->size_bits; 5461 for (i = 0; i < size; i++) { 5462 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5463 if (ftrace_lookup_ip(old_hash, entry->ip)) 5464 continue; 5465 /* 5466 * The caller might want to do something special 5467 * for each function we find. We call the callback 5468 * to give the caller an opportunity to do so. 5469 */ 5470 if (probe_ops->init) { 5471 ret = probe_ops->init(probe_ops, tr, 5472 entry->ip, data, 5473 &probe->data); 5474 if (ret < 0) { 5475 if (probe_ops->free && count) 5476 probe_ops->free(probe_ops, tr, 5477 0, probe->data); 5478 probe->data = NULL; 5479 goto out; 5480 } 5481 } 5482 count++; 5483 } 5484 } 5485 5486 mutex_lock(&ftrace_lock); 5487 5488 if (!count) { 5489 /* Nothing was added? */ 5490 ret = -EINVAL; 5491 goto out_unlock; 5492 } 5493 5494 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 5495 hash, 1); 5496 if (ret < 0) 5497 goto err_unlock; 5498 5499 /* One ref for each new function traced */ 5500 probe->ref += count; 5501 5502 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 5503 ret = ftrace_startup(&probe->ops, 0); 5504 5505 out_unlock: 5506 mutex_unlock(&ftrace_lock); 5507 5508 if (!ret) 5509 ret = count; 5510 out: 5511 mutex_unlock(&probe->ops.func_hash->regex_lock); 5512 free_ftrace_hash(hash); 5513 5514 release_probe(probe); 5515 5516 return ret; 5517 5518 err_unlock: 5519 if (!probe_ops->free || !count) 5520 goto out_unlock; 5521 5522 /* Failed to do the move, need to call the free functions */ 5523 for (i = 0; i < size; i++) { 5524 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5525 if (ftrace_lookup_ip(old_hash, entry->ip)) 5526 continue; 5527 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 5528 } 5529 } 5530 goto out_unlock; 5531 } 5532 5533 int 5534 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 5535 struct ftrace_probe_ops *probe_ops) 5536 { 5537 struct ftrace_func_probe *probe = NULL, *iter; 5538 struct ftrace_ops_hash old_hash_ops; 5539 struct ftrace_func_entry *entry; 5540 struct ftrace_glob func_g; 5541 struct ftrace_hash **orig_hash; 5542 struct ftrace_hash *old_hash; 5543 struct ftrace_hash *hash = NULL; 5544 struct hlist_node *tmp; 5545 struct hlist_head hhd; 5546 char str[KSYM_SYMBOL_LEN]; 5547 int count = 0; 5548 int i, ret = -ENODEV; 5549 int size; 5550 5551 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 5552 func_g.search = NULL; 5553 else { 5554 int not; 5555 5556 func_g.type = filter_parse_regex(glob, strlen(glob), 5557 &func_g.search, ¬); 5558 func_g.len = strlen(func_g.search); 5559 5560 /* we do not support '!' for function probes */ 5561 if (WARN_ON(not)) 5562 return -EINVAL; 5563 } 5564 5565 mutex_lock(&ftrace_lock); 5566 /* Check if the probe_ops is already registered */ 5567 list_for_each_entry(iter, &tr->func_probes, list) { 5568 if (iter->probe_ops == probe_ops) { 5569 probe = iter; 5570 break; 5571 } 5572 } 5573 if (!probe) 5574 goto err_unlock_ftrace; 5575 5576 ret = -EINVAL; 5577 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 5578 goto err_unlock_ftrace; 5579 5580 acquire_probe_locked(probe); 5581 5582 mutex_unlock(&ftrace_lock); 5583 5584 mutex_lock(&probe->ops.func_hash->regex_lock); 5585 5586 orig_hash = &probe->ops.func_hash->filter_hash; 5587 old_hash = *orig_hash; 5588 5589 if (ftrace_hash_empty(old_hash)) 5590 goto out_unlock; 5591 5592 old_hash_ops.filter_hash = old_hash; 5593 /* Probes only have filters */ 5594 old_hash_ops.notrace_hash = NULL; 5595 5596 ret = -ENOMEM; 5597 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 5598 if (!hash) 5599 goto out_unlock; 5600 5601 INIT_HLIST_HEAD(&hhd); 5602 5603 size = 1 << hash->size_bits; 5604 for (i = 0; i < size; i++) { 5605 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 5606 5607 if (func_g.search) { 5608 kallsyms_lookup(entry->ip, NULL, NULL, 5609 NULL, str); 5610 if (!ftrace_match(str, &func_g)) 5611 continue; 5612 } 5613 count++; 5614 remove_hash_entry(hash, entry); 5615 hlist_add_head(&entry->hlist, &hhd); 5616 } 5617 } 5618 5619 /* Nothing found? */ 5620 if (!count) { 5621 ret = -EINVAL; 5622 goto out_unlock; 5623 } 5624 5625 mutex_lock(&ftrace_lock); 5626 5627 WARN_ON(probe->ref < count); 5628 5629 probe->ref -= count; 5630 5631 if (ftrace_hash_empty(hash)) 5632 ftrace_shutdown(&probe->ops, 0); 5633 5634 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 5635 hash, 1); 5636 5637 /* still need to update the function call sites */ 5638 if (ftrace_enabled && !ftrace_hash_empty(hash)) 5639 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 5640 &old_hash_ops); 5641 synchronize_rcu(); 5642 5643 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 5644 hlist_del(&entry->hlist); 5645 if (probe_ops->free) 5646 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 5647 kfree(entry); 5648 } 5649 mutex_unlock(&ftrace_lock); 5650 5651 out_unlock: 5652 mutex_unlock(&probe->ops.func_hash->regex_lock); 5653 free_ftrace_hash(hash); 5654 5655 release_probe(probe); 5656 5657 return ret; 5658 5659 err_unlock_ftrace: 5660 mutex_unlock(&ftrace_lock); 5661 return ret; 5662 } 5663 5664 void clear_ftrace_function_probes(struct trace_array *tr) 5665 { 5666 struct ftrace_func_probe *probe, *n; 5667 5668 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 5669 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 5670 } 5671 5672 static LIST_HEAD(ftrace_commands); 5673 static DEFINE_MUTEX(ftrace_cmd_mutex); 5674 5675 /* 5676 * Currently we only register ftrace commands from __init, so mark this 5677 * __init too. 5678 */ 5679 __init int register_ftrace_command(struct ftrace_func_command *cmd) 5680 { 5681 struct ftrace_func_command *p; 5682 5683 guard(mutex)(&ftrace_cmd_mutex); 5684 list_for_each_entry(p, &ftrace_commands, list) { 5685 if (strcmp(cmd->name, p->name) == 0) 5686 return -EBUSY; 5687 } 5688 list_add(&cmd->list, &ftrace_commands); 5689 5690 return 0; 5691 } 5692 5693 /* 5694 * Currently we only unregister ftrace commands from __init, so mark 5695 * this __init too. 5696 */ 5697 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 5698 { 5699 struct ftrace_func_command *p, *n; 5700 5701 guard(mutex)(&ftrace_cmd_mutex); 5702 5703 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 5704 if (strcmp(cmd->name, p->name) == 0) { 5705 list_del_init(&p->list); 5706 return 0; 5707 } 5708 } 5709 5710 return -ENODEV; 5711 } 5712 5713 static int ftrace_process_regex(struct ftrace_iterator *iter, 5714 char *buff, int len, int enable) 5715 { 5716 struct ftrace_hash *hash = iter->hash; 5717 struct trace_array *tr = iter->ops->private; 5718 char *func, *command, *next = buff; 5719 struct ftrace_func_command *p; 5720 int ret; 5721 5722 func = strsep(&next, ":"); 5723 5724 if (!next) { 5725 ret = ftrace_match_records(hash, func, len); 5726 if (!ret) 5727 ret = -EINVAL; 5728 if (ret < 0) 5729 return ret; 5730 return 0; 5731 } 5732 5733 /* command found */ 5734 5735 command = strsep(&next, ":"); 5736 5737 guard(mutex)(&ftrace_cmd_mutex); 5738 5739 list_for_each_entry(p, &ftrace_commands, list) { 5740 if (strcmp(p->name, command) == 0) 5741 return p->func(tr, hash, func, command, next, enable); 5742 } 5743 5744 return -EINVAL; 5745 } 5746 5747 static ssize_t 5748 ftrace_regex_write(struct file *file, const char __user *ubuf, 5749 size_t cnt, loff_t *ppos, int enable) 5750 { 5751 struct ftrace_iterator *iter; 5752 struct trace_parser *parser; 5753 ssize_t ret, read; 5754 5755 if (!cnt) 5756 return 0; 5757 5758 if (file->f_mode & FMODE_READ) { 5759 struct seq_file *m = file->private_data; 5760 iter = m->private; 5761 } else 5762 iter = file->private_data; 5763 5764 if (unlikely(ftrace_disabled)) 5765 return -ENODEV; 5766 5767 /* iter->hash is a local copy, so we don't need regex_lock */ 5768 5769 parser = &iter->parser; 5770 read = trace_get_user(parser, ubuf, cnt, ppos); 5771 5772 if (read >= 0 && trace_parser_loaded(parser) && 5773 !trace_parser_cont(parser)) { 5774 ret = ftrace_process_regex(iter, parser->buffer, 5775 parser->idx, enable); 5776 trace_parser_clear(parser); 5777 if (ret < 0) 5778 return ret; 5779 } 5780 5781 return read; 5782 } 5783 5784 ssize_t 5785 ftrace_filter_write(struct file *file, const char __user *ubuf, 5786 size_t cnt, loff_t *ppos) 5787 { 5788 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 5789 } 5790 5791 ssize_t 5792 ftrace_notrace_write(struct file *file, const char __user *ubuf, 5793 size_t cnt, loff_t *ppos) 5794 { 5795 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 5796 } 5797 5798 static int 5799 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 5800 { 5801 struct ftrace_func_entry *entry; 5802 5803 ip = ftrace_location(ip); 5804 if (!ip) 5805 return -EINVAL; 5806 5807 if (remove) { 5808 entry = ftrace_lookup_ip(hash, ip); 5809 if (!entry) 5810 return -ENOENT; 5811 free_hash_entry(hash, entry); 5812 return 0; 5813 } else if (__ftrace_lookup_ip(hash, ip) != NULL) { 5814 /* Already exists */ 5815 return 0; 5816 } 5817 5818 entry = add_hash_entry(hash, ip); 5819 return entry ? 0 : -ENOMEM; 5820 } 5821 5822 static int 5823 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 5824 unsigned int cnt, int remove) 5825 { 5826 unsigned int i; 5827 int err; 5828 5829 for (i = 0; i < cnt; i++) { 5830 err = __ftrace_match_addr(hash, ips[i], remove); 5831 if (err) { 5832 /* 5833 * This expects the @hash is a temporary hash and if this 5834 * fails the caller must free the @hash. 5835 */ 5836 return err; 5837 } 5838 } 5839 return 0; 5840 } 5841 5842 static int 5843 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5844 unsigned long *ips, unsigned int cnt, 5845 int remove, int reset, int enable, char *mod) 5846 { 5847 struct ftrace_hash **orig_hash; 5848 struct ftrace_hash *hash; 5849 int ret; 5850 5851 if (unlikely(ftrace_disabled)) 5852 return -ENODEV; 5853 5854 mutex_lock(&ops->func_hash->regex_lock); 5855 5856 if (enable) 5857 orig_hash = &ops->func_hash->filter_hash; 5858 else 5859 orig_hash = &ops->func_hash->notrace_hash; 5860 5861 if (reset) 5862 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5863 else 5864 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5865 5866 if (!hash) { 5867 ret = -ENOMEM; 5868 goto out_regex_unlock; 5869 } 5870 5871 if (buf && !match_records(hash, buf, len, mod)) { 5872 /* If this was for a module and nothing was enabled, flag it */ 5873 if (mod) 5874 (*orig_hash)->flags |= FTRACE_HASH_FL_MOD; 5875 5876 /* 5877 * Even if it is a mod, return error to let caller know 5878 * nothing was added 5879 */ 5880 ret = -EINVAL; 5881 goto out_regex_unlock; 5882 } 5883 if (ips) { 5884 ret = ftrace_match_addr(hash, ips, cnt, remove); 5885 if (ret < 0) 5886 goto out_regex_unlock; 5887 } 5888 5889 mutex_lock(&ftrace_lock); 5890 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5891 mutex_unlock(&ftrace_lock); 5892 5893 out_regex_unlock: 5894 mutex_unlock(&ops->func_hash->regex_lock); 5895 5896 free_ftrace_hash(hash); 5897 return ret; 5898 } 5899 5900 static int 5901 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5902 int remove, int reset, int enable) 5903 { 5904 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable, NULL); 5905 } 5906 5907 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5908 5909 static int register_ftrace_function_nolock(struct ftrace_ops *ops); 5910 5911 /* 5912 * If there are multiple ftrace_ops, use SAVE_REGS by default, so that direct 5913 * call will be jumped from ftrace_regs_caller. Only if the architecture does 5914 * not support ftrace_regs_caller but direct_call, use SAVE_ARGS so that it 5915 * jumps from ftrace_caller for multiple ftrace_ops. 5916 */ 5917 #ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_REGS 5918 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_ARGS) 5919 #else 5920 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS) 5921 #endif 5922 5923 static int check_direct_multi(struct ftrace_ops *ops) 5924 { 5925 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5926 return -EINVAL; 5927 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5928 return -EINVAL; 5929 return 0; 5930 } 5931 5932 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5933 { 5934 struct ftrace_func_entry *entry, *del; 5935 int size, i; 5936 5937 size = 1 << hash->size_bits; 5938 for (i = 0; i < size; i++) { 5939 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5940 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5941 if (del && del->direct == addr) { 5942 remove_hash_entry(direct_functions, del); 5943 kfree(del); 5944 } 5945 } 5946 } 5947 } 5948 5949 static void register_ftrace_direct_cb(struct rcu_head *rhp) 5950 { 5951 struct ftrace_hash *fhp = container_of(rhp, struct ftrace_hash, rcu); 5952 5953 free_ftrace_hash(fhp); 5954 } 5955 5956 /** 5957 * register_ftrace_direct - Call a custom trampoline directly 5958 * for multiple functions registered in @ops 5959 * @ops: The address of the struct ftrace_ops object 5960 * @addr: The address of the trampoline to call at @ops functions 5961 * 5962 * This is used to connect a direct calls to @addr from the nop locations 5963 * of the functions registered in @ops (with by ftrace_set_filter_ip 5964 * function). 5965 * 5966 * The location that it calls (@addr) must be able to handle a direct call, 5967 * and save the parameters of the function being traced, and restore them 5968 * (or inject new ones if needed), before returning. 5969 * 5970 * Returns: 5971 * 0 on success 5972 * -EINVAL - The @ops object was already registered with this call or 5973 * when there are no functions in @ops object. 5974 * -EBUSY - Another direct function is already attached (there can be only one) 5975 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5976 * -ENOMEM - There was an allocation failure. 5977 */ 5978 int register_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 5979 { 5980 struct ftrace_hash *hash, *new_hash = NULL, *free_hash = NULL; 5981 struct ftrace_func_entry *entry, *new; 5982 int err = -EBUSY, size, i; 5983 5984 if (ops->func || ops->trampoline) 5985 return -EINVAL; 5986 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5987 return -EINVAL; 5988 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5989 return -EINVAL; 5990 5991 hash = ops->func_hash->filter_hash; 5992 if (ftrace_hash_empty(hash)) 5993 return -EINVAL; 5994 5995 mutex_lock(&direct_mutex); 5996 5997 /* Make sure requested entries are not already registered.. */ 5998 size = 1 << hash->size_bits; 5999 for (i = 0; i < size; i++) { 6000 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 6001 if (ftrace_find_rec_direct(entry->ip)) 6002 goto out_unlock; 6003 } 6004 } 6005 6006 err = -ENOMEM; 6007 6008 /* Make a copy hash to place the new and the old entries in */ 6009 size = hash->count + direct_functions->count; 6010 size = fls(size); 6011 if (size > FTRACE_HASH_MAX_BITS) 6012 size = FTRACE_HASH_MAX_BITS; 6013 new_hash = alloc_ftrace_hash(size); 6014 if (!new_hash) 6015 goto out_unlock; 6016 6017 /* Now copy over the existing direct entries */ 6018 size = 1 << direct_functions->size_bits; 6019 for (i = 0; i < size; i++) { 6020 hlist_for_each_entry(entry, &direct_functions->buckets[i], hlist) { 6021 new = add_hash_entry(new_hash, entry->ip); 6022 if (!new) 6023 goto out_unlock; 6024 new->direct = entry->direct; 6025 } 6026 } 6027 6028 /* ... and add the new entries */ 6029 size = 1 << hash->size_bits; 6030 for (i = 0; i < size; i++) { 6031 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 6032 new = add_hash_entry(new_hash, entry->ip); 6033 if (!new) 6034 goto out_unlock; 6035 /* Update both the copy and the hash entry */ 6036 new->direct = addr; 6037 entry->direct = addr; 6038 } 6039 } 6040 6041 free_hash = direct_functions; 6042 rcu_assign_pointer(direct_functions, new_hash); 6043 new_hash = NULL; 6044 6045 ops->func = call_direct_funcs; 6046 ops->flags = MULTI_FLAGS; 6047 ops->trampoline = FTRACE_REGS_ADDR; 6048 ops->direct_call = addr; 6049 6050 err = register_ftrace_function_nolock(ops); 6051 6052 out_unlock: 6053 mutex_unlock(&direct_mutex); 6054 6055 if (free_hash && free_hash != EMPTY_HASH) 6056 call_rcu_tasks(&free_hash->rcu, register_ftrace_direct_cb); 6057 6058 if (new_hash) 6059 free_ftrace_hash(new_hash); 6060 6061 return err; 6062 } 6063 EXPORT_SYMBOL_GPL(register_ftrace_direct); 6064 6065 /** 6066 * unregister_ftrace_direct - Remove calls to custom trampoline 6067 * previously registered by register_ftrace_direct for @ops object. 6068 * @ops: The address of the struct ftrace_ops object 6069 * @addr: The address of the direct function that is called by the @ops functions 6070 * @free_filters: Set to true to remove all filters for the ftrace_ops, false otherwise 6071 * 6072 * This is used to remove a direct calls to @addr from the nop locations 6073 * of the functions registered in @ops (with by ftrace_set_filter_ip 6074 * function). 6075 * 6076 * Returns: 6077 * 0 on success 6078 * -EINVAL - The @ops object was not properly registered. 6079 */ 6080 int unregister_ftrace_direct(struct ftrace_ops *ops, unsigned long addr, 6081 bool free_filters) 6082 { 6083 struct ftrace_hash *hash = ops->func_hash->filter_hash; 6084 int err; 6085 6086 if (check_direct_multi(ops)) 6087 return -EINVAL; 6088 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6089 return -EINVAL; 6090 6091 mutex_lock(&direct_mutex); 6092 err = unregister_ftrace_function(ops); 6093 remove_direct_functions_hash(hash, addr); 6094 mutex_unlock(&direct_mutex); 6095 6096 /* cleanup for possible another register call */ 6097 ops->func = NULL; 6098 ops->trampoline = 0; 6099 6100 if (free_filters) 6101 ftrace_free_filter(ops); 6102 return err; 6103 } 6104 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 6105 6106 static int 6107 __modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 6108 { 6109 struct ftrace_hash *hash; 6110 struct ftrace_func_entry *entry, *iter; 6111 static struct ftrace_ops tmp_ops = { 6112 .func = ftrace_stub, 6113 .flags = FTRACE_OPS_FL_STUB, 6114 }; 6115 int i, size; 6116 int err; 6117 6118 lockdep_assert_held_once(&direct_mutex); 6119 6120 /* Enable the tmp_ops to have the same functions as the direct ops */ 6121 ftrace_ops_init(&tmp_ops); 6122 tmp_ops.func_hash = ops->func_hash; 6123 tmp_ops.direct_call = addr; 6124 6125 err = register_ftrace_function_nolock(&tmp_ops); 6126 if (err) 6127 return err; 6128 6129 /* 6130 * Now the ftrace_ops_list_func() is called to do the direct callers. 6131 * We can safely change the direct functions attached to each entry. 6132 */ 6133 mutex_lock(&ftrace_lock); 6134 6135 hash = ops->func_hash->filter_hash; 6136 size = 1 << hash->size_bits; 6137 for (i = 0; i < size; i++) { 6138 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 6139 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 6140 if (!entry) 6141 continue; 6142 entry->direct = addr; 6143 } 6144 } 6145 /* Prevent store tearing if a trampoline concurrently accesses the value */ 6146 WRITE_ONCE(ops->direct_call, addr); 6147 6148 mutex_unlock(&ftrace_lock); 6149 6150 /* Removing the tmp_ops will add the updated direct callers to the functions */ 6151 unregister_ftrace_function(&tmp_ops); 6152 6153 return err; 6154 } 6155 6156 /** 6157 * modify_ftrace_direct_nolock - Modify an existing direct 'multi' call 6158 * to call something else 6159 * @ops: The address of the struct ftrace_ops object 6160 * @addr: The address of the new trampoline to call at @ops functions 6161 * 6162 * This is used to unregister currently registered direct caller and 6163 * register new one @addr on functions registered in @ops object. 6164 * 6165 * Note there's window between ftrace_shutdown and ftrace_startup calls 6166 * where there will be no callbacks called. 6167 * 6168 * Caller should already have direct_mutex locked, so we don't lock 6169 * direct_mutex here. 6170 * 6171 * Returns: zero on success. Non zero on error, which includes: 6172 * -EINVAL - The @ops object was not properly registered. 6173 */ 6174 int modify_ftrace_direct_nolock(struct ftrace_ops *ops, unsigned long addr) 6175 { 6176 if (check_direct_multi(ops)) 6177 return -EINVAL; 6178 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6179 return -EINVAL; 6180 6181 return __modify_ftrace_direct(ops, addr); 6182 } 6183 EXPORT_SYMBOL_GPL(modify_ftrace_direct_nolock); 6184 6185 /** 6186 * modify_ftrace_direct - Modify an existing direct 'multi' call 6187 * to call something else 6188 * @ops: The address of the struct ftrace_ops object 6189 * @addr: The address of the new trampoline to call at @ops functions 6190 * 6191 * This is used to unregister currently registered direct caller and 6192 * register new one @addr on functions registered in @ops object. 6193 * 6194 * Note there's window between ftrace_shutdown and ftrace_startup calls 6195 * where there will be no callbacks called. 6196 * 6197 * Returns: zero on success. Non zero on error, which includes: 6198 * -EINVAL - The @ops object was not properly registered. 6199 */ 6200 int modify_ftrace_direct(struct ftrace_ops *ops, unsigned long addr) 6201 { 6202 int err; 6203 6204 if (check_direct_multi(ops)) 6205 return -EINVAL; 6206 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6207 return -EINVAL; 6208 6209 mutex_lock(&direct_mutex); 6210 err = __modify_ftrace_direct(ops, addr); 6211 mutex_unlock(&direct_mutex); 6212 return err; 6213 } 6214 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 6215 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 6216 6217 /** 6218 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 6219 * @ops: the ops to set the filter with 6220 * @ip: the address to add to or remove from the filter. 6221 * @remove: non zero to remove the ip from the filter 6222 * @reset: non zero to reset all filters before applying this filter. 6223 * 6224 * Filters denote which functions should be enabled when tracing is enabled 6225 * If @ip is NULL, it fails to update filter. 6226 * 6227 * This can allocate memory which must be freed before @ops can be freed, 6228 * either by removing each filtered addr or by using 6229 * ftrace_free_filter(@ops). 6230 */ 6231 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 6232 int remove, int reset) 6233 { 6234 ftrace_ops_init(ops); 6235 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 6236 } 6237 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 6238 6239 /** 6240 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 6241 * @ops: the ops to set the filter with 6242 * @ips: the array of addresses to add to or remove from the filter. 6243 * @cnt: the number of addresses in @ips 6244 * @remove: non zero to remove ips from the filter 6245 * @reset: non zero to reset all filters before applying this filter. 6246 * 6247 * Filters denote which functions should be enabled when tracing is enabled 6248 * If @ips array or any ip specified within is NULL , it fails to update filter. 6249 * 6250 * This can allocate memory which must be freed before @ops can be freed, 6251 * either by removing each filtered addr or by using 6252 * ftrace_free_filter(@ops). 6253 */ 6254 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 6255 unsigned int cnt, int remove, int reset) 6256 { 6257 ftrace_ops_init(ops); 6258 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 6259 } 6260 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 6261 6262 /** 6263 * ftrace_ops_set_global_filter - setup ops to use global filters 6264 * @ops: the ops which will use the global filters 6265 * 6266 * ftrace users who need global function trace filtering should call this. 6267 * It can set the global filter only if ops were not initialized before. 6268 */ 6269 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 6270 { 6271 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 6272 return; 6273 6274 ftrace_ops_init(ops); 6275 ops->func_hash = &global_ops.local_hash; 6276 } 6277 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 6278 6279 static int 6280 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 6281 int reset, int enable) 6282 { 6283 char *mod = NULL, *func, *command, *next = buf; 6284 char *tmp __free(kfree) = NULL; 6285 struct trace_array *tr = ops->private; 6286 int ret; 6287 6288 func = strsep(&next, ":"); 6289 6290 /* This can also handle :mod: parsing */ 6291 if (next) { 6292 if (!tr) 6293 return -EINVAL; 6294 6295 command = strsep(&next, ":"); 6296 if (strcmp(command, "mod") != 0) 6297 return -EINVAL; 6298 6299 mod = next; 6300 len = command - func; 6301 /* Save the original func as ftrace_set_hash() can modify it */ 6302 tmp = kstrdup(func, GFP_KERNEL); 6303 } 6304 6305 ret = ftrace_set_hash(ops, func, len, NULL, 0, 0, reset, enable, mod); 6306 6307 if (tr && mod && ret < 0) { 6308 /* Did tmp fail to allocate? */ 6309 if (!tmp) 6310 return -ENOMEM; 6311 ret = cache_mod(tr, tmp, mod, enable); 6312 } 6313 6314 return ret; 6315 } 6316 6317 /** 6318 * ftrace_set_filter - set a function to filter on in ftrace 6319 * @ops: the ops to set the filter with 6320 * @buf: the string that holds the function filter text. 6321 * @len: the length of the string. 6322 * @reset: non-zero to reset all filters before applying this filter. 6323 * 6324 * Filters denote which functions should be enabled when tracing is enabled. 6325 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 6326 * 6327 * This can allocate memory which must be freed before @ops can be freed, 6328 * either by removing each filtered addr or by using 6329 * ftrace_free_filter(@ops). 6330 */ 6331 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 6332 int len, int reset) 6333 { 6334 ftrace_ops_init(ops); 6335 return ftrace_set_regex(ops, buf, len, reset, 1); 6336 } 6337 EXPORT_SYMBOL_GPL(ftrace_set_filter); 6338 6339 /** 6340 * ftrace_set_notrace - set a function to not trace in ftrace 6341 * @ops: the ops to set the notrace filter with 6342 * @buf: the string that holds the function notrace text. 6343 * @len: the length of the string. 6344 * @reset: non-zero to reset all filters before applying this filter. 6345 * 6346 * Notrace Filters denote which functions should not be enabled when tracing 6347 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 6348 * for tracing. 6349 * 6350 * This can allocate memory which must be freed before @ops can be freed, 6351 * either by removing each filtered addr or by using 6352 * ftrace_free_filter(@ops). 6353 */ 6354 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 6355 int len, int reset) 6356 { 6357 ftrace_ops_init(ops); 6358 return ftrace_set_regex(ops, buf, len, reset, 0); 6359 } 6360 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 6361 /** 6362 * ftrace_set_global_filter - set a function to filter on with global tracers 6363 * @buf: the string that holds the function filter text. 6364 * @len: the length of the string. 6365 * @reset: non-zero to reset all filters before applying this filter. 6366 * 6367 * Filters denote which functions should be enabled when tracing is enabled. 6368 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 6369 */ 6370 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 6371 { 6372 ftrace_set_regex(&global_ops, buf, len, reset, 1); 6373 } 6374 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 6375 6376 /** 6377 * ftrace_set_global_notrace - set a function to not trace with global tracers 6378 * @buf: the string that holds the function notrace text. 6379 * @len: the length of the string. 6380 * @reset: non-zero to reset all filters before applying this filter. 6381 * 6382 * Notrace Filters denote which functions should not be enabled when tracing 6383 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 6384 * for tracing. 6385 */ 6386 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 6387 { 6388 ftrace_set_regex(&global_ops, buf, len, reset, 0); 6389 } 6390 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 6391 6392 /* 6393 * command line interface to allow users to set filters on boot up. 6394 */ 6395 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 6396 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 6397 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 6398 6399 /* Used by function selftest to not test if filter is set */ 6400 bool ftrace_filter_param __initdata; 6401 6402 static int __init set_ftrace_notrace(char *str) 6403 { 6404 ftrace_filter_param = true; 6405 strscpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 6406 return 1; 6407 } 6408 __setup("ftrace_notrace=", set_ftrace_notrace); 6409 6410 static int __init set_ftrace_filter(char *str) 6411 { 6412 ftrace_filter_param = true; 6413 strscpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 6414 return 1; 6415 } 6416 __setup("ftrace_filter=", set_ftrace_filter); 6417 6418 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6419 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 6420 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 6421 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 6422 6423 static int __init set_graph_function(char *str) 6424 { 6425 strscpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 6426 return 1; 6427 } 6428 __setup("ftrace_graph_filter=", set_graph_function); 6429 6430 static int __init set_graph_notrace_function(char *str) 6431 { 6432 strscpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 6433 return 1; 6434 } 6435 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 6436 6437 static int __init set_graph_max_depth_function(char *str) 6438 { 6439 if (!str || kstrtouint(str, 0, &fgraph_max_depth)) 6440 return 0; 6441 return 1; 6442 } 6443 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 6444 6445 static void __init set_ftrace_early_graph(char *buf, int enable) 6446 { 6447 int ret; 6448 char *func; 6449 struct ftrace_hash *hash; 6450 6451 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 6452 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 6453 return; 6454 6455 while (buf) { 6456 func = strsep(&buf, ","); 6457 /* we allow only one expression at a time */ 6458 ret = ftrace_graph_set_hash(hash, func); 6459 if (ret) 6460 printk(KERN_DEBUG "ftrace: function %s not " 6461 "traceable\n", func); 6462 } 6463 6464 if (enable) 6465 ftrace_graph_hash = hash; 6466 else 6467 ftrace_graph_notrace_hash = hash; 6468 } 6469 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6470 6471 void __init 6472 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 6473 { 6474 char *func; 6475 6476 ftrace_ops_init(ops); 6477 6478 /* The trace_array is needed for caching module function filters */ 6479 if (!ops->private) { 6480 struct trace_array *tr = trace_get_global_array(); 6481 6482 ops->private = tr; 6483 ftrace_init_trace_array(tr); 6484 } 6485 6486 while (buf) { 6487 func = strsep(&buf, ","); 6488 ftrace_set_regex(ops, func, strlen(func), 0, enable); 6489 } 6490 } 6491 6492 static void __init set_ftrace_early_filters(void) 6493 { 6494 if (ftrace_filter_buf[0]) 6495 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 6496 if (ftrace_notrace_buf[0]) 6497 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 6498 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6499 if (ftrace_graph_buf[0]) 6500 set_ftrace_early_graph(ftrace_graph_buf, 1); 6501 if (ftrace_graph_notrace_buf[0]) 6502 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 6503 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6504 } 6505 6506 int ftrace_regex_release(struct inode *inode, struct file *file) 6507 { 6508 struct seq_file *m = (struct seq_file *)file->private_data; 6509 struct ftrace_iterator *iter; 6510 struct ftrace_hash **orig_hash; 6511 struct trace_parser *parser; 6512 int filter_hash; 6513 6514 if (file->f_mode & FMODE_READ) { 6515 iter = m->private; 6516 seq_release(inode, file); 6517 } else 6518 iter = file->private_data; 6519 6520 parser = &iter->parser; 6521 if (trace_parser_loaded(parser)) { 6522 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 6523 6524 ftrace_process_regex(iter, parser->buffer, 6525 parser->idx, enable); 6526 } 6527 6528 trace_parser_put(parser); 6529 6530 mutex_lock(&iter->ops->func_hash->regex_lock); 6531 6532 if (file->f_mode & FMODE_WRITE) { 6533 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 6534 6535 if (filter_hash) { 6536 orig_hash = &iter->ops->func_hash->filter_hash; 6537 if (iter->tr) { 6538 if (list_empty(&iter->tr->mod_trace)) 6539 iter->hash->flags &= ~FTRACE_HASH_FL_MOD; 6540 else 6541 iter->hash->flags |= FTRACE_HASH_FL_MOD; 6542 } 6543 } else 6544 orig_hash = &iter->ops->func_hash->notrace_hash; 6545 6546 mutex_lock(&ftrace_lock); 6547 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 6548 iter->hash, filter_hash); 6549 mutex_unlock(&ftrace_lock); 6550 } else { 6551 /* For read only, the hash is the ops hash */ 6552 iter->hash = NULL; 6553 } 6554 6555 mutex_unlock(&iter->ops->func_hash->regex_lock); 6556 free_ftrace_hash(iter->hash); 6557 if (iter->tr) 6558 trace_array_put(iter->tr); 6559 kfree(iter); 6560 6561 return 0; 6562 } 6563 6564 static const struct file_operations ftrace_avail_fops = { 6565 .open = ftrace_avail_open, 6566 .read = seq_read, 6567 .llseek = seq_lseek, 6568 .release = seq_release_private, 6569 }; 6570 6571 static const struct file_operations ftrace_enabled_fops = { 6572 .open = ftrace_enabled_open, 6573 .read = seq_read, 6574 .llseek = seq_lseek, 6575 .release = seq_release_private, 6576 }; 6577 6578 static const struct file_operations ftrace_touched_fops = { 6579 .open = ftrace_touched_open, 6580 .read = seq_read, 6581 .llseek = seq_lseek, 6582 .release = seq_release_private, 6583 }; 6584 6585 static const struct file_operations ftrace_avail_addrs_fops = { 6586 .open = ftrace_avail_addrs_open, 6587 .read = seq_read, 6588 .llseek = seq_lseek, 6589 .release = seq_release_private, 6590 }; 6591 6592 static const struct file_operations ftrace_filter_fops = { 6593 .open = ftrace_filter_open, 6594 .read = seq_read, 6595 .write = ftrace_filter_write, 6596 .llseek = tracing_lseek, 6597 .release = ftrace_regex_release, 6598 }; 6599 6600 static const struct file_operations ftrace_notrace_fops = { 6601 .open = ftrace_notrace_open, 6602 .read = seq_read, 6603 .write = ftrace_notrace_write, 6604 .llseek = tracing_lseek, 6605 .release = ftrace_regex_release, 6606 }; 6607 6608 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6609 6610 static DEFINE_MUTEX(graph_lock); 6611 6612 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6613 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6614 6615 enum graph_filter_type { 6616 GRAPH_FILTER_NOTRACE = 0, 6617 GRAPH_FILTER_FUNCTION, 6618 }; 6619 6620 #define FTRACE_GRAPH_EMPTY ((void *)1) 6621 6622 struct ftrace_graph_data { 6623 struct ftrace_hash *hash; 6624 struct ftrace_func_entry *entry; 6625 int idx; /* for hash table iteration */ 6626 enum graph_filter_type type; 6627 struct ftrace_hash *new_hash; 6628 const struct seq_operations *seq_ops; 6629 struct trace_parser parser; 6630 }; 6631 6632 static void * 6633 __g_next(struct seq_file *m, loff_t *pos) 6634 { 6635 struct ftrace_graph_data *fgd = m->private; 6636 struct ftrace_func_entry *entry = fgd->entry; 6637 struct hlist_head *head; 6638 int i, idx = fgd->idx; 6639 6640 if (*pos >= fgd->hash->count) 6641 return NULL; 6642 6643 if (entry) { 6644 hlist_for_each_entry_continue(entry, hlist) { 6645 fgd->entry = entry; 6646 return entry; 6647 } 6648 6649 idx++; 6650 } 6651 6652 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6653 head = &fgd->hash->buckets[i]; 6654 hlist_for_each_entry(entry, head, hlist) { 6655 fgd->entry = entry; 6656 fgd->idx = i; 6657 return entry; 6658 } 6659 } 6660 return NULL; 6661 } 6662 6663 static void * 6664 g_next(struct seq_file *m, void *v, loff_t *pos) 6665 { 6666 (*pos)++; 6667 return __g_next(m, pos); 6668 } 6669 6670 static void *g_start(struct seq_file *m, loff_t *pos) 6671 { 6672 struct ftrace_graph_data *fgd = m->private; 6673 6674 mutex_lock(&graph_lock); 6675 6676 if (fgd->type == GRAPH_FILTER_FUNCTION) 6677 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6678 lockdep_is_held(&graph_lock)); 6679 else 6680 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6681 lockdep_is_held(&graph_lock)); 6682 6683 /* Nothing, tell g_show to print all functions are enabled */ 6684 if (ftrace_hash_empty(fgd->hash) && !*pos) 6685 return FTRACE_GRAPH_EMPTY; 6686 6687 fgd->idx = 0; 6688 fgd->entry = NULL; 6689 return __g_next(m, pos); 6690 } 6691 6692 static void g_stop(struct seq_file *m, void *p) 6693 { 6694 mutex_unlock(&graph_lock); 6695 } 6696 6697 static int g_show(struct seq_file *m, void *v) 6698 { 6699 struct ftrace_func_entry *entry = v; 6700 6701 if (!entry) 6702 return 0; 6703 6704 if (entry == FTRACE_GRAPH_EMPTY) { 6705 struct ftrace_graph_data *fgd = m->private; 6706 6707 if (fgd->type == GRAPH_FILTER_FUNCTION) 6708 seq_puts(m, "#### all functions enabled ####\n"); 6709 else 6710 seq_puts(m, "#### no functions disabled ####\n"); 6711 return 0; 6712 } 6713 6714 seq_printf(m, "%ps\n", (void *)entry->ip); 6715 6716 return 0; 6717 } 6718 6719 static const struct seq_operations ftrace_graph_seq_ops = { 6720 .start = g_start, 6721 .next = g_next, 6722 .stop = g_stop, 6723 .show = g_show, 6724 }; 6725 6726 static int 6727 __ftrace_graph_open(struct inode *inode, struct file *file, 6728 struct ftrace_graph_data *fgd) 6729 { 6730 int ret; 6731 struct ftrace_hash *new_hash = NULL; 6732 6733 ret = security_locked_down(LOCKDOWN_TRACEFS); 6734 if (ret) 6735 return ret; 6736 6737 if (file->f_mode & FMODE_WRITE) { 6738 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6739 6740 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6741 return -ENOMEM; 6742 6743 if (file->f_flags & O_TRUNC) 6744 new_hash = alloc_ftrace_hash(size_bits); 6745 else 6746 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6747 fgd->hash); 6748 if (!new_hash) { 6749 ret = -ENOMEM; 6750 goto out; 6751 } 6752 } 6753 6754 if (file->f_mode & FMODE_READ) { 6755 ret = seq_open(file, &ftrace_graph_seq_ops); 6756 if (!ret) { 6757 struct seq_file *m = file->private_data; 6758 m->private = fgd; 6759 } else { 6760 /* Failed */ 6761 free_ftrace_hash(new_hash); 6762 new_hash = NULL; 6763 } 6764 } else 6765 file->private_data = fgd; 6766 6767 out: 6768 if (ret < 0 && file->f_mode & FMODE_WRITE) 6769 trace_parser_put(&fgd->parser); 6770 6771 fgd->new_hash = new_hash; 6772 6773 /* 6774 * All uses of fgd->hash must be taken with the graph_lock 6775 * held. The graph_lock is going to be released, so force 6776 * fgd->hash to be reinitialized when it is taken again. 6777 */ 6778 fgd->hash = NULL; 6779 6780 return ret; 6781 } 6782 6783 static int 6784 ftrace_graph_open(struct inode *inode, struct file *file) 6785 { 6786 struct ftrace_graph_data *fgd; 6787 int ret; 6788 6789 if (unlikely(ftrace_disabled)) 6790 return -ENODEV; 6791 6792 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6793 if (fgd == NULL) 6794 return -ENOMEM; 6795 6796 mutex_lock(&graph_lock); 6797 6798 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6799 lockdep_is_held(&graph_lock)); 6800 fgd->type = GRAPH_FILTER_FUNCTION; 6801 fgd->seq_ops = &ftrace_graph_seq_ops; 6802 6803 ret = __ftrace_graph_open(inode, file, fgd); 6804 if (ret < 0) 6805 kfree(fgd); 6806 6807 mutex_unlock(&graph_lock); 6808 return ret; 6809 } 6810 6811 static int 6812 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6813 { 6814 struct ftrace_graph_data *fgd; 6815 int ret; 6816 6817 if (unlikely(ftrace_disabled)) 6818 return -ENODEV; 6819 6820 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6821 if (fgd == NULL) 6822 return -ENOMEM; 6823 6824 mutex_lock(&graph_lock); 6825 6826 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6827 lockdep_is_held(&graph_lock)); 6828 fgd->type = GRAPH_FILTER_NOTRACE; 6829 fgd->seq_ops = &ftrace_graph_seq_ops; 6830 6831 ret = __ftrace_graph_open(inode, file, fgd); 6832 if (ret < 0) 6833 kfree(fgd); 6834 6835 mutex_unlock(&graph_lock); 6836 return ret; 6837 } 6838 6839 static int 6840 ftrace_graph_release(struct inode *inode, struct file *file) 6841 { 6842 struct ftrace_graph_data *fgd; 6843 struct ftrace_hash *old_hash, *new_hash; 6844 struct trace_parser *parser; 6845 int ret = 0; 6846 6847 if (file->f_mode & FMODE_READ) { 6848 struct seq_file *m = file->private_data; 6849 6850 fgd = m->private; 6851 seq_release(inode, file); 6852 } else { 6853 fgd = file->private_data; 6854 } 6855 6856 6857 if (file->f_mode & FMODE_WRITE) { 6858 6859 parser = &fgd->parser; 6860 6861 if (trace_parser_loaded((parser))) { 6862 ret = ftrace_graph_set_hash(fgd->new_hash, 6863 parser->buffer); 6864 } 6865 6866 trace_parser_put(parser); 6867 6868 new_hash = __ftrace_hash_move(fgd->new_hash); 6869 if (!new_hash) { 6870 ret = -ENOMEM; 6871 goto out; 6872 } 6873 6874 mutex_lock(&graph_lock); 6875 6876 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6877 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6878 lockdep_is_held(&graph_lock)); 6879 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6880 } else { 6881 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6882 lockdep_is_held(&graph_lock)); 6883 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6884 } 6885 6886 mutex_unlock(&graph_lock); 6887 6888 /* 6889 * We need to do a hard force of sched synchronization. 6890 * This is because we use preempt_disable() to do RCU, but 6891 * the function tracers can be called where RCU is not watching 6892 * (like before user_exit()). We can not rely on the RCU 6893 * infrastructure to do the synchronization, thus we must do it 6894 * ourselves. 6895 */ 6896 if (old_hash != EMPTY_HASH) 6897 synchronize_rcu_tasks_rude(); 6898 6899 free_ftrace_hash(old_hash); 6900 } 6901 6902 out: 6903 free_ftrace_hash(fgd->new_hash); 6904 kfree(fgd); 6905 6906 return ret; 6907 } 6908 6909 static int 6910 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6911 { 6912 struct ftrace_glob func_g; 6913 struct dyn_ftrace *rec; 6914 struct ftrace_page *pg; 6915 struct ftrace_func_entry *entry; 6916 int fail = 1; 6917 int not; 6918 6919 /* decode regex */ 6920 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6921 &func_g.search, ¬); 6922 6923 func_g.len = strlen(func_g.search); 6924 6925 guard(mutex)(&ftrace_lock); 6926 6927 if (unlikely(ftrace_disabled)) 6928 return -ENODEV; 6929 6930 do_for_each_ftrace_rec(pg, rec) { 6931 6932 if (rec->flags & FTRACE_FL_DISABLED) 6933 continue; 6934 6935 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6936 entry = ftrace_lookup_ip(hash, rec->ip); 6937 6938 if (!not) { 6939 fail = 0; 6940 6941 if (entry) 6942 continue; 6943 if (add_hash_entry(hash, rec->ip) == NULL) 6944 return 0; 6945 } else { 6946 if (entry) { 6947 free_hash_entry(hash, entry); 6948 fail = 0; 6949 } 6950 } 6951 } 6952 cond_resched(); 6953 } while_for_each_ftrace_rec(); 6954 6955 return fail ? -EINVAL : 0; 6956 } 6957 6958 static ssize_t 6959 ftrace_graph_write(struct file *file, const char __user *ubuf, 6960 size_t cnt, loff_t *ppos) 6961 { 6962 ssize_t read, ret = 0; 6963 struct ftrace_graph_data *fgd = file->private_data; 6964 struct trace_parser *parser; 6965 6966 if (!cnt) 6967 return 0; 6968 6969 /* Read mode uses seq functions */ 6970 if (file->f_mode & FMODE_READ) { 6971 struct seq_file *m = file->private_data; 6972 fgd = m->private; 6973 } 6974 6975 parser = &fgd->parser; 6976 6977 read = trace_get_user(parser, ubuf, cnt, ppos); 6978 6979 if (read >= 0 && trace_parser_loaded(parser) && 6980 !trace_parser_cont(parser)) { 6981 6982 ret = ftrace_graph_set_hash(fgd->new_hash, 6983 parser->buffer); 6984 trace_parser_clear(parser); 6985 } 6986 6987 if (!ret) 6988 ret = read; 6989 6990 return ret; 6991 } 6992 6993 static const struct file_operations ftrace_graph_fops = { 6994 .open = ftrace_graph_open, 6995 .read = seq_read, 6996 .write = ftrace_graph_write, 6997 .llseek = tracing_lseek, 6998 .release = ftrace_graph_release, 6999 }; 7000 7001 static const struct file_operations ftrace_graph_notrace_fops = { 7002 .open = ftrace_graph_notrace_open, 7003 .read = seq_read, 7004 .write = ftrace_graph_write, 7005 .llseek = tracing_lseek, 7006 .release = ftrace_graph_release, 7007 }; 7008 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 7009 7010 void ftrace_create_filter_files(struct ftrace_ops *ops, 7011 struct dentry *parent) 7012 { 7013 7014 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 7015 ops, &ftrace_filter_fops); 7016 7017 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 7018 ops, &ftrace_notrace_fops); 7019 } 7020 7021 /* 7022 * The name "destroy_filter_files" is really a misnomer. Although 7023 * in the future, it may actually delete the files, but this is 7024 * really intended to make sure the ops passed in are disabled 7025 * and that when this function returns, the caller is free to 7026 * free the ops. 7027 * 7028 * The "destroy" name is only to match the "create" name that this 7029 * should be paired with. 7030 */ 7031 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 7032 { 7033 mutex_lock(&ftrace_lock); 7034 if (ops->flags & FTRACE_OPS_FL_ENABLED) 7035 ftrace_shutdown(ops, 0); 7036 ops->flags |= FTRACE_OPS_FL_DELETED; 7037 ftrace_free_filter(ops); 7038 mutex_unlock(&ftrace_lock); 7039 } 7040 7041 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 7042 { 7043 7044 trace_create_file("available_filter_functions", TRACE_MODE_READ, 7045 d_tracer, NULL, &ftrace_avail_fops); 7046 7047 trace_create_file("available_filter_functions_addrs", TRACE_MODE_READ, 7048 d_tracer, NULL, &ftrace_avail_addrs_fops); 7049 7050 trace_create_file("enabled_functions", TRACE_MODE_READ, 7051 d_tracer, NULL, &ftrace_enabled_fops); 7052 7053 trace_create_file("touched_functions", TRACE_MODE_READ, 7054 d_tracer, NULL, &ftrace_touched_fops); 7055 7056 ftrace_create_filter_files(&global_ops, d_tracer); 7057 7058 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 7059 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 7060 NULL, 7061 &ftrace_graph_fops); 7062 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 7063 NULL, 7064 &ftrace_graph_notrace_fops); 7065 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 7066 7067 return 0; 7068 } 7069 7070 static int ftrace_cmp_ips(const void *a, const void *b) 7071 { 7072 const unsigned long *ipa = a; 7073 const unsigned long *ipb = b; 7074 7075 if (*ipa > *ipb) 7076 return 1; 7077 if (*ipa < *ipb) 7078 return -1; 7079 return 0; 7080 } 7081 7082 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 7083 static void test_is_sorted(unsigned long *start, unsigned long count) 7084 { 7085 int i; 7086 7087 for (i = 1; i < count; i++) { 7088 if (WARN(start[i - 1] > start[i], 7089 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 7090 (void *)start[i - 1], start[i - 1], 7091 (void *)start[i], start[i])) 7092 break; 7093 } 7094 if (i == count) 7095 pr_info("ftrace section at %px sorted properly\n", start); 7096 } 7097 #else 7098 static void test_is_sorted(unsigned long *start, unsigned long count) 7099 { 7100 } 7101 #endif 7102 7103 static int ftrace_process_locs(struct module *mod, 7104 unsigned long *start, 7105 unsigned long *end) 7106 { 7107 struct ftrace_page *pg_unuse = NULL; 7108 struct ftrace_page *start_pg; 7109 struct ftrace_page *pg; 7110 struct dyn_ftrace *rec; 7111 unsigned long skipped = 0; 7112 unsigned long count; 7113 unsigned long *p; 7114 unsigned long addr; 7115 unsigned long flags = 0; /* Shut up gcc */ 7116 unsigned long pages; 7117 int ret = -ENOMEM; 7118 7119 count = end - start; 7120 7121 if (!count) 7122 return 0; 7123 7124 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 7125 7126 /* 7127 * Sorting mcount in vmlinux at build time depend on 7128 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 7129 * modules can not be sorted at build time. 7130 */ 7131 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 7132 sort(start, count, sizeof(*start), 7133 ftrace_cmp_ips, NULL); 7134 } else { 7135 test_is_sorted(start, count); 7136 } 7137 7138 start_pg = ftrace_allocate_pages(count); 7139 if (!start_pg) 7140 return -ENOMEM; 7141 7142 mutex_lock(&ftrace_lock); 7143 7144 /* 7145 * Core and each module needs their own pages, as 7146 * modules will free them when they are removed. 7147 * Force a new page to be allocated for modules. 7148 */ 7149 if (!mod) { 7150 WARN_ON(ftrace_pages || ftrace_pages_start); 7151 /* First initialization */ 7152 ftrace_pages = ftrace_pages_start = start_pg; 7153 } else { 7154 if (!ftrace_pages) 7155 goto out; 7156 7157 if (WARN_ON(ftrace_pages->next)) { 7158 /* Hmm, we have free pages? */ 7159 while (ftrace_pages->next) 7160 ftrace_pages = ftrace_pages->next; 7161 } 7162 7163 ftrace_pages->next = start_pg; 7164 } 7165 7166 p = start; 7167 pg = start_pg; 7168 while (p < end) { 7169 unsigned long end_offset; 7170 7171 addr = *p++; 7172 7173 /* 7174 * Some architecture linkers will pad between 7175 * the different mcount_loc sections of different 7176 * object files to satisfy alignments. 7177 * Skip any NULL pointers. 7178 */ 7179 if (!addr) { 7180 skipped++; 7181 continue; 7182 } 7183 7184 /* 7185 * If this is core kernel, make sure the address is in core 7186 * or inittext, as weak functions get zeroed and KASLR can 7187 * move them to something other than zero. It just will not 7188 * move it to an area where kernel text is. 7189 */ 7190 if (!mod && !(is_kernel_text(addr) || is_kernel_inittext(addr))) { 7191 skipped++; 7192 continue; 7193 } 7194 7195 addr = ftrace_call_adjust(addr); 7196 7197 end_offset = (pg->index+1) * sizeof(pg->records[0]); 7198 if (end_offset > PAGE_SIZE << pg->order) { 7199 /* We should have allocated enough */ 7200 if (WARN_ON(!pg->next)) 7201 break; 7202 pg = pg->next; 7203 } 7204 7205 rec = &pg->records[pg->index++]; 7206 rec->ip = addr; 7207 } 7208 7209 if (pg->next) { 7210 pg_unuse = pg->next; 7211 pg->next = NULL; 7212 } 7213 7214 /* Assign the last page to ftrace_pages */ 7215 ftrace_pages = pg; 7216 7217 /* 7218 * We only need to disable interrupts on start up 7219 * because we are modifying code that an interrupt 7220 * may execute, and the modification is not atomic. 7221 * But for modules, nothing runs the code we modify 7222 * until we are finished with it, and there's no 7223 * reason to cause large interrupt latencies while we do it. 7224 */ 7225 if (!mod) 7226 local_irq_save(flags); 7227 ftrace_update_code(mod, start_pg); 7228 if (!mod) 7229 local_irq_restore(flags); 7230 ret = 0; 7231 out: 7232 mutex_unlock(&ftrace_lock); 7233 7234 /* We should have used all pages unless we skipped some */ 7235 if (pg_unuse) { 7236 unsigned long pg_remaining, remaining = 0; 7237 unsigned long skip; 7238 7239 /* Count the number of entries unused and compare it to skipped. */ 7240 pg_remaining = (ENTRIES_PER_PAGE << pg->order) - pg->index; 7241 7242 if (!WARN(skipped < pg_remaining, "Extra allocated pages for ftrace")) { 7243 7244 skip = skipped - pg_remaining; 7245 7246 for (pg = pg_unuse; pg; pg = pg->next) 7247 remaining += 1 << pg->order; 7248 7249 pages -= remaining; 7250 7251 skip = DIV_ROUND_UP(skip, ENTRIES_PER_PAGE); 7252 7253 /* 7254 * Check to see if the number of pages remaining would 7255 * just fit the number of entries skipped. 7256 */ 7257 WARN(skip != remaining, "Extra allocated pages for ftrace: %lu with %lu skipped", 7258 remaining, skipped); 7259 } 7260 /* Need to synchronize with ftrace_location_range() */ 7261 synchronize_rcu(); 7262 ftrace_free_pages(pg_unuse); 7263 } 7264 7265 if (!mod) { 7266 count -= skipped; 7267 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7268 count, pages); 7269 } 7270 7271 return ret; 7272 } 7273 7274 struct ftrace_mod_func { 7275 struct list_head list; 7276 char *name; 7277 unsigned long ip; 7278 unsigned int size; 7279 }; 7280 7281 struct ftrace_mod_map { 7282 struct rcu_head rcu; 7283 struct list_head list; 7284 struct module *mod; 7285 unsigned long start_addr; 7286 unsigned long end_addr; 7287 struct list_head funcs; 7288 unsigned int num_funcs; 7289 }; 7290 7291 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 7292 unsigned long *value, char *type, 7293 char *name, char *module_name, 7294 int *exported) 7295 { 7296 struct ftrace_ops *op; 7297 7298 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 7299 if (!op->trampoline || symnum--) 7300 continue; 7301 *value = op->trampoline; 7302 *type = 't'; 7303 strscpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 7304 strscpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 7305 *exported = 0; 7306 return 0; 7307 } 7308 7309 return -ERANGE; 7310 } 7311 7312 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES) 7313 /* 7314 * Check if the current ops references the given ip. 7315 * 7316 * If the ops traces all functions, then it was already accounted for. 7317 * If the ops does not trace the current record function, skip it. 7318 * If the ops ignores the function via notrace filter, skip it. 7319 */ 7320 static bool 7321 ops_references_ip(struct ftrace_ops *ops, unsigned long ip) 7322 { 7323 /* If ops isn't enabled, ignore it */ 7324 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 7325 return false; 7326 7327 /* If ops traces all then it includes this function */ 7328 if (ops_traces_mod(ops)) 7329 return true; 7330 7331 /* The function must be in the filter */ 7332 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 7333 !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip)) 7334 return false; 7335 7336 /* If in notrace hash, we ignore it too */ 7337 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip)) 7338 return false; 7339 7340 return true; 7341 } 7342 #endif 7343 7344 #ifdef CONFIG_MODULES 7345 7346 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 7347 7348 static LIST_HEAD(ftrace_mod_maps); 7349 7350 static int referenced_filters(struct dyn_ftrace *rec) 7351 { 7352 struct ftrace_ops *ops; 7353 int cnt = 0; 7354 7355 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 7356 if (ops_references_ip(ops, rec->ip)) { 7357 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 7358 continue; 7359 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 7360 continue; 7361 cnt++; 7362 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 7363 rec->flags |= FTRACE_FL_REGS; 7364 if (cnt == 1 && ops->trampoline) 7365 rec->flags |= FTRACE_FL_TRAMP; 7366 else 7367 rec->flags &= ~FTRACE_FL_TRAMP; 7368 } 7369 } 7370 7371 return cnt; 7372 } 7373 7374 static void 7375 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 7376 { 7377 struct ftrace_func_entry *entry; 7378 struct dyn_ftrace *rec; 7379 int i; 7380 7381 if (ftrace_hash_empty(hash)) 7382 return; 7383 7384 for (i = 0; i < pg->index; i++) { 7385 rec = &pg->records[i]; 7386 entry = __ftrace_lookup_ip(hash, rec->ip); 7387 /* 7388 * Do not allow this rec to match again. 7389 * Yeah, it may waste some memory, but will be removed 7390 * if/when the hash is modified again. 7391 */ 7392 if (entry) 7393 entry->ip = 0; 7394 } 7395 } 7396 7397 /* Clear any records from hashes */ 7398 static void clear_mod_from_hashes(struct ftrace_page *pg) 7399 { 7400 struct trace_array *tr; 7401 7402 mutex_lock(&trace_types_lock); 7403 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7404 if (!tr->ops || !tr->ops->func_hash) 7405 continue; 7406 mutex_lock(&tr->ops->func_hash->regex_lock); 7407 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 7408 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 7409 mutex_unlock(&tr->ops->func_hash->regex_lock); 7410 } 7411 mutex_unlock(&trace_types_lock); 7412 } 7413 7414 static void ftrace_free_mod_map(struct rcu_head *rcu) 7415 { 7416 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 7417 struct ftrace_mod_func *mod_func; 7418 struct ftrace_mod_func *n; 7419 7420 /* All the contents of mod_map are now not visible to readers */ 7421 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 7422 kfree(mod_func->name); 7423 list_del(&mod_func->list); 7424 kfree(mod_func); 7425 } 7426 7427 kfree(mod_map); 7428 } 7429 7430 void ftrace_release_mod(struct module *mod) 7431 { 7432 struct ftrace_mod_map *mod_map; 7433 struct ftrace_mod_map *n; 7434 struct dyn_ftrace *rec; 7435 struct ftrace_page **last_pg; 7436 struct ftrace_page *tmp_page = NULL; 7437 struct ftrace_page *pg; 7438 7439 mutex_lock(&ftrace_lock); 7440 7441 /* 7442 * To avoid the UAF problem after the module is unloaded, the 7443 * 'mod_map' resource needs to be released unconditionally. 7444 */ 7445 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 7446 if (mod_map->mod == mod) { 7447 list_del_rcu(&mod_map->list); 7448 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 7449 break; 7450 } 7451 } 7452 7453 if (ftrace_disabled) 7454 goto out_unlock; 7455 7456 /* 7457 * Each module has its own ftrace_pages, remove 7458 * them from the list. 7459 */ 7460 last_pg = &ftrace_pages_start; 7461 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 7462 rec = &pg->records[0]; 7463 if (within_module(rec->ip, mod)) { 7464 /* 7465 * As core pages are first, the first 7466 * page should never be a module page. 7467 */ 7468 if (WARN_ON(pg == ftrace_pages_start)) 7469 goto out_unlock; 7470 7471 /* Check if we are deleting the last page */ 7472 if (pg == ftrace_pages) 7473 ftrace_pages = next_to_ftrace_page(last_pg); 7474 7475 ftrace_update_tot_cnt -= pg->index; 7476 *last_pg = pg->next; 7477 7478 pg->next = tmp_page; 7479 tmp_page = pg; 7480 } else 7481 last_pg = &pg->next; 7482 } 7483 out_unlock: 7484 mutex_unlock(&ftrace_lock); 7485 7486 /* Need to synchronize with ftrace_location_range() */ 7487 if (tmp_page) 7488 synchronize_rcu(); 7489 for (pg = tmp_page; pg; pg = tmp_page) { 7490 7491 /* Needs to be called outside of ftrace_lock */ 7492 clear_mod_from_hashes(pg); 7493 7494 if (pg->records) { 7495 free_pages((unsigned long)pg->records, pg->order); 7496 ftrace_number_of_pages -= 1 << pg->order; 7497 } 7498 tmp_page = pg->next; 7499 kfree(pg); 7500 ftrace_number_of_groups--; 7501 } 7502 } 7503 7504 void ftrace_module_enable(struct module *mod) 7505 { 7506 struct dyn_ftrace *rec; 7507 struct ftrace_page *pg; 7508 7509 mutex_lock(&ftrace_lock); 7510 7511 if (ftrace_disabled) 7512 goto out_unlock; 7513 7514 /* 7515 * If the tracing is enabled, go ahead and enable the record. 7516 * 7517 * The reason not to enable the record immediately is the 7518 * inherent check of ftrace_make_nop/ftrace_make_call for 7519 * correct previous instructions. Making first the NOP 7520 * conversion puts the module to the correct state, thus 7521 * passing the ftrace_make_call check. 7522 * 7523 * We also delay this to after the module code already set the 7524 * text to read-only, as we now need to set it back to read-write 7525 * so that we can modify the text. 7526 */ 7527 if (ftrace_start_up) 7528 ftrace_arch_code_modify_prepare(); 7529 7530 do_for_each_ftrace_rec(pg, rec) { 7531 int cnt; 7532 /* 7533 * do_for_each_ftrace_rec() is a double loop. 7534 * module text shares the pg. If a record is 7535 * not part of this module, then skip this pg, 7536 * which the "break" will do. 7537 */ 7538 if (!within_module(rec->ip, mod)) 7539 break; 7540 7541 /* Weak functions should still be ignored */ 7542 if (!test_for_valid_rec(rec)) { 7543 /* Clear all other flags. Should not be enabled anyway */ 7544 rec->flags = FTRACE_FL_DISABLED; 7545 continue; 7546 } 7547 7548 cnt = 0; 7549 7550 /* 7551 * When adding a module, we need to check if tracers are 7552 * currently enabled and if they are, and can trace this record, 7553 * we need to enable the module functions as well as update the 7554 * reference counts for those function records. 7555 */ 7556 if (ftrace_start_up) 7557 cnt += referenced_filters(rec); 7558 7559 rec->flags &= ~FTRACE_FL_DISABLED; 7560 rec->flags += cnt; 7561 7562 if (ftrace_start_up && cnt) { 7563 int failed = __ftrace_replace_code(rec, 1); 7564 if (failed) { 7565 ftrace_bug(failed, rec); 7566 goto out_loop; 7567 } 7568 } 7569 7570 } while_for_each_ftrace_rec(); 7571 7572 out_loop: 7573 if (ftrace_start_up) 7574 ftrace_arch_code_modify_post_process(); 7575 7576 out_unlock: 7577 mutex_unlock(&ftrace_lock); 7578 7579 process_cached_mods(mod->name); 7580 } 7581 7582 void ftrace_module_init(struct module *mod) 7583 { 7584 int ret; 7585 7586 if (ftrace_disabled || !mod->num_ftrace_callsites) 7587 return; 7588 7589 ret = ftrace_process_locs(mod, mod->ftrace_callsites, 7590 mod->ftrace_callsites + mod->num_ftrace_callsites); 7591 if (ret) 7592 pr_warn("ftrace: failed to allocate entries for module '%s' functions\n", 7593 mod->name); 7594 } 7595 7596 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7597 struct dyn_ftrace *rec) 7598 { 7599 struct ftrace_mod_func *mod_func; 7600 unsigned long symsize; 7601 unsigned long offset; 7602 char str[KSYM_SYMBOL_LEN]; 7603 char *modname; 7604 const char *ret; 7605 7606 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 7607 if (!ret) 7608 return; 7609 7610 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 7611 if (!mod_func) 7612 return; 7613 7614 mod_func->name = kstrdup(str, GFP_KERNEL); 7615 if (!mod_func->name) { 7616 kfree(mod_func); 7617 return; 7618 } 7619 7620 mod_func->ip = rec->ip - offset; 7621 mod_func->size = symsize; 7622 7623 mod_map->num_funcs++; 7624 7625 list_add_rcu(&mod_func->list, &mod_map->funcs); 7626 } 7627 7628 static struct ftrace_mod_map * 7629 allocate_ftrace_mod_map(struct module *mod, 7630 unsigned long start, unsigned long end) 7631 { 7632 struct ftrace_mod_map *mod_map; 7633 7634 if (ftrace_disabled) 7635 return NULL; 7636 7637 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 7638 if (!mod_map) 7639 return NULL; 7640 7641 mod_map->mod = mod; 7642 mod_map->start_addr = start; 7643 mod_map->end_addr = end; 7644 mod_map->num_funcs = 0; 7645 7646 INIT_LIST_HEAD_RCU(&mod_map->funcs); 7647 7648 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 7649 7650 return mod_map; 7651 } 7652 7653 static int 7654 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 7655 unsigned long addr, unsigned long *size, 7656 unsigned long *off, char *sym) 7657 { 7658 struct ftrace_mod_func *found_func = NULL; 7659 struct ftrace_mod_func *mod_func; 7660 7661 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7662 if (addr >= mod_func->ip && 7663 addr < mod_func->ip + mod_func->size) { 7664 found_func = mod_func; 7665 break; 7666 } 7667 } 7668 7669 if (found_func) { 7670 if (size) 7671 *size = found_func->size; 7672 if (off) 7673 *off = addr - found_func->ip; 7674 return strscpy(sym, found_func->name, KSYM_NAME_LEN); 7675 } 7676 7677 return 0; 7678 } 7679 7680 int 7681 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 7682 unsigned long *off, char **modname, char *sym) 7683 { 7684 struct ftrace_mod_map *mod_map; 7685 int ret = 0; 7686 7687 /* mod_map is freed via call_rcu() */ 7688 preempt_disable(); 7689 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7690 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 7691 if (ret) { 7692 if (modname) 7693 *modname = mod_map->mod->name; 7694 break; 7695 } 7696 } 7697 preempt_enable(); 7698 7699 return ret; 7700 } 7701 7702 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7703 char *type, char *name, 7704 char *module_name, int *exported) 7705 { 7706 struct ftrace_mod_map *mod_map; 7707 struct ftrace_mod_func *mod_func; 7708 int ret; 7709 7710 preempt_disable(); 7711 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7712 7713 if (symnum >= mod_map->num_funcs) { 7714 symnum -= mod_map->num_funcs; 7715 continue; 7716 } 7717 7718 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7719 if (symnum > 1) { 7720 symnum--; 7721 continue; 7722 } 7723 7724 *value = mod_func->ip; 7725 *type = 'T'; 7726 strscpy(name, mod_func->name, KSYM_NAME_LEN); 7727 strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7728 *exported = 1; 7729 preempt_enable(); 7730 return 0; 7731 } 7732 WARN_ON(1); 7733 break; 7734 } 7735 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7736 module_name, exported); 7737 preempt_enable(); 7738 return ret; 7739 } 7740 7741 #else 7742 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7743 struct dyn_ftrace *rec) { } 7744 static inline struct ftrace_mod_map * 7745 allocate_ftrace_mod_map(struct module *mod, 7746 unsigned long start, unsigned long end) 7747 { 7748 return NULL; 7749 } 7750 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7751 char *type, char *name, char *module_name, 7752 int *exported) 7753 { 7754 int ret; 7755 7756 preempt_disable(); 7757 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7758 module_name, exported); 7759 preempt_enable(); 7760 return ret; 7761 } 7762 #endif /* CONFIG_MODULES */ 7763 7764 struct ftrace_init_func { 7765 struct list_head list; 7766 unsigned long ip; 7767 }; 7768 7769 /* Clear any init ips from hashes */ 7770 static void 7771 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7772 { 7773 struct ftrace_func_entry *entry; 7774 7775 entry = ftrace_lookup_ip(hash, func->ip); 7776 /* 7777 * Do not allow this rec to match again. 7778 * Yeah, it may waste some memory, but will be removed 7779 * if/when the hash is modified again. 7780 */ 7781 if (entry) 7782 entry->ip = 0; 7783 } 7784 7785 static void 7786 clear_func_from_hashes(struct ftrace_init_func *func) 7787 { 7788 struct trace_array *tr; 7789 7790 mutex_lock(&trace_types_lock); 7791 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7792 if (!tr->ops || !tr->ops->func_hash) 7793 continue; 7794 mutex_lock(&tr->ops->func_hash->regex_lock); 7795 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7796 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7797 mutex_unlock(&tr->ops->func_hash->regex_lock); 7798 } 7799 mutex_unlock(&trace_types_lock); 7800 } 7801 7802 static void add_to_clear_hash_list(struct list_head *clear_list, 7803 struct dyn_ftrace *rec) 7804 { 7805 struct ftrace_init_func *func; 7806 7807 func = kmalloc(sizeof(*func), GFP_KERNEL); 7808 if (!func) { 7809 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7810 return; 7811 } 7812 7813 func->ip = rec->ip; 7814 list_add(&func->list, clear_list); 7815 } 7816 7817 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7818 { 7819 unsigned long start = (unsigned long)(start_ptr); 7820 unsigned long end = (unsigned long)(end_ptr); 7821 struct ftrace_page **last_pg = &ftrace_pages_start; 7822 struct ftrace_page *tmp_page = NULL; 7823 struct ftrace_page *pg; 7824 struct dyn_ftrace *rec; 7825 struct dyn_ftrace key; 7826 struct ftrace_mod_map *mod_map = NULL; 7827 struct ftrace_init_func *func, *func_next; 7828 LIST_HEAD(clear_hash); 7829 7830 key.ip = start; 7831 key.flags = end; /* overload flags, as it is unsigned long */ 7832 7833 mutex_lock(&ftrace_lock); 7834 7835 /* 7836 * If we are freeing module init memory, then check if 7837 * any tracer is active. If so, we need to save a mapping of 7838 * the module functions being freed with the address. 7839 */ 7840 if (mod && ftrace_ops_list != &ftrace_list_end) 7841 mod_map = allocate_ftrace_mod_map(mod, start, end); 7842 7843 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7844 if (end < pg->records[0].ip || 7845 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7846 continue; 7847 again: 7848 rec = bsearch(&key, pg->records, pg->index, 7849 sizeof(struct dyn_ftrace), 7850 ftrace_cmp_recs); 7851 if (!rec) 7852 continue; 7853 7854 /* rec will be cleared from hashes after ftrace_lock unlock */ 7855 add_to_clear_hash_list(&clear_hash, rec); 7856 7857 if (mod_map) 7858 save_ftrace_mod_rec(mod_map, rec); 7859 7860 pg->index--; 7861 ftrace_update_tot_cnt--; 7862 if (!pg->index) { 7863 *last_pg = pg->next; 7864 pg->next = tmp_page; 7865 tmp_page = pg; 7866 pg = container_of(last_pg, struct ftrace_page, next); 7867 if (!(*last_pg)) 7868 ftrace_pages = pg; 7869 continue; 7870 } 7871 memmove(rec, rec + 1, 7872 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7873 /* More than one function may be in this block */ 7874 goto again; 7875 } 7876 mutex_unlock(&ftrace_lock); 7877 7878 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7879 clear_func_from_hashes(func); 7880 kfree(func); 7881 } 7882 /* Need to synchronize with ftrace_location_range() */ 7883 if (tmp_page) { 7884 synchronize_rcu(); 7885 ftrace_free_pages(tmp_page); 7886 } 7887 } 7888 7889 void __init ftrace_free_init_mem(void) 7890 { 7891 void *start = (void *)(&__init_begin); 7892 void *end = (void *)(&__init_end); 7893 7894 ftrace_boot_snapshot(); 7895 7896 ftrace_free_mem(NULL, start, end); 7897 } 7898 7899 int __init __weak ftrace_dyn_arch_init(void) 7900 { 7901 return 0; 7902 } 7903 7904 void __init ftrace_init(void) 7905 { 7906 extern unsigned long __start_mcount_loc[]; 7907 extern unsigned long __stop_mcount_loc[]; 7908 unsigned long count, flags; 7909 int ret; 7910 7911 local_irq_save(flags); 7912 ret = ftrace_dyn_arch_init(); 7913 local_irq_restore(flags); 7914 if (ret) 7915 goto failed; 7916 7917 count = __stop_mcount_loc - __start_mcount_loc; 7918 if (!count) { 7919 pr_info("ftrace: No functions to be traced?\n"); 7920 goto failed; 7921 } 7922 7923 ret = ftrace_process_locs(NULL, 7924 __start_mcount_loc, 7925 __stop_mcount_loc); 7926 if (ret) { 7927 pr_warn("ftrace: failed to allocate entries for functions\n"); 7928 goto failed; 7929 } 7930 7931 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7932 ftrace_number_of_pages, ftrace_number_of_groups); 7933 7934 last_ftrace_enabled = ftrace_enabled = 1; 7935 7936 set_ftrace_early_filters(); 7937 7938 return; 7939 failed: 7940 ftrace_disabled = 1; 7941 } 7942 7943 /* Do nothing if arch does not support this */ 7944 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7945 { 7946 } 7947 7948 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7949 { 7950 unsigned long trampoline = ops->trampoline; 7951 7952 arch_ftrace_update_trampoline(ops); 7953 if (ops->trampoline && ops->trampoline != trampoline && 7954 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7955 /* Add to kallsyms before the perf events */ 7956 ftrace_add_trampoline_to_kallsyms(ops); 7957 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7958 ops->trampoline, ops->trampoline_size, false, 7959 FTRACE_TRAMPOLINE_SYM); 7960 /* 7961 * Record the perf text poke event after the ksymbol register 7962 * event. 7963 */ 7964 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7965 (void *)ops->trampoline, 7966 ops->trampoline_size); 7967 } 7968 } 7969 7970 void ftrace_init_trace_array(struct trace_array *tr) 7971 { 7972 if (tr->flags & TRACE_ARRAY_FL_MOD_INIT) 7973 return; 7974 7975 INIT_LIST_HEAD(&tr->func_probes); 7976 INIT_LIST_HEAD(&tr->mod_trace); 7977 INIT_LIST_HEAD(&tr->mod_notrace); 7978 7979 tr->flags |= TRACE_ARRAY_FL_MOD_INIT; 7980 } 7981 #else 7982 7983 struct ftrace_ops global_ops = { 7984 .func = ftrace_stub, 7985 .flags = FTRACE_OPS_FL_INITIALIZED | 7986 FTRACE_OPS_FL_PID, 7987 }; 7988 7989 static int __init ftrace_nodyn_init(void) 7990 { 7991 ftrace_enabled = 1; 7992 return 0; 7993 } 7994 core_initcall(ftrace_nodyn_init); 7995 7996 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7997 static inline void ftrace_startup_all(int command) { } 7998 7999 static void ftrace_update_trampoline(struct ftrace_ops *ops) 8000 { 8001 } 8002 8003 #endif /* CONFIG_DYNAMIC_FTRACE */ 8004 8005 __init void ftrace_init_global_array_ops(struct trace_array *tr) 8006 { 8007 tr->ops = &global_ops; 8008 if (!global_ops.private) 8009 global_ops.private = tr; 8010 ftrace_init_trace_array(tr); 8011 init_array_fgraph_ops(tr, tr->ops); 8012 } 8013 8014 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 8015 { 8016 /* If we filter on pids, update to use the pid function */ 8017 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 8018 if (WARN_ON(tr->ops->func != ftrace_stub)) 8019 printk("ftrace ops had %pS for function\n", 8020 tr->ops->func); 8021 } 8022 tr->ops->func = func; 8023 tr->ops->private = tr; 8024 } 8025 8026 void ftrace_reset_array_ops(struct trace_array *tr) 8027 { 8028 tr->ops->func = ftrace_stub; 8029 } 8030 8031 static nokprobe_inline void 8032 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 8033 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 8034 { 8035 struct pt_regs *regs = ftrace_get_regs(fregs); 8036 struct ftrace_ops *op; 8037 int bit; 8038 8039 /* 8040 * The ftrace_test_and_set_recursion() will disable preemption, 8041 * which is required since some of the ops may be dynamically 8042 * allocated, they must be freed after a synchronize_rcu(). 8043 */ 8044 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 8045 if (bit < 0) 8046 return; 8047 8048 do_for_each_ftrace_op(op, ftrace_ops_list) { 8049 /* Stub functions don't need to be called nor tested */ 8050 if (op->flags & FTRACE_OPS_FL_STUB) 8051 continue; 8052 /* 8053 * Check the following for each ops before calling their func: 8054 * if RCU flag is set, then rcu_is_watching() must be true 8055 * Otherwise test if the ip matches the ops filter 8056 * 8057 * If any of the above fails then the op->func() is not executed. 8058 */ 8059 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 8060 ftrace_ops_test(op, ip, regs)) { 8061 if (FTRACE_WARN_ON(!op->func)) { 8062 pr_warn("op=%p %pS\n", op, op); 8063 goto out; 8064 } 8065 op->func(ip, parent_ip, op, fregs); 8066 } 8067 } while_for_each_ftrace_op(op); 8068 out: 8069 trace_clear_recursion(bit); 8070 } 8071 8072 /* 8073 * Some archs only support passing ip and parent_ip. Even though 8074 * the list function ignores the op parameter, we do not want any 8075 * C side effects, where a function is called without the caller 8076 * sending a third parameter. 8077 * Archs are to support both the regs and ftrace_ops at the same time. 8078 * If they support ftrace_ops, it is assumed they support regs. 8079 * If call backs want to use regs, they must either check for regs 8080 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 8081 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 8082 * An architecture can pass partial regs with ftrace_ops and still 8083 * set the ARCH_SUPPORTS_FTRACE_OPS. 8084 * 8085 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 8086 * arch_ftrace_ops_list_func. 8087 */ 8088 #if ARCH_SUPPORTS_FTRACE_OPS 8089 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 8090 struct ftrace_ops *op, struct ftrace_regs *fregs) 8091 { 8092 kmsan_unpoison_memory(fregs, ftrace_regs_size()); 8093 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 8094 } 8095 #else 8096 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 8097 { 8098 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 8099 } 8100 #endif 8101 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 8102 8103 /* 8104 * If there's only one function registered but it does not support 8105 * recursion, needs RCU protection, then this function will be called 8106 * by the mcount trampoline. 8107 */ 8108 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 8109 struct ftrace_ops *op, struct ftrace_regs *fregs) 8110 { 8111 int bit; 8112 8113 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 8114 if (bit < 0) 8115 return; 8116 8117 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 8118 op->func(ip, parent_ip, op, fregs); 8119 8120 trace_clear_recursion(bit); 8121 } 8122 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 8123 8124 /** 8125 * ftrace_ops_get_func - get the function a trampoline should call 8126 * @ops: the ops to get the function for 8127 * 8128 * Normally the mcount trampoline will call the ops->func, but there 8129 * are times that it should not. For example, if the ops does not 8130 * have its own recursion protection, then it should call the 8131 * ftrace_ops_assist_func() instead. 8132 * 8133 * Returns: the function that the trampoline should call for @ops. 8134 */ 8135 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 8136 { 8137 /* 8138 * If the function does not handle recursion or needs to be RCU safe, 8139 * then we need to call the assist handler. 8140 */ 8141 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 8142 FTRACE_OPS_FL_RCU)) 8143 return ftrace_ops_assist_func; 8144 8145 return ops->func; 8146 } 8147 8148 static void 8149 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 8150 struct task_struct *prev, 8151 struct task_struct *next, 8152 unsigned int prev_state) 8153 { 8154 struct trace_array *tr = data; 8155 struct trace_pid_list *pid_list; 8156 struct trace_pid_list *no_pid_list; 8157 8158 pid_list = rcu_dereference_sched(tr->function_pids); 8159 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 8160 8161 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 8162 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8163 FTRACE_PID_IGNORE); 8164 else 8165 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8166 next->pid); 8167 } 8168 8169 static void 8170 ftrace_pid_follow_sched_process_fork(void *data, 8171 struct task_struct *self, 8172 struct task_struct *task) 8173 { 8174 struct trace_pid_list *pid_list; 8175 struct trace_array *tr = data; 8176 8177 pid_list = rcu_dereference_sched(tr->function_pids); 8178 trace_filter_add_remove_task(pid_list, self, task); 8179 8180 pid_list = rcu_dereference_sched(tr->function_no_pids); 8181 trace_filter_add_remove_task(pid_list, self, task); 8182 } 8183 8184 static void 8185 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 8186 { 8187 struct trace_pid_list *pid_list; 8188 struct trace_array *tr = data; 8189 8190 pid_list = rcu_dereference_sched(tr->function_pids); 8191 trace_filter_add_remove_task(pid_list, NULL, task); 8192 8193 pid_list = rcu_dereference_sched(tr->function_no_pids); 8194 trace_filter_add_remove_task(pid_list, NULL, task); 8195 } 8196 8197 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 8198 { 8199 if (enable) { 8200 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 8201 tr); 8202 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 8203 tr); 8204 } else { 8205 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 8206 tr); 8207 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 8208 tr); 8209 } 8210 } 8211 8212 static void clear_ftrace_pids(struct trace_array *tr, int type) 8213 { 8214 struct trace_pid_list *pid_list; 8215 struct trace_pid_list *no_pid_list; 8216 int cpu; 8217 8218 pid_list = rcu_dereference_protected(tr->function_pids, 8219 lockdep_is_held(&ftrace_lock)); 8220 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 8221 lockdep_is_held(&ftrace_lock)); 8222 8223 /* Make sure there's something to do */ 8224 if (!pid_type_enabled(type, pid_list, no_pid_list)) 8225 return; 8226 8227 /* See if the pids still need to be checked after this */ 8228 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 8229 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 8230 for_each_possible_cpu(cpu) 8231 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 8232 } 8233 8234 if (type & TRACE_PIDS) 8235 rcu_assign_pointer(tr->function_pids, NULL); 8236 8237 if (type & TRACE_NO_PIDS) 8238 rcu_assign_pointer(tr->function_no_pids, NULL); 8239 8240 /* Wait till all users are no longer using pid filtering */ 8241 synchronize_rcu(); 8242 8243 if ((type & TRACE_PIDS) && pid_list) 8244 trace_pid_list_free(pid_list); 8245 8246 if ((type & TRACE_NO_PIDS) && no_pid_list) 8247 trace_pid_list_free(no_pid_list); 8248 } 8249 8250 void ftrace_clear_pids(struct trace_array *tr) 8251 { 8252 mutex_lock(&ftrace_lock); 8253 8254 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 8255 8256 mutex_unlock(&ftrace_lock); 8257 } 8258 8259 static void ftrace_pid_reset(struct trace_array *tr, int type) 8260 { 8261 mutex_lock(&ftrace_lock); 8262 clear_ftrace_pids(tr, type); 8263 8264 ftrace_update_pid_func(); 8265 ftrace_startup_all(0); 8266 8267 mutex_unlock(&ftrace_lock); 8268 } 8269 8270 /* Greater than any max PID */ 8271 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 8272 8273 static void *fpid_start(struct seq_file *m, loff_t *pos) 8274 __acquires(RCU) 8275 { 8276 struct trace_pid_list *pid_list; 8277 struct trace_array *tr = m->private; 8278 8279 mutex_lock(&ftrace_lock); 8280 rcu_read_lock_sched(); 8281 8282 pid_list = rcu_dereference_sched(tr->function_pids); 8283 8284 if (!pid_list) 8285 return !(*pos) ? FTRACE_NO_PIDS : NULL; 8286 8287 return trace_pid_start(pid_list, pos); 8288 } 8289 8290 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 8291 { 8292 struct trace_array *tr = m->private; 8293 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 8294 8295 if (v == FTRACE_NO_PIDS) { 8296 (*pos)++; 8297 return NULL; 8298 } 8299 return trace_pid_next(pid_list, v, pos); 8300 } 8301 8302 static void fpid_stop(struct seq_file *m, void *p) 8303 __releases(RCU) 8304 { 8305 rcu_read_unlock_sched(); 8306 mutex_unlock(&ftrace_lock); 8307 } 8308 8309 static int fpid_show(struct seq_file *m, void *v) 8310 { 8311 if (v == FTRACE_NO_PIDS) { 8312 seq_puts(m, "no pid\n"); 8313 return 0; 8314 } 8315 8316 return trace_pid_show(m, v); 8317 } 8318 8319 static const struct seq_operations ftrace_pid_sops = { 8320 .start = fpid_start, 8321 .next = fpid_next, 8322 .stop = fpid_stop, 8323 .show = fpid_show, 8324 }; 8325 8326 static void *fnpid_start(struct seq_file *m, loff_t *pos) 8327 __acquires(RCU) 8328 { 8329 struct trace_pid_list *pid_list; 8330 struct trace_array *tr = m->private; 8331 8332 mutex_lock(&ftrace_lock); 8333 rcu_read_lock_sched(); 8334 8335 pid_list = rcu_dereference_sched(tr->function_no_pids); 8336 8337 if (!pid_list) 8338 return !(*pos) ? FTRACE_NO_PIDS : NULL; 8339 8340 return trace_pid_start(pid_list, pos); 8341 } 8342 8343 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 8344 { 8345 struct trace_array *tr = m->private; 8346 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 8347 8348 if (v == FTRACE_NO_PIDS) { 8349 (*pos)++; 8350 return NULL; 8351 } 8352 return trace_pid_next(pid_list, v, pos); 8353 } 8354 8355 static const struct seq_operations ftrace_no_pid_sops = { 8356 .start = fnpid_start, 8357 .next = fnpid_next, 8358 .stop = fpid_stop, 8359 .show = fpid_show, 8360 }; 8361 8362 static int pid_open(struct inode *inode, struct file *file, int type) 8363 { 8364 const struct seq_operations *seq_ops; 8365 struct trace_array *tr = inode->i_private; 8366 struct seq_file *m; 8367 int ret = 0; 8368 8369 ret = tracing_check_open_get_tr(tr); 8370 if (ret) 8371 return ret; 8372 8373 if ((file->f_mode & FMODE_WRITE) && 8374 (file->f_flags & O_TRUNC)) 8375 ftrace_pid_reset(tr, type); 8376 8377 switch (type) { 8378 case TRACE_PIDS: 8379 seq_ops = &ftrace_pid_sops; 8380 break; 8381 case TRACE_NO_PIDS: 8382 seq_ops = &ftrace_no_pid_sops; 8383 break; 8384 default: 8385 trace_array_put(tr); 8386 WARN_ON_ONCE(1); 8387 return -EINVAL; 8388 } 8389 8390 ret = seq_open(file, seq_ops); 8391 if (ret < 0) { 8392 trace_array_put(tr); 8393 } else { 8394 m = file->private_data; 8395 /* copy tr over to seq ops */ 8396 m->private = tr; 8397 } 8398 8399 return ret; 8400 } 8401 8402 static int 8403 ftrace_pid_open(struct inode *inode, struct file *file) 8404 { 8405 return pid_open(inode, file, TRACE_PIDS); 8406 } 8407 8408 static int 8409 ftrace_no_pid_open(struct inode *inode, struct file *file) 8410 { 8411 return pid_open(inode, file, TRACE_NO_PIDS); 8412 } 8413 8414 static void ignore_task_cpu(void *data) 8415 { 8416 struct trace_array *tr = data; 8417 struct trace_pid_list *pid_list; 8418 struct trace_pid_list *no_pid_list; 8419 8420 /* 8421 * This function is called by on_each_cpu() while the 8422 * event_mutex is held. 8423 */ 8424 pid_list = rcu_dereference_protected(tr->function_pids, 8425 mutex_is_locked(&ftrace_lock)); 8426 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 8427 mutex_is_locked(&ftrace_lock)); 8428 8429 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 8430 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8431 FTRACE_PID_IGNORE); 8432 else 8433 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 8434 current->pid); 8435 } 8436 8437 static ssize_t 8438 pid_write(struct file *filp, const char __user *ubuf, 8439 size_t cnt, loff_t *ppos, int type) 8440 { 8441 struct seq_file *m = filp->private_data; 8442 struct trace_array *tr = m->private; 8443 struct trace_pid_list *filtered_pids; 8444 struct trace_pid_list *other_pids; 8445 struct trace_pid_list *pid_list; 8446 ssize_t ret; 8447 8448 if (!cnt) 8449 return 0; 8450 8451 guard(mutex)(&ftrace_lock); 8452 8453 switch (type) { 8454 case TRACE_PIDS: 8455 filtered_pids = rcu_dereference_protected(tr->function_pids, 8456 lockdep_is_held(&ftrace_lock)); 8457 other_pids = rcu_dereference_protected(tr->function_no_pids, 8458 lockdep_is_held(&ftrace_lock)); 8459 break; 8460 case TRACE_NO_PIDS: 8461 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 8462 lockdep_is_held(&ftrace_lock)); 8463 other_pids = rcu_dereference_protected(tr->function_pids, 8464 lockdep_is_held(&ftrace_lock)); 8465 break; 8466 default: 8467 WARN_ON_ONCE(1); 8468 return -EINVAL; 8469 } 8470 8471 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 8472 if (ret < 0) 8473 return ret; 8474 8475 switch (type) { 8476 case TRACE_PIDS: 8477 rcu_assign_pointer(tr->function_pids, pid_list); 8478 break; 8479 case TRACE_NO_PIDS: 8480 rcu_assign_pointer(tr->function_no_pids, pid_list); 8481 break; 8482 } 8483 8484 8485 if (filtered_pids) { 8486 synchronize_rcu(); 8487 trace_pid_list_free(filtered_pids); 8488 } else if (pid_list && !other_pids) { 8489 /* Register a probe to set whether to ignore the tracing of a task */ 8490 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 8491 } 8492 8493 /* 8494 * Ignoring of pids is done at task switch. But we have to 8495 * check for those tasks that are currently running. 8496 * Always do this in case a pid was appended or removed. 8497 */ 8498 on_each_cpu(ignore_task_cpu, tr, 1); 8499 8500 ftrace_update_pid_func(); 8501 ftrace_startup_all(0); 8502 8503 *ppos += ret; 8504 8505 return ret; 8506 } 8507 8508 static ssize_t 8509 ftrace_pid_write(struct file *filp, const char __user *ubuf, 8510 size_t cnt, loff_t *ppos) 8511 { 8512 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 8513 } 8514 8515 static ssize_t 8516 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 8517 size_t cnt, loff_t *ppos) 8518 { 8519 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 8520 } 8521 8522 static int 8523 ftrace_pid_release(struct inode *inode, struct file *file) 8524 { 8525 struct trace_array *tr = inode->i_private; 8526 8527 trace_array_put(tr); 8528 8529 return seq_release(inode, file); 8530 } 8531 8532 static const struct file_operations ftrace_pid_fops = { 8533 .open = ftrace_pid_open, 8534 .write = ftrace_pid_write, 8535 .read = seq_read, 8536 .llseek = tracing_lseek, 8537 .release = ftrace_pid_release, 8538 }; 8539 8540 static const struct file_operations ftrace_no_pid_fops = { 8541 .open = ftrace_no_pid_open, 8542 .write = ftrace_no_pid_write, 8543 .read = seq_read, 8544 .llseek = tracing_lseek, 8545 .release = ftrace_pid_release, 8546 }; 8547 8548 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 8549 { 8550 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 8551 tr, &ftrace_pid_fops); 8552 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 8553 d_tracer, tr, &ftrace_no_pid_fops); 8554 } 8555 8556 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 8557 struct dentry *d_tracer) 8558 { 8559 /* Only the top level directory has the dyn_tracefs and profile */ 8560 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 8561 8562 ftrace_init_dyn_tracefs(d_tracer); 8563 ftrace_profile_tracefs(d_tracer); 8564 } 8565 8566 /** 8567 * ftrace_kill - kill ftrace 8568 * 8569 * This function should be used by panic code. It stops ftrace 8570 * but in a not so nice way. If you need to simply kill ftrace 8571 * from a non-atomic section, use ftrace_kill. 8572 */ 8573 void ftrace_kill(void) 8574 { 8575 ftrace_disabled = 1; 8576 ftrace_enabled = 0; 8577 ftrace_trace_function = ftrace_stub; 8578 kprobe_ftrace_kill(); 8579 } 8580 8581 /** 8582 * ftrace_is_dead - Test if ftrace is dead or not. 8583 * 8584 * Returns: 1 if ftrace is "dead", zero otherwise. 8585 */ 8586 int ftrace_is_dead(void) 8587 { 8588 return ftrace_disabled; 8589 } 8590 8591 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 8592 /* 8593 * When registering ftrace_ops with IPMODIFY, it is necessary to make sure 8594 * it doesn't conflict with any direct ftrace_ops. If there is existing 8595 * direct ftrace_ops on a kernel function being patched, call 8596 * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing. 8597 * 8598 * @ops: ftrace_ops being registered. 8599 * 8600 * Returns: 8601 * 0 on success; 8602 * Negative on failure. 8603 */ 8604 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8605 { 8606 struct ftrace_func_entry *entry; 8607 struct ftrace_hash *hash; 8608 struct ftrace_ops *op; 8609 int size, i, ret; 8610 8611 lockdep_assert_held_once(&direct_mutex); 8612 8613 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8614 return 0; 8615 8616 hash = ops->func_hash->filter_hash; 8617 size = 1 << hash->size_bits; 8618 for (i = 0; i < size; i++) { 8619 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8620 unsigned long ip = entry->ip; 8621 bool found_op = false; 8622 8623 mutex_lock(&ftrace_lock); 8624 do_for_each_ftrace_op(op, ftrace_ops_list) { 8625 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8626 continue; 8627 if (ops_references_ip(op, ip)) { 8628 found_op = true; 8629 break; 8630 } 8631 } while_for_each_ftrace_op(op); 8632 mutex_unlock(&ftrace_lock); 8633 8634 if (found_op) { 8635 if (!op->ops_func) 8636 return -EBUSY; 8637 8638 ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER); 8639 if (ret) 8640 return ret; 8641 } 8642 } 8643 } 8644 8645 return 0; 8646 } 8647 8648 /* 8649 * Similar to prepare_direct_functions_for_ipmodify, clean up after ops 8650 * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT 8651 * ops. 8652 */ 8653 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8654 { 8655 struct ftrace_func_entry *entry; 8656 struct ftrace_hash *hash; 8657 struct ftrace_ops *op; 8658 int size, i; 8659 8660 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8661 return; 8662 8663 mutex_lock(&direct_mutex); 8664 8665 hash = ops->func_hash->filter_hash; 8666 size = 1 << hash->size_bits; 8667 for (i = 0; i < size; i++) { 8668 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8669 unsigned long ip = entry->ip; 8670 bool found_op = false; 8671 8672 mutex_lock(&ftrace_lock); 8673 do_for_each_ftrace_op(op, ftrace_ops_list) { 8674 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8675 continue; 8676 if (ops_references_ip(op, ip)) { 8677 found_op = true; 8678 break; 8679 } 8680 } while_for_each_ftrace_op(op); 8681 mutex_unlock(&ftrace_lock); 8682 8683 /* The cleanup is optional, ignore any errors */ 8684 if (found_op && op->ops_func) 8685 op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER); 8686 } 8687 } 8688 mutex_unlock(&direct_mutex); 8689 } 8690 8691 #define lock_direct_mutex() mutex_lock(&direct_mutex) 8692 #define unlock_direct_mutex() mutex_unlock(&direct_mutex) 8693 8694 #else /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8695 8696 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8697 { 8698 return 0; 8699 } 8700 8701 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8702 { 8703 } 8704 8705 #define lock_direct_mutex() do { } while (0) 8706 #define unlock_direct_mutex() do { } while (0) 8707 8708 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8709 8710 /* 8711 * Similar to register_ftrace_function, except we don't lock direct_mutex. 8712 */ 8713 static int register_ftrace_function_nolock(struct ftrace_ops *ops) 8714 { 8715 int ret; 8716 8717 ftrace_ops_init(ops); 8718 8719 mutex_lock(&ftrace_lock); 8720 8721 ret = ftrace_startup(ops, 0); 8722 8723 mutex_unlock(&ftrace_lock); 8724 8725 return ret; 8726 } 8727 8728 /** 8729 * register_ftrace_function - register a function for profiling 8730 * @ops: ops structure that holds the function for profiling. 8731 * 8732 * Register a function to be called by all functions in the 8733 * kernel. 8734 * 8735 * Note: @ops->func and all the functions it calls must be labeled 8736 * with "notrace", otherwise it will go into a 8737 * recursive loop. 8738 */ 8739 int register_ftrace_function(struct ftrace_ops *ops) 8740 { 8741 int ret; 8742 8743 lock_direct_mutex(); 8744 ret = prepare_direct_functions_for_ipmodify(ops); 8745 if (ret < 0) 8746 goto out_unlock; 8747 8748 ret = register_ftrace_function_nolock(ops); 8749 8750 out_unlock: 8751 unlock_direct_mutex(); 8752 return ret; 8753 } 8754 EXPORT_SYMBOL_GPL(register_ftrace_function); 8755 8756 /** 8757 * unregister_ftrace_function - unregister a function for profiling. 8758 * @ops: ops structure that holds the function to unregister 8759 * 8760 * Unregister a function that was added to be called by ftrace profiling. 8761 */ 8762 int unregister_ftrace_function(struct ftrace_ops *ops) 8763 { 8764 int ret; 8765 8766 mutex_lock(&ftrace_lock); 8767 ret = ftrace_shutdown(ops, 0); 8768 mutex_unlock(&ftrace_lock); 8769 8770 cleanup_direct_functions_after_ipmodify(ops); 8771 return ret; 8772 } 8773 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 8774 8775 static int symbols_cmp(const void *a, const void *b) 8776 { 8777 const char **str_a = (const char **) a; 8778 const char **str_b = (const char **) b; 8779 8780 return strcmp(*str_a, *str_b); 8781 } 8782 8783 struct kallsyms_data { 8784 unsigned long *addrs; 8785 const char **syms; 8786 size_t cnt; 8787 size_t found; 8788 }; 8789 8790 /* This function gets called for all kernel and module symbols 8791 * and returns 1 in case we resolved all the requested symbols, 8792 * 0 otherwise. 8793 */ 8794 static int kallsyms_callback(void *data, const char *name, unsigned long addr) 8795 { 8796 struct kallsyms_data *args = data; 8797 const char **sym; 8798 int idx; 8799 8800 sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp); 8801 if (!sym) 8802 return 0; 8803 8804 idx = sym - args->syms; 8805 if (args->addrs[idx]) 8806 return 0; 8807 8808 if (!ftrace_location(addr)) 8809 return 0; 8810 8811 args->addrs[idx] = addr; 8812 args->found++; 8813 return args->found == args->cnt ? 1 : 0; 8814 } 8815 8816 /** 8817 * ftrace_lookup_symbols - Lookup addresses for array of symbols 8818 * 8819 * @sorted_syms: array of symbols pointers symbols to resolve, 8820 * must be alphabetically sorted 8821 * @cnt: number of symbols/addresses in @syms/@addrs arrays 8822 * @addrs: array for storing resulting addresses 8823 * 8824 * This function looks up addresses for array of symbols provided in 8825 * @syms array (must be alphabetically sorted) and stores them in 8826 * @addrs array, which needs to be big enough to store at least @cnt 8827 * addresses. 8828 * 8829 * Returns: 0 if all provided symbols are found, -ESRCH otherwise. 8830 */ 8831 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 8832 { 8833 struct kallsyms_data args; 8834 int found_all; 8835 8836 memset(addrs, 0, sizeof(*addrs) * cnt); 8837 args.addrs = addrs; 8838 args.syms = sorted_syms; 8839 args.cnt = cnt; 8840 args.found = 0; 8841 8842 found_all = kallsyms_on_each_symbol(kallsyms_callback, &args); 8843 if (found_all) 8844 return 0; 8845 found_all = module_kallsyms_on_each_symbol(NULL, kallsyms_callback, &args); 8846 return found_all ? 0 : -ESRCH; 8847 } 8848 8849 #ifdef CONFIG_SYSCTL 8850 8851 #ifdef CONFIG_DYNAMIC_FTRACE 8852 static void ftrace_startup_sysctl(void) 8853 { 8854 int command; 8855 8856 if (unlikely(ftrace_disabled)) 8857 return; 8858 8859 /* Force update next time */ 8860 saved_ftrace_func = NULL; 8861 /* ftrace_start_up is true if we want ftrace running */ 8862 if (ftrace_start_up) { 8863 command = FTRACE_UPDATE_CALLS; 8864 if (ftrace_graph_active) 8865 command |= FTRACE_START_FUNC_RET; 8866 ftrace_startup_enable(command); 8867 } 8868 } 8869 8870 static void ftrace_shutdown_sysctl(void) 8871 { 8872 int command; 8873 8874 if (unlikely(ftrace_disabled)) 8875 return; 8876 8877 /* ftrace_start_up is true if ftrace is running */ 8878 if (ftrace_start_up) { 8879 command = FTRACE_DISABLE_CALLS; 8880 if (ftrace_graph_active) 8881 command |= FTRACE_STOP_FUNC_RET; 8882 ftrace_run_update_code(command); 8883 } 8884 } 8885 #else 8886 # define ftrace_startup_sysctl() do { } while (0) 8887 # define ftrace_shutdown_sysctl() do { } while (0) 8888 #endif /* CONFIG_DYNAMIC_FTRACE */ 8889 8890 static bool is_permanent_ops_registered(void) 8891 { 8892 struct ftrace_ops *op; 8893 8894 do_for_each_ftrace_op(op, ftrace_ops_list) { 8895 if (op->flags & FTRACE_OPS_FL_PERMANENT) 8896 return true; 8897 } while_for_each_ftrace_op(op); 8898 8899 return false; 8900 } 8901 8902 static int 8903 ftrace_enable_sysctl(const struct ctl_table *table, int write, 8904 void *buffer, size_t *lenp, loff_t *ppos) 8905 { 8906 int ret; 8907 8908 guard(mutex)(&ftrace_lock); 8909 8910 if (unlikely(ftrace_disabled)) 8911 return -ENODEV; 8912 8913 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8914 8915 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8916 return ret; 8917 8918 if (ftrace_enabled) { 8919 8920 /* we are starting ftrace again */ 8921 if (rcu_dereference_protected(ftrace_ops_list, 8922 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8923 update_ftrace_function(); 8924 8925 ftrace_startup_sysctl(); 8926 8927 } else { 8928 if (is_permanent_ops_registered()) { 8929 ftrace_enabled = true; 8930 return -EBUSY; 8931 } 8932 8933 /* stopping ftrace calls (just send to ftrace_stub) */ 8934 ftrace_trace_function = ftrace_stub; 8935 8936 ftrace_shutdown_sysctl(); 8937 } 8938 8939 last_ftrace_enabled = !!ftrace_enabled; 8940 return 0; 8941 } 8942 8943 static const struct ctl_table ftrace_sysctls[] = { 8944 { 8945 .procname = "ftrace_enabled", 8946 .data = &ftrace_enabled, 8947 .maxlen = sizeof(int), 8948 .mode = 0644, 8949 .proc_handler = ftrace_enable_sysctl, 8950 }, 8951 }; 8952 8953 static int __init ftrace_sysctl_init(void) 8954 { 8955 register_sysctl_init("kernel", ftrace_sysctls); 8956 return 0; 8957 } 8958 late_initcall(ftrace_sysctl_init); 8959 #endif 8960